Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektroradiolog
  • Kwalifikacja: MED.08 - Świadczenie usług medycznych w zakresie diagnostyki obrazowej, elektromedycznej i radioterapii
  • Data rozpoczęcia: 29 stycznia 2026 01:57
  • Data zakończenia: 29 stycznia 2026 02:16

Egzamin niezdany

Wynik: 12/40 punktów (30,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na obrazie rezonansu magnetycznego strzałką oznaczono patologiczny kręg

Ilustracja do pytania
A. TH10
B. L3
C. L1
D. TH8
W tym zadaniu kluczowe jest nie tylko zauważenie patologicznego kręgu, ale przede wszystkim prawidłowe jego zliczenie na obrazie rezonansu magnetycznego. Na strzałkowym MR łatwo ulec złudzeniu, że zaznaczony trzon leży niżej lub wyżej, niż w rzeczywistości. Typowy błąd polega na liczeniu kręgów „od dołu”, czyli od kości krzyżowej w górę, bez wcześniejszego zidentyfikowania przejścia piersiowo‑lędźwiowego. Wtedy łatwo pomylić pierwszy kręg lędźwiowy z L3, a nawet z wyższymi kręgami piersiowymi, szczególnie gdy obraz nie obejmuje całych żeber. Warianty anatomiczne, takie jak krąg przejściowy lumbalizowany czy sakralizowany, tylko to dodatkowo komplikują. Z mojego doświadczenia najbezpieczniejszym podejściem jest zaczynanie liczenia od ostatniego kręgu piersiowego, który ma przyczepione żebro, czyli TH12, i dopiero potem przejście do L1, L2 itd. Odpowiedzi wskazujące na L3 ignorują tę zasadę: kręg oznaczony strzałką leży zdecydowanie bliżej przejścia piersiowo‑lędźwiowego, a nie w środkowej części lordozy lędźwiowej, gdzie spodziewalibyśmy się L3. Z kolei wybór TH8 lub TH10 wynika najczęściej z niedokładnego rozpoznania odcinka piersiowego – na obrazie nie widać tak długiego odcinka żeber, a krzywizna kręgosłupa oraz kształt trzonów sugerują raczej dolny odcinek piersiowy i początek lędźwiowego, a nie środkowe segmenty piersiowe. W poprawnej praktyce diagnostyki obrazowej zawsze staramy się łączyć kilka elementów: obecność żeber, kształt krzywizn (kifoza piersiowa, lordoza lędźwiowa), charakter trzonów i ewentualne znaczniki anatomiczne lub sekwencje lokalizacyjne. Pomijanie któregoś z tych kroków prowadzi właśnie do takich pomyłek jak przypisanie poziomu L3 czy TH8/TH10. Dlatego, analizując MR kręgosłupa, nie liczymy kręgów „na oko”, tylko według uporządkowanego schematu, co jest zgodne z dobrymi praktykami radiologicznymi i zaleceniami większości podręczników z zakresu anatomii w obrazowaniu.

Pytanie 2

Którą strukturę anatomiczną oznaczono strzałką na obrazie rezonansu magnetycznego?

Ilustracja do pytania
A. Rdzeń przedłużony.
B. Móżdżek.
C. Zbiornik mostowy.
D. Most.
Na obrazie widoczny jest klasyczny strzałowy skan MR głowy (rezonans magnetyczny w projekcji strzałkowej), a strzałka wskazuje na móżdżek. Widzisz położenie tej struktury: znajduje się ku tyłowi od pnia mózgu (mostu i rdzenia przedłużonego) oraz powyżej części szyjnej rdzenia kręgowego, w tylnym dole czaszki. Charakterystyczny jest zarys tzw. drzewka życia – drobne, listewkowate zakręty móżdżku oddzielone bruzdami, co w MR T1/T2 daje taki „pierzasty” obraz. To właśnie ten układ fałdów najłatwiej zapamiętać w praktyce. Móżdżek składa się z dwóch półkul i robaka móżdżku pośrodku; na obrazie strzałkowym zwykle dobrze widać robaka jako strukturę leżącą w linii pośrodkowej, za komorą IV. W codziennej praktyce technika obrazowania móżdżku jest istotna np. w diagnostyce udarów w tylnym dole czaszki, guzów kąta mostowo-móżdżkowego, zmian demielinizacyjnych czy malformacji Arnolda–Chiariego. Dobre ułożenie pacjenta, cienkie warstwy i brak artefaktów ruchowych są kluczowe, bo struktury są małe i łatwo coś przeoczyć. Moim zdaniem warto wyrobić sobie nawyk „odhaczania” kolejno: półkule mózgu, pień mózgu, móżdżek, komory – zawsze w tej samej kolejności. Taka rutyna bardzo pomaga przy szybkiej ocenie MR zgodnie z zaleceniami opisowymi stosowanymi w radiologii. Rozpoznawanie anatomicznych struktur móżdżku na MR to podstawa, żeby potem móc świadomie ocenić patologie, a nie tylko „patrzeć na szarości”.

Pytanie 3

W której technice brachyterapii stosuje się źródła promieniowania o mocy dawki 2-12 Gy/h?

A. PDR
B. LDR
C. HDR
D. MDR
Zakres 2–12 Gy/h jest charakterystyczny dla brachyterapii MDR, czyli medium dose rate. Pomyłki przy tym pytaniu zwykle biorą się z mieszania definicji mocy dawki w brachyterapii i intuicyjnego myślenia, że „wysoka dawka” to zawsze HDR, a „niska” to LDR, bez znajomości konkretnych progów liczbowych. HDR, czyli high dose rate, to technika, w której moc dawki przekracza 12 Gy/h, często jest to nawet kilkadziesiąt Gy/h. Zabiegi HDR są bardzo krótkie czasowo, trwają minuty, a nie godziny, i są wykonywane z użyciem afterloaderów o bardzo aktywnych źródłach, najczęściej 192Ir. Z punktu widzenia planowania leczenia i ochrony radiologicznej HDR ma inny profil ryzyka niż MDR – pacjent nie leży godzinami z założonymi aplikatorami i aktywnym źródłem, tylko jest napromieniany krótkotrwale i w sposób bardzo precyzyjnie kontrolowany. Dlatego przypisywanie zakresu 2–12 Gy/h do HDR jest po prostu niezgodne z przyjętymi międzynarodowo definicjami (m.in. ICRU, IAEA). LDR, low dose rate, klasycznie obejmuje zakres poniżej 2 Gy/h. To są dawne metody z zastosowaniem igieł, nasion czy drutów o małej aktywności, w których pacjent bywał hospitalizowany przez kilkadziesiąt godzin, a nawet kilka dni. Moc dawki jest tam na tyle niska, że skutki biologiczne są inne niż przy HDR czy MDR, co przekłada się na inne modele radiobiologiczne i inne schematy leczenia. Wrzucenie zakresu 2–12 Gy/h do LDR powoduje rozmycie tej granicy i psuje logikę podziału: LDR <2 Gy/h, MDR 2–12 Gy/h, HDR >12 Gy/h. Osobną kategorią jest PDR – pulsed dose rate. Technicznie wykorzystuje się tu sprzęt HDR, ale dawka jest podawana w krótkich impulsach, najczęściej co godzinę, tak żeby średnia dawka w czasie przypominała klasyczną brachyterapię LDR. To jest trochę „symulowanie LDR impulsami HDR”. Dlatego PDR nie definiuje się przez ten zakres 2–12 Gy/h, tylko przez sposób frakcjonowania dawki i średnią moc w dłuższym okresie. Mylenie PDR z konkretnym przedziałem Gy/h wynika często z tego, że ktoś zapamięta tylko nazwę, a nie koncepcję biologiczną stojącą za tą techniką. Moim zdaniem warto podejść do tego schematycznie: trzy zakresy liczbowo (LDR, MDR, HDR) plus PDR jako szczególna metoda, która stara się łączyć zalety LDR z wygodą aparatury HDR. Jak już to się ułoży w głowie, takie pytania przestają być problemem, bo od razu widać, że 2–12 Gy/h to musi być MDR.

Pytanie 4

W zapisie EKG załamki P dodatnie w odprowadzeniu I i II, a ujemne w aVR oraz częstotliwość rytmu mniejsza niż 60/min wskazują na

A. zwolniony rytm zatokowy.
B. niemiarowość zatokową.
C. przyspieszony rytm zatokowy.
D. zahamowanie zatokowe.
Prawidłowo – opis w pytaniu dokładnie pasuje do zwolnionego rytmu zatokowego, czyli bradykardii zatokowej. Załamki P dodatnie w odprowadzeniach I i II oraz ujemne w aVR to klasyczny „podpis” tego, że impuls elektryczny pochodzi z węzła zatokowo–przedsionkowego, czyli z fizjologicznego rozrusznika serca. Mówiąc prościej: morfologia załamka P mówi nam o miejscu powstania pobudzenia, a nie o jego szybkości. Dopiero częstotliwość rytmu, w tym przypadku < 60/min, decyduje, czy mówimy o rytmie zatokowym prawidłowym, przyspieszonym czy zwolnionym. Standardowo przyjmuje się, że: rytm zatokowy prawidłowy ma częstość 60–100/min, przyspieszony rytm zatokowy (tachykardia zatokowa) > 100/min, a zwolniony rytm zatokowy (bradykardia zatokowa) < 60/min. To jest podstawowa rzecz, którą trzeba mieć w głowie przy każdej analizie EKG, niezależnie czy pracujesz w pracowni EKG, na SOR-ze czy w POZ. W praktyce technika EKG wygląda to tak: najpierw oceniamy, czy załamki P są „zatokowe” (czyli dodatnie w I, II, ujemne w aVR, stały kształt), następnie sprawdzamy, czy po każdym P występuje zespół QRS, a potem mierzymy częstość rytmu – np. metodą 300/150/100 (przy zapisie 25 mm/s) albo za pomocą automatycznej analizy aparatu, ale zawsze warto ją zweryfikować „na oko”. U wielu osób, zwłaszcza młodych, wysportowanych, bradykardia zatokowa może być wariantem normy, szczególnie w spoczynku czy we śnie. Z drugiej strony, u pacjentów starszych, z chorobą węzła zatokowego, po lekach beta-adrenolitycznych czy blokerach kanału wapniowego, zwolniony rytm zatokowy może dawać zawroty głowy, osłabienie, omdlenia. Moim zdaniem dobrze jest od razu w głowie łączyć obraz EKG z objawami klinicznymi, bo sama liczba uderzeń na minutę jeszcze nie mówi, czy dany rytm jest dla pacjenta niebezpieczny. Dobre praktyki mówią: zawsze opisz rytm trzema słowami – pochodzenie (zatokowy/pozazatokowy), regularność (miarowy/niemiarowy) i częstość (przyspieszony/prawidłowy/zwolniony). Tutaj mamy wyraźnie: rytm zatokowy, miarowy (z opisu to wynika) i zwolniony.

Pytanie 5

Na obrazie MR kręgosłupa lędźwiowego strzałką wskazano

Ilustracja do pytania
A. osteofit na poziomie L2-L3
B. przepuklinę na poziomie L4-L5
C. osteofit na poziomie L4-L5
D. przepuklinę na poziomie L2-L3
Na tym obrazie MR strzałka nie wskazuje zmian kostnych, tylko patologię krążka międzykręgowego, dlatego odpowiedzi sugerujące osteofit są merytorycznie chybione. Osteofit to narośl kostna wychodząca z krawędzi trzonu kręgu, najczęściej o ostrym, dziobowatym zarysie, który w rezonansie ma sygnał typowy dla kości korowej i gąbczastej. Na przedstawionym badaniu widać natomiast ogniskowe uwypuklenie struktury o sygnale identycznym jak pozostała część krążka, zlokalizowane na jego tylno-dolnym obwodzie, wnikające do kanału kręgowego i modelujące worek oponowy. To jest klasyczny obraz przepukliny dysku, a nie osteofitozy. Częsty błąd w interpretacji polega na wrzucaniu „wszystkiego co wystaje do kanału” do jednego worka i nazywaniu tego osteofitem. W diagnostyce obrazowej trzeba najpierw zadać sobie pytanie: czy zmiana wychodzi z trzonu (kość), czy z przestrzeni międzykręgowej (dysk). Tu wyraźnie widać, że punkt wyjścia to krążek międzykręgowy. Druga kwestia to prawidłowe rozpoznanie poziomu. Mylenie L2–L3 z L4–L5 wynika zwykle z niedokładnego liczenia trzonów od góry albo od kości krzyżowej. Standardem jest liczenie od L1, który leży bezpośrednio pod ostatnim kręgiem piersiowym z żebrami, oraz uwzględnianie położenia względem kości krzyżowej – L5 styka się z S1. Na obrazie widać, że przepuklina leży bezpośrednio nad segmentem L5–S1, a więc jest to poziom L4–L5, a nie L2–L3. Kolejny typowy błąd to mylenie wypukliny krążka (diffuse bulging) z ogniskową przepukliną – tutaj zarys jest wyraźnie ogniskowy, a tylna krawędź dysku nie jest równomiernie pogrubiała na całym obwodzie. W praktyce klinicznej takie pomyłki mogą prowadzić do złego skorelowania objawów z badaniem obrazowym, a nawet do zaplanowania niewłaściwego poziomu zabiegu. Dlatego w dobrych praktykach opisowych zawsze podkreśla się konieczność: poprawnej identyfikacji poziomu, rozróżnienia zmian kostnych od dyskowych oraz precyzyjnego określenia typu i kierunku przepukliny.

Pytanie 6

Na jakim etapie procesu karcynogenezy dochodzi do inwazji miejscowej nowotworu i tworzenia przerzutów odległych?

A. Progresji.
B. Konwersji.
C. Inicjacji.
D. Promocji.
Prawidłowo wskazany etap to progresja i to jest kluczowy moment w całej karcynogenezie. W fazie progresji nowotwór przestaje być tylko miejscową zmianą ograniczoną do nabłonka czy tkanki wyjściowej, a zaczyna wykazywać pełne cechy złośliwości klinicznej. Komórki nowotworowe nabywają zdolność do inwazji miejscowej – przechodzą przez błonę podstawną, niszczą podścielisko, wnikają do naczyń krwionośnych i limfatycznych. To właśnie wtedy dochodzi do tworzenia przerzutów odległych, czyli zajęcia narządów takich jak płuca, wątroba, kości czy mózg. Z punktu widzenia praktyki medycznej ten etap ma ogromne znaczenie rokownicze: nowotwór w fazie progresji zwykle odpowiada zaawansowanym stopniom TNM (np. T3–T4, N+, M1), co wpływa na wybór leczenia – częściej stosuje się leczenie systemowe (chemioterapia, immunoterapia, terapia celowana), a nie tylko zabieg chirurgiczny. W codziennej diagnostyce radiologicznej i onkologicznej właśnie w tej fazie szukamy cech inwazji: naciekania ścian narządów, przekraczania powięzi, zajęcia węzłów chłonnych, obecności zmian meta w narządach odległych. Moim zdaniem warto pamiętać też, że progresja to efekt nagromadzenia wielu mutacji i niestabilności genetycznej – komórki stają się coraz bardziej agresywne, szybciej rosną, są mniej zależne od sygnałów regulacyjnych organizmu. W standardach onkologicznych uznaje się, że dopiero nowotwór zdolny do inwazji i przerzutowania jest pełnoprawnym rakiem złośliwym, a nie tylko zmianą przedinwazyjną czy dysplastyczną. Dlatego skojarzenie: progresja = inwazja + przerzuty jest bardzo praktyczne i przydatne na egzaminach oraz w realnej pracy z pacjentami.

Pytanie 7

Przemiana promieniotwórcza radu w ren opisana wzorem \( {}_{88}^{226}\text{Ra} \to {}_{86}^{222}\text{Rn} + {}_{2}^{4}\text{He} \) jest rozpadem

A. gamma.
B. beta minus.
C. alfa.
D. beta plus.
Rozpad opisany równaniem \( {}_{88}^{226}\text{Ra} \to {}_{86}^{222}\text{Rn} + {}_{2}^{4}\text{He} \) to klasyczny przykład przemiany alfa. Widać to po tym, że z jądra radu „odrywa się” cząstka o liczbie masowej 4 i liczbie atomowej 2, czyli dokładnie jądro helu – to jest właśnie cząstka alfa. Liczba masowa zmniejsza się z 226 do 222 (spadek o 4), a liczba atomowa z 88 do 86 (spadek o 2), co jest typowym wzorcem dla rozpadu alfa. Z fizycznego punktu widzenia jądro ciężkiego pierwiastka, jak rad, pozbywa się nadmiaru energii i „zbyt dużej” liczby nukleonów właśnie przez emisję takiej cząstki. W medycynie, szczególnie w medycynie nuklearnej i w ochronie radiologicznej, rozumienie tego typu przemian jest bardzo praktyczne. Cząstki alfa mają bardzo mały zasięg w tkankach (rzędu dziesiątek mikrometrów), ale jednocześnie bardzo duże liniowe przekazywanie energii (wysoki LET). To oznacza, że jeśli źródło alfa znajdzie się wewnątrz organizmu, może silnie uszkadzać komórki w bardzo małym obszarze. Dlatego w procedurach, które opisują dobre praktyki ochrony radiologicznej, tak mocno podkreśla się, żeby nie spożywać, nie wdychać i nie zanieczyszczać skóry materiałami emitującymi alfa. Z zewnątrz skóra praktycznie zatrzymuje to promieniowanie, ale wewnętrznie jest ono bardzo niebezpieczne. Moim zdaniem znajomość rozpadu alfa przydaje się też przy rozumieniu łańcuchów promieniotwórczych, np. szeregu uranowo-radowego. W takich szeregach wielokrotnie pojawiają się kolejne rozpady alfa prowadzące do powstania gazowego radu i radu–222, który z kolei ma znaczenie w ocenie narażenia na radon w budynkach. W standardach oceny ryzyka radiacyjnego i w dokumentacji ochrony radiologicznej zawsze uwzględnia się, czy mamy do czynienia z promieniowaniem alfa, beta czy gamma, bo od tego zależy zarówno sposób ekranowania, jak i metody monitorowania skażeń. W praktyce technika medycznego znajomość tego typu reakcji pomaga lepiej rozumieć opisy źródeł, charakterystyki radioizotopów w kartach katalogowych oraz zalecenia BHP przy pracy z materiałami promieniotwórczymi.

Pytanie 8

Na obrazie ultrasonograficznym jamy brzusznej uwidoczniono

Ilustracja do pytania
A. kamicę żółciową.
B. naczyniaka wątroby.
C. pęknięcie wątroby.
D. kamicę nerkową.
Na przedstawionym obrazie ultrasonograficznym mamy do czynienia ze zmianami zlokalizowanymi w obrębie nerki, a nie w drogach żółciowych ani w miąższu wątroby. To jest kluczowy punkt, który często umyka, gdy ktoś patrzy na USG trochę „na szybko”. Nerka w przekroju podłużnym ma charakterystyczny kształt fasolki, z obwodowo położonym, raczej hipoechogenicznym miąższem korowym i bardziej echogeniczną zatoką nerkową w centrum. W tej zatoce pojawiają się hiperechogeniczne ogniska z wyraźnym cieniem akustycznym – to właśnie odpowiada złogom. Jeśli ktoś zaznaczył kamicę żółciową, prawdopodobnie skojarzył jasne punkty z cieniem z kamieniami w pęcherzyku, ale w kamicy żółciowej widzimy zupełnie inną anatomię: owalny lub gruszkowaty pęcherzyk żółciowy, wypełniony bezechową żółcią, najczęściej pod prawym płatem wątroby, a nie strukturę nerkową z typową zatoką i piramidami. Kamienie żółciowe zwykle leżą w dnie pęcherzyka, czasem tworzą poziom płynu i złogów, i są otoczone czarną, bezechową żółcią, czego tutaj nie ma. Odpowiedź dotycząca pęknięcia wątroby też nie pasuje do obrazu – w urazach wątroby na USG spodziewamy się nieregularnych obszarów hipoechogenicznych lub mieszanej echogeniczności w miąższu, krwiaka podtorebkowego czy wolnego płynu w jamie otrzewnej. Wątroba ma jednorodny, drobnoziarnisty wzór echogeniczny i leży bardziej dogłowowo oraz po prawej stronie, natomiast nerka ma wyraźnie odmienny układ warstw. Naczyniak wątroby jest z kolei ogniskiem ogniskowym w miąższu wątroby, zwykle dobrze odgraniczonym, najczęściej hiperechogenicznym, ale bez typowego mocnego cienia akustycznego jak przy kamieniu; rozpoznanie naczyniaka opiera się głównie na TK/MR z kontrastem, gdzie widoczne jest charakterystyczne obwodowe, guziczkowe wzmocnienie w fazie tętniczej i stopniowe wypełnianie w fazach późniejszych. Typowym błędem myślowym jest utożsamianie każdej jasnej struktury z kamieniem w pęcherzyku albo zakładanie, że każde ognisko hiperechogeniczne w jamie brzusznej to zmiana w wątrobie. W praktyce najpierw trzeba „złapać” narząd: rozpoznać jego kształt, położenie względem przepony, kręgosłupa i dużych naczyń. Dopiero na tym tle interpretujemy patologiczne echogeniczności. Dzięki temu łatwiej uniknąć pomylenia obrazu nerki z wątrobą czy pęcherzykiem żółciowym, co – z mojego doświadczenia – zdarza się dość często u osób początkujących w USG.

Pytanie 9

Na obrazie ultrasonograficznym jamy brzusznej uwidoczniono

Ilustracja do pytania
A. trzustkę.
B. śledzionę.
C. wątrobę.
D. nerkę.
W rozpoznawaniu narządów w USG jamy brzusznej bardzo łatwo pomylić się, jeśli patrzy się tylko „na kształt plamy” zamiast na kilka kluczowych cech obrazu. Nerka ma typową budowę warstwową: obwodowo widoczna jest kora o stosunkowo niskiej echogeniczności, centralnie natomiast echogeniczna zatoka nerkowa z odbiciami od tkanki tłuszczowej i struktur zbiorczych. Cały narząd ma raczej fasolkowaty kształt, z wyraźnym zarysem torebki i bez kontaktu z kopułą przepony w taki sposób, jak wątroba. Jeśli na ekranie widzimy gładką, długą, mocno echogeniczną linię przepony i duży jednorodny narząd tuż pod nią, to nie będzie to typowy obraz nerki. Śledziona z kolei ma miąższ bardziej jednorodny i zwykle nieco hiperechogeniczny w stosunku do wątroby, leży po lewej stronie i jej zarys jest bardziej owalny, z charakterystycznym „półksiężycowatym” kształtem. W standardowej projekcji podżebrowej prawej śledziony po prostu nie powinniśmy widzieć – jeśli widzimy duży narząd pod prawą kopułą przepony, to praktycznie zawsze będzie to wątroba. Trzustka jest jeszcze inną historią: najczęściej widoczna poprzecznie, leży głębiej, przed żyłą główną dolną i aortą, a jej echostruktura bywa drobnoziarnista, ale nie ma tak rozległego kontaktu z przeponą jak wątroba. W dodatku trzustkę często trudno uwidocznić u pacjentów z otyłością czy gazami jelitowymi, podczas gdy wątroba zwykle jest widoczna bardzo dobrze. Typowym błędem jest sugerowanie się samym położeniem sondy bez analizy echogeniczności i przebiegu naczyń. Dobra praktyka jest taka, żeby zawsze szukać punktów orientacyjnych: przepony, żyły głównej dolnej, żyły wrotnej, wnęki śledziony, zatoki nerkowej. Z mojego doświadczenia im częściej porównuje się na żywo wątrobę z prawą nerką w jednym przekroju, tym szybciej zaczyna się „na oko” odróżniać te narządy i unika się takich pomyłek jak w tym pytaniu.

Pytanie 10

Brachyterapia wewnątrzprzewodowa jest stosowana w leczeniu

A. raka nerwu wzrokowego.
B. nowotworu przełyku.
C. raka skóry.
D. nowotworu narządu rodnego.
Prawidłowo wskazany nowotwór przełyku dobrze pokazuje, że rozumiesz ideę brachyterapii wewnątrzprzewodowej. W tej technice źródło promieniowania jonizującego umieszcza się w świetle narządu rurowego, czyli właśnie „wewnątrz przewodu”. W praktyce klinicznej najczęściej dotyczy to przełyku, oskrzeli czy dróg żółciowych, ale w standardach radioterapii to rak przełyku jest takim klasycznym, podręcznikowym przykładem. Do przełyku wprowadza się aplikator lub specjalny cewnik, który pozycjonuje się w miejscu guza, a następnie za pomocą afterloadera wprowadza się radioaktywny izotop (najczęściej Ir-192 w HDR). Dzięki temu dawka jest bardzo wysoka w obrębie guza, a stosunkowo szybko spada w tkankach zdrowych otaczających przełyk. Z mojego doświadczenia, na zajęciach zawsze podkreśla się, że to metoda szczególnie przydatna w leczeniu paliatywnym – np. przy zwężeniach przełyku powodujących problemy z połykaniem, kiedy celem jest poprawa komfortu życia pacjenta. Ważne jest też, że taka brachyterapia wymaga bardzo dokładnego planowania w systemie 3D, zwykle w oparciu o TK, z precyzyjnym określeniem długości odcinka napromienianego i położenia aplikatora. Standardy i wytyczne (np. ESTRO, PTRO) podkreślają konieczność weryfikacji położenia aplikatora obrazowaniem przed rozpoczęciem frakcji oraz ścisłego przestrzegania zasad ochrony radiologicznej personelu. Co istotne, brachyterapia wewnątrzprzewodowa nie jest terapią „uniwersalną” – stosuje się ją w wybranych lokalizacjach, głównie właśnie w przewodach i światłach narządów, a nie w guzach litej skóry czy narządów rodnych, gdzie używa się innych technik brachyterapii. W praktyce technik radioterapii musi umieć odróżnić brachyterapię śródjamową, śródmiąższową i wewnątrzprzewodową, bo od tego zależy sposób przygotowania pacjenta, dobór aplikatorów i cały tok postępowania.

Pytanie 11

Na którym obrazie MR jest widoczne pasmo saturacji?

A. Obraz 1
Ilustracja do odpowiedzi A
B. Obraz 4
Ilustracja do odpowiedzi B
C. Obraz 3
Ilustracja do odpowiedzi C
D. Obraz 2
Ilustracja do odpowiedzi D
W tym pytaniu łatwo dać się zmylić, bo wszystkie cztery obrazy pochodzą z planowania lub prezentacji badań MR, ale tylko jeden z nich pokazuje typowe pasmo saturacji. Na pierwszym obrazie widoczne są liczne ukośne linie przecinające obraz oczodołów – to linie planowania przyszłych przekrojów, tzw. lokalizatory lub warstwy planowane w różnych płaszczyznach. Mają one tylko funkcję pomocniczą dla technika, nie są związane z nasycaniem sygnału. Typowym błędem jest utożsamianie każdej ukośnej strefy czy linii z pasmem saturacji, podczas gdy są to po prostu graficzne znaczniki na ekranie konsoli. Na drugim obrazie, w projekcji strzałkowej kręgosłupa szyjnego, widać równoległe prostokątne ramki – to również planowane warstwy poprzeczne (axialne). Każdy taki prostokąt odpowiada jednej warstwie, w której będzie zbierany sygnał. Nie obserwujemy tu jednolitego wygaszenia sygnału w jakimś obszarze, tylko czyste, geometryczne kontury. Warstwy pomiarowe nie są tym samym co pasmo saturacji: warstwa jest miejscem, gdzie rejestrujemy obraz, a pasmo saturacji to strefa, w której sygnał jest celowo tłumiony przed pomiarem. Trzeci obraz przedstawia przekrój poprzeczny z naniesionym okręgiem i podziałem na sektory oznaczone numerami. To schemat podziału pola obrazowania, używany np. do opisu położenia zmian, planowania cewki czy orientacji. Nie ma tam żadnego rzeczywistego paska wygaszonego sygnału, tylko konstrukcja graficzna. Częsty błąd polega na szukaniu „pasma” w samym rysunku, zamiast patrzeć na to, co dzieje się z sygnałem tkanek. Prawdziwe pasmo saturacji, jak na obrazie 4, to jednorodny, prostokątny pas sygnału o obniżonej intensywności, ustawiony zwykle skośnie do głównego przekroju, który w praktyce używa się do tłumienia przepływu krwi lub ruchu struktur spoza obszaru zainteresowania. Warto zapamiętać: linie i ramki cienkie, ostre – to planowanie warstw; szerokie, półprzezroczyste, „wypełnione” pole – to pasmo saturacji. Skupienie się na wyglądzie sygnału, a nie tylko na geometrii linii, pozwala uniknąć takich pomyłek przy analizie obrazów MR.

Pytanie 12

Pracownia radioterapii z przyspieszaczem liniowym jest obszarem

A. ograniczonym.
B. kontrolowanym.
C. nadzorowanym.
D. izolowanym.
W radioterapii z użyciem przyspieszacza liniowego łatwo pomylić pojęcia związane z klasyfikacją stref pracy z promieniowaniem, bo nazwy brzmią podobnie, a w praktyce klinicznej używa się ich czasem trochę „na skróty”. Warto to sobie dobrze poukładać, bo od tego zależy poprawne projektowanie osłon, organizacja pracy i bezpieczeństwo personelu oraz pacjentów. Określenie „obszar izolowany” nie jest standardowym terminem w ochronie radiologicznej. Kojarzy się raczej z izolacją epidemiologiczną, pomieszczeniami sterylnymi czy strefami o kontrolowanej czystości mikrobiologicznej. W pracowni z przyspieszaczem liniowym najważniejsze jest nie odizolowanie kogokolwiek „od świata”, ale takie zaprojektowanie osłon betonowych, ołowianych, drzwi i przepustów technicznych, żeby promieniowanie rozproszone i przenikliwe nie wychodziło poza dopuszczalne poziomy dawek. Z mojego doświadczenia używanie pojęcia „izolowany” w kontekście promieniowania tylko zaciemnia obraz i nie pomaga w zrozumieniu wymogów prawnych. Pojęcie „obszar ograniczony” też bywa mylące. Każda pracownia radioterapii ma w pewnym sensie ograniczony dostęp, bo nie wpuszcza się tam osób z ulicy, ale w przepisach ochrony radiologicznej kluczowe są pojęcia „nadzorowany” i „kontrolowany”. Sam fakt, że trzeba zapukać do drzwi albo mieć przepustkę, nie definiuje jeszcze kategorii radiologicznej. Liczy się poziom możliwego narażenia, wyniki obliczeń osłonnych, częstość przebywania osób w danym miejscu i wyniki pomiarów dozymetrycznych. Częsty błąd polega też na automatycznym zakładaniu, że skoro w danym miejscu stoi przyspieszacz liniowy, to musi to być obszar kontrolowany. Tymczasem obszar kontrolowany zarezerwowany jest zwykle dla stref, gdzie potencjalne dawki mogą być wyższe i wymagają zaostrzonego reżimu: ścisłej kontroli wejść, obowiązkowego stosowania indywidualnych środków ochrony, rygorystycznej ewidencji dawek, szczególnych procedur pracy. Dobrze zaprojektowany bunkier akceleratora, z prawidłowo dobraną grubością osłon i odpowiednim układem pomieszczeń, bardzo często kwalifikuje się jako obszar nadzorowany, bo dawki poza polem napromieniania i za ścianami są już stosunkowo niskie. Typowym błędem myślowym jest skupianie się na samym fakcie obecności źródła promieniowania, a nie na realnych poziomach narażenia, które wynika z mocy dawki, czasu pracy urządzenia, odległości i skuteczności osłon. Dlatego w radioterapii mówi się, że kluczowe jest nie tylko urządzenie, ale cały system ochrony radiologicznej: projekt, pomiary odbiorcze, okresowa kontrola, aktualizacja oceny ryzyka. Właściwa klasyfikacja jako obszar nadzorowany pomaga dobrać adekwatne procedury i nie przesadzać ani w jedną, ani w drugą stronę – ani nie bagatelizować zagrożenia, ani nie wprowadzać nieuzasadnionych ograniczeń, które utrudniają normalną pracę zespołu.

Pytanie 13

W trakcie obrazowania metodą rezonansu magnetycznego wykorzystywane jest zjawisko wysyłania sygnału emitowanego przez

A. elektrony atomów wodoru.
B. protony atomów wodoru.
C. protony atomów tlenu.
D. elektrony atomów tlenu.
Prawidłowo wskazane zostały protony atomów wodoru, czyli dokładnie to, na czym opiera się klasyczna metoda rezonansu magnetycznego wykorzystywana w medycynie. W obrazowaniu MR wykorzystuje się zjawisko jądrowego rezonansu magnetycznego (NMR). W praktyce oznacza to, że w silnym polu magnetycznym jądra wodoru (protony) ustawiają się zgodnie lub przeciwnie do kierunku pola. Następnie aparat wysyła fale radiowe (impuls RF), które wybijają te protony z ich równowagi. Gdy impuls się kończy, protony wracają do stanu wyjściowego i w tym procesie emitują sygnał, który jest rejestrowany przez cewki odbiorcze. To właśnie ten sygnał jest potem przeliczany komputerowo na obraz przekrojowy ciała. W tkankach ludzkiego organizmu jest bardzo dużo wody i tłuszczu, a więc bardzo dużo atomów wodoru – dlatego MR jest tak czuły na różnice w nawodnieniu i składzie tkanek. W praktyce klinicznej wykorzystuje się to np. do oceny zmian w mózgu (udar, stwardnienie rozsiane), stawach, kręgosłupie, narządach jamy brzusznej. Różne sekwencje (T1, T2, PD, FLAIR, DWI itd.) bazują cały czas na tym samym zjawisku: relaksacji protonów wodoru i różnicach w czasach relaksacji T1 i T2 w różnych tkankach. Z mojego doświadczenia, jak raz się zrozumie, że MR „słucha” protonów wodoru w polu magnetycznym, to dużo łatwiej ogarnąć, dlaczego metal w ciele pacjenta jest problemem, czemu ważne jest jednorodne pole magnetyczne i czemu obecność wody w tkankach tak mocno wpływa na kontrast obrazu. To jest absolutna podstawa fizyki rezonansu, którą warto mieć dobrze poukładaną, bo przewija się wszędzie w diagnostyce obrazowej.

Pytanie 14

Testy specjalistyczne aparatów rentgenowskich do zdjęć wewnątrzustnych są przeprowadzane

A. co najmniej raz na 24 miesiące.
B. co miesiąc.
C. co najmniej raz na 12 miesięcy.
D. co 6 miesięcy.
W przypadku testów specjalistycznych aparatów rentgenowskich do zdjęć wewnątrzustnych bardzo łatwo pomylić je z innymi rodzajami kontroli jakości, które robi się częściej. Stąd biorą się odpowiedzi typu „co miesiąc” czy „co 6 miesięcy”. W codziennej praktyce faktycznie wykonuje się różne sprawdzenia – np. testy podstawowe, bieżącą ocenę jakości obrazu, testy eksploatacyjne po naprawie. To jednak nie są testy specjalistyczne w rozumieniu przepisów ochrony radiologicznej i nadzoru nad aparaturą rentgenowską. Zbyt krótki, comiesięczny lub półroczny interwał jest w tym kontekście nadinterpretacją wymagań. Można oczywiście wykonywać takie pomiary częściej z własnej inicjatywy, ale prawo mówi o minimalnej częstości testów specjalistycznych, a nie o maksymalnym dopuszczalnym odstępie pomiędzy dowolnymi kontrolami. Typowym błędem myślowym jest tu wrzucenie do jednego worka wszystkich rodzajów testów: podstawowych, specjalistycznych, odbiorczych i okresowych. Tymczasem testy specjalistyczne są bardziej rozbudowane, zwykle prowadzone przez uprawnionego fizyka medycznego lub inspektora, z użyciem profesjonalnych fantomów i przyrządów pomiarowych, i dlatego ich cykl jest dłuższy. Z kolei odpowiedź „co najmniej raz na 12 miesięcy” sugeruje intuicyjne przekonanie, że „raz w roku” to taki bezpieczny, standardowy okres dla każdej kontroli technicznej. W wielu dziedzinach faktycznie tak jest, ale w diagnostyce stomatologicznej dla aparatów wewnątrzustnych przepisy dopuszczają dłuższy, dwuletni okres między testami specjalistycznymi. Nie oznacza to oczywiście, że aparat może działać „samopas” przez dwa lata. Nadal obowiązują testy podstawowe, bieżąca obserwacja jakości zdjęć, kontrola dokumentacji dawek i reagowanie na wszelkie nieprawidłowości. Jednak formalny, pełny test specjalistyczny, z kompleksową oceną dawki, warstwy półchłonnej, geometrii wiązki i stabilności parametrów, musi być wykonany co najmniej raz na 24 miesiące. Moim zdaniem ważne jest rozróżnienie między racjonalną ostrożnością a wymogami prawnymi i organizacyjnymi. Jeśli ktoś odpowiada krótszym okresem, zwykle kieruje się chęcią „większego bezpieczeństwa”, ale nie odróżnia, które testy są wymagane jak często. Dobra praktyka to zapamiętać: testy specjalistyczne dla aparatów do zdjęć wewnątrzustnych – maksymalnie co 2 lata, a wszystko, co dzieje się częściej, to już inne kategorie kontroli jakości i nadzoru nad pracą aparatu.

Pytanie 15

Które środki kontrastujące wykorzystywane są w diagnostyce rezonansem magnetycznym?

A. Środki na bazie siarczanu baru.
B. Jodowe, rozpuszczalne w wodzie.
C. Jodowe, nierozpuszczalne w wodzie.
D. Środki na bazie gadolinu.
W diagnostyce rezonansem magnetycznym kluczowe jest zrozumienie, że ten rodzaj badania w ogóle nie wykorzystuje promieniowania rentgenowskiego, tylko silne pole magnetyczne i fale radiowe. Z tego wynika, że logika doboru środka kontrastowego jest zupełnie inna niż w RTG czy tomografii komputerowej. Typowy błąd myślowy polega na automatycznym przenoszeniu wiedzy z klasycznej radiologii: skoro w TK i w większości badań naczyniowych używa się kontrastów jodowych, to ktoś odruchowo zakłada, że w MR będzie tak samo. Tymczasem kontrasty jodowe, zarówno te rozpuszczalne w wodzie, jak i nierozpuszczalne, działają poprzez zwiększenie pochłaniania promieniowania rentgenowskiego. W rezonansie nie ma promieniowania X, więc taki kontrast byłby po prostu bezużyteczny z fizycznego punktu widzenia – niczego by nie wzmacniał na obrazie. Jodowe środki rozpuszczalne w wodzie są podstawą badań TK (np. angiografii CT, badań jamy brzusznej), badań naczyniowych w klasycznej angiografii oraz części badań urologicznych. Te same preparaty w rezonansie nie pełnią roli kontrastu, bo MR rejestruje sygnał od jąder wodoru w polu magnetycznym, a nie zmiany w pochłanianiu promieniowania. Z kolei jodowe środki nierozpuszczalne w wodzie mają zastosowanie bardzo wąskie, wręcz specjalistyczne, np. w niektórych badaniach przewodu pokarmowego czy w procedurach zabiegowych, i także nie są używane w MR. Podobnie siarczan baru to klasyczny kontrast do badań przewodu pokarmowego w RTG i TK – świetnie pochłania promieniowanie X, ale nie wpływa na relaksację protonów wody, więc w rezonansie jest praktycznie bezużyteczny, a wręcz przeciwwskazany. W MR używa się zupełnie innej grupy związków: paramagnetycznych środków na bazie gadolinu, które modyfikują czasy relaksacji T1 i T2, co daje charakterystyczne wzmocnienie sygnału. Z mojego doświadczenia dobrze jest w głowie rozdzielić: RTG/TK – jod i bar; MR – gadolin. Takie proste skojarzenie pomaga uniknąć mieszania modalności i złych odpowiedzi na egzaminach, ale przede wszystkim pozwala lepiej rozumieć, jakie są ograniczenia i możliwości każdego typu badania obrazowego.

Pytanie 16

Podczas badania EEG otwarcie oczu powoduje

A. spontaniczną hiperwentylację.
B. zaniknięcie rytmu alfa.
C. zjawisko habituacji.
D. reakcję paradoksalną.
Prawidłowo – podczas badania EEG otwarcie oczu powoduje zanik, czyli blokowanie rytmu alfa w okolicach potylicznych. U zdrowej, zrelaksowanej osoby, leżącej spokojnie z zamkniętymi oczami, dominuje właśnie rytm alfa: fale o częstotliwości około 8–13 Hz, najlepiej widoczne w odprowadzeniach potylicznych (O1, O2). Jest to taki „fizjologiczny podpis” stanu czuwania w spoczynku z zamkniętymi oczami. W momencie, kiedy badany otwiera oczy, do kory wzrokowej dociera strumień bodźców wzrokowych i aktywność bioelektryczna ulega desynchronizacji – zamiast ładnego, regularnego rytmu alfa pojawia się bardziej niskonapięciowa, szybka czynność beta lub mieszanina różnych częstotliwości. Ten efekt nazywa się blokowaniem albo wygaszeniem rytmu alfa (ang. alpha blocking). Dla technika EEG to jest bardzo praktyczna sprawa: reakcja na otwarcie oczu jest jednym z podstawowych testów jakości zapisu i stanu pacjenta. Jeśli rytm alfa się nie pojawia przy zamkniętych oczach albo nie znika po ich otwarciu, to od razu zapala się lampka ostrzegawcza – można podejrzewać np. uszkodzenie kory potylicznej, głębokie zaburzenia świadomości, działanie leków, czasem artefakty. W standardach wykonywania EEG (np. zalecenia IFCN, krajowe wytyczne pracowni EEG) zawsze podkreśla się konieczność rejestrowania fragmentów z oczami zamkniętymi i otwartymi oraz dokładnego opisywania reaktywności rytmu alfa. W praktyce klinicznej ocena tego zjawiska pomaga różnicować stany śpiączki, encefalopatie metaboliczne czy efekty działania leków sedacyjnych. Z mojego doświadczenia warto sobie to dobrze zapamiętać: oczy zamknięte – alfa się pojawia, oczy otwarte – alfa znika. To jest jeden z najbardziej klasycznych i powtarzalnych elementów zapisu EEG, który bardzo często pojawia się też na egzaminach i w zadaniach testowych.

Pytanie 17

Do zadań technika elektroradiologa w pracowni hemodynamicznej należy

A. dokumentowanie obrazów ICUS.
B. podanie operatorowi cewnika.
C. przygotowanie stolika zabiegowego.
D. ustalanie ilości kontrastu.
Prawidłowo – w pracowni hemodynamicznej jednym z kluczowych zadań technika elektroradiologa jest właśnie dokumentowanie obrazów ICUS (intravascular ultrasound, wewnątrznaczyniowe USG). To badanie obrazowe wykonywane podczas zabiegów kardiologii inwazyjnej, np. angioplastyki wieńcowej, stentowania czy oceny zwężeń w tętnicach. Technik odpowiada za prawidłowe uruchomienie i obsługę aparatury, zapis przebiegu badania, archiwizację sekwencji obrazów oraz poprawne opisanie danych w systemie (PACS/RIS lub lokalny system kardiologiczny). Od jakości tej dokumentacji zależy późniejsza możliwość analizy zabiegu, porównanie wyników w czasie, a także wiarygodność danych medycznych. W praktyce wygląda to tak, że operator wprowadza sondę ICUS do naczynia, a technik pilnuje parametrów rejestracji, synchronizacji z EKG, poprawnego oznaczenia segmentów naczynia i momentów kluczowych (np. przed i po implantacji stentu). Moim zdaniem jest to jedno z bardziej odpowiedzialnych zadań, bo błędne podpisanie serii, zgubienie fragmentu badania albo niewłaściwe zarchiwizowanie potrafi mocno utrudnić dalsze leczenie pacjenta. Standardem jest, że technik dba o ciągłość rejestracji, poprawną jakość obrazu (dobór głębokości, zakresu dynamicznego, wzmocnienia), a po zabiegu sprawdza, czy badanie jest kompletne i dostępne dla lekarza w systemie. W wielu pracowniach technik zajmuje się też eksportem wybranych fragmentów badania ICUS do dokumentacji zabiegowej, żeby lekarz mógł je użyć w opisie lub na konsyliach. To jest dokładnie ten obszar odpowiedzialności, który pokrywa się z kompetencjami technika elektroradiologa – obsługa aparatury obrazowej, rejestracja, archiwizacja i techniczna jakość badania.

Pytanie 18

Jak konwencjonalnie frakcjonuje się dawkę w teleradioterapii?

A. Jeden raz dziennie, przez siedem dni w tygodniu.
B. Dwa razy dziennie, przez pięć dni w tygodniu.
C. Dwa razy dziennie, przez siedem dni w tygodniu.
D. Jeden raz dziennie, przez pięć dni w tygodniu.
W teleradioterapii bardzo łatwo pomylić różne schematy frakcjonowania, bo w praktyce klinicznej używa się zarówno klasycznego, jak i przyspieszonego czy hipofrakcjonowania. Konwencjonalny schemat to jednak jedna frakcja dziennie, pięć dni w tygodniu, z przerwą w weekend. Propozycja dwóch frakcji dziennie przez pięć dni w tygodniu opisuje tzw. hiperfrakcjonowanie lub przyspieszone schematy leczenia. Takie podejście rzeczywiście jest stosowane, ale tylko w wybranych sytuacjach klinicznych, np. w niektórych nowotworach głowy i szyi, i wymaga bardzo ostrożnego planowania. Zwiększenie liczby frakcji na dobę podnosi ryzyko ostrych odczynów popromiennych, dlatego nie jest uznawane za standardowe, „konwencjonalne” frakcjonowanie, tylko za modyfikację wymagającą specjalnych wskazań i doświadczenia zespołu. Z kolei schematy, w których leczenie trwa siedem dni w tygodniu, bez przerw weekendowych, kłócą się z klasycznymi zasadami radiobiologii i praktyką organizacyjną zakładów radioterapii. Teoretycznie można by w ten sposób skrócić całkowity czas leczenia, ale kosztem znacznie gorszej tolerancji przez zdrowe tkanki. Brak przerwy na regenerację tkanek prawidłowych zwiększa ryzyko ciężkich powikłań późnych, np. martwicy, zwłóknień czy uszkodzeń narządów krytycznych. Dodatkowo trzeba brać pod uwagę, że sprzęt musi być serwisowany, a personel medyczny też ma swoje ograniczenia – to nie jest terapia, którą można bez końca prowadzić „non stop”. Częsty błąd myślowy polega na założeniu, że im więcej frakcji i im częściej podajemy dawkę, tym lepszy efekt onkologiczny. W radioterapii to nie działa tak prosto, bo liczy się równowaga między skutecznością a toksycznością. Zbyt agresywne, codzienne lub dwukrotne dzienne frakcjonowanie bez wyraźnych wskazań może bardziej zaszkodzić niż pomóc. Dlatego, kiedy w pytaniu pojawia się sformułowanie „konwencjonalnie”, trzeba od razu kojarzyć je ze standardem: jedna frakcja dziennie, pięć razy w tygodniu, z zaplanowaną przerwą weekendową.

Pytanie 19

Podczas wykonywania zdjęcia rentgenowskiego lewobocznego czaszki promień centralny powinien przebiegać

A. od prawej do lewej strony czaszki, prostopadle do płaszczyzny czołowej.
B. od lewej do prawej strony czaszki, prostopadle do płaszczyzny czołowej.
C. od lewej do prawej strony czaszki, prostopadle do płaszczyzny strzałkowej.
D. od prawej do lewej strony czaszki, prostopadle do płaszczyzny strzałkowej.
Prawidłowa odpowiedź wynika z geometrii ułożenia pacjenta i definicji płaszczyzn anatomicznych. W projekcji lewobocznej czaszki badana jest lewa strona głowy, czyli to ona powinna przylegać do detektora (kasety). Żeby uzyskać obraz lewej strony możliwie ostry i bez powiększenia, promień centralny musi przechodzić z prawej do lewej strony czaszki – od strony lampy w kierunku detektora. To jest klasyczna zasada w radiografii: część badana bliżej detektora, lampa po stronie przeciwnej. Dodatkowo promień powinien być prostopadły do płaszczyzny strzałkowej, bo ta płaszczyzna dzieli ciało na część prawą i lewą. W lewym bocznym zdjęciu czaszki płaszczyzna strzałkowa pacjenta jest ustawiona równolegle do detektora, więc prostopadły do niej promień daje prawidłową, „czystą” projekcję boczną, bez skośnego nałożenia struktur. Płaszczyzna czołowa (frontalna) w tym ustawieniu jest z kolei prostopadła do detektora, więc promień padający prostopadle do niej dałby projekcję czołową, a nie boczną. W praktyce technik ustawia pacjenta bokiem do detektora, wyrównuje linie anatomiczne (np. linia między kątem oka a przewodem słuchowym zewnętrznym), sprawdza brak rotacji i pochyleń, a potem centralny promień kieruje z prawej na lewą, pod kątem 90° do płaszczyzny strzałkowej. Tak się uzyskuje standardowe boczne RTG czaszki zgodne z atlasami i wytycznymi radiologicznymi. Moim zdaniem warto sobie to zwizualizować na modelu czaszki, bo wtedy łatwiej zapamiętać, że „boczne = promień prostopadły do płaszczyzny strzałkowej, po stronie przeciwnej do badanej”.

Pytanie 20

Rozpraszanie promieniowania X, w wyniku którego następuje zwiększenie długości fali promieniowania, to zjawisko

A. Maxwella.
B. Comptona.
C. Boltzmana.
D. Bragga.
Prawidłowo wskazane zjawisko to efekt Comptona. W fizyce promieniowania mówi się, że jest to sprężyste rozpraszanie fotonów promieniowania X (albo gamma) na praktycznie swobodnych elektronach, po którym foton ma mniejszą energię, a więc większą długość fali. Energia nie znika, tylko dzieli się: część przejmuje elektron (zostaje on wybity z powłoki i zyskuje energię kinetyczną), a część zachowuje foton, ale już o niższej energii i zmienionym kierunku. Właśnie ta utrata energii fotonu jest fizyczną przyczyną zwiększenia długości fali. W praktyce radiologicznej efekt Comptona dominuje w zakresie energii typowej dla diagnostycznych zdjęć RTG klatki piersiowej czy jamy brzusznej, szczególnie w tkankach o średniej gęstości. Z mojego doświadczenia to jedno z kluczowych zjawisk, które trzeba rozumieć, jeśli ktoś chce sensownie mówić o kontraście obrazu i dawce rozproszonej. Rozproszone promieniowanie Comptona odpowiada za tzw. mgłę na obrazie, pogarsza kontrast i zwiększa niepotrzebne narażenie personelu. Dlatego w dobrych praktykach pracowni RTG stosuje się kratki przeciwrozproszeniowe, odpowiednie kolimowanie wiązki, właściwe parametry kV i mAs – właśnie po to, żeby ograniczać wpływ rozpraszania Comptona. W planowaniu osłon stałych i organizacji pracowni fizyk medyczny też musi brać pod uwagę udział promieniowania rozproszonego na ściany, sufit i podłogę. Co ważne, efekt Comptona jest w dużej mierze niezależny od liczby atomowej materiału, więc występuje zarówno w tkankach miękkich, jak i w kości, a jego intensywność bardziej zależy od gęstości elektronowej i energii wiązki. W tomografii komputerowej, przy typowych energiach efektywnych wiązki, rozpraszanie Comptona również ma duży udział i wpływa na artefakty oraz konieczność stosowania filtrów i algorytmów rekonstrukcji uwzględniających rozproszenie. Dlatego kojarzenie „zwiększenia długości fali po rozproszeniu” z nazwiskiem Compton to w medycynie obrazowej absolutna podstawa fizyki promieniowania.

Pytanie 21

Na zamieszczonym obrazie RM nadgarstka lewego strzałką wskazano kość

Ilustracja do pytania
A. główkowatą.
B. haczykowatą.
C. łódeczkowatą.
D. księżycowatą.
W anatomii nadgarstka na obrazach MR bardzo łatwo pomylić poszczególne kości szeregu bliższego i dalszego, szczególnie jeśli nie ma się jeszcze wyrobionego nawyku „orientowania się” od strony kości promieniowej i patrzenia na relacje przestrzenne. Strzałka na tym obrazie wskazuje kość położoną centralnie w szeregu bliższym, czyli kość księżycowatą. Błąd często polega na tym, że patrząc na kształt i położenie, ktoś automatycznie przypisuje ją do kości łódeczkowatej, bo ta również leży w szeregu bliższym i ma w miarę podłużny kształt. Tymczasem kość łódeczkowata jest wyraźnie bardziej promieniowo, bliżej kciuka, i na przekrojach czołowych częściej widzimy ją jako strukturę przylegającą do wyrostka rylcowatego kości promieniowej. Kość haczykowata to już zupełnie inna historia – należy do szeregu dalszego i leży po stronie łokciowej, bardziej dystalnie, z charakterystycznym wyrostkiem haczykowatym, który najlepiej widać w projekcjach poprzecznych oraz na RTG w projekcji skośnej lub osiowej kanału nadgarstka. W tej lokalizacji, jak na obrazie, kość haczykowata po prostu nie ma prawa się znaleźć. Z kolei kość główkowata jest największą kością szeregu dalszego, położoną centralnie, ale zawsze bardziej dystalnie niż księżycowata, niejako „wciśnięta” między trzecią kość śródręcza a szereg bliższy. Typowy błąd myślowy to patrzenie tylko na kształt kości, bez uwzględnienia jej relacji do kości promieniowej i układu dwóch szeregów nadgarstka. Dobra praktyka w diagnostyce obrazowej mówi: najpierw lokalizacja względem kości promieniowej (promieniowo–łokciowo, bliżej–dalej), potem dopiero identyfikacja kształtu. W MR, zwłaszcza w sekwencjach T1 w płaszczyźnie czołowej, warto „policzyć” kości: w szeregu bliższym od strony promieniowej łódeczkowata, księżycowata, trójgraniasta, grochowata; w dalszym – czworoboczna większa, czworoboczna mniejsza, główkowata, haczykowata. Trzymanie się tej logiki znacząco ogranicza ryzyko pomyłek przy opisie badań i przygotowuje do bardziej zaawansowanej oceny niestabilności więzadłowych nadgarstka.

Pytanie 22

Na radiogramie uwidoczniono złamanie nasady

Ilustracja do pytania
A. dalszej kości promieniowej.
B. bliższej kości łokciowej.
C. dalszej kości łokciowej.
D. bliższej kości promieniowej.
Na tym radiogramie bardzo łatwo o klasyczną pomyłkę anatomiczną: zamianę kości promieniowej z łokciową lub pomylenie nasady bliższej z dalszą. W projekcji AP nadgarstka widzimy głównie okolice stawu promieniowo-nadgarstkowego, czyli segment dystalny przedramienia. To oznacza, że patrzymy na nasady dalsze kości promieniowej i łokciowej, a nie na ich końce bliższe, które znajdują się przy stawie łokciowym i na takim zdjęciu w ogóle nie byłyby widoczne. Jeśli ktoś zaznacza odpowiedź związaną z nasadą bliższą, to w praktyce oznacza, że nie powiązał obrazu z prawidłowym regionem anatomicznym – tu nie ma łokcia, tylko nadgarstek. Kolejny częsty błąd to pomylenie kości promieniowej z łokciową. Na obrazie RTG kość promieniowa po stronie kciuka ma szeroką, masywną nasadę dalszą, która tworzy główną powierzchnię stawową dla kości nadgarstka. Kość łokciowa po stronie małego palca kończy się znacznie mniejszą nasadą dalszą, z wyraźnym wyrostkiem rylcowatym, która nie wchodzi tak szeroko w skład powierzchni stawowej nadgarstka. Złamanie widoczne na zdjęciu obejmuje właśnie tę szeroką, dystalną część kości – czyli promieniową, a nie łokciową. W praktyce klinicznej złamania dalszej nasady kości łokciowej oczywiście się zdarzają, ale zwykle towarzyszą złamaniom dalszej nasady kości promieniowej, a linie złamania i przemieszczenia wyglądają wtedy inaczej i są zlokalizowane bardziej przyśrodkowo. Mylenie stron (promieniowa vs łokciowa) wynika często z nieuwagi przy analizie projekcji – dobrą metodą jest zawsze najpierw zorientować się, gdzie jest kciuk, a dopiero potem opisywać zmiany. Dodatkowo trzeba pamiętać o prostym schemacie: dalsze nasady widzimy przy nadgarstku, bliższe – przy łokciu. Jeżeli więc na obrazie widać kości nadgarstka, to automatycznie odpadają odpowiedzi mówiące o nasadzie bliższej. Tego typu drobne, ale systematyczne zasady naprawdę porządkują myślenie przy interpretacji RTG i pozwalają unikać takich nietrafionych rozpoznań.

Pytanie 23

Przy ułożeniu do zdjęcia kręgów szyjnych CIII-CVII w projekcji przednio-tylnej lampa może być odchylona o kąt

A. 10-15° doogonowo.
B. 40-45° dogłowowo.
C. 10-15° dogłowowo.
D. 40-45° doogonowo.
W tym typie pytania łatwo się pomylić, bo wszędzie pojawiają się stopnie i kierunki odchylenia, a w głowie robi się mały bałagan. Kluczowe jest zrozumienie, po co w ogóle odchylamy lampę przy projekcji przednio‑tylnej kręgów szyjnych CIII–CVII. Odcinek szyjny ma fizjologiczną lordozę, do tego dochodzą barki, żuchwa i potylica, które częściowo zasłaniają obraz. Delikatny kąt dogłowowy pozwala „wycelować” promień centralny tak, żeby lepiej przejść przez przestrzenie międzykręgowe i uniknąć nakładania się struktur. Zbyt duży kąt, rzędu 40–45°, powodowałby znaczną deformację obrazu: trzony kręgów byłyby wydłużone lub skrócone, przestrzenie międzykręgowe sztucznie poszerzone albo wręcz niewidoczne, a ocena geometrii kręgosłupa stałaby się mało wiarygodna. Taki zakres kątów stosuje się raczej w specjalnych projekcjach, np. stawów mostkowo‑obojczykowych czy niektórych projekcjach czaszki, a nie w rutynowym RTG szyi. Równie mylący bywa kierunek – doogonowo zamiast dogłowowo. Intuicyjnie ktoś może pomyśleć: „skoro głowa jest wyżej, to skieruję promień w dół”. W odcinku szyjnym chodzi jednak o obejście przeszkód anatomicznych, czyli barków i żuchwy, dlatego promień prowadzimy ku górze (cranial), a nie ku dołowi. Ustawienie doogonowe mogłoby zwiększyć nakładanie się cieni barków na dolne kręgi szyjne i utrudnić ocenę C6–C7, co w kontekście urazów jest szczególnie niebezpieczne diagnostycznie. Z mojego doświadczenia częsty błąd to przenoszenie nawyków z innych projekcji: ktoś pamięta duże kąty z badań czaszki czy mostka i automatycznie je stosuje przy szyi. W dobrych praktykach techniki radiologicznej dla kręgosłupa szyjnego CIII–CVII w projekcji AP podaje się wyraźnie: niewielkie odchylenie lampy, około 10–15° dogłowowo, dostosowane do lordozy, bez przesady w żadną stronę. Dlatego wszystkie odpowiedzi z dużym kątem lub z kierunkiem doogonowym są po prostu niezgodne z obowiązującymi standardami pozycjonowania.

Pytanie 24

Emisja fali elektromagnetycznej występuje w procesie rozpadu promieniotwórczego

A. alfa.
B. gamma.
C. beta plus.
D. beta minus.
Prawidłowo, w procesie rozpadu promieniotwórczego emisja fali elektromagnetycznej dotyczy właśnie promieniowania gamma. Rozpad gamma polega na tym, że jądro atomu przechodzi ze stanu wzbudzonego do stanu o niższej energii, bez zmiany liczby protonów i neutronów. Nie zmienia się więc ani liczba masowa, ani liczba atomowa – zmienia się tylko poziom energetyczny jądra. W tym przejściu jądro emituje kwant promieniowania elektromagnetycznego o bardzo dużej energii, czyli foton gamma. To jest fizycznie fala elektromagnetyczna, podobna z natury do światła widzialnego czy promieniowania rentgenowskiego, tylko o znacznie wyższej energii i krótszej długości fali. W medycynie to ma ogromne znaczenie praktyczne. W medycynie nuklearnej izotopy stosowane do scyntygrafii (np. 99mTc) emitują właśnie promieniowanie gamma, które rejestruje gammakamera. Dzięki temu można tworzyć obrazy narządów i oceniać ich funkcję, np. perfuzję mięśnia sercowego czy czynność nerek. Podobnie w PET wykorzystuje się fotony gamma powstające w wyniku anihilacji pozytonu z elektronem. Z mojego doświadczenia, zrozumienie że gamma to fala elektromagnetyczna, a alfa i beta to cząstki, bardzo porządkuje całą fizykę promieniowania i ułatwia później ogarnięcie zasad ochrony radiologicznej. Standardy ochrony (np. ICRP) wyraźnie rozróżniają promieniowanie fotonowe (X, gamma) od cząstkowego, bo inne są materiały osłonowe i sposoby zabezpieczenia. W radioterapii też mamy wiązki fotonowe o energiach zbliżonych do gamma (z akceleratorów liniowych), które zachowują się bardzo podobnie w tkankach, co jest istotne przy planowaniu dawek.

Pytanie 25

Nieostrość geometryczna obrazu rentgenowskiego zależy od

A. wielkości ogniska optycznego.
B. grubości emulsji błony rentgenowskiej.
C. ilości promieniowania rozproszonego.
D. wielkości ziarna luminoforu folii wzmacniającej.
Problem nieostrości obrazu w radiografii często myli się z innymi zjawiskami, jak kontrast czy ziarnistość. W tym pytaniu chodzi konkretnie o nieostrość geometryczną, czyli o rozmycie krawędzi wynikające z geometrii układu: ognisko – obiekt – detektor. Podstawowa sprawa: im większe rzeczywiste ognisko anody, tym większy półcień i gorsza ostrość. To jest klasyczna definicja nieostrości geometrycznej, omawiana w fizyce medycznej i w standardach opisujących jakość obrazowania. Ilość promieniowania rozproszonego oczywiście pogarsza jakość obrazu, ale w inny sposób. Rozproszenie głównie obniża kontrast, powoduje „zamglenie” całego obrazu, ale nie jest źródłem typowej nieostrości geometrycznej. Z promieniowaniem rozproszonym walczy się kratką przeciwrozproszeniową, odpowiednim polem naświetlania, kolimacją wiązki oraz prawidłowym doborem kV, a nie przez zmianę ogniska. To jest inny aspekt jakości zdjęcia. Grubość emulsji błony rentgenowskiej ma znaczenie dla czułości, kontrastu i pewnej ziarnistości obrazu w klasycznych systemach analogowych, ale nie jest głównym czynnikiem definiującym nieostrość geometryczną. Można powiedzieć, że dotyczy raczej właściwości materiału rejestrującego niż geometrii wiązki. Podobnie wielkość ziarna luminoforu w folii wzmacniającej wpływa na tzw. nieostrość strukturalną: im większe ziarno, tym większe rozmycie i mniejsza rozdzielczość przestrzenna, ale to nie jest to samo, co nieostrość geometryczna wynikająca z wielkości ogniska i odległości w układzie. Typowy błąd myślowy polega na wrzucaniu wszystkich efektów pogorszenia jakości obrazu do jednego worka pod hasłem „nieostrość”. W praktyce trzeba rozróżniać: nieostrość geometryczną (ognisko, odległości), nieostrość ruchową (ruch pacjenta, zbyt długi czas ekspozycji) oraz nieostrość wynikającą z systemu rejestracji (błona, folia, piksel w detektorze cyfrowym). Dopiero takie rozróżnienie pozwala świadomie dobrać parametry ekspozycji i osprzęt, zgodnie z zasadami dobrej praktyki radiologicznej.

Pytanie 26

W której próbie stroikowej przystawia się stroik do czoła (u podstawy nosa) lub na szczycie głowy i porównuje się przewodnictwo kostne ucha prawego i lewego?

A. W próbie Binga.
B. W próbie Webera.
C. W próbie Rinnego.
D. W próbie Schwabacha.
W testach stroikowych bardzo łatwo się pomylić, bo nazwy brzmią podobnie, a różnice w technice wykonania są dość subtelne. W tym pytaniu kluczowy jest sposób przykładania stroika i to, co porównujemy. Próba, w której oceniamy przewodnictwo kostne między prawym a lewym uchem z przyłożeniem stroika w linii pośrodkowej czaszki (czoło, szczyt głowy, czasem zęby), to klasyczna próba Webera. Jeśli ktoś kojarzy „próba przewodnictwa kostnego”, to często odruchowo myśli o Schwabachu, bo tam też chodzi o kość. Jednak w próbie Schwabacha porównuje się czas trwania przewodnictwa kostnego u pacjenta z czasem przewodnictwa kostnego badającego. Stroik przykłada się zazwyczaj do wyrostka sutkowatego, a nie do czoła czy szczytu głowy, i nie porównuje się prawego z lewym uchem, tylko pacjenta z normą słuchową osoby badającej. Z mojego doświadczenia to jest dość archaiczna próba, dzisiaj rzadziej stosowana, właśnie m.in. dlatego, że zależy od słuchu badającego. Próba Rinnego to kolejna pułapka. Tu rzeczywiście badamy przewodnictwo powietrzne i kostne, ale dla jednego ucha osobno. Stroik przykładamy najpierw do wyrostka sutkowatego (przewodnictwo kostne), a potem przed małżowinę uszną (przewodnictwo powietrzne). Na tej podstawie oceniamy, czy Rinne jest dodatni czy ujemny. Nie ma tu porównywania prawego i lewego ucha jednocześnie, tylko relacja: powietrzne vs kostne w jednym uchu. Zupełnie inną koncepcją jest próba Binga, która też bywa mylona z Weberem, bo dotyczy przewodnictwa kostnego, ale technika jest inna. Stroik kładzie się na wyrostku sutkowatym, a badający na przemian zamyka i otwiera przewód słuchowy zewnętrzny palcem. Oceniamy tzw. efekt okluzji. W prawidłowych warunkach zamknięcie przewodu zwiększa głośność, a w niedosłuchu przewodzeniowym ten efekt zanika. W żadnej z tych prób nie ma jednak tego charakterystycznego ustawienia stroika w linii środkowej czaszki z oceną lateralizacji dźwięku między uszami, co jest właśnie istotą próby Webera. Typowy błąd myślowy polega na tym, że skoro gdzieś jest mowa o kości, to student od razu „strzela” w Schwabacha albo Rinnego, zamiast zwrócić uwagę na dokładne miejsce przyłożenia stroika i pytanie, czy badamy jedno ucho, czy porównujemy obie strony. Dlatego tak ważne jest, żeby łączyć nazwę testu z konkretnym obrazem techniki badania w głowie, a nie tylko z ogólnym hasłem „przewodnictwo kostne”.

Pytanie 27

Jakie struktury anatomiczne uwidoczniono na obrazie USG?

Ilustracja do pytania
A. Pęcherz moczowy z kamieniami.
B. Ciężarna macica z czterema płodami.
C. Nerka lewa ze złogami.
D. Pęcherzyk żółciowy z kamieniami.
Na tym obrazie USG łatwo dać się zmylić, jeśli ktoś patrzy tylko „ogólnie szaro na szaro”, bez zwracania uwagi na charakterystyczne cechy poszczególnych narządów. Nerka lewa ma zupełnie inną architekturę: powinna być strukturą nerkowatą, z wyraźnym zróżnicowaniem na echogeniczną korę, ciemniejsze piramidy rdzenia oraz centralnie położoną echogeniczną zatokę nerkową. Złogi w nerce lokalizują się najczęściej w kielichach lub miedniczce i także dają cień akustyczny, ale ich tło anatomiczne jest inne – widzimy zarys nerki, wnękę, często sąsiedztwo kręgosłupa. Tutaj tego nie ma, mamy pojedynczą, podłużną, cienkościenną strukturę bezechową, typową dla pęcherzyka żółciowego, położoną w miąższu wątroby. Pęcherz moczowy z kamieniami również może zawierać echogeniczne złogi z cieniem, ale sam pęcherz w USG jest strukturą dużą, o kształcie zbliżonym do kulistego lub owalnego zbiornika w miednicy małej, z grubszą ścianą, otoczony pętlami jelit, prostatą lub macicą, a nie miąższem wątroby. Tu widać narząd leżący pod łukiem żebrowym, w typowej projekcji nadbrzusza, co zupełnie nie pasuje do pęcherza moczowego. Z kolei ciężarna macica z wieloma płodami wygląda zupełnie inaczej: obraz jest znacznie większy, wypełniony strukturami płodów, pęcherzykami ciążowymi, łożyskiem, płynem owodniowym, a nie jednym podłużnym „workiem” z jasnymi, twardymi ogniskami przy ścianie. Typowym błędem myślowym jest tu skupienie się wyłącznie na obecności kamieni i cienia akustycznego, bez rozpoznania, w jakim narządzie one się znajdują. W diagnostyce obrazowej zawsze zaczynamy od identyfikacji narządu: położenie względem żeber, wątroby, nerek, pęcherza, charakter ściany i zawartości. Dopiero potem oceniamy patologię. Dobra praktyka to systematyczne „przejście” przez jamę brzuszną według ustalonego schematu, zamiast oglądania pojedynczych przekrojów bez kontekstu anatomicznego. Wtedy takie pomyłki zdarzają się zdecydowanie rzadziej.

Pytanie 28

Który artefakt uwidoczniono na skanie RM głowy?

Ilustracja do pytania
A. Zawijanie obrazu.
B. Efekt uśrednienia.
C. Przesunięcie chemiczne.
D. Poruszenie pacjenta.
Na przedstawionym obrazie RM głowy mamy klasyczny przykład artefaktu zawijania obrazu, a nie efekt uśrednienia, poruszenia pacjenta ani przesunięcia chemicznego. W diagnostyce obrazowej MR bardzo łatwo pomylić te zjawiska, bo każde z nich pogarsza jakość obrazu, ale ich mechanizm fizyczny i wygląd są zupełnie inne. Poruszenie pacjenta powoduje najczęściej rozmycie konturów, podwójne krawędzie, smugi wzdłuż kierunku kodowania fazy, czasem takie „cienie duchy” od naczyń pulsujących. Cały obraz wygląda jakby był lekko rozmazany, szczególnie tam, gdzie granica tkanek jest ostra, np. między istotą szarą a białą. Tutaj struktury są ostre, tylko pewne elementy anatomiczne pojawiają się w nienaturalnym miejscu, co bardziej pasuje do aliasingu niż ruchu. Efekt uśrednienia (partial volume effect) to z kolei zjawisko związane z grubymi warstwami i dużym voxel’em: sygnał z różnych tkanek mieszanych w jednym voxelu uśrednia się, przez co zanika kontrast między strukturami. Na obrazie nie widzielibyśmy dodatkowych nałożonych fragmentów, tylko np. słabiej widoczne granice kory, wygładzenie zakrętów, zlewanie się małych struktur. Tego tutaj nie ma. Przesunięcie chemiczne dotyczy głównie granicy tłuszcz–woda, np. w okolicy oczodołów lub tkanki podskórnej, i objawia się cienkim pasemek jasnym i ciemnym po dwóch stronach granicy, przesuniętym w kierunku fazowym. Jest to subtelny, liniowy artefakt na styku tkanek o różnym przesunięciu częstotliwości, a nie całe „przerzucone” fragmenty głowy. Typowym błędem jest patrzenie tylko na to, że obraz jest „dziwny” i odruchowe obwinianie ruchu pacjenta. Z mojego doświadczenia w pracowni MR dużo osób nie zwraca uwagi na kierunek kodowania fazy i wielkość FOV, a to właśnie one decydują o powstawaniu zawijania. Dlatego warto przy każdym takim pytaniu przeanalizować: czy widzę rozmycie i smugi (ruch), liniowe pasma na granicy tłuszcz–woda (przesunięcie chemiczne), czy raczej powtórzone, przesunięte fragmenty anatomii po przeciwnej stronie obrazu – czyli aliasing. Taka analiza bardzo pomaga później w realnej pracy przy optymalizacji sekwencji i szybkim korygowaniu błędów.

Pytanie 29

Po podaniu kontrastu obraz zmian nowotworowych w badaniu MR najlepiej uwidacznia się w sekwencji

A. T2
B. DWI
C. T1
D. DIXON
W rezonansie magnetycznym łatwo się pomylić, bo mamy sporo różnych sekwencji i każda „coś fajnego” pokazuje. Ale jeśli pytanie dotyczy konkretnie uwidocznienia zmian nowotworowych po podaniu kontrastu, to kluczowe jest zrozumienie, jak działają poszczególne typy sekwencji. Środek kontrastowy gadolinowy działa głównie przez skrócenie czasu relaksacji T1, więc najbardziej wpływa na sekwencje T1‑zależne. Właśnie dlatego to one są używane do oceny wzmocnienia po kontraście. DIXON to tak naprawdę technika modyfikująca głównie sekwencje T1 (i czasem T2*), służąca do rozdzielenia sygnału z tłuszczu i wody. Jest świetna np. do obrazowania narządów miąższowych czy układu mięśniowo‑szkieletowego, ale sama nazwa „DIXON” nie oznacza jeszcze, że to najlepsza sekwencja do oceny kontrastu. Jeśli stosujemy T1 DIXON po kontraście, to i tak kluczowe jest to, że jest to sekwencja T1‑zależna, a nie sam fakt „DIXON”. Dlatego wybieranie DIXON jako ogólnej odpowiedzi jest trochę mylące – to bardziej technika niż podstawowy typ sekwencji. DWI (dyfuzja) z kolei służy głównie do oceny ruchu cząsteczek wody w tkankach. Zmiany nowotworowe często ograniczają dyfuzję, więc są hiperintensywne na mapach DWI i mają obniżony sygnał na mapach ADC. To bardzo ważne w onkologii, np. w udarach, guzach mózgu, prostaty czy wątroby, ale DWI nie służy do oceny wzmocnienia po kontraście. Co więcej, standardowo DWI wykonuje się bez podania kontrastu. Dlatego myślenie: „nowotwór dobrze widać na DWI, więc po kontraście też będzie najlepiej” – to typowy błąd skrótu myślowego. Sekwencje T2‑zależne natomiast pokazują głównie zawartość wody – płyny są jasne, obrzęk, zmiany zapalne, torbiele. Guzy często są dobrze widoczne na T2 przez obrzęk czy komponentę płynną, ale podanie gadolinu nie jest tu głównym mechanizmem poprawy kontrastu obrazu. Zmiana może wyglądać trochę inaczej po kontraście, ale to nie jest główne narzędzie do oceny wzmocnienia. Z mojego doświadczenia największy problem polega na tym, że wiele osób pamięta, iż „nowotwory są jasne na T2” albo że „DWI jest super w guzach”, i automatycznie zakłada, że to będzie też najlepsze po kontraście. Tymczasem standardy protokołów MR mówią jasno: ocena wzmocnienia kontrastowego, czyli tego, jak guz „łapie kontrast”, bazuje na sekwencjach T1‑zależnych, często z dodatkowymi technikami jak fat‑sat czy DIXON, ale rdzeniem pozostaje T1.

Pytanie 30

W brachyterapii MDR stosowane są dawki promieniowania

A. od 0,01 do 0,1 Gy/h
B. od 0,5 do 1,0 Gy/h
C. od 2,0 do 12 Gy/h
D. od 0,2 do 0,4 Gy/h
Zakresy mocy dawki w brachyterapii są ściśle zdefiniowane i trochę podchwytliwe, bo liczby wydają się do siebie podobne, ale mają duże znaczenie kliniczne. Wiele osób myli je, bo intuicyjnie myśli: „brachyterapia = małe dawki”, co nie jest do końca prawdą. W brachyterapii chodzi o bardzo wysoką dawkę całkowitą, ale podawaną lokalnie i w określonym tempie, czyli mocy dawki podanej w Gy/h. Bardzo niskie wartości, rzędu 0,01–0,1 Gy/h, odpowiadają klasycznej brachyterapii LDR (low dose rate). Tam źródła promieniotwórcze są pozostawiane w ciele pacjenta na wiele godzin czy dni, a moc dawki jest na tyle mała, że ekspozycja może być praktycznie ciągła. To już dawno ma swoje miejsce w literaturze, ale coraz częściej jest wypierane przez techniki z wyższą mocą dawki. Zakres 0,2–0,4 Gy/h to nadal obszar typowy dla niskiej mocy dawki, czasem określany jako „wydłużone LDR” albo wartości przejściowe, ale nie spełnia on kryteriów MDR według współczesnych standardów ICRU czy IAEA. W praktyce klinicznej takie tempo napromieniania też oznacza długotrwałe procedury, z koniecznością izolacji pacjenta i specyficznej organizacji pracy oddziału. Przedział 0,5–1,0 Gy/h wydaje się już całkiem spory, więc łatwo pomyśleć, że to „średnia” moc dawki, jednak z punktu widzenia klasyfikacji to nadal poniżej progu przyjmowanego dla MDR. Typowy podział jest dość jednoznaczny: LDR to około 0,4–2 Gy/h, MDR około 2–12 Gy/h, a HDR powyżej 12 Gy/h. Błąd w tym pytaniu zwykle wynika z mieszania pojęć: dawka całkowita vs moc dawki, oraz z intuicyjnego oceniania liczb bez odniesienia do norm i definicji. Z mojego doświadczenia dobrze jest zapamiętać właśnie wartości graniczne, bo one potem przewijają się w planowaniu leczenia, w kartach zabiegowych i w dokumentacji ochrony radiologicznej. Jeśli moc dawki jest za niska, nie mówimy już o MDR, tylko o przedłużonym LDR, a to zmienia zarówno przebieg terapii, jak i wymagania organizacyjne oraz radiobiologiczne.

Pytanie 31

Przy ułożeniu do zdjęcia kręgów szyjnych CIII-CVII w projekcji przednio-tylnej lampa może być odchylona o kąt

A. 10°-15° dogłowowo.
B. 40°-45° doogonowo.
C. 40°-45° dogłowowo.
D. 10°-15° doogonowo.
W obrazowaniu kręgosłupa szyjnego w projekcji przednio-tylnej kluczowe są dwie rzeczy: naturalna lordoza szyjna i masywność barków, które częściowo zasłaniają dolne segmenty C. Cała sztuka polega na takim dobraniu kąta promienia centralnego, żeby możliwie prostopadle przechodził przez trzony kręgów i przestrzenie międzykręgowe, a jednocześnie omijał nadmierne nakładanie się struktur. Zbyt duże kąty, rzędu 40°–45°, zarówno dogłowowo, jak i doogonowo, są w tym badaniu po prostu niepraktyczne. Przy takim ustawieniu dochodzi do wyraźnych zniekształceń geometrycznych: trzony kręgów ulegają wydłużeniu lub skróceniu rzutowemu, przestrzenie międzykręgowe są nienaturalnie rozwarto otwarte lub wręcz zatarte, a ocena morfologii staje się mało wiarygodna. To są wartości kątów, które kojarzą się raczej z zupełnie innymi projekcjami, np. specyficznymi skośnymi projekcjami stawów czy niektórymi projekcjami czaszki, a nie z rutynowym AP szyi. Z kolei odchylenie doogonowe w badaniu kręgów szyjnych AP jest w zasadzie wbrew logice anatomicznej. Taki kierunek promienia powoduje, że promień „idzie” bardziej w stronę klatki piersiowej i barków, co zwiększa nakładanie się masywnych struktur kostnych i tkanek miękkich na obraz kręgów CIII–CVII. Efekt jest taki, że widoczność dolnych segmentów szyjnych jest gorsza, a obraz diagnostycznie mniej wartościowy. Typowym błędem myślowym jest tu mechaniczne przenoszenie skojarzeń z innych projekcji, np. ktoś pamięta, że w jakiejś projekcji kręgosłupa stosuje się duży kąt doogonowo i próbuje to zastosować w szyjnym, co niestety się nie sprawdza. Albo zakłada, że im większy kąt, tym lepiej „otworzą się” przestrzenie międzykręgowe – co przy szyi nie działa, bo w pewnym momencie dominują już zniekształcenia geometryczne i utrata czytelności. W standardach techniki RTG kręgosłupa szyjnego dla projekcji AP przyjmuje się właśnie umiarkowany kąt dogłowowy, około 10°–15°, dostosowany jeszcze indywidualnie do budowy pacjenta. Każde większe odchylenie od tych wartości powinno być bardzo dobrze uzasadnione klinicznie i technicznie, a w rutynowym badaniu raczej się go unika. Dlatego odpowiedzi z dużymi kątami oraz z kierunkiem doogonowym nie spełniają kryteriów poprawnego pozycjonowania i nie są zgodne z dobrą praktyką radiologiczną.

Pytanie 32

Jaki sposób frakcjonowania dawki jest stosowany w radioterapii konwencjonalnej?

A. Dawka frakcyjna w zakresie 2,5-3,5 Gy 2 razy dziennie.
B. Dawka frakcyjna w zakresie 2,5-3,5 Gy 1 raz dziennie.
C. Dawka frakcyjna w zakresie 1,8-2,5 Gy 1 raz dziennie.
D. Dawka frakcyjna w zakresie 1,8-2,5 Gy 2 razy dziennie.
W radioterapii bardzo łatwo pomylić różne schematy frakcjonowania, bo wszystkie wyglądają podobnie: jakaś dawka w Gy i ile razy dziennie. Sedno polega jednak na tym, że pojęcie „radioterapia konwencjonalna” jest dość precyzyjne. Oznacza ono standardowe frakcjonowanie, czyli stosunkowo mała dawka na frakcję, podawana raz dziennie, pięć dni w tygodniu. Gdy dawka pojedynczej frakcji rośnie powyżej typowych 2 Gy, wchodzimy raczej w obszar hipofrakcjonowania, które ma inne cele, inne ryzyko powikłań i zwykle jest ściślej ograniczone do wybranych wskazań klinicznych. Odpowiedzi z dawką 2,5–3,5 Gy sugerują właśnie takie podejście. Tak wysokie dawki frakcyjne stosuje się w schematach skróconych, paliatywnych lub w radioterapii stereotaktycznej, a nie w klasycznej terapii konwencjonalnej. Przy 3 Gy na frakcję ryzyko późnych powikłań w narządach o powolnej proliferacji (np. rdzeń kręgowy, nerki, jelita) znacząco rośnie, dlatego w radioterapii radykalnej unika się rutynowo takich dawek jako „standard”. Kolejny problem to liczba frakcji na dobę. Schematy z napromienianiem dwa razy dziennie to hiperfrakcjonowanie lub akceleracja leczenia. Wymagają one co najmniej 6-godzinnej przerwy między frakcjami i są stosowane w wybranych nowotworach (np. część schematów dla raków głowy i szyi czy drobnokomórkowego raka płuca), ale nie są uznawane za typową radioterapię konwencjonalną. Typowym błędem myślowym jest założenie, że „więcej i częściej” zawsze znaczy lepiej – w radioterapii tak nie jest. Radiobiologia jest bezlitosna: zbyt duża dawka na frakcję albo zbyt duża liczba frakcji dziennie może zniszczyć nie tylko guz, ale i zdrowe tkanki, prowadząc do ciężkich powikłań późnych. Dlatego, gdy mówimy o klasycznym, podręcznikowym schemacie, mamy na myśli dawkę około 2 Gy raz dziennie, a nie wyższe dawki ani dwa naświetlania w ciągu doby.

Pytanie 33

Na zamieszczonym obrazie TK strzałką zaznaczono zatokę

Ilustracja do pytania
A. szczękową w przekroju strzałkowym.
B. czołową w przekroju strzałkowym.
C. czołową w przekroju czołowym.
D. szczękową w przekroju czołowym.
Na obrazie TK widzisz klasyczny przekrój czołowy (koronalny) przez okolice zatok przynosowych. Świadczy o tym układ struktur: symetrycznie położone oczodoły po obu stronach, przegroda nosa biegnąca pionowo pośrodku oraz charakterystyczny kształt małżowin nosowych. Strzałka wskazuje dużą, powietrzną jamę położoną bocznie i nieco poniżej jamy nosowej – to właśnie zatoka szczękowa. Zatoki czołowe leżałyby znacznie wyżej, nad oczodołami, w obrębie kości czołowej, a tutaj ich po prostu nie widać. W praktyce technik i lekarz radiolog muszą bardzo dobrze rozpoznawać takie przekroje, bo od poprawnej identyfikacji zależy opis zmian zapalnych, torbieli, polipów czy poziomów płynu. W badaniach TK zatok standardem jest wykonywanie serii przekrojów koronalnych, bo najlepiej pokazują drożność kompleksu ujściowo-przewodowego i relacje między zatoką szczękową a jamą nosową. Moim zdaniem warto się „oswoić” z obrazem tej zatoki: położenie bocznie od jamy nosowej, cienka kostna ściana dolna sąsiadująca z korzeniami zębów trzonowych i przedtrzonowych, przyśrodkowa ściana granicząca z małżowinami nosowymi. W praktyce laryngologicznej i stomatologicznej to ma duże znaczenie – np. przy planowaniu podniesienia dna zatoki, implantów czy ocenie powikłań zapaleń okołowierzchołkowych. Dobre rozpoznanie, że jest to zatoka szczękowa w przekroju czołowym, jest więc zgodne z typowym standardem interpretacji badań TK zatok i pokazuje, że prawidłowo orientujesz się w anatomii w obrazowaniu.

Pytanie 34

W badaniu cystografii wstępującej środek kontrastowy należy podać

A. przez powłoki skórne do miedniczki nerkowej.
B. bezpośrednio do układu kielichowo-miedniczkowego.
C. bezpośrednio do pęcherza moczowego.
D. wstecznie do moczowodu.
W cystografii wstępującej kluczowe jest zrozumienie, który odcinek dróg moczowych ma być bezpośrednio wypełniony środkiem kontrastowym. Łatwo tu pomylić różne techniki badań urologicznych, bo wszystkie kręcą się wokół nerek, miedniczek, moczowodów i pęcherza, ale każde badanie ma swoją ściśle określoną drogę podania kontrastu. Podawanie środka kontrastowego bezpośrednio do układu kielichowo‑miedniczkowego jest typowe dla pielografii wstępującej albo dla nefrostomii z kontrastem, a nie dla cystografii. W takich procedurach kontrast podaje się przez cewnik wprowadzony do moczowodu lub przez przetokę nerkową, żeby zobrazować górne drogi moczowe – kielichy, miedniczkę, początkowy odcinek moczowodu. To zupełnie inny cel niż ocena pęcherza. Podawanie kontrastu „przez powłoki skórne do miedniczki nerkowej” sugeruje nakłucie przezskórne, czyli technikę typową dla nefrostomii przezskórnej pod kontrolą USG lub RTG. Takie postępowanie jest inwazyjne, wymaga znieczulenia, sterylnego pola zabiegowego i jest zarezerwowane głównie dla odbarczenia nerki lub specjalistycznych badań górnych dróg moczowych, a nie do rutynowej cystografii. Z kolei wstecznie do moczowodu podajemy kontrast w pielografii wstępującej wykonywanej najczęściej podczas cystoskopii. Lekarz wprowadza wtedy cienki cewnik do ujścia moczowodu i wstrzykuje kontrast, żeby uwidocznić przebieg moczowodu i miedniczki nerkowej. To badanie służy wykrywaniu zwężeń, kamieni, guzów górnych dróg moczowych. Typowym błędem myślowym jest wrzucanie wszystkich badań „z kontrastem w drogach moczowych” do jednego worka i zakładanie, że skoro gdzieś jest kontrast w nerkach czy moczowodzie, to droga podania może być dowolna. W praktyce każde badanie ma swój schemat: cystografia wstępująca – kontrast przez cewkę do pęcherza, urografia dożylna – kontrast dożylnie, pielografia wstępująca – kontrast przez moczowód, nefrostografia – przez przetokę nerkową. Znajomość tych zasad nie jest tylko teorią, bo od prawidłowej drogi podania zależy bezpieczeństwo pacjenta, jakość obrazów i poprawna interpretacja wyniku.

Pytanie 35

Który obszar napromieniania w radioterapii oznacza się skrótem PTV?

A. Zaplanowany obszar napromieniania.
B. Obszar guza.
C. Kliniczny obszar napromieniania.
D. Obszar leczony.
W radioterapii onkologicznej podobne nazwy obszarów potrafią być mylące, bo wszystkie brzmią dość technicznie, a jednak znaczą coś innego. Obszar guza to głównie odpowiednik GTV, czyli makroskopowo widoczna masa nowotworowa w badaniach obrazowych lub w badaniu fizykalnym. GTV nie uwzględnia mikroskopowego naciekania ani marginesów bezpieczeństwa, a tym bardziej nie bierze pod uwagę błędów ustawienia pacjenta i niepewności geometrycznych. Gdyby planować napromienianie tylko na „obszar guza”, bardzo łatwo byłoby niedoleczyć choroby w obrębie komórek nowotworowych rozsianych kilka milimetrów lub centymetr od widocznej zmiany. Kliniczny obszar napromieniania, czyli CTV, jest krokiem dalej – obejmuje guz plus strefę potencjalnego zajęcia mikroskopowego. To ważne pojęcie, stosowane w wytycznych ICRU i w praktyce lekarzy radioterapeutów, ale nadal nie jest to PTV. CTV nadal nie uwzględnia wszystkich niepewności związanych z codziennym ustawieniem pacjenta na aparacie, jego ruchami oddechowymi czy zmianami ułożenia narządów z dnia na dzień. Z mojego doświadczenia właśnie tu pojawia się typowy błąd myślowy: skoro CTV to „kliniczny obszar napromieniania”, wielu osobom wydaje się, że jest to to samo co „obszar leczony”. Tymczasem obszar leczony, rozumiany praktycznie jako obszar, który w rzeczywistości dostaje zaplanowaną dawkę, to jest PTV – zaplanowany obszar napromieniania. To PTV powstaje z CTV przez dodanie marginesów technicznych i geometrycznych. Odpowiedź „obszar leczony” jest też zbyt ogólna i nie odpowiada żadnemu standardowemu, zdefiniowanemu skrótowi w systemie ICRU. W profesjonalnym planowaniu radioterapii trzeba precyzyjnie rozróżniać te pojęcia: GTV – guz, CTV – kliniczny obszar obejmujący potencjalne mikroskopowe szerzenie, PTV – obszar zaplanowany do pokrycia dawką z uwzględnieniem niepewności. Tylko wtedy można sensownie ocenić rozkład dawki, krzywe DVH i spełnić wymagania protokołów klinicznych. Mylenie PTV z GTV albo z „obszarem leczonym” prowadzi do błędnej interpretacji planu i może skutkować albo niedostatecznym pokryciem nowotworu, albo nadmiernym napromienianiem zdrowych tkanek.

Pytanie 36

Przy podejrzeniu ciała obcego w oczodole należy wykonać

A. jedno zdjęcie AP i dwa boczne oczodołów.
B. dwa zdjęcia AP i dwa boczne oczodołów.
C. jedno zdjęcie PA i jedno boczne oczodołów.
D. dwa zdjęcia PA i jedno boczne oczodołów.
W diagnostyce ciała obcego w oczodole logika doboru projekcji RTG jest kluczowa. Typowy błąd polega na tym, że ktoś myśli: „im więcej różnych zdjęć, tym lepiej”, albo wybiera projekcje AP zamiast PA, bo brzmią podobnie i wydają się zamienne. Niestety, w radiologii takie podejście prowadzi do niepotrzebnego zwiększenia dawki promieniowania i wcale nie poprawia jakości informacji, jaką uzyskujemy. Projekcja AP (antero–posterior) oznacza, że promień pada z przodu na tył. Dla oczodołów nie jest to projekcja standardowa przy podejrzeniu ciała obcego, bo gorzej chroni struktury wewnątrzczaszkowe i soczewki, a jednocześnie nie daje istotnej przewagi diagnostycznej nad PA. Z mojego doświadczenia to jest raczej projekcja stosowana w innych sytuacjach i nie powinna zastępować PA tylko dlatego, że ktoś ją lepiej kojarzy z klasycznym „zdjęciem twarzoczaszki od przodu”. Problemem jest też liczba projekcji. Jedno zdjęcie PA i jedno boczne to za mało, bo nie pozwala dobrze prześledzić przesunięcia ciała obcego względem struktur kostnych przy zmianie ustawienia – trudniej wtedy jednoznacznie określić, czy ciało leży w gałce ocznej, w mięśniach, czy bliżej ściany oczodołu. Z kolei schematy typu „jedno AP i dwa boczne” czy „dwa AP i dwa boczne” są nadmiarowe i niezgodne z typowymi zaleceniami. Dwa boczne nie wnoszą dużej nowej informacji, bo w płaszczyźnie strzałkowej nic się istotnie nie zmienia, za to każda dodatkowa projekcja to dodatkowa dawka. Dobre praktyki mówią jasno: obrazowanie musi być celowane, a nie przypadkowe. Przy podejrzeniu ciała obcego w oczodole chodzi o optymalne minimum – tyle projekcji, ile jest potrzebne do pewnej lokalizacji, ale nie więcej. Dlatego standardem są dwie projekcje PA i jedna boczna, a nie dowolne kombinacje AP/boczne według uznania.

Pytanie 37

Odprowadzenie II rejestruje różnicę potencjałów między

A. prawą ręką i lewą nogą.
B. lewą i prawą ręką.
C. prawą ręką i prawą nogą.
D. lewą ręką i lewą nogą.
W odprowadzeniach kończynowych EKG łatwo się pomylić, bo wszystkie nazwy i elektrody mieszają się ze sobą, a na ekranie aparatu widzimy po prostu linie. Merytorycznie jednak każde odprowadzenie ma precyzyjnie zdefiniowany układ biegunów, oparty na klasycznym trójkącie Einthovena. W tym układzie prawa ręka, lewa ręka i lewa noga tworzą trzy wierzchołki, a odprowadzenia I, II i III są liniami między nimi. Odprowadzenie II to różnica potencjałów między prawą ręką (biegun ujemny) a lewą nogą (biegun dodatni), więc wszystkie inne kombinacje kończyn nie pasują do tej definicji. Częsty błąd myślowy polega na automatycznym założeniu, że „II” to po prostu „druga ręka”, czyli lewa, więc niektórzy kojarzą je z różnicą między lewą i prawą ręką. Tymczasem to opisuje odprowadzenie I, które rejestruje różnicę potencjałów między lewą a prawą ręką. Takie skojarzenie jest intuicyjne, ale niestety niezgodne z fizjologią zapisu EKG. Inna pomyłka to łączenie odprowadzenia II z parą lewej ręki i lewej nogi. Taki układ odpowiada odprowadzeniu III, gdzie lewa ręka jest biegunem ujemnym, a lewa noga dodatnim. Jeśli ktoś myśli bardziej „anatomicznie” niż „elektrycznie”, może sobie w głowie ustawiać numerację w dół ciała, co znowu prowadzi do błędów. Pojawia się też czasem przekonanie, że w którymś odprowadzeniu bierze udział prawa noga jako biegun dodatni lub ujemny. Prawa noga w standardowym EKG pełni rolę elektrody uziemiającej, stabilizującej zapis i zmniejszającej zakłócenia, ale nie jest elementem żadnego z trzech podstawowych odprowadzeń kończynowych. Z praktycznego punktu widzenia pomylenie tych konfiguracji może skutkować błędną interpretacją osi serca, nieprawidłowym zrozumieniem, skąd pochodzi dany sygnał i dlaczego załamki P czy QRS wyglądają tak, a nie inaczej. Dlatego w dobrej praktyce diagnostyki elektromedycznej warto po prostu zapamiętać: I – między rękami, II – prawa ręka i lewa noga, III – lewa ręka i lewa noga. To porządkuje całą resztę i ułatwia dalszą naukę EKG.

Pytanie 38

Na którym obrazie rentgenowskim sutka uwidoczniono zmianę patologiczną w obrębie węzłów chłonnych?

A. Obraz 4
Ilustracja do odpowiedzi A
B. Obraz 1
Ilustracja do odpowiedzi B
C. Obraz 3
Ilustracja do odpowiedzi C
D. Obraz 2
Ilustracja do odpowiedzi D
W tym zadaniu łatwo skupić się wyłącznie na samych zmianach w obrębie gruczołu sutkowego i przez to przeoczyć węzły chłonne pachowe, które są kluczowe dla oceny zaawansowania raka piersi. Na obrazach 1, 3 i 4 widoczne są różne typy patologii piersi, ale nie są to zmiany w węzłach chłonnych. Na pierwszym obrazie dominuje obraz liczych drobnych mikrozwapnień rozsianych w obrębie tkanki gruczołowej. Taki obraz sugeruje raczej proces wewnątrzprzewodowy lub rozległą zmianę w samym miąższu piersi, a nie węzły pachowe. Typowy błąd myślowy polega tu na utożsamianiu „im więcej zwapnień, tym większa patologia” i automatycznym przypisywaniu ich węzłom, co nie jest prawdą – lokalizacja względem anatomicznych granic piersi jest kluczowa. Na trzecim obrazie widoczny jest guzek w obrębie piersi oraz dodatkowa, dobrze odgraniczona zmiana w dolnej części obrazu, o wyglądzie sugerującym raczej łagodny guzek w tkance sutka niż węzeł pachowy. Węzły chłonne pachowe powinny znajdować się wyżej i bardziej bocznie, przy zarysie ściany klatki piersiowej, a nie w typowej strefie projekcji gruczołu. Często myli się takie struktury, bo na pierwszy rzut oka wyglądają jak „kuliste cienie” i intuicyjnie kojarzą się z węzłami, ale dokładniejsza analiza położenia i kontekstu anatomicznego szybko to prostuje. Na czwartym obrazie natomiast widoczne są podłużne, bardzo silnie wysycone cienie odpowiadające klipsom chirurgicznym lub innym materiałom metalicznym po zabiegu operacyjnym. To nie są ani guzy, ani węzły chłonne – to artefakty związane z wcześniejszym leczeniem, np. mastektomią czy biopsją. Z mojego punktu widzenia główny problem przy takich pytaniach polega na braku nawyku systematycznej oceny całego pola obrazowania: miąższ piersi, skóra, brodawka, tkanka podskórna, a na końcu dół pachowy i węzły. Jeśli pominie się ten ostatni krok, łatwo wybiera się obraz z najbardziej „spektakularną” zmianą w piersi, zamiast tego, który rzeczywiście pokazuje patologię węzłową. W praktyce klinicznej takie pomyłki mogłyby prowadzić do niedoszacowania stopnia zaawansowania nowotworu, dlatego w szkoleniu radiologicznym tak mocno podkreśla się znaczenie prawidłowego pozycjonowania projekcji MLO i obowiązkowej oceny pachy.

Pytanie 39

Którą strukturę anatomiczną oznaczono strzałką na radiogramie stawu kolanowego?

Ilustracja do pytania
A. Guzek międzykłykciowy przyśrodkowy.
B. Kłykieć boczny.
C. Kłykieć przyśrodkowy.
D. Guzek międzykłykciowy boczny.
Na tym typie radiogramu stawu kolanowego bardzo łatwo pomylić podstawowe struktury anatomiczne, zwłaszcza gdy patrzy się tylko na jasne kontury kości, a nie na ich kształt i wzajemne położenie. Strzałka nie wskazuje na kłykcie kości udowej, lecz na wyniosłość położoną pomiędzy kłykciami kości piszczelowej. Kłykcie boczny i przyśrodkowy kości udowej widzimy wyżej, jako duże, zaokrąglone powierzchnie stawowe, które tworzą „daszek” nad szparą stawową. One są gładkie, półkuliste, a ich kontur jest dość regularny. Guzki międzykłykciowe są natomiast po stronie piszczeli, bardziej centralnie, i mają charakterystyczny, trójkątny, nieco „kolczasty” kształt. Typowym błędem jest utożsamianie każdej wyniosłości w okolicy szpary stawowej z kłykciem, bo słowo „kłykieć” kojarzy się intuicyjnie z czymś wypukłym. W interpretacji RTG trzeba jednak pilnować, z której kości pochodzi dana struktura. Drugi częsty problem to zamiana stron: bocznej z przyśrodkową. Bez analizy całej kości piszczelowej i udowej, szerokości szpary stawowej i ustawienia trzonów łatwo „odwrócić” sobie obraz w głowie. Z mojego doświadczenia pomaga patrzenie na charakterystyczny kształt kłykcia bocznego piszczeli – zwykle jest on trochę mniejszy i bardziej wklęsły niż przyśrodkowy, co pozwala określić, po której stronie leży guzek międzykłykciowy boczny. Guzek międzykłykciowy przyśrodkowy jest położony bardziej do środka ciała, bliżej osi mechanicznej kończyny, i na takim zdjęciu będzie po przeciwnej stronie niż wskazywana strzałką. Dobre praktyki w diagnostyce obrazowej mówią, żeby przed nazwaniem struktury zawsze zlokalizować: najpierw kość (udowa czy piszczelowa), potem segment (nasada, przynasada), dopiero na końcu konkretny guzek czy kłykieć. Pominięcie tych kroków prowadzi właśnie do takich mylących skojarzeń, jak nazwanie guzka międzykłykciowego kłykciem lub pomylenie strony bocznej z przyśrodkową.

Pytanie 40

Przyczyną zaniku kostnego jest

A. utrata macierzy kostnej.
B. nadmiar witaminy D3.
C. przedawkowanie spożycia wapnia.
D. duży i częsty wysiłek.
W tym pytaniu łatwo pójść w stronę skojarzeń typu „duży wysiłek niszczy kości” albo „jak czegoś jest za dużo, to też szkodzi”, ale w kontekście zaniku kostnego to myślenie trochę prowadzi na manowce. Zanik kostny jest przede wszystkim wynikiem utraty macierzy kostnej, a nie nadmiernej aktywności fizycznej czy nadmiaru konkretnych składników w diecie. Jeśli chodzi o duży i częsty wysiłek, to w praktyce medycznej i sportowej przyjmuje się wręcz odwrotną zasadę: obciążenia mechaniczne, oczywiście w granicach fizjologii, stymulują kość do przebudowy i wzmacniania. U osób przewlekle unieruchomionych, leżących, po długotrwałym unieruchomieniu w gipsie, bardzo szybko pojawia się zanik kostny właśnie dlatego, że brak jest bodźca mechanicznego. To tzw. osteoporoza z odciążenia. Czyli nie „za dużo ruchu”, tylko raczej jego brak jest problemem dla tkanki kostnej. Kwestia nadmiaru witaminy D3 też bywa myląca. Owszem, przewlekłe, duże przedawkowanie witaminy D3 może prowadzić do hiperkalcemii, uszkodzenia nerek, odkładania wapnia w tkankach miękkich, ale nie jest to typowy mechanizm powodujący zanik macierzy kostnej. Standardowo witamina D3 w prawidłowych dawkach jest wręcz niezbędna do prawidłowego wchłaniania wapnia i mineralizacji kości. W zaleceniach klinicznych podkreśla się, że niedobór D3, a nie jej nadmiar, jest jednym z ważnych czynników ryzyka osteoporozy. Podobnie przedawkowanie wapnia w diecie nie jest podstawową przyczyną zaniku kostnego. Nadmiar wapnia może wywołać zaburzenia metaboliczne, kamicę nerkową czy dolegliwości ze strony przewodu pokarmowego, ale nie prowadzi bezpośrednio do degradacji macierzy kostnej. Typowym błędem myślowym jest założenie, że skoro kość = wapń, to każda zmiana ilości wapnia od razu oznacza utratę kości. W rzeczywistości kluczowa jest równowaga między komórkami kościotwórczymi (osteoblastami) a kościogubnymi (osteoklastami) oraz stan macierzy organicznej. Zanik kostny rozwija się wtedy, gdy ta macierz jest tracona, a nie dlatego, że „za bardzo się ruszamy” czy „zjedliśmy za dużo wapnia lub witaminy D3”. W obrazowaniu radiologicznym i w densytometrii patrzymy właśnie na efekt przewlekłej utraty tej struktury, a nie na jednorazowe błędy dietetyczne.