Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 17 grudnia 2025 16:31
  • Data zakończenia: 17 grudnia 2025 16:41

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie urządzenie sieciowe działa w trzeciej warstwie modelu OSI, pełni rolę węzła w sieci komunikacyjnej i odpowiada za proces zarządzania ruchem?

A. gniazdo RJ-45.
B. repeater.
C. hub.
D. ruter.
Ruter jest kluczowym urządzeniem w sieciach komputerowych, które działa na trzeciej warstwie modelu OSI, znanej jako warstwa sieci. Jego podstawową funkcją jest kierowanie ruchem danych pomiędzy różnymi sieciami, co oznacza, że podejmuje decyzje o trasach, które dane powinny pokonać, aby dotrzeć do swojego celu. Rutery analizują adresy IP pakietów, a następnie wybierają najefektywniejszą ścieżkę na podstawie dostępnych informacji o sieci, takich jak tablice routingu i protokoły routingu (np. OSPF, BGP). Dla przykładu, w przypadku łączności pomiędzy lokalną siecią a Internetem, ruter jako punkt graniczny analizuje ruch przychodzący i wychodzący, zapewniając odpowiednią trasę dla danych. Rutery mogą również implementować dodatkowe funkcje, takie jak filtrowanie ruchu, NAT (Network Address Translation) czy QoS (Quality of Service), co czyni je nieodzownym elementem nowoczesnych infrastruktury sieciowych. Zgodnie z dobrą praktyką, projektując sieć, istotne jest umiejętne wykorzystanie ruterów do zapewnienia efektywnej i bezpiecznej komunikacji.

Pytanie 3

Podwyższenie dobroci Q filtru RLC w selektywnym wzmacniaczu doprowadzi do

A. spadku współczynnika prostokątności
B. wzrostu współczynnika prostokątności
C. wzrostu częstotliwości środkowej fo
D. spadku częstotliwości środkowej fo
Zwiększenie dobroci Q filtru RLC we wzmacniaczu selektywnym prowadzi do zwiększenia współczynnika prostokątności, co ma kluczowe znaczenie dla charakterystyki częstotliwościowej systemu. Wartość Q określa, jak 'ostro' filtr reaguje na częstotliwości bliskie częstotliwości środkowej f0. Wyższa wartość Q oznacza węższy pasmo przenoszenia, co skutkuje lepszą selektywnością filtru. W praktyce może to być użyteczne w zastosowaniach, gdzie istotne jest precyzyjne wyłapywanie sygnałów o określonych częstotliwościach, na przykład w telekomunikacji czy audiofilskim sprzęcie audio. Wartości Q są często dostosowywane do potrzeb konkretnego zastosowania, aby osiągnąć optymalną jakość sygnału. W branży wykorzystuje się standardy, takie jak IEEE 802.11, które uwzględniają parametry filtrów w kontekście transmisji danych. Zrozumienie tej zasady jest kluczowe w projektowaniu układów elektronicznych, gdzie precyzyjność parametrów filtrów ma fundamentalne znaczenie dla jakości sygnału.

Pytanie 4

Do lutownicy transformatorowej powinny być stosowane groty z drutu

A. wolframowego
B. aluminiowego
C. miedzianego
D. stalowego
Grot lutownicy transformatorowej wykonany z miedzianego drutu jest najodpowiedniejszym wyborem ze względu na doskonałe przewodnictwo elektryczne oraz termiczne, które zapewnia efektywne i szybkie nagrzewanie. Miedź jest materiałem o niskiej rezystywności, co oznacza, że umożliwia szybkie dostarczanie energii do miejsca lutowania. Dodatkowo, miedziane groty charakteryzują się wysoką odpornością na korozję, co przedłuża ich żywotność podczas intensywnego użytkowania. W praktyce, stosując miedziane groty, technicy lutownicy uzyskują lepszą jakość połączeń, co jest szczególnie ważne w zastosowaniach elektronicznych, gdzie precyzja jest kluczowa. Przykładem może być lutowanie elementów SMD, gdzie odpowiednia temperatura i kontrola są niezbędne do uniknięcia uszkodzeń delikatnych komponentów. W branży elektronicznej powszechnie uznaje się, że stosowanie miedzianych grotów jest zgodne z najlepszymi praktykami, a ich użycie wspiera osiąganie wysokiej jakości lutów.

Pytanie 5

Na rysunku przedstawiono manipulator do sterowania systemem alarmowym. Dostęp do niego jest możliwy

Ilustracja do pytania
A. korzystając z kodu lub karty zbliżeniowej.
B. korzystając tylko z kodu.
C. korzystając z kodu lub pilota radiowego.
D. korzystając tylko z pilota radiowego.
Poprawna odpowiedź brzmi "korzystając z kodu lub karty zbliżeniowej". Na przedstawionym zdjęciu widoczny jest manipulator systemu alarmowego, który wyposażony jest w czytnik kart zbliżeniowych oraz klawiaturę. Oznacza to, że dostęp do systemu alarmowego może być uzyskiwany zarówno poprzez wprowadzenie odpowiedniego kodu, jak i zbliżenie karty do czytnika. W praktyce, wiele nowoczesnych systemów alarmowych stosuje takie rozwiązania, co podnosi poziom bezpieczeństwa. Użytkownicy mogą wybrać preferowaną metodę dostępu, co jest zgodne z dobrymi praktykami w branży zabezpieczeń. Systemy te często są również zgodne z normami ISO/IEC 27001, które wskazują na znaczenie różnorodnych metod autoryzacji w zapewnieniu bezpieczeństwa. Dodatkowo, korzystanie z kart zbliżeniowych minimalizuje ryzyko błędów związanych z pamięcią kodów, co jest istotne w sytuacjach awaryjnych, gdzie czas reakcji ma kluczowe znaczenie.

Pytanie 6

Fotografia przedstawia konwerter typu

Ilustracja do pytania
A. Monoblock
B. Octo
C. Quad
D. Quatro
Odpowiedź Monoblock jest poprawna, ponieważ konwerter typu Monoblock jest zaprojektowany do jednoczesnego odbioru sygnałów z dwóch satelitów znajdujących się na bliskich pozycjach orbitalnych. Posiada on dwie głowice (LNB) umieszczone na jednej wspólnej podstawie, co pozwala na efektywne zarządzanie sygnałem bez konieczności używania dwóch oddzielnych konwerterów. Dzięki swojej konstrukcji pozwala na podłączenie dwóch tunerów satelitarnych, co umożliwia równoczesne oglądanie różnych programów z dwóch satelitów. Monoblock jest często stosowany w instalacjach, gdzie użytkownicy chcą mieć dostęp do szerokiego zakresu programów telewizyjnych, na przykład z różnych operatorów satelitarnych. W kontekście standardów branżowych, konwertery Monoblock są zgodne z wymaganiami instalacji typu multiswitch i są szeroko rekomendowane w przypadku anten o dużych średnicach, co zwiększa ich wydajność. Ich prostota w instalacji oraz wielofunkcyjność czynią je popularnym wyborem wśród użytkowników anten satelitarnych.

Pytanie 7

Urządzenie wykorzystywane do podziału lub łączenia sygnałów telewizyjnych i radiowych w systemach antenowych to

A. spliter
B. dekoder
C. generator
D. modulator
Splitter, zwany też rozgałęźnikiem sygnału, to takie ważne urządzenie w instalacjach antenowych. Działa na zasadzie dzielenia sygnału radiowego lub telewizyjnego, co jest naprawdę przydatne, gdy mamy kilka odbiorników w jednym miejscu. Na przykład, kiedy chcemy, żeby w różnych pokojach był dostęp do telewizji, to splitter pozwala nam to zrobić bez potrzeby stawiania wielu anten. Fajnie jest wybierać splittery, które mają niski poziom strat sygnału. Dzięki temu odbiór jest lepszej jakości, co jest bardzo istotne. Takie standardy, jak DVB-T, mówią, że używanie dobrych splitterów zmniejsza zakłócenia, co pewnie wszyscy chcieliby, żeby tak działało. Ważne, żeby pasmo pracy splitera było odpowiednie do częstotliwości sygnału, bo wtedy zyskujemy lepszy przesył.

Pytanie 8

Co oznacza funkcja ARW w radiowych odbiornikach?

A. odbiór tekstowych komunikatów
B. wybieranie oraz wyszukiwanie rodzaju programu
C. odbiór komunikatów drogowych
D. automatyczną regulację wzmocnienia
Funkcja automatycznej regulacji wzmocnienia (ARW) w odbiornikach radiowych jest kluczowym elementem zapewniającym stabilność sygnału audio. ARW automatycznie dostosowuje poziom wzmocnienia sygnału, co jest szczególnie przydatne w sytuacjach, gdy sygnał odbierany jest niestabilny lub zmienia się w czasie, na przykład podczas przejazdu przez obszary o różnej jakości sygnału. Dzięki ARW, użytkownicy mogą cieszyć się lepszą jakością dźwięku, ponieważ funkcja ta minimalizuje szumy i przerywania w audio. W praktyce, ARW znajduje zastosowanie w odbiornikach radiowych, systemach audio w samochodach oraz w urządzeniach przenośnych, gdzie utrzymanie stabilności sygnału ma kluczowe znaczenie. Zgodnie z dobrą praktyką branżową, implementacja ARW w urządzeniach radiowych jest standardem, co przyczynia się do poprawy doświadczeń użytkowników i zwiększa ich zadowolenie z korzystania z technologii radiowej. Przykładem zastosowania ARW może być radioodbiornik, który automatycznie dostosowuje wzmocnienie sygnału w trakcie zmiany położenia użytkownika, utrzymując jednocześnie jakość dźwięku na stałym poziomie.

Pytanie 9

Sprawdzanie działania elektronicznego wzmacniacza akustycznego nie obejmuje

A. znajdowania anomalii w działaniu urządzenia
B. pomiaru parametrów
C. kontroli temperatury elementów
D. uaktualniania oprogramowania
Odpowiedź "uaktualnianie oprogramowania" jest poprawna, ponieważ testowanie elektronicznego wzmacniacza akustycznego koncentruje się głównie na aspektach związanych z jego wydajnością i funkcjonalnością w kontekście audio. W procesie testowania, kluczowe jest przeprowadzenie pomiaru parametrów, takich jak zniekształcenia harmoniczne, pasmo przenoszenia, czy moc wyjściowa, co pozwala na ocenę jakości dźwięku generowanego przez wzmacniacz. Kontrola temperatury elementów jest również istotna, aby zapewnić, że urządzenie nie przegrzewa się podczas pracy, co mogłoby prowadzić do uszkodzeń lub obniżenia jakości dźwięku. Dodatkowo, identyfikacja anomalii w działaniu urządzenia jest kluczowa w utrzymaniu jakości i niezawodności sprzętu. Uaktualnianie oprogramowania może być istotne w kontekście poprawy funkcjonalności, ale nie jest to kluczowy element testowania samego wzmacniacza akustycznego. Przykłady dobrych praktyk w tej dziedzinie obejmują korzystanie z analizatorów widma i oscyloskopów do dokładnej analizy parametrów akustycznych.

Pytanie 10

Jakiego typu konwerter powinien być zastosowany do niezależnego bezpośredniego połączenia czterech tunerów satelitarnych?

A. Twin
B. Quad
C. Quatro
D. Monoblock
Wybór innego typu konwertera, takiego jak Twin, Quatro czy Monoblock, nie będzie odpowiedni dla potrzeby podłączenia czterech tunerów. Konwerter Twin, mimo że posiada dwa wyjścia, nie wystarczy do obsługi czterech urządzeń. Również Quatro, który jest przeznaczony dla systemów multiswitch, wymaga dodatkowych urządzeń do prawidłowej pracy. Jest to konwerter, który dostarcza cztery różne sygnały, ale nie może być używany bez multiswitcha, który umożliwi podłączenie większej liczby tunerów. Z kolei Monoblock to konwerter, który łączy w sobie dwa konwertery w jeden, ale również dostarcza tylko dwa wyjścia, co czyni go niewystarczającym dla czterech tunerów. Problem z wyborem niewłaściwego konwertera często wynika z braku zrozumienia różnicy między poszczególnymi typami konwerterów i ich funkcjonalnością w systemach satelitarnych. Ważne jest, aby dobrze przemyśleć, jakie są rzeczywiste potrzeby użytkowników oraz jak skonfigurowana jest instalacja. Użytkownicy często mogą popełniać błędy w myśleniu, zakładając, że każdy konwerter można łatwo dostosować do ich potrzeb, co nie jest prawdą, szczególnie w zaawansowanych systemach satelitarnych, gdzie każdy element ma swoje specyficzne zastosowanie i ograniczenia. Właściwy dobór komponentów, takich jak konwertery, jest kluczowy dla optymalizacji wydajności i niezawodności całego systemu satelitarnego.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie zakresy miernika należy ustawić w celu sprawdzenia wszystkich parametrów elektrycznych z przedstawionej specyfikacji technicznej czujki ruchu po jej zainstalowaniu?

Specyfikacja techniczna
Typ elementu detekcyjnegoPodwójny, PIR
Kształt geometrycznyProstokątny
Zasięg11m x11m; 88.5°; wiązki centralne 15m
Wskaźnik alarmuZielona dioda LED; Indykacja na 3 sek.
Wysokość instalacji2,1m do 2,7m
Temperatura pracy-20°C do +50°C
Napięcie11 do 16VDC
Pobór prądu11mA max
SoczewkaFresnela (druga generacja)
Wyjścia alarmoweNO
Przełącznik sabotażowyNC
Szybkość detekcji0,2m/sek do 7m/sek
A. 20 mA DC, 200 V DC
B. 200 mA DC, 20 V DC
C. 200 mA AC, 20 V AC
D. 20 mA DC, 200 V AC
Ustawienie miernika na zakres 200 mA DC oraz 20 V DC jest kluczowe dla prawidłowego sprawdzenia parametrów elektrycznych czujki ruchu. Przede wszystkim, czujki tego typu zasilane są napięciem stałym w przedziale od 11 do 16 V DC, co oznacza, że zakres 20 V DC idealnie odpowiada wymaganiom pomiarowym. Umożliwia to dokładne monitorowanie napięcia, co jest istotne dla oceny poprawności zasilania urządzenia. Dodatkowo, maksymalny prąd pobierany przez czujkę wynosi 31 mA, co oznacza, że ustawienie miernika na zakres 200 mA DC daje wystarczającą elastyczność do pomiaru, a jednocześnie nie naraża urządzenia na uszkodzenie. Podczas testów, ważne jest również przestrzeganie zasad bezpieczeństwa oraz stosowanie odpowiednich standardów, takich jak IEC 61010, które definiują wymagania dotyczące bezpieczeństwa urządzeń pomiarowych. Odpowiednie ustawienie miernika pozwala nie tylko na ocenę stanu technicznego czujnika, ale także na wykrycie potencjalnych usterek przed ich zainstalowaniem, co jest praktyką zalecaną w branży elektrycznej.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakim objawem może być zużycie głowicy laserowej w odtwarzaczu CD?

A. zmniejszenie prędkości silnika
B. wzrost prądu lasera
C. spadek prądu lasera
D. zwiększenie prędkości silnika
Zwiększenie prądu lasera jest typowym objawem zużycia głowicy laserowej w odtwarzaczach CD. Kiedy głowica laserowa ulega zużyciu, efektywność emitowania światła lasera maleje, co skutkuje potrzebą zwiększenia prądu w celu uzyskania odpowiedniej intensywności promieniowania. W praktyce, gdy głowica laserowa nie jest w stanie dostarczyć wystarczającej ilości energii do poprawnego odczytu danych zapisanych na płycie, system automatycznie zwiększa prąd, aby zrekompensować tę utratę. Taki mechanizm jest zgodny z zasadami działania systemów optycznych i protokołami diagnostycznymi, które monitorują poziom sygnału oraz jego jakość. Warto również zauważyć, że zbyt wysokie napięcie może prowadzić do przegrzania komponentów, co może skutkować trwałym uszkodzeniem urządzenia. Dlatego ważne jest regularne serwisowanie i monitorowanie stanu technicznego odtwarzacza, aby zminimalizować ryzyko awarii.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Która z poniższych czynności nie należy do serwisowania systemu domofonowego?

A. Zamiany żarówki podświetlającej panel
B. Dostosowania głośności unifonu
C. Montażu przekaźnika dwuwejściowego
D. Sprawdzenia napięć zasilających
Instalacja przekaźnika dwuwejściowego nie jest czynnością konserwacyjną, lecz zadaniem związanym z montażem lub modernizacją systemu domofonowego. Konserwacja instalacji domofonowej koncentruje się na utrzymaniu już istniejących komponentów w dobrym stanie oraz zapewnieniu ich prawidłowego funkcjonowania. Przykładowe czynności konserwacyjne obejmują regulację głośności unifonu, co ma na celu dostosowanie poziomu dźwięku do warunków użytkowania i preferencji użytkownika oraz wymianę żarówki podświetlenia panela, co jest istotne dla funkcjonalności wizualnej urządzenia. Kontrola napięć zasilających również należy do rutynowych działań konserwacyjnych, które pomagają w identyfikacji ewentualnych problemów z zasilaniem i zapewniają stabilność działania systemu. Poznanie zakresu działań konserwacyjnych jest kluczowe dla prawidłowego funkcjonowania instalacji domofonowych i może znacznie przedłużyć ich żywotność.

Pytanie 22

Podczas naprawy telewizora technik serwisowy doznał porażenia prądem. Po jego uwolnieniu z kontaktu stwierdzono, że jest nieprzytomny, oddycha i ma prawidłową pracę serca. W jaki sposób powinno się ułożyć poszkodowanego?

A. W pozycji siedzącej z podparciem głowy
B. W pozycji bocznej ustalonej
C. Na plecach z uniesionymi nogami
D. Na brzuchu z głową odchyloną na bok
Wybór pozycji bocznej ustalonej dla poszkodowanego jest kluczowy w sytuacji, gdy osoba jest nieprzytomna, ale oddycha, a praca serca jest w normie. Ta pozycja pozwala na zapewnienie drożności dróg oddechowych, co jest fundamentalne w sytuacjach medycznych. Ułożenie na boku ogranicza ryzyko zachłyśnięcia się, co może nastąpić, jeśli pacjent w tej sytuacji wymiotuje. Dodatkowo, w pozycji bocznej ustalonej, osoba jest mniej narażona na urazy w przypadku utraty równowagi czy dodatkowych kontuzji. Przy zastosowaniu tej pozycji ważne jest, aby głowa poszkodowanego była ustawiona w sposób, który umożliwia swobodny przepływ powietrza, a nogi były lekko zgięte w kolanach, co stabilizuje jego ciało. Tego typu postępowanie jest zgodne z wytycznymi Europejskiej Rady Resuscytacji oraz innymi uznawanymi standardami w pierwszej pomocy, co podkreśla znaczenie edukacji w zakresie reagowania na sytuacje nagłe.

Pytanie 23

Przy regulacji urządzeń elektronicznych zasilanych energią należy korzystać z narzędzi

A. izolowanych
B. zasilanych akumulatorowo
C. odpornych na wysoką temperaturę
D. wykonanych z elastycznych tworzyw sztucznych
Używanie narzędzi izolowanych podczas pracy z urządzeniami elektronicznymi pod napięciem jest kluczowe dla zapewnienia bezpieczeństwa operatora. Narzędzia te są zaprojektowane w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym. Izolacja narzędzi wykonana jest z materiałów, które nie przewodzą prądu, co daje dodatkową ochronę w przypadku kontaktu z przewodzącymi elementami urządzeń. Przykładem mogą być wkrętaki czy szczypce, które posiadają uchwyty pokryte materiałem izolacyjnym, takim jak guma czy plastik. Pracując w środowisku, gdzie istnieje ryzyko wystąpienia napięcia, korzystanie z narzędzi izolowanych jest standardem w branży elektrycznej, zgodnie z normą IEC 60900, która określa wymagania dla narzędzi ręcznych używanych w pracy pod napięciem do 1000 V AC i 1500 V DC. Właściwe użycie takich narzędzi w połączeniu z odzieżą ochronną oraz przestrzeganiem zasad BHP stanowi fundament bezpiecznej pracy z instalacjami elektrycznymi.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Krótkoterminowe przerwy w dostawie napięcia do systemu CCTV (na przykład w trakcie silnych burz) mogą skutkować

A. obniżeniem efektywności rejestratora
B. zawieszeniem pracy systemu
C. zmianą parametrów działania kamer
D. przegrzaniem rejestratora
Zrozumienie wpływu krótkotrwałych zanikania napięcia na systemy CCTV wymaga analizy różnych aspektów działania tych urządzeń. Zmniejszenie wydajności rejestratora, jak zasugerowano, jest mylnym podejściem, ponieważ rejestrator nie działa w trybie ograniczonej wydajności w momencie zaniku napięcia. Zazwyczaj takie urządzenia albo działają, albo przestają funkcjonować, a ich wydajność nie jest regulowana przez krótkotrwałe wahania zasilania. Przegrzanie rejestratora również nie jest bezpośrednio związane z zanikiem napięcia; to zjawisko może wystąpić w przypadku długotrwałej pracy bez odpowiedniej wentylacji lub w wyniku zasilania urządzenia nieodpowiednią mocą. Co więcej, zmiana parametrów pracy kamer nie jest efektem zaniku napięcia, ponieważ kamery również przestają działać w przypadku braku zasilania. Należy zrozumieć, że systemy CCTV są projektowane z myślą o stabilności zasilania i w przypadku jego braku mogą nie tylko przestać rejestrować obraz, ale również prowadzić do utraty danych. Ostatecznie, kluczowe w tej kwestii jest zabezpieczenie systemów przed takimi awariami poprzez odpowiednie źródła zasilania awaryjnego, co jest zgodne z najlepszymi praktykami w branży monitoringu wizyjnego.

Pytanie 29

Jak wzrost temperatury wpływa na właściwości przewodu miedzianego?

A. Wydłużenie przewodu oraz podwyższenie jego rezystancji
B. Wydłużenie przewodu oraz obniżenie jego rezystancji
C. Skrócenie przewodu oraz obniżenie jego rezystancji
D. Skrócenie przewodu oraz podwyższenie jego rezystancji
Wzrost temperatury naprawdę ma duży wpływ na przewody miedziane. Jak wiadomo, materiały się rozszerzają, więc przewody miedziane też się wydłużają, kiedy robi się cieplej. To jest ważne, bo w instalacjach elektrycznych to może wpłynąć na ich działanie. Jeśli temperatura przewodów wzrasta, to niestety ich rezystancja też rośnie. Przykładowo, w temperaturze 20°C miedź ma swoją rezystancję, ale gdy podgrzejesz ją do 100°C, ta wartość wzrasta o jakieś 40%. W praktyce oznacza to, że projektując instalacje, musimy myśleć o tym, jak te zmiany wpłyną na naszą pracę. Warto zwracać uwagę na normy, jak IEC 60228, bo one pomagają w zapewnieniu bezpieczeństwa i funkcjonalności naszych instalacji. Po prostu trzeba o tym pamiętać przy tworzeniu projektów.

Pytanie 30

W instalacjach telewizyjnych używa się standardu DVB-C w technologii

A. satelitarnej
B. naziemnej
C. dozorowej
D. kablowej
Standard DVB-C (Digital Video Broadcasting - Cable) jest kluczowym standardem wykorzystywanym w telekomunikacji kablowej, który umożliwia przesyłanie sygnałów telewizyjnych i multimedialnych przez sieci kablowe. Umożliwia on kodowanie oraz kompresję sygnałów wideo, co pozwala na efektywne wykorzystanie pasma i dostarczenie wielu kanałów telewizyjnych w wysokiej jakości. DVB-C opiera się na modulacji QAM (Quadrature Amplitude Modulation), co pozwala na przesyłanie danych o wysokiej prędkości. W praktyce, standard ten jest szeroko stosowany przez/operatorów telewizji kablowej na całym świecie, co pozwala na poprawę jakości transmisji oraz zwiększenie liczby dostępnych programów telewizyjnych. Przykładowo, wiele europejskich krajów korzysta z DVB-C jako standardu dla telewizji kablowej, oferując abonentom różnorodne pakiety kanałów oraz usługi VOD (Video on Demand). Dodatkowo, DVB-C wspiera interaktywność oraz usługi dodatkowe, co jest istotnym atutem w nowoczesnych instalacjach telewizyjnych.

Pytanie 31

Ochrona podstawowa (przed bezpośrednim kontaktem) w urządzeniach elektrycznych polega na użyciu

A. wyłączników nadprądowych
B. bezpieczników topikowych
C. izolowania części czynnych
D. transformatora separującego
Odpowiedzi takie jak zastosowanie bezpieczników topikowych, wyłączników nadprądowych czy transformatora separującego dotyczą różnych aspektów zabezpieczeń elektrycznych, ale nie są właściwym rozwiązaniem w kontekście ochrony podstawowej przed dotykiem bezpośrednim. Bezpieczniki topikowe pełnią funkcję ochrony przed przeciążeniem i zwarciem, jednak ich zadaniem nie jest izolacja części czynnych. Ich działanie opiera się na przepalaniu się elementu bezpiecznika w momencie, gdy prąd przekroczy określony poziom, co nie zapobiega bezpośredniemu kontaktowi z częściami pod napięciem. Wyłączniki nadprądowe również mają na celu ochronę przed skutkami zwarć i przeciążeń, ale znowu, nie izolują one części czynnych. Z kolei transformatory separujące są stosowane do galwanicznego oddzielenia obwodów, co może zwiększać bezpieczeństwo, ale nie jest to mechanizm ochrony przed dotykiem bezpośrednim. Często błędnym założeniem jest mylenie różnych form ochrony elektrycznej - niektórzy mogą sądzić, że jakiekolwiek zabezpieczenie przed przeciążeniem wystarczy do zminimalizowania ryzyka, podczas gdy kluczowym aspektem, który rzeczywiście chroni użytkownika przed bezpośrednim porażeniem, jest fizyczna separacja części czynnych za pomocą odpowiedniej izolacji. W profesjonalnym podejściu do projektowania układów elektrycznych, zgodnie z normami bezpieczeństwa, izolacja jest fundamentem, na którym opiera się cała koncepcja bezpiecznego użytkowania urządzeń elektrycznych.

Pytanie 32

Jaką liczbę wyjść ma konwerter TWIN?

A. jedno wyjście
B. cztery wyjścia
C. osiem wyjść
D. dwa wyjścia
Konwerter TWIN to urządzenie, które zapewnia dwa wyjścia, co jest istotne w kontekście jego zastosowania w systemach automatyki oraz w rozdzielniach elektrycznych. Posiadanie dwóch wyjść pozwala na jednoczesne zasilanie dwóch różnych obwodów, co zwiększa elastyczność w projektowaniu instalacji. Na przykład, w przypadku systemów zasilania awaryjnego, jedno wyjście może być przeznaczone do zasilania krytycznych obciążeń, a drugie do mniej istotnych urządzeń. Dzięki takiemu rozwiązaniu możliwe jest zoptymalizowanie zużycia energii oraz minimalizacja ryzyka przeciążeń. W praktyce, konwertery tego typu są wykorzystywane w różnorodnych aplikacjach, takich jak zasilanie systemów oświetleniowych, urządzeń HVAC, a także w automatyce przemysłowej. Dobrą praktyką jest również regularne monitorowanie parametrów pracy konwertera, co umożliwia wczesne wykrywanie potencjalnych usterek i zapewnia niezawodność systemu elektrycznego.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie oznaczenie skrócone odnosi się do zakresu fal radiowych o częstotliwości mieszczącej się pomiędzy 30 MHz a 300 MHz, w którym swoje audycje nadają stacje radiowe wykorzystujące modulację FM?

A. MF
B. LF
C. UHF
D. VHF
Skrót VHF to tak naprawdę Very High Frequency, czyli bardzo wysokie częstotliwości. Mówi się o falach radiowych w zakresie od 30 MHz do 300 MHz. Praktycznie każdy, kto słucha radia, wie, że ten zakres jest używany do nadawania programów FM. W sumie, to właśnie dzięki temu stacje radiowe mogą oferować lepszą jakość dźwięku i większy zasięg, co oczywiście jest mega ważne w komunikacji radiowej. Warto też wspomnieć, że modulacja FM jest popularna, bo jest mniej narażona na różne zakłócenia, więc wypada zdecydowanie lepiej na odbiorze. Co ciekawe, VHF nie jest używany tylko w radiu, ale również w telewizji i wielu innych systemach łączności, jak chociażby radiotelefony dla służb ratunkowych. Można powiedzieć, że VHF jest naprawdę uniwersalny i ma duże znaczenie w dzisiejszej komunikacji.

Pytanie 36

W jakiej kolejności należy wykonać zapisane czynności, aby uruchomić system kontroli dostępu?

1.Podłączenie zasilania układu.
2.Pomiar napięć zasilających podzespoły.
3.Sprawdzenie zgodności połączeń ze schematem.
4.Sprawdzenie instalacji na obecność zwarć na zasilaniu układu.
5.Wejście w tryb instalatora i zaprogramowanie odpowiednich opcji.
6.Reset do ustawień fabrycznych i zaprogramowanie karty MASTER.
7.Wejście w tryb użytkownika i zaprogramowanie kart zbliżeniowych oraz kodów PIN.
A. 4,3,2,1,7,6,5
B. 2,1,3,4,5,6,7
C. 2,6,1,5,3,4,7
D. 3,4,1,2,6,5,7
Odpowiedź jest poprawna, ponieważ opisuje właściwą sekwencję działań niezbędnych do uruchomienia systemu kontroli dostępu. Proces ten zaczyna się od sprawdzenia zgodności połączeń ze schematem, co jest kluczowym krokiem w zapewnieniu, że wszystkie komponenty są prawidłowo podłączone i spełniają wymagania techniczne. Następnie, analiza instalacji pod kątem zwarć na zasilaniu jest niezbędna, aby uniknąć uszkodzeń sprzętu. Po potwierdzeniu poprawności instalacji, podłączenie zasilania układu oraz pomiar napięć zasilających są krokami, które zapewniają prawidłowe działanie podzespołów. Resetowanie ustawień fabrycznych oraz programowanie karty MASTER to kluczowe etapy w konfiguracji systemu, które umożliwiają zarządzanie dostępem. Wprowadzenie do trybu instalatora oraz programowanie opcji systemowych są istotne dla dostosowania urządzenia do specyficznych potrzeb użytkownika. Ostatni krok, programowanie kart zbliżeniowych i kodów PIN, kończy proces konfiguracji, zapewniając pełne bezpieczeństwo systemu. Takie podejście jest zgodne z najlepszymi praktykami w branży, które podkreślają znaczenie metodycznego i systematycznego działania w zakresie instalacji systemów zabezpieczeń.

Pytanie 37

Aby zidentyfikować miejsce uszkodzenia w 100-metrowym kablu telekomunikacyjnym umieszczonym w ziemi, należy zastosować

A. multimetr.
B. spektrometr.
C. dalmiar.
D. reflektometr.
Reflektometr to narzędzie stosowane w telekomunikacji, które umożliwia lokalizację uszkodzeń w kablach przez analizę odbicia sygnału. W przypadku kabla telekomunikacyjnego, reflektometr wykorzystuje zjawisko odbicia fali elektromagnetycznej, która jest wysyłana w kierunku kabla. Kiedy fala napotyka na przerwę lub uszkodzenie, część sygnału odbija się z powrotem do reflektometru, co pozwala na określenie miejsca przerwy. Przykładem zastosowania reflektometru może być lokalizacja uszkodzenia w kablu zainstalowanym w terenie, co jest kluczowe dla minimalizacji przestojów w pracy sieci. Standardy branżowe, takie jak ITU-T G.657, podkreślają znaczenie monitorowania i konserwacji kabli optycznych, a reflektometr jest nieocenionym narzędziem w tym kontekście. Dzięki jego zastosowaniu technicy mogą szybko i skutecznie zidentyfikować problem, co zwiększa efektywność operacyjną oraz zadowolenie klientów.

Pytanie 38

Jakie urządzenie stosuje się do podziału sygnału z anteny w systemie telewizyjnym?

A. symetryzator
B. zwrotnicę
C. switch
D. spliter
Jak chodzi o rozdzielenie sygnału z anteny, to takie odpowiedzi jak symetryzator, switch czy zwrotnica to nie to samo co spliter. Symetryzator działa głównie w systemach przesyłowych i przekształca sygnał niesymetryczny na symetryczny. Pomaga, ale nie rozdziela sygnału z anteny. Switch z kolei przełącza sygnały między różnymi źródłami, ale nie dzieli ich na kilka odbiorników. W telewizji używamy go, gdy chcemy wybrać konkretne źródło sygnału, ale nie do dzielenia. Zwrotnica to też inna bajka – ona łączy lub dzieli sygnały, ale głównie w systemach kablowych. Wiele osób myli te urządzenia ze splitterem, co prowadzi do błędnych decyzji przy składaniu systemu telewizyjnego. Warto po prostu ogarnąć, jak każde z tych urządzeń działa, żeby dobrze skonfigurować swój telewizyjny setup.

Pytanie 39

Jednym z technicznych parametrów charakteryzujących wzmacniacze o niskiej częstotliwości jest

A. współczynnik zawartości harmonicznych
B. typ modulacji
C. napięcie detektora
D. zmiana częstotliwości
Wybór innych parametrów jako charakterystyki wzmacniaczy małej częstotliwości może prowadzić do nieporozumień co do kluczowych aspektów ich działania. Napięcie detektora odnosi się do zastosowań detekcji sygnału w systemach radiowych i nie jest bezpośrednio związane z właściwościami wzmacniaczy. Przemiana częstotliwości dotyczy procesów modulacji sygnału i jest stosowana głównie w komunikacji, a nie w ocenie wydajności wzmacniaczy audio. Z kolei rodzaj modulacji, choć istotny w kontekście transmisji sygnału, nie jest parametrem technicznym, który bezpośrednio opisuje charakterystyki wzmacniaczy małej częstotliwości. Takie pomyłki mogą wynikać z braku zrozumienia podstawowych zasad działania wzmacniaczy i ich zastosowania w różnych dziedzinach elektroniki. Kluczowe jest, aby zrozumieć, że każdy z wymienionych parametrów ma swoje miejsce w inżynierii, ale nie jest specyficzny dla wzmacniaczy małej częstotliwości, co może zniekształcać zrozumienie ich funkcji i zastosowania. Rzeczywiste podejście do analizy wzmacniaczy wymaga znajomości specyfikacji technicznych oraz umiejętności odróżnienia pomiędzy różnymi kategoriami parametrów, co jest niezbędne dla uzyskania optymalnych wyników w praktyce inżynieryjnej.

Pytanie 40

Podczas regularnego przeglądu systemu telewizyjnego należy między innymi

A. zmierzyć poziom sygnału w gniazdku abonenckim oraz ocenić jakość połączeń wtyków F
B. zmierzyć impedancję falową kabla koncentrycznego
C. oczyścić oraz pomalować antenę, a następnie ją ustawić
D. określić rezystancję falową kabla i w razie potrzeby ją skorygować
Pomiar poziomu sygnału w gnieździe abonenckim oraz sprawdzenie jakości połączeń wtyków F jest kluczowym krokiem w ramach okresowego przeglądu instalacji telewizyjnej. Umożliwia to ocenę, czy sygnał docierający do odbiornika jest wystarczającej jakości dla prawidłowego odbioru programów telewizyjnych. Zmierzony poziom sygnału powinien mieścić się w zalecanym zakresie, zazwyczaj pomiędzy -10 dBmV a +10 dBmV, co zapewnia stabilny odbiór bez zakłóceń. Jakość połączeń wtyków F jest także istotna, ponieważ ich niewłaściwe podłączenie może prowadzić do strat sygnału, co w dłuższej perspektywie może skutkować degradacją jakości obrazu. Sprawdzanie i ewentualne poprawianie tych połączeń jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie regularnych kontroli w celu zapewnienia wysokiej jakości sygnału i długiej żywotności instalacji. Dodatkowo, pomiar impedancji falowej kabla koncentrycznego, choć istotny, nie jest bezpośrednio związany z ocena jakości sygnału w gnieździe abonenckim.