Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 14:31
  • Data zakończenia: 8 grudnia 2025 14:54

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki przyrząd jest wykorzystywany do pomiaru rezystancji izolacji kabli?

A. Pirometr
B. Sonometr
C. Waromierz
D. Megaomomierz
Megaomomierz jest urządzeniem służącym do pomiaru rezystancji izolacji, które jest niezwykle istotne w kontekście bezpieczeństwa elektrycznego. Jego zastosowanie polega na sprawdzaniu jakości izolacji przewodów oraz urządzeń elektrycznych, co pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do awarii lub zagrożeń, takich jak porażenie prądem. Dzięki pomiarom wykonywanym przy użyciu megaomomierza, można ocenić stan izolacji w instalacjach elektrycznych, co jest zgodne z normami takimi jak PN-EN 61557-2, które określają procedury testowania urządzeń elektrycznych. W praktyce, megaomomierz jest używany podczas regularnych przeglądów instalacji elektrycznych w budynkach, co ma na celu zapewnienie odpowiedniego poziomu bezpieczeństwa i zgodności z obowiązującymi przepisami. Użycie tego narzędzia pozwala na wczesne wykrywanie problemów, co przyczynia się do minimalizacji ryzyka wystąpienia awarii oraz zwiększa trwałość systemów elektrycznych.

Pytanie 2

Aby ograniczyć prąd płynący w obwodzie zasilania silnika indukcyjnego pierścieniowego podczas rozruchu, co należy zrobić?

A. zwiększyć obciążenie na wale
B. dostosować rozrusznik obwodu wirnika
C. przetoczyć pierścienie ślizgowe wirnika
D. zmienić kolejność faz w stojanie
Dopasowanie rozrusznika obwodu wirnika jest kluczowym działaniem mającym na celu zmniejszenie prądu rozruchowego silnika indukcyjnego pierścieniowego. W momencie uruchamiania silnika indukcyjnego, zwłaszcza w przypadku silników o dużej mocy, prąd rozruchowy może być kilkukrotnie większy od prądu nominalnego. Użycie rozrusznika, który ogranicza ten prąd, umożliwia płynne rozpoczęcie pracy silnika oraz zabezpiecza pozostałe elementy obwodu przed uszkodzeniem. Przykładem takiego rozrusznika jest rozrusznik z opornikami, który na początku wprowadza oporność do obwodu wirnika, a następnie stopniowo ją zmniejsza, co pozwala na kontrolowanie momentu obrotowego i prądu. W praktyce, prawidłowe dopasowanie rozrusznika do parametrów silnika i obciążenia ma kluczowe znaczenie dla efektywności energetycznej oraz długowieczności urządzenia, co jest zgodne z najlepszymi praktykami w branży. Warto również zwrócić uwagę na normy ustanowione przez organizacje takie jak IEC, które wskazują na znaczenie odpowiednich systemów rozruchowych w przemyśle.

Pytanie 3

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Samoczynnego szybkiego wyłączenia napięcia
B. Umieszczenia elementów z napięciem poza zasięgiem ręki
C. Instalowania osłon i barier
D. Izolowania części czynnych
Wybierając odpowiedzi, które nie dotyczą samoczynnego szybkiego wyłączenia napięcia, można napotkać na szereg nieporozumień odnośnie metod ochrony przed dotykiem pośrednim. Instalowanie osłon i zagrodzeń, mimo że jest zalecaną praktyką w wielu instalacjach, nie zapewnia wystarczającej ochrony w sytuacji, gdy dojdzie do awarii izolacji. Osłony mogą jedynie ograniczyć dostęp do części czynnych, ale ich skuteczność zależy od prawidłowego ich montażu i utrzymania. Ponadto, umieszczanie elementów pod napięciem poza zasięgiem ręki, chociaż może zapobiec przypadkowemu dotykaniu, nie eliminuje ryzyka porażenia w przypadku uszkodzenia tych elementów. Ostatecznie, izolowanie części czynnych jest istotne, ale nie wystarczające jako jedyne zabezpieczenie. Gdy izolacja ulegnie uszkodzeniu, nie można polegać wyłącznie na niej dla bezpieczeństwa. Z perspektywy norm i przepisów, kluczowe jest implementowanie zintegrowanych systemów ochrony, gdzie samoczynne szybkie wyłączenie napięcia działa jako krytyczny mechanizm awaryjny, który powinien być stosowany równolegle z innymi metodami, aby zapewnić maksymalne bezpieczeństwo. Warto zauważyć, że błędne wnioski często wynikają z pomijania złożoności problemu oraz niepełnego zrozumienia zasady działania poszczególnych elementów ochrony przeciwporażeniowej.

Pytanie 4

Który z wymienionych aparatów łączeniowych niskiego napięcia przedstawiono na rysunku?

Ilustracja do pytania
A. Łącznik silnikowy bez zabezpieczeń termicznych.
B. Wyłącznik małej mocy.
C. Rozłącznik izolacyjny z widoczną przerwą.
D. Odłącznik instalacyjny.
Poprawna odpowiedź to rozłącznik izolacyjny z widoczną przerwą. Urządzenie to charakteryzuje się możliwością wizualnej kontroli stanu przerwy izolacyjnej, co jest istotne w kontekście prac konserwacyjnych oraz serwisowych. Rozłączniki izolacyjne są kluczowe w systemach elektrycznych, ponieważ zapewniają bezpieczne odłączenie obwodów, co umożliwia bezpieczną pracę personelu przy konserwacji instalacji. Dzięki przezroczystej obudowie użytkownik może szybko ocenić, czy przerwa jest widoczna, co stanowi istotny element w procedurach oceny ryzyka. Stosowanie rozłączników izolacyjnych z widoczną przerwą jest zgodne z normami bezpieczeństwa, takimi jak normy IEC 60947, które regulują wymagania dotyczące aparatury łączeniowej. W praktyce, rozłączniki te są szeroko stosowane w obiektach przemysłowych oraz w instalacjach budowlanych, gdzie niezbędne jest zapewnienie maksymalnego bezpieczeństwa w przypadku pracy z instalacjami elektrycznymi.

Pytanie 5

Który przekrój przewodu jest najczęściej używany do tworzenia obwodów gniazd wtyczkowych w podtynkowych instalacjach mieszkaniowych?

A. 4 mm2
B. 2,5 mm2
C. 1 mm2
D. 1,5 mm2
Przewód o przekroju 2,5 mm2 jest standardowo stosowany w obwodach gniazd wtyczkowych w instalacjach elektroenergetycznych w budownictwie mieszkaniowym. Taki przekrój zapewnia odpowiednią przewodność elektryczną oraz bezpieczeństwo użytkowania, co jest niezwykle istotne, biorąc pod uwagę maksymalne obciążenia, które mogą wystąpić w codziennym użytkowaniu. Przykładowo, w przypadku podłączenia urządzeń elektrycznych, takich jak odkurzacze czy piekarniki, które mogą wymagać wyższego poboru prądu, przewód 2,5 mm2 spełnia normy bezpieczeństwa i nie doprowadza do przegrzewania się instalacji. Zgodnie z normami PN-IEC 60364, stosowanie przewodów o mniejszym przekroju może prowadzić do nieefektywności energetycznej i zwiększonego ryzyka pożaru. Ważne jest również, aby pamiętać o odpowiednim doborze zabezpieczeń, takich jak bezpieczniki, które powinny być dostosowane do przekroju przewodu oraz przewidywanego obciążenia.

Pytanie 6

Jaką minimalną wartość rezystancji powinna mieć podłoga i ściany w izolowanym miejscu pracy z urządzeniami pracującymi na napięciu 400 V, aby zapewnić efektywną ochronę przeciwporażeniową przed dotykiem pośrednim?

A. 10kΩ
B. 50kΩ
C. 25kΩ
D. 75kΩ
Rezystancja ścian i podłogi w izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić co najmniej 50 kΩ, aby zapewnić skuteczną ochronę przed dotykiem pośrednim. Wysoka wartość rezystancji jest kluczowa, ponieważ zmniejsza ryzyko przepływu prądu przez ciało człowieka w przypadku awarii izolacji. Zgodnie z normami IEC 60364 oraz PN-EN 61140, minimalna rezystancja ochronna dla urządzeń elektrycznych w takich warunkach powinna wynosić 50 kΩ. W praktyce, stosowanie takiej wartości rezystancji wpływa na zwiększenie bezpieczeństwa operatorów, zwłaszcza w środowiskach przemysłowych, gdzie ryzyko porażenia prądem jest wyższe. Przykładem może być zakład produkcyjny, w którym regularnie stosuje się urządzenia do pomiarów rezystancji w celu zapewnienia, że izolacja jest odpowiednia i nie zagraża pracownikom. Dobre praktyki obejmują także okresowe przeglądy instalacji elektrycznych oraz testowanie zabezpieczeń, co dodatkowo minimalizuje ryzyko awarii.

Pytanie 7

Które z poniższych działań nie są przypisane do zadań eksploatacyjnych osób obsługujących urządzenia elektryczne?

A. Przeprowadzanie oględzin wymagających demontażu
B. Włączanie i wyłączanie urządzeń
C. Monitorowanie urządzeń w trakcie pracy
D. Realizowanie przeglądów niewymagających demontażu
Dokonywanie oględzin wymagających demontażu nie jest czynnością, która wchodzi w zakres typowych zadań eksploatacyjnych pracowników obsługujących urządzenia elektryczne. Eksploatacja urządzeń elektrycznych skupia się głównie na ich bieżącym użytkowaniu, co obejmuje uruchamianie, zatrzymywanie oraz nadzorowanie pracy urządzeń. Przeglądy niewymagające demontażu są zazwyczaj efektywne i zgodne z praktykami, które ograniczają przestoje oraz zwiększają efektywność operacyjną. Oględziny, które wiążą się z demontażem, są zarezerwowane dla specjalistycznych prac, które powinny być przeprowadzane przez wykwalifikowanych techników w celu zapewnienia bezpieczeństwa i zgodności z normami, takimi jak PN-EN 60204-1, dotycząca bezpieczeństwa maszyn. Dlatego też, w kontekście eksploatacji, czynności te powinny być planowane w ramach konserwacji urządzeń, a nie codziennych zadań eksploatacyjnych. Przykładem może być okresowe przeglądanie silników elektrycznych, gdzie demontaż jest konieczny do sprawdzenia stanu uzwojeń, co jest kluczowe dla ich dalszej eksploatacji.

Pytanie 8

Podczas eksploatacji trójfazowego silnika indukcyjnego, który był obciążony momentem znamionowym, doszło do nagłego spadku prędkości obrotowej silnika, a jednocześnie zwiększyła się głośność jego pracy. Najbardziej prawdopodobną przyczyną tego zjawiska jest

A. wzrost częstotliwości napięcia sieci
B. zadziałanie wyłącznika różnicowoprądowego
C. zadziałanie zabezpieczenia termicznego
D. zanik napięcia w jednej fazie
Zanik napięcia w jednej fazie jest najczęstszą przyczyną nagłego zmniejszenia prędkości obrotowej trójfazowego silnika indukcyjnego. W przypadku, gdy jedna z faz silnika przestaje dostarczać energię, silnik działa w trybie dwu-fazowym. W takiej sytuacji moment obrotowy silnika znacząco spada, co prowadzi do zmniejszenia prędkości obrotowej. Dodatkowo, silnik może emitować zwiększony hałas, ponieważ nieprawidłowa praca silnika może generować wibracje i dodatkowe obciążenia. W praktyce, w celu zabezpieczenia silnika przed takimi sytuacjami, stosuje się różne systemy monitorowania i zabezpieczeń, takie jak automatyczne wyłączniki, które detekują zanik napięcia i odłączają silnik od zasilania, co zapewnia jego bezpieczeństwo. Zgodnie z normami IEC dotyczących silników elektrycznych, regularne sprawdzanie układów zasilających oraz instalacja odpowiednich zabezpieczeń jest kluczowe dla zapobiegania uszkodzeniom silnika i jego awariom. Ponadto, należy prowadzić systematyczną konserwację oraz inspekcje, aby zapewnić niezawodność i efektywność pracy urządzeń elektrycznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Wyznacz rezystancję przewodu LgY o powierzchni przekroju 10 mm2 i długości 1 km, mając informację, że rezystywność miedzi wynosi 1,72∙10-8 Ω∙m?

A. 172 Ω
B. 1,72 Ω
C. 1 720 Ω
D. 17,2 Ω
Obliczenie rezystancji przewodu może prowadzić do różnych nieporozumień, zwłaszcza gdy błędnie interpretuje się wartości lub stosuje się niewłaściwe wzory. W przypadku odpowiedzi 17,2 Ω, można zauważyć, że jest to wynik, który można uzyskać, myląc jednostki lub nieprawidłowo stosując wzór. Użycie niewłaściwych jednostek lub przeliczeń może prowadzić do znacznych błędów w obliczeniach. Rezystancja przewodu o długości 1 km i przekroju 10 mm² nie może być tak wysoka, ponieważ przy danych wartościach materialnych i geometrycznych wynikiem powinno być zaledwie 1,72 Ω. Z kolei odpowiedzi takie jak 1 720 Ω oraz 172 Ω wskazują na poważne błędy w obliczeniach, które mogą wynikać z całkowitego zignorowania proporcji długości do przekroju poprzecznego lub błędnego przeliczenia jednostek. Tego rodzaju błędy myślowe są częste przy obliczeniach rezystancji, zwłaszcza w przypadkach, gdy nie uwzględnia się odpowiednich parametrów materiałowych. W praktykach inżynieryjnych kluczowe jest prawidłowe zrozumienie i zastosowanie wzorów, a także dbałość o poprawne przeliczenie jednostek, aby uniknąć sytuacji, które mogą prowadzić do nieefektywności w systemach elektrycznych oraz nieplanowanych awarii w instalacjach. Dobre praktyki inżynieryjne zalecają systematyczne sprawdzanie obliczeń oraz korzystanie z wartości tabelarycznych materiałów, aby zapewnić ich poprawność.

Pytanie 15

Trójfazowy silnik indukcyjny jest przystosowany do uruchamiania z wykorzystaniem przełącznika gwiazda-trójkąt. Jaką mocą, w porównaniu do mocy znamionowej, można go obciążyć przy połączeniu uzwojeń w konfiguracji gwiazdy?

A. Dwukrotnie większą
B. Dwukrotnie mniejszą
C. Trzykrotnie mniejszą
D. Trzykrotnie większą
Wybór odpowiedzi, że silnik indukcyjny trójfazowy można obciążyć trzykrotnie większą mocą przy połączeniu uzwojeń w gwiazdę, jest błędny, ponieważ nie uwzględnia fundamentalnych zasad działania silników indukcyjnych. Gdy uzwojenia silnika są połączone w gwiazdę, napięcie na każdym uzwojeniu jest niższe, co automatycznie obniża moc dostarczaną przez silnik. Mocy silnika nie można zwiększyć ponad jego znamionową moc przy połączeniu w gwiazdę, ponieważ prowadziłoby to do przeciążeń i potencjalnych uszkodzeń uzwojeń oraz innych komponentów silnika. Takie podejście jest w sprzeczności z praktykami projektowania systemów napędowych, które zakładają, że maksymalne obciążenie silnika powinno być dostosowane do jego parametrów znamionowych. Wybór mocy większej niż znamionowa, niezależnie od sposobu podłączenia, naraża silnik na awarie, co może prowadzić do kosztownych przestojów w produkcji. Oprócz tego, typowe błędy myślowe związane z tym zagadnieniem to brak uwzględnienia wpływu napięcia i prądu na moc silnika oraz niedostateczne zrozumienie mechanizmu rozruchu silników indukcyjnych. Aby poprawnie podejść do tematu, należy zrozumieć zasady działania uzwojeń oraz efekty rozruchu w różnych konfiguracjach, co jest kluczowe dla efektywnego i bezpiecznego użytkowania silników w zastosowaniach przemysłowych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
B. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy
C. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
D. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
Odpowiedź, którą zaznaczyłeś, jest w porządku. Przy pracach nad konserwacją i remontem instalacji elektrycznych rzeczywiście trzeba zawsze wyłączać zasilanie. Bezpieczeństwo jest najważniejsze, a prąd potrafi być groźny, więc lepiej nie ryzykować. Zawsze przed wymianą jakiejkolwiek części warto upewnić się, że napięcie nie płynie. Na przykład, jeśli zmieniasz uszkodzoną instalację, to najlepszym pomysłem jest wyłączenie odpowiednich obwodów. No i procedura Lockout-Tagout (LOTO) jest po prostu kluczowa! Dzięki niej nie ma szans, że ktoś przez przypadek włączy prąd, gdy ty akurat pracujesz. Wydaje mi się, że trzymanie się tych zasad nie tylko chroni ludzi, ale także sprawia, że wszystko jest zgodne z BHP i normami bezpieczeństwa, które są naprawdę ważne w tej branży.

Pytanie 18

Który z podanych materiałów przewodzących jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje właściwości?

A. Aluminium
B. Nikiel
C. Miedź
D. Stal
Miedź to materiał przewodzący, który jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje wyjątkowe właściwości. Przede wszystkim charakteryzuje się bardzo dobrą przewodnością elektryczną, co oznacza, że opór stawiany przepływającemu prądowi jest minimalny. Dzięki temu straty energii są zredukowane, co jest kluczowe w efektywnym przesyle energii. Ponadto, miedź jest materiałem relatywnie łatwym do formowania, co ułatwia produkcję przewodów o różnych kształtach i rozmiarach. Jest również odporny na korozję, co przedłuża żywotność instalacji. Zastosowanie miedzi w kablach i przewodach elektrycznych jest standardem w branży, a jej właściwości mechaniczne pozwalają na utrzymanie wysokiej wytrzymałości oraz elastyczności przewodów. Warto również zauważyć, że miedź jest stosowana w różnych gałęziach przemysłu elektrotechnicznego, w tym w transformatorach, silnikach elektrycznych i generatorach, co świadczy o jej wszechstronności i niezawodności. Standardy branżowe i normy międzynarodowe, takie jak IEC i ANSI, często rekomendują użycie miedzi w instalacjach ze względu na jej doskonałe właściwości przewodzące i mechaniczne.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W szlifierce uszkodzony został wirnik. Na rysunku z dokumentacji techniczno-ruchowej jest on oznaczony numerem

Ilustracja do pytania
A. 9
B. 12
C. 50
D. 35
Odpowiedź 9 jest prawidłowa, ponieważ na załączonym rysunku z dokumentacji techniczno-ruchowej szlifierki wirnik został oznaczony numerem 9. Wirnik jest kluczowym elementem silnika elektrycznego, którego właściwe funkcjonowanie jest niezbędne dla prawidłowej pracy szlifierki. Wirnik, obracając się, wytwarza pole elektromagnetyczne, które napędza obrót narzędzia szlifierskiego. Zrozumienie oznaczeń w dokumentacji technicznej jest niezbędne dla efektywnej diagnostyki i konserwacji maszyn. W praktyce, gdy dochodzi do uszkodzenia wirnika, konieczne jest jego dokładne zidentyfikowanie w dokumentacji, co umożliwia szybkie zamówienie odpowiednich części zamiennych i wykonanie naprawy. Warto również pamiętać, że zgodnie z normami branżowymi, regularne przeglądy i konserwacja wirników w urządzeniach szlifierskich są kluczowe dla zapewnienia ich długowieczności oraz bezpieczeństwa użytkowania. W przypadku problemów z wirnikiem, jego wymiana powinna być przeprowadzana zgodnie z zaleceniami producenta, co pozwoli na uniknięcie dalszych uszkodzeń oraz gwarancji efektywności działania szlifierki.

Pytanie 21

Wskaźnikuj najprawdopodobniejszą przyczynę nietypowego brzęczenia wydobywającego się z kadzi działającego transformatora energetycznego?

A. Drgania skrajnych blach rdzenia
B. Niesymetryczność obciążenia
C. Nieszczelność kadzi transformatora
D. Praca na biegu jałowym
To nie tak, że niesymetryczność obciążenia bezpośrednio powoduje to nienormalne brzęczenie w transformatorze. Chociaż może prowadzić do innych kłopotów, jak przegrzewanie czy większe straty mocy. Generalnie brzęczenie, które słychać podczas pracy transformatora, najczęściej jest spowodowane drganiami rdzenia. Nieszczelność kadzi również wpływa na wydajność, ale nie jest to główny powód brzęczenia. Jak transformator pracuje na biegu jałowym, to mogą się pojawić inne dźwięki, ale niekoniecznie związane z brzęczeniem. To błędne myślenie, że brzęczenie = problemy z obciążeniem, bo można łatwo pomylić obciążenie z powodem hałasu. W rzeczywistości to mechanika konstrukcji transformatora i interakcje jego elementów mają większy wpływ na te dźwięki. Zrozumienie tego jest istotne dla inżynierów i techników, żeby transformatory mogły działać efektywnie i bez hałasu.

Pytanie 22

Którego z wymienionych pomiarów eksploatacyjnych w instalacji oświetleniowej nie można zrealizować standardowym miernikiem uniwersalnym?

A. Prądu pobieranego przez odbiornik
B. Ciągłości przewodów ochronnych
C. Napięć w poszczególnych fazach
D. Rezystancji izolacji przewodów
Pomiar napięcia w poszczególnych fazach jest jednym z podstawowych zadań każdego pomiaru elektrycznego. Miernik uniwersalny doskonale nadaje się do tego celu, ponieważ potrafi zmierzyć wartości napięcia AC i DC, co jest kluczowe w instalacjach oświetleniowych, gdzie często występują różne fazy zasilania. Podobnie, pomiar ciągłości przewodów ochronnych również można przeprowadzić za pomocą miernika uniwersalnego, który posiada funkcję testowania ciągłości, zwykle sygnalizując dźwiękowo, gdy rezystancja jest na poziomie poniżej określonego progu, co jest istotne dla bezpieczeństwa użytkowania instalacji. Z kolei pomiar prądu pobieranego przez odbiornik jest kolejnym standardowym zastosowaniem miernika uniwersalnego, który, dzięki odpowiednim ustawieniom, może zmierzyć natężenie prądu w obwodzie. Używając funkcji pomiaru prądu, można ocenić, czy odbiorniki działają w granicach parametrów znamionowych, co zapobiega ich przeciążeniu. Wydaje się zatem, że wybór odpowiednich narzędzi do pomiarów technicznych wymaga zrozumienia, jakie pomiary można wykonać z użyciem mierników uniwersalnych, a które wymagają bardziej specjalistycznych narzędzi, takich jak megomierze.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Którą z poniższych czynności pracownik ma prawo wykonać bez zlecenia osób nadzorujących jego pracę?

A. Zamiana izolatora na linii napowietrznej nn
B. Gaszenie pożaru urządzenia elektrycznego
C. Renowacja rozdzielnicy po likwidacji pożaru
D. Zlokalizowanie uszkodzeń w linii kablowej nn
Gaszenie pożaru urządzenia elektrycznego jest jedyną czynnością, którą pracownik może wykonać bez wcześniejszego polecenia osób dozorujących, gdyż w sytuacjach awaryjnych priorytetem jest ochrona życia oraz mienia. Standardy BHP wskazują, że w razie pożaru, każdy pracownik ma prawo i obowiązek podjąć działania mające na celu jego ugaszenie, o ile to możliwe i bezpieczne. W praktyce, jeśli pracownik zauważy pożar, powinien niezwłocznie podjąć próbę ugaszenia go przy użyciu odpowiednich środków gaśniczych, takich jak gaśnice lub urządzenia automatycznego gaszenia. Tego rodzaju działanie jest zgodne z zasadą „zatrzymaj ogień, zanim on się rozprzestrzeni”, co jest kluczowe w minimalizowaniu szkód i zagrożeń. Zwracając uwagę na procedury zawarte w przepisach, takich jak Rozporządzenie Ministra Spraw Wewnętrznych i Administracji w sprawie ochrony przeciwpożarowej, można zauważyć, że pracownicy są odpowiednio szkoleni i przygotowani do działania w sytuacjach kryzysowych.

Pytanie 25

Jak zmienią się parametry napięcia wyjściowego prądnicy synchronicznej zasilającej oddzielną sieć energetyczną, jeśli prędkość obrotowa turbiny napędzającej tę prądnicę wzrośnie, a prąd wzbudzenia pozostanie bez zmian?

A. Wartość i częstotliwość napięcia zmniejszą się
B. Wartość i częstotliwość napięcia wzrosną
C. Wartość napięcia zmniejszy się, a częstotliwość wzrośnie
D. Wartość napięcia wzrośnie, a częstotliwość zmaleje
Odpowiedź jest poprawna, ponieważ w prądnicy synchronicznej napięcie wyjściowe jest ściśle związane z prędkością obrotową wirnika oraz z napięciem wzbudzenia. Zwiększenie prędkości obrotowej turbiny prowadzi do zwiększenia częstotliwości generowanego napięcia, co jest zgodne z zasadą synchronizacji prądnic. Wartość napięcia wyjściowego wzrasta, ponieważ prądnica synchroniczna działa na zasadzie indukcji elektromagnetycznej, gdzie zmieniające się pole magnetyczne wytwarzane przez wirnik indukuje prąd w uzwojeniach stojana. W praktyce, w systemach energetycznych, takie zjawisko często obserwuje się przy zwiększaniu mocy produkowanej przez elektrownie, co jest istotne dla utrzymania stabilności sieci. W przypadku prądnicy synchronicznej, przy stałym prądzie wzbudzenia, wzrost prędkości obrotowej skutkuje proporcjonalnym wzrostem zarówno wartości, jak i częstotliwości napięcia. Taki mechanizm jest zgodny z praktykami inżynieryjnymi oraz normami, co zapewnia efektywność i niezawodność działania systemów elektroenergetycznych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

W instalacji elektrycznej w łazience pojawiła się potrzeba dodania gniazda wtyczkowego w pierwszej strefie ochronnej, które ma być zasilane z obwodu zabezpieczonego przez SELV o napięciu nieprzekraczającym 25 V AC. Gdzie powinno być umieszczone źródło zasilania dla tego gniazda?

A. W obrębie strefy 1
B. Tylko na zewnątrz strefy 2
C. Na zewnątrz stref 0 i 1
D. W obrębie strefy 0
Odpowiedź "Na zewnątrz stref 0 i 1" jest prawidłowa, ponieważ w instalacjach elektrycznych w łazienkach przestrzegane są określone strefy ochronne, które mają na celu minimalizację ryzyka porażenia prądem. Strefa 0 obejmuje miejsca bezpośredniego kontaktu z wodą, takie jak wnętrze wanny czy brodzika, gdzie nie można instalować urządzeń elektrycznych z wyjątkiem tych ściśle przystosowanych do takich warunków. Strefa 1 to obszar bezpośrednio nad strefą 0, gdzie również stosuje się szczególne ograniczenia. Dla gniazda zasilanego prądem o niskim napięciu (SELV) poniżej 25 V AC, nie ma zagrożenia porażeniem prądem w przypadku awarii, dlatego jego źródło zasilania może znajdować się w bezpiecznym obszarze, czyli na zewnątrz stref 0 i 1. Przykładem praktycznym może być zainstalowanie takiego gniazda pod lustrem, gdzie nie ma bezpośredniego kontaktu z wodą, a jednak można z niego bezpiecznie korzystać. Zgodność z normami dotyczącymi bezpieczeństwa, takimi jak PN-EN 61140, jest kluczowa w takich instalacjach, aby zapewnić użytkownikom maksimum bezpieczeństwa.

Pytanie 28

Który z poniższych kabli nadaje się do realizacji instalacji siłowej osadzonej w tynku w konfiguracji sieci TN-S?

A. YSLY 3x2,5 mm2
B. YDYżo 5x2,5 mm2
C. YStY 5xl mm2
D. YADY 3x4 mm2
Odpowiedź YDYżo 5x2,5 mm2 jest poprawna, ponieważ przewód ten spełnia wymagania dotyczące instalacji siłowych w układzie sieciowym TN-S, który jest jednym z systemów zasilania o uziemieniu neutralnym. Przewody YDYżo charakteryzują się dobrą odpornością na działanie wysokich temperatur oraz chemikaliów, co czyni je odpowiednimi do użytku w tynku. W przypadku instalacji siłowych, przewody te muszą być odpowiednio dobrane do obciążenia, co w tym przypadku jest realizowane przez przekrój 2,5 mm2, wystarczający do zasilania urządzeń elektrycznych o średnich wymaganiach mocy. Dobrą praktyką jest stosowanie przewodów wielożyłowych w instalacjach, co pozwala na lepsze zarządzanie przewodami i ułatwia ich montaż. Przewody YDYżo są również zgodne z normą PN-EN 60228, która określa wymagania dla przewodów miedzianych, co dodatkowo podkreśla ich odpowiedniość do zastosowań w instalacjach elektrycznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Który z poniższych przypadków prowadzi do nadmiernego iskrzenia na komutatorze w silniku szeregowym?

A. Przegrzanie uzwojeń stojana
B. Przegrzanie uzwojeń wirnika
C. Zwarcie pomiędzy zwojami wirnika
D. Zbyt wysokie obroty wirnika
Zwarcie pomiędzy zwojami wirnika to sytuacja, w której dochodzi do niezamierzonego połączenia elektrycznego między różnymi zwojami w obrębie uzwojenia wirnika. Tego rodzaju uszkodzenie powoduje, że prąd elektryczny nie przepływa w sposób przewidziany przez projekt, co prowadzi do zwiększenia wartości prądów roboczych. W wyniku tego zjawiska na komutatorze silnika szeregowym pojawia się nadmierne iskrzenie, ponieważ prąd nie jest równomiernie rozłożony po wszystkich zwojach wirnika. Iskrzenie na komutatorze nie tylko powoduje zużycie materiału, ale także prowadzi do dodatkowych strat energii, co z kolei obniża efektywność silnika. W praktyce, aby zminimalizować ryzyko zwarcia, stosuje się różne metody, takie jak odpowiednie dobieranie izolacji uzwojeń, regularne przeglądy stanu technicznego oraz testowanie wytrzymałości izolacji. Dbanie o te aspekty jest zgodne z normami branżowymi, takimi jak IEC 60034, które dotyczą silników elektrycznych.

Pytanie 32

Jaką minimalną wartość rezystancji powinno się zmierzyć w ścianach i podłodze w izolowanym miejscu pracy z urządzeniami o napięciu 400 V, aby zabezpieczenie przed dotykiem pośrednim było efektywne?

A. 75 kΩ
B. 10 kΩ
C. 50 kΩ
D. 25 kΩ
Najmniejsza zmierzona wartość rezystancji ścian i podłogi na izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić 50 kΩ, aby zapewnić skuteczną ochronę przeciwporażeniową. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-EN 61140, minimalna rezystancja izolacji jest kluczowym czynnikiem, który wpływa na bezpieczeństwo użytkowników. W praktyce, wyższa rezystancja izolacji oznacza mniejsze ryzyko przebicia i przemieszczenia prądu do części nieizolowanych. W przypadku pracy z urządzeniami o napięciu 400 V, wartość 50 kΩ jest często stosowana jako standardowy wskaźnik, aby zminimalizować ryzyko porażenia prądem. Wartości te stosuje się nie tylko w przemyśle, ale również w kontekście instalacji elektrycznych w budynkach. Regularne pomiary rezystancji izolacji powinny być przeprowadzane na stanowiskach pracy, aby upewnić się, że systemy ochrony są nadal skuteczne. Przykładem może być przemysł produkcyjny, gdzie urządzenia o wysokim napięciu są powszechnie używane, a każda usterka izolacji może prowadzić do poważnych wypadków, podkreślając znaczenie monitorowania rezystancji izolacji.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Który z poniższych wyłączników nadprądowych powinien być zastosowany do zabezpieczenia obwodu zasilającego trójfazowy silnik klatkowy o następujących parametrach znamionowych: P = 11 kW, U = 400 V, cos φ = 0,73, η = 80%?

A. S303 C25
B. S303 C32
C. S303 C20
D. S303 C40
Wybór niewłaściwego wyłącznika nadprądowego może prowadzić do poważnych konsekwencji, zarówno dla samego silnika, jak i dla całego układu zasilania. W przypadku wyłączników S303 C25 i S303 C20, ich prąd znamionowy jest zbyt niski w stosunku do obliczonego prądu silnika, który wynosi około 18,5 A. Użycie wyłącznika C25, który ma prąd znamionowy 25 A, może prowadzić do częstych wyłączeń podczas normalnej pracy silnika, co w dłuższej perspektywie może prowadzić do niepotrzebnego stresu mechanicznego oraz uszkodzenia silnika. Podobnie, wybór C20 jest jeszcze bardziej ryzykowny, ponieważ jego prąd znamionowy nie tylko nie zapewnia odpowiedniego marginesu bezpieczeństwa, ale także zwiększa ryzyko wyłączeń przy normalnych obciążeniach. Ponadto, wyłącznik C40, mimo że posiada większy prąd znamionowy niż potrzebny, również nie jest odpowiedni, ponieważ jego wartość może prowadzić do zbyt późnych reakcji w przypadku przeciążenia, co zwiększa ryzyko uszkodzeń. W praktyce, dobór wyłączników nadprądowych powinien zawsze brać pod uwagę zarówno prąd znamionowy urządzenia, jak i charakterystykę pracy obwodu, aby zapewnić nie tylko ochronę, ale również optymalną wydajność systemu. Zgodnie z normami IEC 60947-2, istotne jest, aby wyłącznik był dostosowany do rzeczywistych warunków pracy, co w tym przypadku oznacza konieczność wyboru wyłącznika, który ma odpowiednio wyższy prąd znamionowy niż obliczony prąd silnika.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie przyrządy należy zastosować do określenia rezystancji uzwojeń w transformatorze średniej mocy metodą techniczną?

A. Amperomierz oraz woltomierz
B. Amperomierz oraz watomierz
C. Woltomierz oraz omomierz
D. Woltomierz oraz watomierz
Wybór mierników do oceny rezystancji uzwojeń transformatora jest istotny, a niewłaściwe zestawienia mogą prowadzić do błędnych wyników i ocen stanu urządzenia. Odpowiedzi, które sugerują użycie woltomierza i watomierza, są mylące, ponieważ watomierz mierzy moc, a nie rezystancję. W praktyce, moc oblicza się na podstawie napięcia i prądu, co jest niewłaściwym podejściem do bezpośredniego pomiaru rezystancji uzwojeń. Używanie amperomierza i watomierza również nie jest zasadne, ponieważ, chociaż amperomierz poprawnie mierzy prąd, watomierz nie dostarcza informacji na temat napięcia, które jest kluczowe w obliczeniach rezystancji. Natomiast zastosowanie woltomierza i omomierza nie jest efektywne ze względu na to, że omomierz jest zazwyczaj używany do pomiaru rezystancji w obwodach wyłączonych, podczas gdy w przypadku uzwojeń transformatora mówimy o rezystancji dynamicznej. Amperomierz i woltomierz są narzędziami, które pozwalają na pomiar parametrów pracy transformatora w działaniu, co jest niezbędne do oceny jego efektywności i stanu technicznego. Kluczowym błędem myślowym w rozważaniach nad tymi odpowiedziami jest zrozumienie różnicy między pomiarem rezystancji statycznej a dynamicznej, co w kontekście transformatora ma fundamentalne znaczenie dla analizy jego działania. Dlatego ważne jest, aby w procesie pomiarowym stosować odpowiednie urządzenia oraz metody zgodne z obowiązującymi normami branżowymi.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 1 do 6
B. Od 19 do 26
C. Od 7 do 14
D. Od 47 do 52
Wybór odpowiedzi związanej z innymi zakresami (np. od 47 do 52, od 1 do 6 czy od 19 do 26) świadczy o małym nieporozumieniu z identyfikacją komponentów silnika szlifierki. Te numery dotyczą różnych części, które nie są kluczowe dla samego działania silnika, co może sprawić, że serwisowanie stanie się mniej efektywne. Na przykład, numery od 1 do 6 mogą obejmować części, które tak naprawdę nie wpłyną na wydajność silnika. Jak się pomylisz z ich identyfikacją, to naprawa może się wydłużyć. Numery od 47 do 52 to z kolei mogą być jakieś osłony, które też nie są bezpośrednio związane z napędem. Takie błędy najczęściej wynikają z braku znajomości dokumentacji oraz braku zrozumienia, jak różne elementy działają razem. Dobrze jest posiedzieć nad dokumentacją i ogarnąć, jak poszczególne części wpływają na całość maszyny, bo to przekłada się na lepszą obsługę i konserwację. Im lepsza znajomość identyfikacji części, tym szybciej uda się naprawić sprzęt, a dla operatorów będzie to też bezpieczniejsze.

Pytanie 40

Podczas wykonywania pomiarów okresowych na kablowej linii zasilającej 110 kV będzie mierzona rezystancja izolacji jednego z żył kabla w stosunku do pozostałych uziemionych żył. Jaki zakres pomiarowy powinien być ustawiony na urządzeniu pomiarowym, aby dokonany pomiar był poprawny?

A. 2000 MΩ, 2500 V
B. 200 MΩ, 1000 V
C. 200 MΩ, 2500 V
D. 2000 MΩ, 1000 V
Wybór zakresu 200 MΩ oraz 1000 V nie jest odpowiedni do pomiaru rezystancji izolacji wysokiego napięcia, jak w przypadku kabli 110 kV. Ustawienie na 200 MΩ ogranicza maksymalną rezystancję, jaką można zmierzyć, co może prowadzić do niedoszacowania stanu izolacji, szczególnie w przypadku kabli o wysokiej rezystancji, które mogą osiągać wartości znacznie przekraczające ten próg. Z kolei, wybór 1000 V jako napięcia pomiarowego nie jest wystarczający do przeprowadzenia wiarygodnych testów na kablach 110 kV. Przemysł elektroenergetyczny zaleca stosowanie wyższych napięć, takich jak 2500 V, aby uzyskać adekwatne wyniki, które odzwierciedlają rzeczywistą jakość izolacji. Przy pomiarach rezystancji izolacji istotna jest nie tylko sama wartość rezystancji, ale również odpowiednie napięcie, które pozwala na zdiagnozowanie potencjalnych defektów, takich jak mikropęknięcia czy degradacja materiałów izolacyjnych. Zbyt niskie napięcie i zakres mogą prowadzić do błędnych wniosków, co w dłuższej perspektywie może skutkować poważnymi awariami, zagrażającymi bezpieczeństwu instalacji oraz osób z nią związanych.