Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 13:41
  • Data zakończenia: 17 grudnia 2025 13:53

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do czego służy narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Zdejmowania izolacji żył przewodów.
B. Zdejmowania powłoki przewodów.
C. Formowania oczek z końców żył przewodów.
D. Zaciskania końcówek na żyłach przewodów.
Narzędzie przedstawione na zdjęciu to specjalistyczne szczypce do ściągania izolacji, które są kluczowym elementem w pracy z przewodami elektrycznymi. Jego głównym zadaniem jest usuwanie warstwy izolacyjnej z żył przewodów, co jest niezbędne do zapewnienia poprawnego połączenia elektrycznego. Dzięki charakterystycznej budowie, która często posiada regulowany ogranicznik, użytkownik ma możliwość precyzyjnego dostosowania głębokości cięcia. Umożliwia to bezpieczne usunięcie izolacji bez uszkodzenia samej żyły, co jest istotne z punktu widzenia nie tylko wydajności, ale również bezpieczeństwa instalacji elektrycznych. W praktyce, stosując to narzędzie, można wykonać prace takie jak łączenie przewodów w instalacjach domowych czy przygotowywanie kabli do podłączeń w urządzeniach elektronicznych. Przestrzeganie dobrych praktyk, jak na przykład unikanie zbyt głębokiego nacięcia, jest kluczowe, aby zminimalizować ryzyko uszkodzenia przewodów. Narzędzie to jest zgodne z normami branżowymi, co potwierdza jego przydatność i efektywność w codziennym użytkowaniu.

Pytanie 2

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 500 V DC
B. 500 V AC
C. 200 V AC
D. 200 V DC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 3

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Asynchroniczny klatkowy
B. Obcowzbudny prądu stałego
C. Szeregowy prądu stałego
D. Synchroniczny
Silnik synchroniczny charakteryzuje się najbardziej sztywną charakterystyką mechaniczną n = f(M) w zakresie pracy stabilnej, co oznacza, że jego prędkość obrotowa jest ściśle związana z częstotliwością zasilania. W praktyce oznacza to, że silniki synchroniczne są idealnym rozwiązaniem w aplikacjach, gdzie wymagana jest precyzyjna kontrola prędkości oraz stabilność obrotów, na przykład w systemach napędowych w dużych maszynach przemysłowych, turbinach wiatrowych, czy w energetyce odnawialnej. Dzięki swojej konstrukcji, silniki te mogą pracować w warunkach, gdzie inne typy silników, jak np. silniki asynchroniczne, mogą wykazywać większe wahania prędkości. W zastosowaniach, gdzie ważne są parametry jakości energii, silniki synchroniczne mogą też przyczynić się do poprawy współczynnika mocy, co jest zgodne z aktualnymi standardami efektywności energetycznej, jak IEC 60034. Ponadto, zastosowanie technologii takich jak falowniki do sterowania silnikami synchronicznymi umożliwia osiąganie jeszcze większej wydajności i elastyczności w działaniu.

Pytanie 4

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
B. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
C. pomiar rezystancji uziemienia
D. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
Ocena dostępu do urządzeń, sprawdzenie oznaczenia obwodów i zabezpieczeń oraz sprawdzenie poprawności oznaczenia przewodów neutralnych i ochronnych to istotne elementy oględzin instalacji elektrycznej, które powinny być wykonywane regularnie. Ocena dostępu do urządzeń jest kluczowa, ponieważ zapewnia, że personel może wygodnie i bezpiecznie pracować z instalacją, a także szybko reagować w przypadku awarii. Sprawdzanie oznaczenia obwodów i zabezpieczeń oraz przewodów neutralnych i ochronnych pozwala na identyfikację potencjalnych problemów oraz zrozumienie struktury instalacji, co jest niezbędne do skutecznego zarządzania nią. Problemy takie jak niewłaściwe oznaczenie mogą prowadzić do poważnych zagrożeń, w tym do niebezpieczeństwa porażenia prądem lub uszkodzenia sprzętu. Powszechnym błędem jest mylenie tych elementów z pomiarem rezystancji uziemienia. Wiedza o różnicy między tymi czynnościami jest kluczowa, ponieważ każde z nich ma swoje unikalne cele i metody, a ich pomylenie może prowadzić do niewłaściwych wniosków co do stanu instalacji. Istotne jest, aby każda z tych czynności była przeprowadzana zgodnie z obowiązującymi normami i standardami, co gwarantuje bezpieczeństwo i efektywność systemu elektrycznego.

Pytanie 5

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. II
B. III
C. I
D. 0
Wybór niepoprawnej odpowiedzi może wynikać z błędnego zrozumienia klasyfikacji opraw oświetleniowych oraz ich oznaczeń. Klasa ochronności I wskazuje na urządzenia, które wymagają uziemienia, co oznacza, że ich konstrukcja jest oparta na izolacji podstawowej i dodatkowej, co czyni je bardziej podatnymi na uszkodzenia w przypadku awarii izolacji. Użytkownicy mogą mylić klasy ochronności z poziomem bezpieczeństwa, sądząc, że klasa I jest bardziej bezpieczna niż klasa II, podczas gdy w rzeczywistości klasa II, dzięki podwójnej izolacji, nie wymaga uziemienia i może być stosowana w bardziej zróżnicowanych warunkach. Klasa III, która również nie wymaga uziemienia, dotyczy urządzeń zasilanych niskonapięciowych, co czyni ją nieodpowiednią dla standardowych opraw oświetleniowych działających na napięciu sieciowym. Odpowiedź 0 sugeruje brak klasy ochronności, co jest koncepcją błędną, gdyż każda oprawa oświetleniowa musi posiadać oznaczenie dotyczące swojej klasy ochronności. Użytkownicy mogą również nie zdawać sobie sprawy, że niespełnienie wymogów klasy ochronności, może prowadzić do poważnych konsekwencji zdrowotnych i prawnych. Zrozumienie tych różnic jest kluczowe dla zapewnienia bezpieczeństwa i zgodności z obowiązującymi normami branżowymi.

Pytanie 6

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. iskiernika.
B. odgromnika wydmuchowego.
C. odgromnika zaworowego.
D. warystora.
Wybór odpowiedzi 'wary stora' jest poprawny, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście reprezentuje warystor, który jest kluczowym elementem w systemach ochrony przed przepięciami. Warystor działa na zasadzie zmiany rezystancji w odpowiedzi na przyłożone napięcie, co pozwala na skuteczne odprowadzanie nadmiaru energii w sytuacjach awaryjnych. Jest on często stosowany w obwodach zasilających, aby chronić urządzenia elektroniczne przed uszkodzeniami spowodowanymi nagłymi wzrostami napięcia. Standardy takie jak IEC 61643-1 określają wymagania dla urządzeń ochronnych, w tym warystorów, co czyni je niezbędnymi w projektowaniu systemów zabezpieczeń. Warto również zauważyć, że warystory są często łączone z innymi elementami ochrony, takimi jak odgromniki czy bezpieczniki, aby zapewnić kompleksową ochronę. Zastosowanie warystorów w urządzeniach domowych oraz przemysłowych pomaga w zwiększeniu ich żywotności i niezawodności.

Pytanie 7

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
B. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
C. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
D. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
Dobra robota z odpowiedzią! To, co napisałeś, dobrze pokazuje, jakie kroki warto podjąć przed pomiarem rezystancji izolacji w instalacji elektrycznej. Najpierw trzeba wymontować źródła światła z opraw – to naprawdę ważne, żeby nie ryzykować porażeniem prądem w trakcie pomiarów. Poza tym, wyłączenie jednofazowych odbiorników i silników trójfazowych jest konieczne, żeby nie zakłócały one wyników i nie zostały uszkodzone przez niewłaściwe napięcie. Te zasady są zgodne z przepisami, jak PN-EN 50110-1, które mówią, że trzeba wyłączyć zasilanie przed przeprowadzeniem testów izolacji. To, że stosujesz te procedury, nie tylko zwiększa bezpieczeństwo, ale też sprawia, że pomiary są dokładniejsze. A to jest bardzo istotne, żeby dobrze ocenić stan izolacji i upewnić się, że instalacja jest w dobrym stanie.

Pytanie 8

Który zestaw narzędzi, oprócz przymiaru kreskowego i młotka należy wybrać do montażu instalacji natynkowej w rurach PCV?

Nóż monterski
Poziomnica
Wkrętarka
Obcinaczki
Wiertarka
Nóż monterski
Piłka do cięcia
Wkrętak
Obcinaczki
Wiertarka
Cęgi do izolacji
Poziomnica
Wkrętarka
Obcinaczki
Lutownica
Cęgi do izolacji
Poziomnica
Wkrętarka
Płaskoszczypcy
Wiertarka
A.B.C.D.
A. B.
B. C.
C. A.
D. D.
Wybór jakiegokolwiek innego zestawu narzędzi niż zestaw B do montażu instalacji natynkowej w rurach PCV jest obarczony ryzykiem nieprawidłowości oraz niedostatecznej efektywności. Zestaw A, C oraz D nie zawierają kluczowego narzędzia, jakim jest piła do cięcia, co uniemożliwia precyzyjne przygotowanie rur do montażu. Bez odpowiedniego cięcia, w instalacji mogą pojawić się szczeliny, które negatywnie wpływają na funkcjonalność i bezpieczeństwo całego systemu. W przypadku wyboru zestawu, który nie ma obcinaczek, łączenie elementów rur staje się kłopotliwe i czasochłonne, co może prowadzić do błędów w montażu, które są niebezpieczne w przypadku instalacji elektrycznych. Warto również zdawać sobie sprawę, że standardy branżowe wymagają stosowania właściwych narzędzi, aby zminimalizować ryzyko awarii i zagrożeń związanych z niewłaściwym montażem. Wybór niewłaściwych narzędzi często wynika z błędnego rozumienia wymagań dotyczących narzędzi do instalacji, co może wprowadzać w błąd i prowadzić do stosowania substytutów, które nie spełniają standardów jakości. Dlatego tak ważne jest zrozumienie, jak istotne jest korzystanie z odpowiednich narzędzi do danego zadania oraz znajomość dobrych praktyk w branży, które pozwolą na wykonanie pracy w sposób bezpieczny i efektywny.

Pytanie 9

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik świecznikowy
B. Łącznik krzyżowy
C. Łącznik schodowy pojedynczy
D. Łącznik schodowy podwójny
Łącznik świecznikowy to element instalacji elektrycznej, który rzeczywiście ma dwa klawisze i trzy zaciski przyłączeniowe. Jest to kluczowy komponent w systemach oświetleniowych, który umożliwia włączenie i wyłączenie oświetlenia z jednego miejsca. Dzięki posiadaniu dwóch klawiszy, użytkownik może kontrolować dwa różne źródła światła z jednego łącznika, co jest szczególnie przydatne w pomieszczeniach, gdzie zastosowane są różne rodzaje oświetlenia. W praktyce, łącznik świecznikowy często stosuje się w salonach, gdzie można regulować intensywność światła przy użyciu dwóch różnych żarówek lub opraw. Dodatkowo, zgodnie z normami IEC, instalacje elektryczne powinny być projektowane w sposób umożliwiający ich późniejsze rozszerzanie lub modyfikacje. Użycie łącznika świecznikowego w połączeniu z innymi typami łączników, takimi jak schodowe czy krzyżowe, pozwala na stworzenie bardziej elastycznego systemu oświetleniowego, dostosowanego do indywidualnych potrzeb użytkowników.

Pytanie 10

Który łącznik oznaczono symbolem literowym P na schemacie montażowym zamieszczonym na rysunku?

Ilustracja do pytania
A. Schodowy.
B. Grupowy.
C. Świecznikowy.
D. Krzyżowy.
Łącznik oznaczony literą P na schemacie montażowym to łącznik krzyżowy, który odgrywa kluczową rolę w układzie sterowania oświetleniem z trzech miejsc. Umożliwia on przełączanie obwodu w sposób, który pozwala na włączanie i wyłączanie oświetlenia z różnych lokalizacji. Przykładowo, w długim korytarzu, gdzie znajdują się trzy punkty dostępu, użycie łączników krzyżowych w połączeniu z łącznikami schodowymi na końcach umożliwia wygodne zarządzanie oświetleniem. Standardy branżowe, takie jak PN-EN 60669-1, wskazują, że użycie łączników krzyżowych w instalacjach oświetleniowych znacząco zwiększa komfort użytkowania oraz efektywność energetyczną. W praktyce, jeśli zainstalujemy łącznik krzyżowy w odpowiednich miejscach, zyskamy pełną kontrolę nad oświetleniem, co jest szczególnie przydatne w większych przestrzeniach.

Pytanie 11

Aby zrealizować połączenie przewodów z żyłami jednodrutowymi przy użyciu złączki WAGO, co powinno się zastosować?

A. nóż monterski
B. cęgi do zdejmowania izolacji oraz wkrętak
C. cęgi do zdejmowania izolacji oraz zaciskarkę końcówek
D. prasę hydrauliczną
Podejście, które sugeruje użycie prasy hydraulicznej w przypadku łączenia przewodów z żyłami jednodrutowymi za pomocą złączek typu WAGO, jest mylne. Prasa hydrauliczna jest narzędziem stosowanym głównie do zaciskania końcówek przewodów, co w kontekście złączek WAGO nie ma zastosowania, ponieważ te złącza działają na zasadzie sprężystego zacisku mechanicznego, a nie na zasadzie spawania czy zaciskania. W przypadku użycia noża monterskiego, mylenie tej czynności z użyciem prasy hydraulicznej może wynikać z nieznajomości podstawowych zasad montażu instalacji elektrycznych. Nóż monterski jest narzędziem, które doskonale nadaje się do precyzyjnego usuwania izolacji, co jest kluczowe dla uzyskania dobrego połączenia. Cążki do zdejmowania izolacji i wkrętaki również nie są optymalnymi narzędziami w tym kontekście, ponieważ ich zastosowanie nie zabezpiecza połączenia w optymalny sposób, co może prowadzić do trudności w zapewnieniu dobrego kontaktu elektrycznego. W przypadku zastosowania cęgów do zdejmowania izolacji, istnieje ryzyko uszkodzenia przewodu, co obniża jakość połączenia. Dobre praktyki w branży elektrycznej wymagają użycia odpowiednich narzędzi dla określonego rodzaju złączeń i połączeń, co podkreśla znaczenie znajomości technologii i narzędzi dostępnych na rynku.

Pytanie 12

Który z poniższych przewodów powinien być użyty do zasilania ruchomego odbiornika w II klasie ochronności z sieci jednofazowej?

A. H05VV-K 3×1,5
B. H03VVH2-F 2×0,75
C. H03VV-F 3×0,75
D. H05VV-U 2×1,5
Odpowiedź H03VVH2-F 2×0,75 jest poprawna, ponieważ ten przewód jest przeznaczony do zasilania ruchomych odbiorników w systemach o napięciu do 300/500 V. Jego konstrukcja z podwójną izolacją zapewnia odpowiedni poziom bezpieczeństwa, co jest kluczowe dla urządzeń wykonanych w II klasie ochronności. W II klasie ochronności nie jest wymagane stosowanie przewodów z uziemieniem, co czyni H03VVH2-F idealnym rozwiązaniem. Przewód ten charakteryzuje się także elastycznością, co ułatwia jego stosowanie w aplikacjach ruchomych, takich jak elektronarzędzia czy sprzęt AGD. W praktyce stosuje się go często w sytuacjach, gdzie urządzenie może być przemieszczane, a także w warunkach, w których mobilność i elastyczność przewodu są kluczowe. Zgodnie z normą PN-EN 50525-2-21, przewody te powinny spełniać określone wymagania dotyczące odporności na działanie czynników zewnętrznych, co czyni je odpowiednimi do użytku w różnych środowiskach.

Pytanie 13

Co oznacza symbol literowy YKY?

A. przewód oponowy warsztatowy z żyłami miedzianymi w izolacji z PVC
B. kabel z żyłami aluminiowymi w izolacji i powłoce z PVC
C. przewód telekomunikacyjny z żyłami aluminiowymi w izolacji i powłoce z PVC
D. kabel z żyłami miedzianymi w izolacji z PVC
Odpowiedź wskazująca na kabel o żyłach miedzianych w izolacji polwinitowej jest poprawna, ponieważ symbol literowy YKY odnosi się do kabli, które są powszechnie stosowane w instalacjach elektrycznych. Kable te charakteryzują się miedzianymi żyłami, co zapewnia dobrą przewodność elektryczną oraz odporność na korozję, a ich izolacja wykonana z polichlorku winylu (PVC) oferuje wysoką odporność na działanie niekorzystnych czynników atmosferycznych. Kable YKY są często wykorzystywane w systemach zasilania, w rozdzielniach elektrycznych czy w instalacjach przemysłowych, gdzie wymagana jest niezawodność i bezpieczeństwo. Dodatkowo, zgodnie z normą PN-EN 50525, kable YKY mogą być stosowane w warunkach, gdzie wymagana jest odporność na wysokie temperatury, co sprawia, że są one wszechstronne w zastosowaniach. Przykłady zastosowania obejmują zarówno instalacje w budynkach mieszkalnych, jak i przemysłowych, gdzie kable legitymują się dobrymi parametrami mechanicznymi oraz elektrycznymi niezbędnymi do efektywnego funkcjonowania systemów zasilających.

Pytanie 14

Na którym rysunku przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór innej odpowiedzi, mimo że na pierwszy rzut oka może wydawać się logiczny, często prowadzi do nieprawidłowych praktyk, które mogą zagrażać bezpieczeństwu instalacji. Niewłaściwe ułożenie drutu w zacisku lub jego zbyt słabe dokręcenie może skutkować niepełnym kontaktem, co prowadzi do zwiększonego oporu elektrycznego, a w konsekwencji do przegrzewania się połączenia. Należy także pamiętać, że niewłaściwe zagięcie drutu, które nie umożliwia jego pełnego przylegania do powierzchni styku, stwarza ryzyko wypadnięcia żyły z zacisku. Takie błędy są szczególnie niebezpieczne w kontekście urządzeń, które są narażone na wibracje lub ruch, gdzie może dochodzić do poluzowania złączki. Przykładowo, w zastosowaniach przemysłowych, takie jak montaż silników elektrycznych, poprawne połączenie jest kluczowe dla ich długowieczności i efektywności. Z tego powodu, każde połączenie powinno być wykonane zgodnie z zaleceniami producentów oraz obowiązującymi normami, co zapewnia nie tylko bezpieczeństwo, ale również funkcjonalność całej instalacji elektrycznej. Praktyczne umiejętności związane z prawidłowym wykonaniem połączeń są zatem niezbędne w każdej pracy związanej z elektrycznością.

Pytanie 15

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 300/300 V
B. 450/750 V
C. 100/100 V
D. 300/500 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 16

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Umieszczenie części dostępnych poza zasięgiem ręki
B. Separacja elektryczna
C. Samoczynne wyłączanie zasilania
D. Uziemienie ochronne
Samoczynne wyłączanie zasilania jest jednym z kluczowych środków ochrony przeciwporażeniowej, który polega na szybkim odłączeniu zasilania w przypadku wykrycia zwarcia lub innego niebezpiecznego stanu w instalacji elektrycznej. Aby ocenić skuteczność tego systemu, przeprowadza się pomiar rezystancji pętli zwarcia, który pozwala określić, czy prąd zwarciowy jest wystarczająco niski, aby automatyczne wyłączniki mogły zareagować. Standardy, takie jak IEC 60364, określają wymagania dotyczące pomiarów rezystancji pętli, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Praktycznie, jeśli rezystancja pętli zwarcia jest zbyt wysoka, może to oznaczać, że samoczynne wyłączanie zasilania nie zadziała prawidłowo, co może prowadzić do niebezpiecznych sytuacji. Dlatego regularne testowanie i konserwacja instalacji elektrycznych są niezbędne, aby zapewnić ich bezpieczeństwo i sprawność. Warto również zauważyć, że w przypadku braku odpowiednich przeciwwskazań, instalacje elektryczne powinny być projektowane tak, aby ułatwiały pomiar rezystancji pętli, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 17

Którego z narzędzi należy użyć do wkręcenia przedstawionego elementu w nagwintowany otwór?

Ilustracja do pytania
A. Klucza nasadowego.
B. Wkrętaka krzyżowego.
C. Klucza ampulowego.
D. Wkrętaka typu torks.
Klucz ampulowy, znany także jako klucz imbusowy, jest narzędziem przeznaczonym do pracy z śrubami i wkrętami, które mają łeb sześciokątny wewnętrzny. W przypadku opisanej sytuacji, użycie klucza ampulowego jest kluczowe, ponieważ idealnie pasuje do profilu łba śruby, co zapewnia skuteczne i bezpieczne wkręcanie lub wykręcanie. Tego typu klucze są szeroko stosowane w różnych dziedzinach, takich jak mechanika, elektronika czy budownictwo, co czyni je niezastąpionym narzędziem w zestawie każdego profesjonalisty. W praktyce, klucz ampulowy pozwala na uzyskanie dużego momentu obrotowego przy niewielkim wysiłku, co jest szczególnie ważne przy pracy z metalowymi elementami, które mogą być narażone na korozję lub inne uszkodzenia. Dodatkowo, klucze te są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do różnych śrub, zgodnie z normami ISO i DIN. Użycie odpowiedniego narzędzia z pewnością przyczyni się do wydajności pracy oraz do ograniczenia ryzyka uszkodzeń elementów montażowych.

Pytanie 18

Na którym rysunku przedstawiono schemat montażowy zgodny z przedstawionym planem instalacji?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór odpowiedzi, która nie jest zgodna z planem instalacji, może wynikać z kilku błędnych założeń dotyczących montażu i podłączenia instalacji elektrycznych. Wiele osób myli pojęcia dotyczące przewodów PE, N i L, co prowadzi do nieprawidłowych wniosków. Przykładowo, w niepoprawnych schematach może występować niewłaściwe połączenie przewodu neutralnego z fazowym, co stwarza ryzyko zwarcia oraz uszkodzenia urządzeń elektrycznych. Często spotykaną pomyłką jest również brak odpowiedniego uziemienia, które jest kluczowe dla bezpieczeństwa. Bezpośrednie połączenie przewodów do gniazda wtyczkowego bez uwzględnienia zasadności ich rozmieszczenia może prowadzić do nieefektywności pracy urządzeń oraz zwiększonego ryzyka porażenia prądem. Ważne jest, aby pamiętać, że każdy element instalacji musi być zgodny z odpowiednimi normami, takimi jak normy PN-EN 60364, które precyzują zasady projektowania oraz montażu. Wiedza na temat symboliki i oznaczeń w schematach montażowych jest kluczowa dla zrozumienia, jak prawidłowo zrealizować instalację. Pomocne może być również zapoznanie się z wytycznymi dotyczącymi bezpieczeństwa, które podkreślają znaczenie zachowania odpowiednich odstępów pomiędzy przewodami, aby uniknąć zakłóceń oraz potencjalnych zagrożeń.

Pytanie 19

Prędkość obrotowa silnika w układzie przedstawionym na schemacie regulowana jest przez zmianę wartości

Ilustracja do pytania
A. częstotliwości napięcia zasilania.
B. prądu wzbudzenia.
C. rezystancji obwodu twornika.
D. napięcia twornika.
Odpowiedź 'napięcia twornika' jest poprawna, ponieważ regulacja prędkości obrotowej silnika elektrycznego w układzie z twornikiem opiera się na zmianach napięcia przyłożonego do twornika. W silnikach prądu stałego, na przykład w silnikach komutatorowych, zmiana napięcia na tworniku wpływa na moment obrotowy oraz prędkość obrotową. Wysokość napięcia kontroluje ilość energii dostarczanej do silnika, co bezpośrednio wpływa na jego wydajność oraz prędkość obrotową. W praktyce, regulacja napięcia twornika jest powszechnie stosowana w zastosowaniach przemysłowych, takich jak napędy elektryczne w maszynach i robotach, gdzie precyzyjna kontrola prędkości jest kluczowa. Dobrą praktyką jest stosowanie układów automatycznej regulacji napięcia, które zapewniają stabilność pracy silnika w różnych warunkach obciążenia, co jest zgodne z normami i standardami w dziedzinie automatyki i robotyki.

Pytanie 20

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
B. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
C. niskonapięciowych liniach elektroenergetycznych.
D. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 21

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD
A. D.
B. C.
C. A.
D. B.
Wybór niewłaściwej odpowiedzi często wynika z niepełnego zrozumienia procesu demontażu stojana silnika indukcyjnego. Wiele osób może pomylić kolejność czynności, co prowadzi do nieprawidłowych praktyk. Na przykład, jeśli demontaż rozpoczyna się od usunięcia uzwojenia przed odcięciem połączeń czołowych, naraża to technika na niebezpieczeństwo, ponieważ może dojść do niezamierzonego kontaktu z prądem. Kolejnym częstym błędem jest pomijanie etapu odcięcia zasilania, co jest kluczowe dla zapewnienia bezpieczeństwa. Bezpieczeństwo przy pracy z urządzeniami elektrycznymi powinno być zawsze na pierwszym miejscu. Ważne jest, aby również zrozumieć, że niewłaściwa kolejność demontażu może prowadzić do uszkodzenia elementów silnika, co z kolei zwiększa koszty naprawy i przestojów w pracy. Każda z tych czynności ma swoje uzasadnienie w kontekście mechaniki oraz elektryki i jest zgodna z obowiązującymi normami i standardami bezpieczeństwa, takimi jak normy IEC (Międzynarodowej Komisji Elektrotechnicznej). Dlatego kluczowe jest, aby przed przystąpieniem do demontażu, każdy technik był dokładnie przeszkolony w zakresie procedur demontażu i był świadomy zagrożeń związanych z niewłaściwym postępowaniem.

Pytanie 22

W którym układzie sieciowym występuje przewód oznaczany przedstawionym symbolem graficznym?

Ilustracja do pytania
A. TT
B. IT
C. TN-C
D. TN-S
Odpowiedź TN-C jest prawidłowa, ponieważ przedstawiony symbol graficzny oznacza przewód PEN, który pełni zarówno funkcję przewodu ochronnego, jak i neutralnego. W układzie TN-C przewód PEN jest używany do ochrony przed porażeniem elektrycznym oraz zapewnia powrotną drogę prądu w przypadku awarii. Taki układ jest szczególnie popularny w instalacjach przemysłowych oraz w budynkach mieszkalnych, gdzie wymagane jest zwiększenie poziomu bezpieczeństwa. Dobre praktyki branżowe wskazują, że zastosowanie przewodu PEN w układzie TN-C zapewnia optymalne warunki pracy urządzeń oraz minimalizuje ryzyko uszkodzeń. Warto również dodać, że stosowanie układu TN-C jest zgodne z normami PN-IEC 60364, które określają zasady projektowania instalacji elektrycznych w budynkach. Dlatego zrozumienie roli przewodu PEN w tym układzie jest kluczowe dla każdego specjalisty zajmującego się elektryką.

Pytanie 23

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
B. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
C. Wiertarkę, punktak, zestaw wkrętaków
D. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
Wybór narzędzi zaproponowany w innych odpowiedziach, takich jak tylko taśma miernicza i młotek, bądź jedynie wiertarka i komplet wkrętaków, jest niewłaściwy dla tego konkretnego zadania. Taśma miernicza, mimo że jest przydatna do pomiarów, nie zastępuje potrzeby precyzyjnego wyznaczenia miejsc wiercenia, co może prowadzić do błędów w montażu. Młotek sam w sobie nie jest wystarczający do pracy z cegłą pełną, gdzie konieczne jest użycie punktaka do wstępnego oznaczenia otworów. Wiertarka bez odpowiedniego wiertła widiowego może nie sprostać twardości cegły, co skutkuje trudnościami w procesie wiercenia oraz możliwym uszkodzeniem narzędzia. Piła do metalu może być używana, lecz w kontekście montażu rurek PVC, kluczowe jest posiadanie narzędzi do obróbki i mocowania, a nie tylko cięcia. Ostatecznie, brak poziomnicy w zestawie narzędzi jest istotnym błędem, ponieważ precyzyjne wypoziomowanie rurek jest kluczowe dla prawidłowego funkcjonowania instalacji. Takie nieprzemyślane podejście do przygotowania narzędzi może prowadzić do poważnych błędów w instalacji, co w dłuższym czasie może generować dodatkowe koszty związane z poprawkami i ponownym montażem.

Pytanie 24

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
B. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
C. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
D. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
Pomiar impedancji pętli zwarciowej przy załączonej sieci jest kluczowy dla oceny bezpieczeństwa systemów elektroenergetycznych. W takiej konfiguracji, wszystkie elementy systemu, w tym transformatory, przewody oraz urządzenia zabezpieczające, działają w rzeczywistych warunkach operacyjnych. Uwzględnienie impedancji transformatorów zasilających jest istotne, ponieważ ich właściwości mogą znacząco wpływać na wartość impedancji pętli zwarciowej. W praktyce, taka analiza pozwala na poprawne zaprojektowanie zabezpieczeń przeciwprądowych, co jest kluczowe dla szybkiej reakcji systemu na awarie. Dobre praktyki, takie jak stosowanie norm IEC 60909, podkreślają znaczenie pomiaru impedancji w warunkach załączonych, co prowadzi do bardziej rzetelnych wyników i lepszej ochrony instalacji. Ostatecznie, znajomość rzeczywistych warunków pracy systemu przekłada się na większe bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 25

Która z podanych metod realizacji instalacji elektrycznych jest przeznaczona do użycia w lokalach mieszkalnych?

A. W kanałach podłogowych
B. Przewodami szynowymi
C. W listwach przypodłogowych
D. Na drabinkach
Wybór prowadzenia instalacji elektrycznych w listwach przypodłogowych jest zgodny z normami i praktykami stosowanymi w pomieszczeniach mieszkalnych. Listwy przypodłogowe nie tylko maskują przewody, ale również umożliwiają estetyczne i funkcjonalne prowadzenie instalacji. Wykorzystanie listw przypodłogowych pozwala na łatwy dostęp do przewodów w przypadku ich konserwacji lub ewentualnych napraw. Warto wspomnieć, że instalacje prowadzone w listwach przypodłogowych są często stosowane w przypadku modernizacji istniejących budynków, gdzie nie ma możliwości prowadzenia przewodów w sposób tradycyjny. Listwy te są dostępne w różnych kolorach i wzorach, co pozwala na ich bezproblemowe wkomponowanie w wystrój wnętrza. Dodatkowo, zastosowanie listw przypodłogowych zwiększa bezpieczeństwo, ponieważ przewody są osłonięte przed uszkodzeniami mechanicznymi oraz dostępem dzieci. W kontekście norm, prowadzenie instalacji w listwach przypodłogowych powinno być zrealizowane zgodnie z obowiązującymi przepisami, takimi jak PN-IEC 60364, które regulują kwestie związane z bezpieczeństwem instalacji elektrycznych.

Pytanie 26

Rysunek przedstawia schemat lampy z układem zapłonowym. Jaka to lampa?

Ilustracja do pytania
A. Fluorescencyjna.
B. Sodowa niskoprężna.
C. Żarowa.
D. Rtęciowa wysokoprężna.
Wybierając odpowiedzi takie jak sodowa niskoprężna, fluorescencyjna czy żarowa, mogą pojawić się nieporozumienia dotyczące różnic między różnymi rodzajami lamp. Lampy sodowe niskoprężne są często stosowane w oświetleniu ulicznym, jednak działają na innej zasadzie niż lampy rtęciowe wysokoprężne. Ich układ zapłonowy jest oparty na innym typie technologii, co znacząco wpływa na ich parametry świetlne oraz trwałość. Z kolei lampy fluorescencyjne, które wykorzystują gaz i luminofor do generowania światła, nie wymagają dławika ani wysokiego napięcia do zapłonu, co jest fundamentalne w przypadku lamp rtęciowych. Lampy żarowe, mimo że powszechnie używane, charakteryzują się znacznie niższą wydajnością świetlną oraz krótszą żywotnością, co sprawia, że nie są odpowiednie do zastosowań, które wymagają intensywnego i trwałego oświetlenia. Często błędne odpowiedzi wynikają z niezrozumienia różnic w technologii oraz zastosowania poszczególnych typów lamp. Istotne jest, aby przy wyborze źródła światła brać pod uwagę nie tylko jego właściwości, ale również przeznaczenie, co powinno być oparte na analizie wymagań oświetleniowych w danej lokalizacji.

Pytanie 27

Jakie pomiary są wykonywane przy sprawdzaniu wyłącznika różnicowoprądowego?

A. napięcia sieciowego oraz prądu różnicowego
B. prądu obciążenia oraz czasu jego działania
C. napięcia sieciowego oraz prądu obciążenia
D. prądu różnicowego oraz czasu jego działania
Sprawdzanie wyłącznika różnicowoprądowego to naprawdę ważna sprawa, bo chodzi tu o nasze bezpieczeństwo. Mierzymy prąd różnicowy i czas, w jakim wyłącznik zadziała, bo to zapewnia, że wszystko działa jak należy w instalacjach elektrycznych. Prąd różnicowy to różnica pomiędzy prądem, który idzie do urządzenia, a tym, który wraca. W normalnych warunkach ta różnica powinna być mała. RCD działa w ten sposób, że jeśli ta różnica przekroczy pewien próg, najczęściej 30 mA dla ochrony osób, to odcina zasilanie. Regularne testy wyłączników pozwalają upewnić się, że są w porządku i że nas chronią przed porażeniem prądem. Moim zdaniem, dobrze jest testować to przynajmniej raz w roku, aby mieć pewność, że ochrona działa jak należy. Do testów można użyć specjalnych urządzeń, które naśladują prąd różnicowy i pokazują, w jakim czasie wyłącznik się włączy. Jest to naprawdę istotne, żeby się tym zajmować.

Pytanie 28

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem A2 stycznika K1
B. Z zaciskiem 3 listwy zaciskowej X1
C. Z zaciskiem 22 stycznika K1
D. Z zaciskiem 4 listwy zaciskowej X1
Wybór zacisku 3 listwy zaciskowej X1 jako poprawnej odpowiedzi jest uzasadniony analizą schematu montażowego, który jasno pokazuje połączenie pomiędzy tym zaciskiem a zaciskiem 41 stycznika K2. W praktyce, prawidłowe połączenie zacisków jest kluczowe dla zapewnienia właściwego działania systemów elektrycznych. W przypadku styczników, ich poprawne podłączenie wpływa na stabilność i bezpieczeństwo całego obwodu. W standardach branżowych, takich jak normy IEC 60947, zwraca się uwagę na znaczenie właściwego oznaczenia i połączeń w systemach automatyki, co pozwala na uniknięcie błędów w instalacji oraz ułatwia diagnostykę i konserwację. Zastosowanie logicznego podejścia do analizy schematu oraz znajomość standardów elektrycznych pomagają w skutecznym projektowaniu i wdrażaniu systemów, co jest niezbędne w każdej pracy zawodowej związanej z elektryką.

Pytanie 29

Jaką rolę pełni uzwojenie pomocnicze w silniku prądu stałego?

A. Wytwarza pole magnetyczne wzbudzenia
B. Eliminuje niekorzystne zjawiska oddziaływania wirnika
C. Obniża rezystancję obwodu twornika
D. Generuje napięcie remanentu
Uzwojenie pomocnicze w silniku prądu stałego to naprawdę ważny element. Dzięki niemu można lepiej kontrolować, jak silnik działa, a to pomaga w unikaniu różnych dziwnych problemów, jak wibracje czy drgania. To wszystko może wpłynąć na trwałość silnika, więc to nie jest mała sprawa. W praktyce uzwojenie pomocnicze działa trochę jak pomocnik, który sprawia, że moment obrotowy jest optymalizowany w różnych warunkach. Jak dobrze się nad tym zastanowić, to silniki z takim uzwojeniem są bardziej efektywne i mogą lepiej działać w sytuacjach, gdzie precyzja jest na wagę złota, jak w robotyce czy automatyce. Wiem, że to może wydawać się skomplikowane, ale standardy jak IEC 60034 pokazują, jak te rzeczy najlepiej zaprojektować, więc warto się z nimi zapoznać.

Pytanie 30

Jakie parametry powinno się zmierzyć podczas przeglądu instalacji elektrycznej funkcjonującej w systemie TN-S?

A. Impedancję pętli zwarcia oraz pomiar prądu upływu
B. Rezystancję przewodów ochronnych i rezystancję uziemienia
C. Rezystancję izolacji przewodów oraz impedancję pętli zwarcia
D. Rezystancję izolacji przewodów oraz rezystancję uziemienia
W instalacji elektrycznej pracującej w sieci TN-S kluczowe jest zapewnienie odpowiedniego poziomu bezpieczeństwa oraz właściwej funkcjonalności systemu. Pomiar rezystancji izolacji przewodów jest niezbędny, aby upewnić się, że izolacja nie zawiera uszkodzeń, które mogłyby prowadzić do niebezpiecznego przebicia czy upływu prądu. Normy takie jak PN-EN 61557-1 i PN-EN 61557-2 wskazują na konieczność regularnego przeprowadzania takich pomiarów. Drugi aspekt, czyli pomiar impedancji pętli zwarcia, jest kluczowy dla oceny skuteczności zabezpieczeń nadprądowych oraz wyłączników różnicowoprądowych. Zgodnie z wymaganiami normy DIN VDE 0100, impedancja pętli zwarcia powinna być na tyle niska, aby zapewnić szybkie wyłączenie obwodu w przypadku wystąpienia zwarcia. Praktycznie, te pomiary umożliwiają ocenę stanu instalacji oraz podejmowanie odpowiednich działań konserwacyjnych lub naprawczych, co przekłada się na bezpieczeństwo użytkowników i ciągłość pracy instalacji elektrycznych.

Pytanie 31

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. zagrożenie porażeniem prądem elektrycznym
B. zwarcie w systemie elektrycznym
C. uszkodzenie urządzenia elektrycznego
D. przeciążenie systemu elektrycznego
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 32

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pₙ = 3 kW, Uₙ = 230 V?

A. aR 16 A
B. gG 16 A
C. aM 20 A
D. gB 20 A
Wybór wkładek aR, aM oraz gB w kontekście zabezpieczenia obwodu jednofazowego grzejnika rezystancyjnego jest nieodpowiedni z kilku powodów. Wkładki aR, które są przeznaczone do ochrony obwodów przed zwarciami w obwodach silnikowych, nie są odpowiednie dla obciążeń rezystancyjnych, takich jak grzejniki, ponieważ nie zapewniają wystarczającej ochrony przed przeciążeniem. Jeśli grzejnik zaczyna pracować, może wystąpić chwilowy wzrost prądu, który nie zostanie zarejestrowany przez wkładkę aR, co może prowadzić do poważnych uszkodzeń instalacji. Wkładki aM, przeznaczone do zabezpieczania obwodów z silnikami, również nie są odpowiednie dla obwodów grzewczych, ponieważ ich charakterystyka czasowo-prądowa nie jest dostosowana do reakcji na przeciążenie w przypadku obciążeń rezystancyjnych. Z kolei wkładka gB 20 A, mimo że może wydawać się odpowiednia, przewyższa obliczoną wartość prądu znamionowego (około 13 A), co może prowadzić do niebezpieczeństwa przegrzania przewodów lub sprzętu, a także spowodować, że zabezpieczenie nie zadziała w odpowiednim czasie. Wybierając odpowiednie zabezpieczenie, należy zawsze kierować się zasadą, że wartości prądu znamionowego wkładki powinny być dostosowane do rzeczywistych potrzeb obwodu, a także uwzględniać elastyczność w kontekście ewentualnych chwilowych wzrostów prądu.

Pytanie 33

Z oznaczenia kabla YDYp 3x1 mm2 300/500 V wynika, że maksymalne wartości skuteczne napięć pomiędzy żyłą przewodu a ziemią oraz pomiędzy poszczególnymi żyłami wynoszą odpowiednio

A. 500 V i 300 V
B. 300 V i 500 V
C. 200 V i 300 V
D. 200 V i 500 V
Błędne odpowiedzi pokazują, że może nie do końca rozumiesz zasady związane z oznaczeniami przewodów elektrycznych i ich napięciami roboczymi. Na przykład, sugerowanie 200 V jako maksymalnego napięcia między żyłą a ziemią jest całkowicie niezgodne z rzeczywistością. To może wynikać z niepełnej wiedzy na temat tego, jak klasyfikuje się i jakie są parametry przewodów, jak YDYp. W rzeczywistości te przewody projektuje się z myślą o określonym poziomie bezpieczeństwa, które powinno odpowiadać warunkom, w jakich są używane. Jeśli mówisz o błędnych odpowiedziach, jak 200 V czy 300 V, widać typowe pomyłki, które mogą sprawić, że nie docenisz prawdziwych warunków pracy przewodu. Mieszanie wartości napięć roboczych między żyłami a ziemią prowadzi do nieporozumień, co może skutkować złymi decyzjami w projektowaniu instalacji. Dlatego ważne jest, by korzystać z rzetelnych źródeł oraz aktualnych norm, by zapewnić bezpieczeństwo i efektywność w elektryce.

Pytanie 34

Jakie gniazdo instalacyjne oznacza się na schematach symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Z wyłącznikiem.
B. Telekomunikacyjne.
C. Ze stykiem ochronnym.
D. Z transformatorem separacyjnym.
Gniazdo instalacyjne ze stykiem ochronnym, które zostało przedstawione na rysunku, jest kluczowym elementem w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Styk ochronny jest zaprojektowany w celu minimalizacji ryzyka porażenia prądem elektrycznym, a jego obecność w gniazdach jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 60309. Dzięki zastosowaniu gniazd ze stykiem ochronnym, użytkownicy mogą korzystać z urządzeń elektrycznych z większym poczuciem bezpieczeństwa, szczególnie w środowiskach, gdzie istnieje ryzyko kontaktu z wodą lub mokrymi powierzchniami, na przykład w łazienkach czy kuchniach. W praktyce, gniazda te są powszechnie stosowane w obiektach komercyjnych i przemysłowych, gdzie stosowane są maszyny i urządzenia wymagające dużej mocy, co czyni je niezbędnym elementem w każdej instalacji elektrycznej. Warto również zwrócić uwagę na to, że gniazda ze stykiem ochronnym są często stosowane z przedłużaczami i innymi urządzeniami, co przyczynia się do ich większej uniwersalności i funkcjonalności w różnych zastosowaniach elektrycznych.

Pytanie 35

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. doboru oraz oznaczenia przewodów
B. doboru zabezpieczeń i urządzeń
C. wartości natężenia oświetlenia w miejscach pracy
D. układu tablic informacyjnych i ostrzegawczych
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 36

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
B. Instrukcja obsługi urządzenia
C. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
D. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
Szczegółowe rysunki techniczne poszczególnych elementów urządzenia nie są częścią dokumentacji technicznej zgodnej z normami branżowymi, które definiują zakres wymaganej dokumentacji. Właściwa dokumentacja techniczna urządzeń elektrycznych powinna obejmować rysunki ogólne oraz schematy obwodów zasilania, które ilustrują ogólną architekturę i funkcjonalność urządzenia. Dodatkowo, instrukcja obsługi jest kluczowym elementem, który zapewnia użytkownikom informacje na temat prawidłowego użytkowania i konserwacji urządzenia. Opis metod eliminacji zagrożeń jest również istotny, ponieważ odnosi się do bezpieczeństwa użytkowania urządzenia oraz spełnienia norm bezpieczeństwa, takich jak dyrektywy CE czy normy IEC. W praktyce, posiadanie kompleksowej dokumentacji technicznej jest niezbędne dla zapewnienia efektywnego zarządzania cyklem życia urządzenia, od projektowania po serwisowanie, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 37

Aby prawidłowo wykonać otwór w twardym betonie pod gniazdo sieciowe, konieczne jest użycie wiertarki oraz

A. wyrzynarki do głębokich cięć
B. otwornicy z nasypem wolframowym
C. otwornicy z segmentami diamentowymi
D. młotka z przecinakiem
Otwornice z diamentowymi segmentami to naprawdę najlepsze narzędzie, jeśli chodzi o wiercenie w twardym betonie. Dzięki swojej konstrukcji świetnie radzą sobie z usuwaniem materiału w bardzo precyzyjny sposób. Diamentowe segmenty są super twarde i odporne na ścieranie, co czyni je idealnym wyborem, zwłaszcza w trudnych warunkach. Na przykład, gdy instalujesz gniazda sieciowe w betonowych murach, to otwornica diamentowa daje czyste krawędzie, co wygląda lepiej i bardziej profesjonalnie. Z mojej perspektywy, korzystanie z takich narzędzi pomaga uniknąć uszkodzenia otaczających materiałów i naprawdę przyspiesza cały proces pracy. I fajnie, że otwornice są w różnych rozmiarach, więc można dobrać coś odpowiedniego do konkretnego projektu.

Pytanie 38

Na którym rysunku przedstawiono pierścienie ślizgowe silnika?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Rysunek oznaczony literą B. przedstawia pierścienie ślizgowe, które pełnią kluczową rolę w silnikach elektrycznych. Są to elementy, które umożliwiają przekazywanie prądu elektrycznego do wirnika, co jest niezbędne do jego prawidłowego funkcjonowania. Pierścienie te są wykonane z materiałów o wysokiej przewodności elektrycznej oraz odporności na zużycie, co pozwala im działać w warunkach dynamicznych, gdzie występują znaczne siły mechaniczne i elektryczne. W zastosowaniach przemysłowych, pierścienie ślizgowe są wykorzystywane w takich urządzeniach jak silniki asynchroniczne, generatory oraz różnego rodzaju maszyny wirujące. Użycie pierścieni ślizgowych jest zgodne z normami międzynarodowymi, takimi jak IEC 60034, które określają wymogi dla silników elektrycznych. Dzięki zastosowaniu tych elementów, zapewniona jest nie tylko efektywność działania, ale także bezpieczeństwo operacyjne urządzeń, co jest szczególnie istotne w przemyśle energetycznym i automatyce przemysłowej.

Pytanie 39

Jakiego zestawu narzędzi należy używać podczas przygotowania przewodów LY do instalacji elektrycznej?

A. Nóż monterski, wkrętak, obcinaczki boczne
B. Obcinaczki boczne, przyrząd do ściągania izolacji, zaciskarka końcówek tulejkowych
C. Zaciskarka końcówek tulejkowych, obcinaczki czołowe, wkrętak
D. Przyrząd do ściągania izolacji, obcinaczki czołowe, nóż monterski
Obcinaczki boczne, przyrząd do ściągania izolacji oraz zaciskarka końcówek tulejkowych są niezbędnymi narzędziami przy przygotowaniu przewodów LY do montażu elektrycznego. Obcinaczki boczne służą do precyzyjnego przycinania przewodów, co jest istotne, aby uzyskać równe i czyste końce, co z kolei minimalizuje ryzyko uszkodzenia izolacji oraz zapewnia solidne połączenia. Przyrząd do ściągania izolacji umożliwia bezpieczne usunięcie izolacji z końcówek przewodów bez ryzyka ich uszkodzenia. Dzięki temu można łatwo przygotować przewody do dalszego montażu, gwarantując, że przewody będą miały odpowiednią długość i będą gotowe do połączenia. Zaciskarka końcówek tulejkowych jest kluczowa w procesie montażu, gdyż pozwala na pewne i trwałe połączenie przewodu z końcówką. Przestrzeganie standardów branżowych, takich jak PN-EN 60204-1 dotyczący bezpieczeństwa maszyn, podkreśla znaczenie stosowania odpowiednich narzędzi, co wpływa na jakość wykonania instalacji elektrycznych. W praktyce, wykorzystanie tych narzędzi wpływa na efektywność pracy oraz bezpieczeństwo użytkownika.

Pytanie 40

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Sznurek traserski, młotek, punktak
B. Przymiar taśmowy, poziomnica, ołówek traserski
C. Rysik, kątownik, punktak, młotek
D. Przymiar kreskowy, ołówek traserski, rysik
Wybór narzędzi do trasowania miejsca zamontowania rozdzielnicy podtynkowej powinien być dokładnie przemyślany, aby uniknąć błędów, które mogą wpłynąć na jakość i bezpieczeństwo instalacji. Użycie rysika, kątownika, punktaka i młotka, mimo że może wydawać się logiczne, nie jest idealnym podejściem w kontekście precyzyjnego trasowania. Rysik służy do pozostawiania śladów na twardych powierzchniach, ale nie zapewnia dokładności wymaganej do precyzyjnego wyznaczenia lokalizacji rozdzielnicy. Kątownik, choć przydatny do tworzenia kątów prostych, nie jest narzędziem do miar; jego właściwe zastosowanie wymaga współpracy z narzędziami pomiarowymi. Punktak oraz młotek mogą być użyte do oznaczania punktów, jednak ich zastosowanie jest mniej precyzyjne w kontekście trasowania. Z kolei sznurek traserki, mimo że pomocny w dachu do wyznaczania prostych linii, nie zastąpi precyzji przymiaru taśmowego i poziomnicy, które są dedykowane do dokładnych pomiarów. Typowym błędem myślowym jest założenie, że jakiekolwiek narzędzie do oznaczania wystarczy do wyznaczenia miejsca montażu. W rzeczywistości, aby prace były zgodne z normami oraz zapewniały bezpieczeństwo, konieczne jest użycie narzędzi pomiarowych, które gwarantują wysoką dokładność oraz powtarzalność pomiarów. Dobre praktyki w branży budowlanej i elektrycznej zalecają stosowanie narzędzi, które są przystosowane do specyficznych zadań, a zastosowanie przymiaru taśmowego, poziomnicy i ołówka traserskiego jest standardem w tego typu pracach.