Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 21:01
  • Data zakończenia: 17 grudnia 2025 21:15

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Ochrona przed przeciążeniami
B. Zmniejszenie zużycia energii
C. Zdalne sterowanie obwodami elektrycznymi
D. Kontrola temperatury przewodów
Przekaźnik to bardzo wszechstronne urządzenie stosowane w instalacjach elektrycznych głównie do zdalnego sterowania obwodami elektrycznymi. Działa na zasadzie elektromagnetycznego przełącznika, który pozwala na kontrolowanie dużych prądów za pomocą małego sygnału elektrycznego. To właśnie ta funkcja umożliwia automatyzację wielu procesów w instalacjach. Przekaźniki są kluczowe w systemach sterowania, gdzie pozwalają na włączanie i wyłączanie obwodów bez konieczności fizycznego kontaktu, co zwiększa bezpieczeństwo i efektywność operacyjną. W praktyce, przekaźniki są używane w wielu aplikacjach, takich jak automatyka domowa, układy sterowania maszynami czy systemy zabezpieczeń. Ponadto, ich zastosowanie jest standardem w systemach, gdzie konieczna jest szybka reakcja na zmianę stanu, np. w przypadku awarii lub nadmiernego obciążenia. Ich niezawodność i łatwość w integracji sprawiają, że są nieodzownym elementem współczesnych systemów elektrycznych.

Pytanie 2

Którym symbolem na schemacie montażowym instalacji elektrycznej należy zaznaczyć urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Poprawna odpowiedź to C, ponieważ symbol "I∆" wewnątrz kwadratu jest standardowym oznaczeniem wyłącznika różnicowoprądowego (RCD) na schematach montażowych instalacji elektrycznych. Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach ochrony przed porażeniem elektrycznym, a ich główną funkcją jest wykrywanie różnicy w prądzie płynącym do i z urządzenia. W przypadku wykrycia takiej różnicy, która może wskazywać na nieprawidłowe działanie instalacji (np. w wyniku uszkodzenia izolacji), wyłącznik automatycznie odłącza zasilanie, co chroni użytkowników przed niebezpieczeństwem. W praktyce, wyłączniki RCD są szeroko stosowane w budynkach mieszkalnych, komercyjnych oraz przemysłowych, zgodnie z normami bezpieczeństwa, takimi jak PN-EN 61008-1. Zrozumienie znaczenia symboli na schematach jest istotne dla prawidłowego montażu i eksploatacji instalacji elektrycznych, co zapobiega awariom oraz zwiększa bezpieczeństwo użytkowników.

Pytanie 3

W miejsce cyfr dobierz symbole graficzne rodzaju przewodów, zachowując kolejność.

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Odpowiedź D jest poprawna, ponieważ zgodnie z zasadami podłączania przewodów w instalacjach elektrycznych, oznaczenia przewodów mają kluczowe znaczenie dla ich prawidłowego funkcjonowania. Przewód oznaczony grubą kropką reprezentuje przewód neutralny (N), podczas gdy przewody bez oznaczeń to przewody fazowe (L). W analizowanym schemacie widzimy, że do łącznika dochodzi przewód fazowy, a jego wyjście również prowadzi do przewodu fazowego. Odpowiedź D ilustruje tę sytuację, przedstawiając dwa przewody fazowe oraz jeden neutralny, co jest zgodne z normami i dobrymi praktykami branżowymi. Właściwe podłączenie przewodów jest istotne, aby zapewnić bezpieczeństwo instalacji oraz jej właściwe działanie. Przykładowo, w instalacjach oświetleniowych, prawidłowe oznaczenie i podłączenie przewodów ma kluczowe znaczenie dla uniknięcia zwarć oraz zapewnienia nieprzerwanego dostępu do energii elektrycznej.

Pytanie 4

Na którym rysunku przedstawiono schemat podłączenia automatu schodowego, umożliwiający prawidłową pracę układu oświetlenia?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Nieprawidłowe odpowiedzi na pytanie o schemat podłączenia automatu schodowego często wynikają z niepełnego zrozumienia działania tego urządzenia oraz zasad elektryki. W przypadku odpowiedzi A, B i D, brak jest uwzględnienia kluczowych połączeń, które determinują, że automat schodowy działa poprawnie. Na przykład, w schematach, gdzie przewód fazowy nie jest podłączony do właściwego zacisku L, nie tylko dochodzi do nieprawidłowego działania, ale także do potencjalnych zagrożeń dla użytkowników. Niedostateczne połączenia przycisków A1 i A2 mogą skutkować brakiem możliwości włączania i wyłączania oświetlenia, co jest nieakceptowalne w przestrzeniach, gdzie kontrola nad oświetleniem jest istotna dla bezpieczeństwa. Często w tych błędnych interpretacjach mylone są podstawowe zasady obwodów elektrycznych, takie jak zasada działania obwodów równoległych i szeregowych. Warto również zwrócić uwagę na standardy bezpieczeństwa, które podkreślają konieczność prawidłowego podłączenia komponentów w celu uniknięcia zwarć oraz innych awarii elektrycznych. Zrozumienie tych zasad jest kluczem do samodzielnego projektowania prostych instalacji, a także do świadomego korzystania z technologii w codziennym życiu.

Pytanie 5

Wkładka topikowa przedstawiona na ilustracji przeznaczona jest do zabezpieczenia chronionego przewodu przed skutkami

Ilustracja do pytania
A. zwarć i przeciążeń w obwodach prądu stałego i przemiennego.
B. wyłącznie zwarć w obwodach prądu stałego i przemiennego.
C. zwarć i przeciążeń jedynie w obwodach prądu przemiennego.
D. wyłącznie zwarć jedynie w obwodach prądu przemiennego.
Wkładka topikowa, której użycie pokazano na ilustracji, jest kluczowym elementem zabezpieczenia obwodów elektrycznych przed niebezpiecznymi sytuacjami, takimi jak zwarcia i przeciążenia. Odpowiedź wskazująca na jej zdolność do pracy zarówno w obwodach prądu stałego, jak i przemiennego jest prawidłowa, ponieważ wkładki te są projektowane z myślą o szerokim zastosowaniu w różnych systemach elektrycznych. W praktyce oznacza to, że wkładki mogą być stosowane w instalacjach domowych, przemysłowych oraz w urządzeniach elektronicznych, gdzie ochrona przed nadmiernym prądem jest kluczowa. W przypadku wykrycia zbyt wysokiego natężenia prądu, wkładka topikowa przerywa obwód, co zapobiega uszkodzeniom urządzeń i pożarom. Zgodnie z normami dotyczącymi ochrony obwodów, takimi jak IEC 60269, wkładki topikowe powinny być dobierane odpowiednio do charakterystyki zabezpieczanego obwodu, co podkreśla znaczenie ich właściwego doboru i zastosowania w praktyce.

Pytanie 6

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc.

Ilustracja do pytania
A. Schemat 1.
B. Schemat 4.
C. Schemat 3.
D. Schemat 2.
Schemat 4. przedstawia powszechnie stosowany układ schodowy, który umożliwia efektywne i wygodne sterowanie oświetleniem z dwóch niezależnych lokalizacji. W tym układzie zastosowanie dwóch przełączników krzyżowych pozwala na pełną kontrolę nad oświetleniem, niezależnie od ich pozycji. Dzięki temu użytkownik może włączać oraz wyłączać światło zarówno z korytarza, jak i z pokoju, co znacząco poprawia komfort użytkowania oraz elastyczność systemu oświetleniowego. To podejście jest zgodne z normami i dobrymi praktykami stosowanymi w instalacjach elektrycznych, gdzie priorytetem jest zarówno funkcjonalność, jak i bezpieczeństwo. W praktyce, instalacje schodowe są szczególnie przydatne w dużych domach lub biurach, gdzie odległość między przełącznikami może być znaczna. Dodatkowo, poprzez odpowiednie planowanie i zastosowanie schematu schodowego, można uzyskać znaczną oszczędność energii, eliminując niepotrzebne pozostawianie włączonego oświetlenia. Warto także zaznaczyć, że prawidłowe wykonanie takiej instalacji wymaga znajomości zasad elektryki oraz umiejętności czytania schematów elektrycznych, co stanowi ważny element edukacji zawodowej w dziedzinie elektrotechniki.

Pytanie 7

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Zaciskanie opaski kablowej.
B. Zaciskanie końcówki tulejkowej.
C. Klejenie na gorąco przewodu kabelkowego.
D. Ściąganie izolacji z przewodu.
Wybór odpowiedzi, który nie odnosi się do zaciskania opaski kablowej, może wynikać z nieporozumienia dotyczącego funkcji narzędzi i ich zastosowania w pracy z przewodami. Ściąganie izolacji z przewodu jest procesem całkowicie innym, który polega na usunięciu zewnętrznej warstwy izolacyjnej kabla, co ma na celu odsłonięcie żył przewodzących. Przeprowadzając tę czynność, zawsze należy stosować odpowiednie narzędzia, aby uniknąć uszkodzenia samego przewodu. Zaciskanie końcówki tulejkowej odnosi się do innego procesu, który ma na celu połączenie przewodu z innym elementem za pomocą tulejek, co również nie ma związku z tematyką opasek kablowych. Klejenie na gorąco przewodu kabelkowego to technika, która nie jest stosowana w kontekście organizacji i zabezpieczania przewodów. Metoda ta jest raczej używana do łączenia różnych materiałów, co nie odnosi się do zagadnienia związanego z opaskami kablowymi. Typowe błędy myślowe, które mogą prowadzić do takich wyborów, obejmują pomylenie narzędzi i ich funkcji oraz niezrozumienie kontekstu, w jakim opaski kablowe są używane. Ważne jest, aby w kontekście technicznym zrozumieć różnice między tymi procesami i ich odpowiednie zastosowania w praktyce, aby unikać nieporozumień w przyszłości.

Pytanie 8

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Przesunięcie miejsc montażu opraw oświetleniowych
B. Zamiana zużytych urządzeń na nowe
C. Instalacja nowych punktów świetlnych
D. Wymiana uszkodzonych gniazd wtyczkowych
Wymiana uszkodzonych gniazd wtyczkowych jest kluczowym elementem prac konserwacyjnych instalacji elektrycznych w mieszkaniach oraz budynkach użyteczności publicznej. Gniazda wtyczkowe stanowią bezpośredni punkt dostępu do energii elektrycznej, a ich uszkodzenie może prowadzić do poważnych zagrożeń, takich jak zwarcia, pożary czy porażenia prądowe. Właściwe utrzymanie gniazd wtyczkowych zgodnie z normami PN-IEC 60364 oraz PN-EN 60669 zapewnia bezpieczeństwo użytkowników i niezawodność instalacji. Wymiana uszkodzonych gniazd powinna być przeprowadzana przez wykwalifikowanych elektryków, którzy potrafią ocenić stan instalacji oraz wybrać odpowiednie komponenty do wymiany. Praktycznym przykładem jest sytuacja, gdy w wyniku uszkodzenia mechanicznego gniazdo nie działa poprawnie, co może wpływać na funkcjonalność podłączonych urządzeń. Regularne przeglądy oraz wymiana uszkodzonych części to praktyka zgodna z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 9

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. uszkodzenia podłączonego urządzenia elektrycznego
B. zwarcia w obwodzie elektrycznym
C. przeciążenia obwodu elektrycznego
D. zagrożenia porażeniem prądem elektrycznym
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 10

Jakie urządzenie powinno zostać zainstalowane w pośrednim układzie pomiarowym mocy czynnej w zakładzie przemysłowym?

A. Przekładnik prądowy
B. Przetwornicę napięcia
C. Transformator bezpieczeństwa
D. Transformator separacyjny
Przetwornica napięcia, transformator bezpieczeństwa oraz transformator separacyjny to urządzenia, które mają swoje specyficzne zastosowania, jednak nie są one odpowiednie do pomiaru mocy czynnej w pośrednich układach pomiarowych. Przetwornice napięcia służą do zmiany poziomu napięcia w instalacjach elektrycznych, co jest istotne w kontekście zasilania różnorodnych urządzeń, ale nie pełnią roli w bezpośrednim pomiarze mocy. Z kolei transformatory bezpieczeństwa, które mają na celu zabezpieczenie osób przed porażeniem prądem, również nie są odpowiednie do zastosowań pomiarowych, ponieważ ich główną funkcją jest izolacja oraz obniżanie napięcia do bezpiecznego poziomu. Transformator separacyjny, używany w systemach elektronicznych dla ochrony przed zakłóceniami oraz dla zapewnienia bezpieczeństwa, nie dostarcza odpowiednich danych pomiarowych niezbędnych do analizy mocy czynnej. Typowym błędem myślowym jest utożsamianie tych urządzeń z funkcją pomiarową, podczas gdy ich zastosowania są zupełnie inne i nie spełniają wymaganych standardów pomiarowych, takich jak precyzja oraz odpowiednie przekształcenie sygnałów pomiarowych. W kontekście norm, ważne jest przestrzeganie standardów dotyczących pomiarów elektrycznych, aby zapewnić rzetelne i dokładne wyniki analizy energetycznej.

Pytanie 11

Kabel oznaczony symbolem DYd 750 jest wykonany z

A. drutu pokrytego polwinitem
B. linki pokrytej polwinitem
C. drutu pokrytego gumą
D. linki pokrytej gumą
Przewód oznaczony symbolem DYd 750 wykonany jest z drutu izolowanego polwinitem, co oznacza, że jego główną funkcją jest zapewnienie odpowiedniej elastyczności oraz odporności na różne czynniki zewnętrzne. Polwinit to rodzaj materiału izolacyjnego, który jest szeroko stosowany w przemyśle elektrotechnicznym ze względu na swoje właściwości dielektryczne oraz odporność na działanie wilgoci i chemikaliów. Przewody tego typu są powszechnie używane w instalacjach elektrycznych, w tym w budownictwie oraz w różnych urządzeniach elektrotechnicznych. Dzięki zastosowaniu drutu, przewód charakteryzuje się lepszą przewodnością elektryczną w porównaniu do linki, co czyni go bardziej efektywnym w aplikacjach wymagających stałego połączenia elektrycznego. W standardach branżowych, takich jak PN-EN 60228, przewody tego typu są klasyfikowane jako posiadające wyspecyfikowane właściwości użytkowe, co czyni je odpowiednimi do różnych zastosowań, w tym zasilania w obiektach przemysłowych oraz mieszkalnych.

Pytanie 12

Schemat jakiego łącznika instalacyjnego przedstawiono na rysunku?

Ilustracja do pytania
A. Krzyżowego.
B. Świecznikowego.
C. Schodowego.
D. Hotelowego.
Niezrozumienie charakterystyki poszczególnych typów łączników instalacyjnych może prowadzić do nieprawidłowych wniosków. Łącznik schodowy, który byłby jednym z możliwych wyborów, jest zaprojektowany do sterowania jednym obwodem świetlnym z dwóch miejsc, co różni go od łącznika krzyżowego. Użytkownik, który wybiera łącznik schodowy, może myśleć, że wystarczy go zastosować w każdej sytuacji, co jest błędne, zwłaszcza w przypadku dużych pomieszczeń. Z kolei łącznik hotelowy jest używany w systemach zdalnego sterowania, gdzie np. w pokoju hotelowym można zarządzać oświetleniem z jednego panelu. To z kolei nie odnosi się do funkcji łącznika krzyżowego. Ponadto, łącznik świecznikowy, którego zastosowanie ogranicza się do prostych obwodów, również nie spełni wymagań skomplikowanych instalacji, w których potrzebne jest sterowanie z trzech lub więcej miejsc. Warto zauważyć, że błędne wybory mogą wynikać z niepełnego zrozumienia schematów oraz funkcji poszczególnych łączników, co jest powszechnym problemem wśród osób nieposiadających odpowiedniego przeszkolenia w zakresie instalacji elektrycznych. Właściwe dobieranie komponentów do instalacji elektrycznych jest kluczowe dla zapewnienia ich efektywności i bezpieczeństwa.

Pytanie 13

Którego klucza należy użyć do przymocowania urządzenia elektrycznego do podłoża przy użyciu wkrętów, jak przedstawiony na ilustracji?

Ilustracja do pytania
A. Oczkowego.
B. Nasadowego.
C. Ampulowego.
D. Płaskiego.
Odpowiedź "Ampulowego" jest prawidłowa, ponieważ klucz ampulowy (inaczej klucz imbusowy) jest specjalnie zaprojektowany do pracy z wkrętami, które posiadają gniazdo sześciokątne wewnętrzne. Tego rodzaju wkręty są powszechnie stosowane w urządzeniach elektrycznych, co czyni klucz ampulowy niezwykle przydatnym narzędziem w wielu zastosowaniach. Dzięki konstrukcji klucza, który idealnie pasuje do gniazda wkrętu, można osiągnąć wysoki moment dokręcenia, co jest kluczowe dla zapewnienia stabilności zamocowanego urządzenia. W praktyce, użycie klucza ampulowego przy dokręcaniu wkrętów w urządzeniach elektrycznych zmniejsza ryzyko uszkodzenia elementów, ponieważ klucz nie zsuwa się z gniazda, co jest częstym problemem przy użyciu kluczy nasadowych czy oczkowych. Warto pamiętać, że nieodpowiednie narzędzie może prowadzić do uszkodzeń wkrętów oraz szkodliwych dla struktury zamocowanego urządzenia. Dlatego, wybierając odpowiedni klucz, należy kierować się jego specyfiką oraz standardami branżowymi dotyczącymi montażu i konserwacji urządzeń elektrycznych.

Pytanie 14

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
B. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
C. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
D. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
Pomiar impedancji pętli zwarciowej w momencie, gdy sieć jest odłączona, prowadzi do znacznych zniekształceń wyników. W takim przypadku nie uwzględniamy rzeczywistej interakcji między elementami systemu, co skutkuje pomiarami, które nie odzwierciedlają rzeczywistych warunków pracy. Odpowiedzi, które zakładają odłączenie sieci i pomijają impedancję transformatorów, zapominają o fundamentalnej roli, jaką te urządzenia odgrywają w systemach zasilania. W przypadku zwarcia, transformatorzy przyczyniają się do zmiany impedancji, poprzez swoją własną impedancję zwarciową, co może znacząco wpłynąć na prąd zwarciowy i czas reakcji zabezpieczeń. Pomiar przeprowadzony w tej konfiguracji może prowadzić do zbyt niskich lub zbyt wysokich wartości impedancji, co w praktyce może skutkować nieadekwatnym dobraniem zabezpieczeń. Typowym błędem myślowym jest przekonanie, że pomiar w czasie odłączenia jest wystarczający i dostarcza pełnego obrazu zachowania systemu. Należy pamiętać, że odpowiednie wytyczne, takie jak normy IEC, zalecają przeprowadzanie tych pomiarów w warunkach operacyjnych, aby zapewnić rzetelność i bezpieczeństwo instalacji elektrycznych.

Pytanie 15

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Odpowiedź D. jest poprawna, ponieważ detektor przewodów elektrycznych to specjalistyczne narzędzie, które umożliwia lokalizację przewodów w ścianach oraz innych elementach budowlanych. W przypadku instalacji podtynkowych, gdzie przewody są ukryte, kluczowe jest precyzyjne określenie ich położenia, aby uniknąć uszkodzeń podczas prac remontowych czy budowlanych. Detektory te działają na zasadzie wykrywania pola elektromagnetycznego emitowanego przez przewody, co pozwala na ich skuteczną lokalizację bez potrzeby przeprowadzania skomplikowanych badań. Dzięki zastosowaniu detektorów, można również zminimalizować ryzyko uszkodzenia istniejących instalacji. W branży elektrycznej stosowanie tego typu przyrządów jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami, co podkreśla ich znaczenie w planowaniu i realizacji instalacji elektrycznych.

Pytanie 16

Na którym rysunku przedstawiono źródło światła z trzonkiem typu B?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór odpowiedzi, która nie wskazuje na źródło światła z trzonkiem typu B, może wynikać z nieznajomości podstawowych różnic między różnymi typami trzonków. Trzonek igiełkowy, jak w przypadku odpowiedzi B, ma zupełnie inny mechanizm mocowania, który polega na osadzeniu żarówki w oprawie poprzez włożenie jej w odpowiednie gniazdo, a nie na blokowaniu poprzez wystające elementy. Tego typu trzonki są popularne w halogenach, które charakteryzują się większą efektywnością energetyczną, ale nie są kompatybilne z oprawami zaprojektowanymi dla trzonków baionetowych. Świetlówki, przedstawione w odpowiedzi C, wykorzystują całkowicie odmienną technologię, opartą na zasadzie wyładowania elektrycznego, co czyni je nieodpowiednimi dla zastosowań wymagających trzonka typu B. Na zakończenie, trzonek gwintowy, jak w przypadku odpowiedzi D, jest powszechnie używany w tradycyjnych żarówkach i różni się konstrukcyjnie oraz funkcjonalnie od trzonka baionetowego, co może prowadzić do błędnych założeń o kompatybilności. Kluczowym błędem w ocenie tej kwestii jest nieprawidłowe rozumienie różnorodności typów trzonków w kontekście ich zastosowań, co może prowadzić do niewłaściwych wyborów przy zakupie źródeł światła.

Pytanie 17

Na rysunku przedstawiono stosowaną w instalacjach elektrycznych złączkę

Ilustracja do pytania
A. skrętną.
B. gwintową.
C. samozaciskową.
D. śrubową.
Wybór złączki samozaciskowej nie jest odpowiedni w kontekście przedstawionego rysunku. Złączki samozaciskowe, choć powszechnie używane, mają inną konstrukcję i działanie. Działają na zasadzie automatycznego zaciskania przewodów pod wpływem ich włożenia, co nie zapewnia tak solidnego połączenia jak złączka skrętna. Takie połączenia mogą być narażone na luzowanie się w wyniku wibracji czy zmian temperatury, co jest istotnym czynnikiem w instalacjach elektrycznych. Z kolei złączka śrubowa, mimo że oferuje solidne połączenie, wymaga użycia narzędzi do dokręcania, co może być czasochłonne i zwiększa ryzyko niewłaściwego montażu, co również negatywnie wpływa na bezpieczeństwo. Złączki gwintowe są stosowane głównie w instalacjach hydraulicznych i nie są ukierunkowane na łączenie przewodów elektrycznych, co czyni je nieodpowiednim wyborem. Te błędne podejścia do tematu mogą prowadzić do wyciągania mylnych wniosków podczas projektowania i realizacji instalacji. Przy wyborze odpowiednich złączek należy kierować się ich specyfiką oraz zastosowaniem w konkretnych warunkach oraz zgodnością z przyjętymi standardami bezpieczeństwa i jakości w branży elektrycznej.

Pytanie 18

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. zwarciem
B. przeciążeniem
C. przepięciem
D. porażeniem
Wyłączniki różnicowoprądowe (RCD) są kluczowymi urządzeniami w systemach elektrycznych, szczególnie w sieciach TN-S, gdzie pełnią funkcję zabezpieczenia przed porażeniem elektrycznym. Ich działanie opiera się na wykrywaniu różnic prądów między przewodami fazowymi a przewodem neutralnym. W przypadku, gdy wystąpi upływ prądu do ziemi (np. wskutek przypadkowego dotknięcia uszkodzonego sprzętu) RCD natychmiast odcina zasilanie, minimalizując ryzyko porażenia. Stosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które określają wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, RCD są często instalowane w obwodach zasilających gniazdka w domach oraz w obiektach użyteczności publicznej, gdzie dostęp do energii elektrycznej mają osoby nieprzeszkolone. Dodatkowo, RCD powinny być regularnie testowane, aby zapewnić ich prawidłowe funkcjonowanie, co jest standardową praktyką w utrzymaniu instalacji elektrycznych.

Pytanie 19

Który przewód jest oznaczony literami PE?

A. Ochronno-neutralny
B. Ochronny
C. Neutralny
D. Fazowy
Odpowiedź "Ochronny" jest poprawna, ponieważ przewód oznaczony symbolem literowym PE (Protective Earth) jest przewodem ochronnym, który ma na celu zapewnienie bezpieczeństwa użytkowników instalacji elektrycznych. Jego główną funkcją jest odprowadzenie prądu do ziemi w przypadku wystąpienia awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. W praktyce, przewód PE powinien być zawsze połączony z metalowymi częściami urządzeń elektrycznych, co tworzy skuteczną barierę ochronną. W zgodzie z normami IEC 60439 oraz PN-EN 60204-1, stosowanie przewodów ochronnych jest obowiązkowe w każdym systemie elektrycznym, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Warto również pamiętać, że przewód PE nie należy mylić z przewodem neutralnym (N), który pełni inną rolę w obiegu prądu, a ich pomylenie może prowadzić do poważnych problemów w instalacji. Dlatego wiedza o odpowiednich oznaczeniach przewodów jest kluczowa w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 20

Do którego typu źródeł światła zalicza się lampę przedstawioną na rysunku?

Ilustracja do pytania
A. Elektroluminescencyjnych.
B. Indukcyjnych.
C. Żarowych.
D. Rtęciowych.
Lampa przedstawiona na rysunku to lampa LED, która należy do grupy źródeł światła elektroluminescencyjnych. Emituje ona światło dzięki procesowi elektroluminescencji, gdzie prąd elektryczny przepływa przez półprzewodnikowe diody, powodując emisję fotonów. W przeciwieństwie do lamp żarowych, które generują światło poprzez podgrzewanie włókna, lampy LED są znacznie bardziej energooszczędne i mają dłuższą żywotność. Zastosowanie diod LED w oświetleniu wnętrz, ulic, a także w elektronice użytkowej, przyczynia się do zmniejszenia zużycia energii i emisji dwutlenku węgla. Zgodnie z normami, lampy LED są preferowane w nowoczesnych rozwiązaniach oświetleniowych ze względu na ich wysoką efektywność energetyczną i niski poziom ciepła generowanego podczas pracy. Dobre praktyki w zakresie oświetlenia wskazują na coraz szersze wykorzystanie technologii LED w różnych sektorach, od komercyjnych po domowe, co czyni je kluczowym elementem zrównoważonego rozwoju w branży oświetleniowej.

Pytanie 21

Minimalna akceptowalna wartość rezystancji izolacji dla przewodów instalacji przeznaczonej na napięcie znamionowe nieprzekraczające 500 V, w tym FELV, wynosi

A. 1,5 MΩ
B. 1,0 MΩ
C. 2,0 MΩ
D. 0,5 MΩ
Wybór wartości 1,5 MΩ, 0,5 MΩ lub 2,0 MΩ jako minimalnej rezystancji izolacji dla instalacji elektrycznych do 500 V jest wynikiem nieporozumień dotyczących standardów bezpieczeństwa i wymagań technicznych. Wartość 1,5 MΩ może wydawać się odpowiednia w kontekście innych zastosowań, jednak nie spełnia podstawowych norm dla instalacji na napięcie do 500 V, które wyraźnie określają minimalną wartość na poziomie 1,0 MΩ. Z kolei wartość 0,5 MΩ jest całkowicie niewystarczająca i stwarza poważne ryzyko dla bezpieczeństwa, ponieważ nie zapewnia odpowiedniej ochrony przed przebiciem i porażeniem prądem. Natomiast 2,0 MΩ, choć wydaje się być odpowiednio wysoka, nie jest zakładanym minimum, co może prowadzić do nadmiernych kosztów w kontekście wymogów projektowych, gdzie nie zawsze jest konieczne stosowanie tak wysokiej wartości. W praktyce rzeczywiste wymagania powinny być dostosowane do specyfiki instalacji oraz jej przeznaczenia, jednak zawsze z poszanowaniem ustalonych norm i standardów. Błędem jest zatem myślenie, że wartości wyższe niż wymagane są zawsze korzystne; kluczowe jest przestrzeganie ściśle określonych norm, które zostały opracowane w celu ochrony bezpieczeństwa ludzi i mienia.

Pytanie 22

Na podstawie danych z tabliczki znamionowej wyłącznika różnicowoprądowego zebrano informacje: IN25 A; IΔN0,030 A; 230 V~; Im 1000 A. Jakie obciążenie prądowe może wytrzymać ten wyłącznik w trybie ciągłym?

A. 25 A
B. 1000 A
C. 0,03 A
D. 230 A
Wyłącznik różnicowoprądowy, na podstawie odczytanej tabliczki znamionowej, ma oznaczone wartości prądów znamionowych, które są kluczowe dla jego zastosowania. Wartość I<sub>N</sub> (25 A) oznacza maksymalne obciążenie prądowe, które wyłącznik może bezpiecznie obsługiwać w trybie ciągłym. Przyjmując tę wartość jako podstawę, możemy określić, że wyłącznik ten może być używany w instalacjach elektrycznych, gdzie wartość obciążenia nie przekracza 25 A. Przykładowo, w zastosowaniach domowych, takich jak zasilanie urządzeń o mniejszym poborze mocy, np. oświetlenia LED czy małych urządzeń AGD, wyłącznik różnicowoprądowy o takim nominale będzie odpowiedni. Ważne jest również, aby podczas projektowania instalacji elektrycznej uwzględnić przepisy normatywne, takie jak PN-IEC 61008-1, które określają wymagania dla tych urządzeń, co zapewnia wysoką jakość i bezpieczeństwo użytkowania.

Pytanie 23

Podczas sprawdzania samoczynnego wyłączenia zasilania jako metody ochrony przeciwporażeniowej w sieciach TN-S, realizowanego poprzez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia, należy dla danego wyłącznika ustalić

A. czas zadziałania wyzwalacza zwarciowego
B. wartość prądu wyłączającego
C. próg zadziałania wyzwalacza przeciążeniowego
D. zwarciową zdolność łączeniową
Wybór niewłaściwej odpowiedzi może prowadzić do błędnych wniosków dotyczących istoty samoczynnego wyłączenia zasilania w systemach TN-S. Na przykład, określenie zwarciowej zdolności łączeniowej jest ważne, jednak nie jest to parametr, który bezpośrednio wpływa na działanie wyłącznika w kontekście jego reakcji na prąd wyłączający. Zwarciowa zdolność łączeniowa odnosi się do maksymalnego prądu zwarciowego, który dany wyłącznik jest w stanie bezpiecznie przerwać, co jest kluczowe dla bezpieczeństwa instalacji, ale nie ma bezpośredniego związku z szybkością zadziałania na prąd wyłączający. Podobnie, próg zadziałania wyzwalacza przeciążeniowego dotyczy innego aspektu ochrony i nie odnosi się do wyłączenia w przypadku porażenia prądem. Czas zadziałania wyzwalacza zwarciowego również jest istotny, ale to wartość prądu wyłączającego decyduje o tym, czy wyłącznik zadziała w odpowiednim czasie, aby chronić użytkowników przed skutkami porażenia. Niezrozumienie różnicy pomiędzy tymi parametrami może prowadzić do niewłaściwego doboru wyłączników oraz ryzyka nieodpowiedniej ochrony w instalacjach elektrycznych. Kluczowe jest, aby zrozumieć, że wartość prądu wyłączającego musi być dostosowana do specyfikacji danego obwodu oraz wymagań ochrony przeciwporażeniowej, co jest fundamentem bezpieczeństwa w instalacjach elektrycznych.

Pytanie 24

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 250 V
B. 500 V
C. 2 500 V
D. 1 000 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 25

Do czego służy złączka przedstawiona na ilustracji?

Ilustracja do pytania
A. Do łączenia przewodów dowolnego typu.
B. Do zdejmowania izolacji z przewodów dwużyłowych.
C. Do zaciskania końcówek tulejkowych na przewodach.
D. Do wykonywania połączeń bez zdejmowania izolacji.
Odpowiedź 'Do łączenia przewodów dowolnego typu' jest jak najbardziej trafna, bo złączka WAGO właśnie do tego służy. Łączy przewody elektryczne – zarówno te jednożyłowe, jak i wielożyłowe. Takie złączki są teraz mega popularne w nowoczesnych instalacjach, bo są łatwe w użyciu i naprawdę niezawodne. Dzięki nim można szybko i bezpiecznie połączyć przewody, bez potrzeby lutowania czy innych skomplikowanych metod, co na pewno przyspiesza całą robotę. Co więcej, złączki WAGO spełniają normy IEC 60998 i IEC 60529, więc można mieć pewność, że są solidne i bezpieczne. Używanie ich w pracy to też sposób na oszczędność czasu i minimalizację błędów, bo nie trzeba ręcznie łączyć przewodów. W praktyce świetnie się sprawdzają w instalacjach oświetleniowych, automatyce budynkowej czy w rozdzielnicach elektrycznych, gdzie ważna jest jakość połączeń. No i ich konstrukcja pozwala na wielokrotne użycie, co czyni je fajnym rozwiązaniem na dłuższą metę.

Pytanie 26

Który z podanych łączników elektrycznych jest przeznaczony do układu niezależnego sterowania światłem z przynajmniej 3 różnych lokalizacji?

A. Świecznikowy
B. Jednobiegunowy
C. Krzyżowy
D. Dwubiegunowy
Odpowiedź 'Krzyżowy' jest poprawna, ponieważ łącznik krzyżowy jest kluczowym elementem w instalacjach elektrycznych, które wymagają sterowania oświetleniem z wielu miejsc. Umożliwia on połączenie trzech lub więcej punktów sterujących, co znacznie zwiększa elastyczność w zarządzaniu oświetleniem w większych pomieszczeniach lub w korytarzach. Przykładem zastosowania łącznika krzyżowego może być sytuacja, w której światło w długim korytarzu jest kontrolowane zarówno na początku, w środku, jak i na końcu. W połączeniu z łącznikami schodowymi, które umożliwiają sterowanie z dwóch miejsc, łącznik krzyżowy wprowadza dodatkowy poziom kontroli, co jest zgodne z najlepszymi praktykami w instalacjach elektrycznych. Zgodnie z normami PN-IEC 60669-1, stosowanie łączników krzyżowych jest rekomendowane w celu zapewnienia wygodnego i funkcjonalnego dostępu do systemu oświetlenia, co zwiększa komfort użytkowania oraz efektywność energetyczną.

Pytanie 27

W jakim typie układu sieciowego można zrealizować instalację trójfazową za pomocą przewodu trzyżyłowego?

A. TN-C-S
B. TN-C
C. IT
D. TN-S
Układ sieciowy IT (Isolated Ground) jest układem, w którym przewody zasilające są odizolowane od ziemi, co pozwala na zastosowanie przewodu trójżyłowego. W tym układzie mamy do czynienia z niskim ryzykiem zwarć doziemnych, ponieważ instalacja nie jest uziemiona bezpośrednio, co minimalizuje ryzyko pojawienia się prądów zwarciowych. Przewód trójżyłowy, składający się z jednej żyły fazowej, neutralnej i uziemiającej, może być bezpiecznie stosowany w tym systemie. Przykładem praktycznego zastosowania instalacji w układzie IT mogą być instalacje w szpitalach lub obiektach przemysłowych, gdzie niezawodność i bezpieczeństwo zasilania są kluczowe. W takich miejscach, w razie uszkodzenia izolacji, prąd upływowy nie wpłynie na działanie urządzeń, co jest zgodne z dobrymi praktykami branżowymi, które promują minimalizację ryzyka porażenia prądem elektrycznym oraz zapewnienie ciągłości zasilania. Warto również zauważyć, że zgodnie z normą IEC 60364, instalacje w układzie IT powinny być regularnie monitorowane, aby wychwycić ewentualne nieprawidłowości.

Pytanie 28

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony uzupełniającej.
B. Ochrony przy uszkodzeniu (dodatkowej).
C. Ochrony przez zastosowanie bardzo niskiego napięcia.
D. Ochrony podstawowej.
Wybór ochrony podstawowej, ochrony przy uszkodzeniu (dodatkowej) lub ochrony przez zastosowanie bardzo niskiego napięcia jako odpowiedzi na to pytanie jest błędny, ponieważ te kategorie ochrony nie obejmują środków opisanych w ramce. Ochrona podstawowa opiera się na właściwej konstrukcji instalacji i jej komponentów, a nie na dodatkowych urządzeniach zabezpieczających. Kluczowym elementem ochrony podstawowej jest odpowiednie uziemienie oraz izolacja przewodów, co nie jest wystarczające w przypadku, gdy pojawia się ryzyko porażenia prądem. Ochrona przy uszkodzeniu, często utożsamiana z dodatkowymi metodami zabezpieczeń, również nie ma zastosowania do urządzeń różnicowoprądowych, które są zaprojektowane z myślą o działaniu w sytuacjach awaryjnych. Z kolei ochrona przez zastosowanie bardzo niskiego napięcia nie odnosi się do standardowych metod ochrony w instalacjach zasilających, lecz dotyczy specyficznych zastosowań, na przykład w systemach automatyki lub w przypadku zasilania LED. Wybór nieodpowiednich kategorii ochrony świadczy o niepełnym zrozumieniu mechanizmów, które stoją za funkcjonowaniem systemów zabezpieczeń w instalacjach elektrycznych. Kluczowe jest zrozumienie, że ochrona uzupełniająca ma na celu zapewnienie dodatkowego poziomu bezpieczeństwa, który jest niezbędny, gdy inne metody ochrony zawiodą. Dlatego wybór ochrony uzupełniającej powinien być preferowany w każdej nowoczesnej instalacji elektrycznej.

Pytanie 29

Właściciel lokalu w budynku wielorodzinnym, zasilanym z trójfazowej sieci elektrycznej, skarży się na znacznie częstsze od sąsiadów przepalanie żarówek. Jakie mogą być przyczyny tej usterki?

A. Poluzowany przewód neutralny w głównym złączu budynku
B. Zamiana przewodu neutralnego z ochronnym
C. Poluzowany przewód neutralny w rozdzielnicy mieszkaniowej
D. Zamiana przewodu neutralnego z fazowym
Jak wiadomo, poluzowany przewód neutralny w rozdzielnicy może namieszać w całej instalacji elektrycznej. Gdy przewód neutralny jest uszkodzony albo poluzowany, to prąd, który powinien wracać do zasilania, może nie mieć odpowiedniej drogi. To może sprawić, że napięcie na innych przewodach fazowych wzrośnie. Zdarza się wtedy, że żarówki się przepalają, bo napięcie przekracza to, co powinny wytrzymać. Dobrze jest od czasu do czasu sprawdzić stan połączeń elektrycznych, szczególnie w rozdzielnicach, żeby uniknąć takich kłopotów. Ważne jest też, aby dbać o odpowiednie napięcie i zabezpieczenia w instalacji, na przykład stosując różne urządzenia ochronne, jak wyłączniki nadprądowe czy różnicowoprądowe, które są zgodne z normami. Moim zdaniem, warto też wybierać żarówki, które są bardziej odporne na zmiany napięcia, to może wydłużyć ich żywotność w niepewnych warunkach zasilania.

Pytanie 30

Który sposób połączenia zacisków gniazda wtyczkowego jednofazowegow instalacji mieszkaniowejpracującej w sieci TN-S jest prawidłowy?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Odpowiedź A jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, w instalacjach elektrycznych jednofazowych w systemie TN-S, układ podłączenia przewodów w gniazdach wtyczkowych jest szczegółowo określony. Przewód fazowy oznaczany jako L powinien być zawsze podłączony po lewej stronie, co zapewnia odpowiednią orientację dla użytkowników. Przewód neutralny N powinien znajdować się po prawej stronie, natomiast przewód ochronny PE umieszczany jest na górze. Taki układ minimalizuje ryzyko pomylenia przewodów i zwiększa bezpieczeństwo użytkowania urządzeń elektrycznych. W przypadku zastosowania niepoprawnego połączenia istnieje ryzyko zwarcia elektrycznego lub porażenia prądem. Dobrze zaprojektowana instalacja zgodna z normami nie tylko zapewnia bezpieczeństwo, ale także ułatwia konserwację i naprawy, ponieważ technicy mają jasność co do orientacji przewodów. Zastosowanie tych standardów jest kluczowe dla zachowania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 31

Jakie pomiary są wykonywane przy sprawdzaniu wyłącznika różnicowoprądowego?

A. napięcia sieciowego oraz prądu obciążenia
B. prądu różnicowego oraz czasu jego działania
C. prądu obciążenia oraz czasu jego działania
D. napięcia sieciowego oraz prądu różnicowego
Sprawdzanie wyłącznika różnicowoprądowego to naprawdę ważna sprawa, bo chodzi tu o nasze bezpieczeństwo. Mierzymy prąd różnicowy i czas, w jakim wyłącznik zadziała, bo to zapewnia, że wszystko działa jak należy w instalacjach elektrycznych. Prąd różnicowy to różnica pomiędzy prądem, który idzie do urządzenia, a tym, który wraca. W normalnych warunkach ta różnica powinna być mała. RCD działa w ten sposób, że jeśli ta różnica przekroczy pewien próg, najczęściej 30 mA dla ochrony osób, to odcina zasilanie. Regularne testy wyłączników pozwalają upewnić się, że są w porządku i że nas chronią przed porażeniem prądem. Moim zdaniem, dobrze jest testować to przynajmniej raz w roku, aby mieć pewność, że ochrona działa jak należy. Do testów można użyć specjalnych urządzeń, które naśladują prąd różnicowy i pokazują, w jakim czasie wyłącznik się włączy. Jest to naprawdę istotne, żeby się tym zajmować.

Pytanie 32

Na której ilustracji przedstawiono symbol graficzny przewodu neutralnego?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 2.
C. Na ilustracji 4.
D. Na ilustracji 3.
Rozpoznawanie symboli graficznych w instalacjach elektrycznych jest zadaniem wymagającym precyzyjnej wiedzy, która nie ogranicza się jedynie do identyfikacji poszczególnych oznaczeń. W kontekście przedstawionych ilustracji, częsty błąd polega na myleniu symboli neutralnego przewodu z innymi oznaczeniami. Każda ilustracja, która nie przedstawia linii z kropką na końcu, może być mylnie interpretowana jako symbol przewodu neutralnego. Na przykład, symbole graficzne wykorzystywane do oznaczenia przewodu fazowego czy ochronnego mają swoją specyfikę, a ich zrozumienie jest kluczowe dla poprawności wykonania instalacji. Uczestnicy mogą również wpaść w pułapkę skojarzeń z innymi standardami, co prowadzi do błędnych decyzji. Ważne jest, aby zrozumieć, że każdy przewód w instalacji pełni określoną rolę, a znajomość tych ról oraz ich graficznych reprezentacji jest fundamentalna. Nieprawidłowe podejście do oznaczeń może prowadzić do poważnych problemów w instalacji elektrycznej, takich jak zwarcia czy nieprawidłowe funkcjonowanie podłączonych urządzeń. W praktyce, zrozumienie konieczności prawidłowego oznaczania przewodów nie tylko wspiera bezpieczeństwo, ale także przyczynia się do efektywności systemów elektrycznych. W związku z tym, warto investować czas w naukę i doskonalenie umiejętności rozpoznawania poszczególnych symboli w zgodzie z obowiązującymi normami.

Pytanie 33

Którą funkcję w wyłączniku nadprądowym pełni element wskazany na ilustracji czerwoną strzałką?

Ilustracja do pytania
A. Gasi łuk elektryczny.
B. Reaguje na przeciążenia.
C. Łączy styki.
D. Reaguje na zwarcia.
Zrozumienie roli poszczególnych komponentów wyłączników nadprądowych jest kluczowe dla prawidłowego funkcjonowania systemów ochrony elektrycznej. W przypadku, gdy ktoś identyfikuje bimetaliczny wyzwalacz jako element, który gasi łuk elektryczny, ma miejsce fundamentalne nieporozumienie. Gasić łuk elektryczny to zadanie przypisane innym elementom, takim jak układy łukotłumiące, które skutecznie minimalizują skutki pojawiającego się łuku w momencie rozłączania obwodu. Z kolei odpowiedź sugerująca, że wyzwalacz łączy styki, również jest myląca, ponieważ bimetaliczny wyzwalacz nie ma funkcji fizycznego łączenia styków, lecz jedynie uruchamia mechanizm ich rozłączenia w odpowiedzi na zjawiska prądowe. Jeśli ktoś błędnie interpretuje rolę tego elementu jako reagującą na przeciążenia, może to prowadzić do niebezpiecznych sytuacji. Wyzwalacze przeciążeniowe, choć mogą być zintegrowane w konstrukcji wyłącznika, działają na innej zasadzie i odpowiadają za inny typ anomalii w obwodzie. Istotne jest, aby zrozumieć, że każdy z tych elementów ma swoje specyficzne zadania i pomyłki w ich identyfikacji mogą prowadzić do błędnych wniosków oraz potencjalnych zagrożeń w użytkowaniu instalacji elektrycznych.

Pytanie 34

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. III
B. IV
C. I
D. II
Wybór opraw klasy II, III lub IV wskazuje na nieporozumienie dotyczące standardów bezpieczeństwa i funkcji oświetlenia miejscowego. Klasa II opisuje oprawy, które są podwójnie izolowane, co sprawia, że nie wymagają uziemienia, ale nie są one rekomendowane do zastosowań, gdzie istnieje ryzyko kontaktu z wodą lub innymi cieczyami, co często ma miejsce w miejscach pracy. Wybierając te oprawy na stanowiska robocze, narażamy użytkowników na potencjalne zagrożenia elektryczne. Klasa III z kolei odnosi się do urządzeń zasilanych z niskonapięciowych źródeł, co może być stosowane w niektórych aplikacjach, ale nie jest odpowiednie do typowego oświetlenia miejscowego, które wymaga wyższego napięcia dla efektywnego działania. Klasa IV dotyczy produktów przeznaczonych do zastosowań specjalnych, które są często chronione przed czynnikami zewnętrznymi, ale nie mają zastosowania w standardowych warunkach biurowych czy przemysłowych. Wybór niewłaściwej klasy oprawy może prowadzić do poważnych konsekwencji zdrowotnych i bezpieczeństwa, dlatego zrozumienie tych różnic jest kluczowe w procesie projektowania efektywnego oświetlenia miejscowego. Podstawowym błędem myślowym jest zakładanie, że wszystkie oprawy mogą być stosowane zamiennie, co ignoruje różnice w wymaganiach bezpieczeństwa i funkcjonalności. W kontekście standardów branżowych, stosowanie opraw klasy I jest najlepszą praktyką, ponieważ minimalizuje ryzyko porażenia prądem i zapewnia bezpieczeństwo pracy.

Pytanie 35

Który z pokazanych na rysunkach przewodów należy zastosować do wykonania instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Wybór innych przewodów, takich jak A, B czy C, do instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V jest nieodpowiedni z kilku istotnych powodów. Przede wszystkim, nie każdy przewód jest przystosowany do pracy w warunkach napięcia stałego, co jest kluczowe w tym przypadku. Przewody A, B i C mogą mieć różne właściwości izolacyjne, które nie są wystarczające do ochrony przed skutkami działania napięcia stałego, co może prowadzić do porażenia prądem lub zwarcia. Typowe błędy przy wyborze przewodów do instalacji DC to pomijanie specyfikacji dotyczących odporności na przebicia oraz nieprzestrzeganie norm bezpieczeństwa, takich jak IEC 60228. Osoby wybierające te przewody często kierują się jedynie ich wyglądem lub ceną, ignorując fundamentalne różnice w konstrukcji, które są kluczowe dla bezpieczeństwa całego systemu. W praktyce, stosowanie niewłaściwego przewodu w instalacjach DC może prowadzić do poważnych awarii oraz zwiększa ryzyko pożaru. Warto również pamiętać o tym, że instalacje elektryczne muszą być projektowane z uwzględnieniem lokalnych przepisów i norm, co dodatkowo podkreśla konieczność starannego doboru komponentów instalacji.

Pytanie 36

Na której ilustracji przedstawiono rastrową oprawę oświetleniową?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 1.
C. Na ilustracji 3.
D. Na ilustracji 2.
Rastrowa oprawa oświetleniowa jest kluczowym elementem w projektowaniu oświetlenia wnętrz, szczególnie w przestrzeniach biurowych oraz przemysłowych. Oprawy te wyposażone są w rastrowe klosze, które mają za zadanie efektywne rozpraszanie światła, minimalizując olśnienie i poprawiając komfort pracy. Na ilustracji 2 widoczna jest właśnie taka oprawa, której klosz wykonany jest z materiałów takich jak metal lub plastik, z charakterystycznym wzorem przypominającym kratkę, co pozwala na lepsze rozproszenie światła. Dobre praktyki w projektowaniu oświetlenia sugerują stosowanie rastrowych opraw w miejscach, gdzie wymagane jest równomierne oświetlenie dużych powierzchni roboczych, co wpływa na wydajność pracy. Warto również zwrócić uwagę na standardy dotyczące natężenia oświetlenia, które wskazują, jakie wartości są optymalne dla różnych typów przestrzeni. Wybierając odpowiednią oprawę oświetleniową, należy również uwzględnić efektywność energetyczną, co jest kluczowe w kontekście zrównoważonego rozwoju. Takie podejście przyczynia się do zmniejszenia kosztów eksploatacji oraz oszczędności energii.

Pytanie 37

Który element i z jakiego silnika przedstawiony jest na ilustracji a) i schemacie b)?

Ilustracja do pytania
A. Stojan silnika komutatorowego.
B. Stojan silnika pierścieniowego.
C. Wirnik silnika komutatorowego.
D. Wirnik silnika pierścieniowego.
Niezrozumienie, który element silnika przedstawiony jest na ilustracji, może prowadzić do wielu nieporozumień. W przypadku silnika komutatorowego, wirnik i stojan mają zupełnie inną konstrukcję, co jest kluczowe dla ich działania. Wirnik silnika komutatorowego zazwyczaj nie posiada pierścieni ślizgowych, lecz komutator, który jest odpowiedzialny za zmianę kierunku prądu w uzwojeniach wirnika. Stojan silnika pierścieniowego, z kolei, jest nieodłącznym elementem, który współpracuje z wirnikiem, ale nie można go pomylić z wirnikiem, ponieważ jego funkcja polega na generowaniu pola magnetycznego, które umożliwia ruch wirnika. Typowym błędem myślowym jest założenie, że wirnik i stojan mogą być używane zamiennie, co prowadzi do niepoprawnych wniosków. Warto również zauważyć, że silnik pierścieniowy ma swoją specyfikę i różni się od silnika komutatorowego w zakresie budowy i zastosowania. Wiedza na temat różnic w tych konstrukcjach jest kluczowa dla zrozumienia ich działania i możliwości zastosowania. Dlatego istotne jest, aby nie tylko znać nazwy elementów, ale również ich funkcje i właściwości.

Pytanie 38

Z którym zaciskiem będzie połączony zacisk 42 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem A2 stycznika K1
B. Z zaciskiem 4 listwy zaciskowej X1
C. Z zaciskiem 22 stycznika K1
D. Z zaciskiem 3 listwy zaciskowej X1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zacisk 42 stycznika K2 jest połączony z zaciskiem 4 listwy zaciskowej X1, co można zweryfikować na podstawie schematu montażowego. Ważne jest, aby dokładnie analizować schematy w kontekście połączeń elektrycznych, ponieważ zapewniają one wizualizację, która jest kluczowa dla właściwego zrozumienia działania obwodu. W praktyce, połączenia takie umożliwiają prawidłowe funkcjonowanie urządzeń, na przykład sterowanie silnikami lub innymi komponentami systemu. W przypadku styczników, poprawne połączenia są istotne dla zapewnienia ich niezawodnej pracy. Dobrą praktyką jest również dokumentowanie wszelkich połączeń, co ułatwia późniejsze serwisowanie oraz modyfikacje w instalacji. Zrozumienie schematu oraz umiejętność interpretacji połączeń elektrycznych są fundamentami pracy w branży elektroinstalacyjnej. Warto również zaznaczyć, że zgodność z normami oraz standardami branżowymi, takimi jak IEC, jest niezbędna dla zapewnienia bezpieczeństwa i efektywności działania systemów elektrycznych.

Pytanie 39

Symbol graficzny przedstawiony na rysunku oznacza w instalacjach elektrycznych

Ilustracja do pytania
A. skrzyżowanie przewodów bez połączenia elektrycznego.
B. przewód ochronny nieuziemiony.
C. przewód ochronny uziemiony.
D. połączenie elektryczne z korpusem, obudową (masą).
Wydaje mi się, że wybór złej odpowiedzi może wynikać z nieporozumień na temat podstawowych zasad połączeń elektrycznych. Przewód ochronny, ten uziemiony, ma na celu zmniejszenie ryzyka porażenia prądem, ale nie oddaje do końca tego, co znaczy połączenie z korpusem. To jest kluczowy element, żeby wszystko działało jak należy. Z kolei przewód ochronny, który nie jest uziemiony, to też zła opcja, bo nie oferuje wystarczającego bezpieczeństwa. Oba wybory pomijają jedną z podstawowych zasad – w instalacjach elektrycznych musimy dążyć do najlepszego uziemienia, by chronić zarówno urządzenia, jak i ludzi. Dodatkowo nie można mylić połączenia elektrycznego z korpusem z zjawiskiem skrzyżowania przewodów, gdzie nie ma złączenia. To może prowadzić do błędnych interpretacji schematów elektrycznych. A te schematy są zaprojektowane tak, żeby dokładnie pokazać, jak i gdzie przewody mają być podłączone. Zrozumienie ich znaczenia to klucz do prawidłowego wykonania instalacji. Jeśli się tego nie zrozumie, mogą się pojawić poważne problemy, jak większe ryzyko pożaru czy uszkodzenia sprzętu. Dlatego korzystanie z odpowiednich oznaczeń, które są zgodne z normami, jest naprawdę istotne dla bezpieczeństwa i efektywnego działania systemów elektrycznych.

Pytanie 40

Przewód, który jest oznaczony symbolem SMYp, ma żyły

A. płaskie
B. wielodrutowe
C. jednodrutowe
D. sektorowe
Jeśli wybrałeś niewłaściwą odpowiedź na temat przewodów SMYp, to pewnie wynika to z niezrozumienia ich specyfikacji oraz zastosowań. Odpowiedzi dotyczące żył sektorowych, płaskich czy jednodrutowych nie pasują do przewodów SMYp. Żyły sektorowe są używane w kablach zasilających o większych przekrojach, często w instalacjach energetycznych, gdzie są wymagane specjalne parametry dotyczące rozkładu pola elektrycznego. Żyły płaskie też mają swoje miejsce w różnych aplikacjach, głównie w konstrukcji kabli instalacyjnych, ale nie spełniają wymagań przewodów SMYp. Co do żył jednodrutowych, to chociaż mogą być używane w prostych instalacjach, to niestety nie zapewniają elastyczności, która jest ważna w sytuacjach, gdzie przewody muszą się poruszać. Wiesz, błędne odpowiedzi mogą wynikać z pomylenia różnych typów przewodów elektrycznych i ich właściwości. Ważne jest, żeby dobrać odpowiednie przewody w instalacjach elektrycznych, bo to kluczowe dla bezpieczeństwa i efektywności energetycznej. Zrozumienie różnic między typami żył i ich stosowaniem powinno być podstawą przy planowaniu i realizacji instalacji elektrycznych.