Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 9 grudnia 2025 11:03
  • Data zakończenia: 9 grudnia 2025 11:12

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na rysunku to

Ilustracja do pytania
A. USB
B. 8P8C
C. RS-232
D. OBD II
Wybór interfejsu komunikacyjnego ma kluczowe znaczenie w kontekście integracji i funkcjonalności sterowników PLC. RS-232, choć kiedyś popularny, obecnie jest rzadko stosowany w zaawansowanych systemach przemysłowych ze względu na ograniczoną prędkość transmisji i brak możliwości sieciowych. Wspiera jedynie komunikację punkt-punkt, co ogranicza jego zastosowanie w nowoczesnych rozwiązaniach automatyki. OBD II to interfejs diagnostyczny stosowany w motoryzacji, zupełnie nieodpowiedni dla przemysłowych aplikacji PLC, które wymagają integracji z sieciami komputerowymi. USB, choć wszechstronny i używany do podłączania różnych urządzeń w komputerach osobistych, nie jest standardowym interfejsem komunikacyjnym w systemach przemysłowych. Przemysł stawia na stabilność i możliwość pracy w trudnych warunkach, co zapewnia interfejs 8P8C. Użycie standardu Ethernet w PLC to krok w stronę nowoczesności i integracji z systemami IT, których wymaga współczesna automatyka przemysłowa. Dlatego wybór nieodpowiedniego interfejsu może prowadzić do problemów z kompatybilnością i wydajnością w przyszłych implementacjach.

Pytanie 2

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. timera opóźniającego wyłączenie TOF.
B. licznika impulsów zliczającego w górę CTU.
C. timera opóźniającego załączenie TON.
D. licznika impulsów zliczającego w dół CTD.
Brawo! Zidentyfikowanie bloku jako licznika impulsów zliczającego w dół CTD to klucz do zrozumienia działania liczników w sterownikach PLC. Liczniki CTD są używane do odliczania w dół od określonej wartości. Z każdym impulsem, wartość aktualna (CV) zmniejsza się o jeden, a gdy osiągnie zero, wyjście (Q) zmienia stan, co może być wykorzystane do wyzwalania innych funkcji w systemie. W praktyce, licznik taki może być używany do zarządzania ilością cykli maszynowych, kontrolowania zużycia materiałów czy monitorowania liczby obrotów w maszynach. Jest to niezastąpione narzędzie w automatyce, pozwalające na precyzyjne kontrolowanie procesów. W branży, standardy często wymagają użycia liczników w aplikacjach, gdzie dokładność i niezawodność są kluczowe. Dobrym przykładem jest produkcja, gdzie licznik może zapewniać, że procesy są wykonywane dokładnie tyle razy, ile jest to wymagane, co minimalizuje straty i optymalizuje wykorzystanie zasobów. Z mojego doświadczenia, zrozumienie i umiejętność implementacji liczników CTD w projektach PLC jest kluczowa dla każdego technika automatyka.

Pytanie 3

Która z wymienionych funkcji programowych sterownika PLC służy do realizacji działania odejmowania?

A. ADD
B. DIV
C. SUB
D. MUL
Funkcje dostępne w sterownikach PLC są kluczowe dla realizacji różnorodnych zadań automatyzacji. Zaczynając od DIV, odpowiada ona za dzielenie. To działanie jest często wykorzystywane w procesach przemysłowych, gdzie konieczne jest obliczanie średnich wartości czy proporcji. Niemniej jednak, nie jest to działanie odpowiedzialne za odejmowanie. Zamieszanie może wynikać z podobieństwa skrótów lub funkcjonalności związanych z podstawowymi działaniami arytmetycznymi, ale każda z tych funkcji ma swoje konkretne zastosowanie. ADD to funkcja dodawania, która z kolei sumuje wartości. Używa się jej często do akumulacji danych, czyli np. sumowania ilości wyprodukowanych sztuk. Podobnie jak w przypadku DIV, nie odpowiada ona za wykonanie odejmowania. MUL, czyli mnożenie, pozwala na zwiększanie wartości poprzez wielokrotność. Jest to przydatne np. w obliczeniach skalujących. Wszystkie te funkcje mają swoje miejsce w programowaniu PLC, ale żadna z nich nie realizuje odejmowania. Błędne przypisanie funkcji do nieodpowiedniego działania może wynikać z nieuwagi lub pomylenia skrótów. Kluczem jest zrozumienie ich specyfiki i zastosowań. Zrozumienie różnic między tymi podstawowymi działaniami jest fundamentalne dla efektywnego programowania PLC i unikania błędów logicznych w projektach.

Pytanie 4

Na ilustracji przedstawiono

Ilustracja do pytania
A. bezpiecznik.
B. dławik.
C. przekaźnik.
D. stycznik.
Stycznik to urządzenie elektryczne, które umożliwia zdalne sterowanie obwodami elektrycznymi. Zasadniczo działa na zasadzie elektromagnesu – po podaniu napięcia na cewkę, styki ruchome są przyciągane do styków stałych, co zamyka obwód. Styczniki są kluczowe w automatyce przemysłowej, służą do załączania i wyłączania obwodów o wysokim napięciu i prądzie. Często stosuje się je w aplikacjach takich jak sterowanie silnikami, gdzie mogą pracować w trudnych warunkach środowiskowych i mechanicznych. Istnieją standardy, jak IEC 60947, które definiują parametry i wymagania dotyczące styczników. Z mojego doświadczenia, to jeden z najczęściej używanych elementów w szafach sterowniczych. Warto zauważyć, że jakość stycznika wpływa na niezawodność całego systemu, dlatego wybór odpowiedniego modelu i producenta jest istotny. Zmiana na stycznik o wyższej mocy może być konieczna, jeśli system zacznie wymagać większych prądów.

Pytanie 5

Do demontażu przekaźnika z szyny TH35 należy zastosować

Ilustracja do pytania
A. wkrętak krzyżowy.
B. wkrętak płaski.
C. klucz nasadowy.
D. klucz oczkowy.
Przekaźniki montowane na szynie TH35, znane jako szyny DIN, są standardem w instalacjach elektrycznych. Te szyny umożliwiają szybki montaż i demontaż urządzeń takich jak przekaźniki, styczniki czy automatyka przemysłowa. Użycie wkrętaka płaskiego do demontażu takiego przekaźnika to nie tylko wygodne, ale przede wszystkim bezpieczne rozwiązanie. Wynika to z konstrukcji urządzeń montowanych na tych szynach, które często posiadają specjalne zaczepy lub zatrzaski. Wkrętak płaski idealnie nadaje się do delikatnego podważenia tych zaczepów, umożliwiając szybkie i bezproblemowe zdjęcie przekaźnika bez ryzyka uszkodzenia samego urządzenia lub szyny. Moim zdaniem, znajomość tych drobnych, ale istotnych szczegółów montażowych jest kluczowa w pracy każdego elektryka. Właściwe narzędzia to podstawa efektywności i bezpieczeństwa pracy. W praktyce, często zdarza się, że narzędzia takie jak wkrętak płaski są niezastąpione, zwłaszcza gdy pracujemy w ograniczonej przestrzeni rozdzielnicy elektrycznej. Dobre praktyki mówią o stosowaniu narzędzi zgodnie z ich przeznaczeniem, co znacząco zmniejsza ryzyko uszkodzeń i zwiększa trwałość komponentów.

Pytanie 6

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. RS-232
B. HDMI
C. RJ-45
D. USB
Złącze przedstawione na ilustracji to klasyczne złącze RS-232, czyli interfejs komunikacji szeregowej używany od wielu lat w technice komputerowej i automatyce. Widoczna na rysunku wtyczka ma 9 pinów (DB-9), które odpowiadają za różne sygnały transmisji danych, m.in. RxD (odbiór danych), TxD (nadawanie danych), GND (masa), RTS/CTS (sterowanie przepływem). Standard RS-232 wykorzystuje napięcia w zakresie od -12 V do +12 V, co odróżnia go od nowszych standardów logicznych TTL (0–5 V). Dawniej był to podstawowy sposób łączenia komputerów z modemami, drukarkami czy sterownikami PLC. Dziś nadal spotykany w serwisie przemysłowym i urządzeniach embedded, gdzie niezawodność i prostota są ważniejsze niż prędkość. Z mojego doświadczenia RS-232 to wciąż nieoceniony interfejs diagnostyczny – łatwy do uruchomienia, odporny na zakłócenia i możliwy do obsługi nawet przez prosty terminal. Współczesne laptopy nie mają już tych portów, ale stosuje się przejściówki USB–RS232, by zachować kompatybilność z klasycznym sprzętem.

Pytanie 7

Na podstawie danych technicznych zawartych w tabeli ustal parametry zasilania maty grzejnej.

Nazwa produktu:Mata grzejna 5,0 m² 170 W THERMOVAL
Powierzchnia grzewcza5,0 m²
Całkowita moc grzewcza850 W
Moc grzewcza / m²170 W
Napięcie zasilające230 V
Wymiary produktuszer. 0,5 x dł. 10 m
A. Napięcie 230 V, prąd 5,0 A
B. Napięcie 170 V, prąd 3,7 A
C. Napięcie 230 V, prąd 3,7 A
D. Napięcie 230 V, prąd 0,7 A
Analiza błędnych odpowiedzi jest kluczowa dla zrozumienia fizycznych podstaw działania urządzeń elektrycznych. Zacznijmy od napięcia 170 V i prądu 3,7 A. W tym przypadku, nie odpowiada to danym z tabeli, gdzie wyraźnie wskazano napięcie 230 V. Często, błędne założenia wynikają z niewłaściwego odczytywania specyfikacji technicznych. Podobnie z napięciem 230 V i prądem 0,7 A. Obliczenia pokazują, że dla mocy 850 W, prąd powinien wynosić około 3,7 A, a nie 0,7 A. Często w takich zadaniach występuje błąd w postaci zapominania o zależności P = U * I, co prowadzi do błędnych wniosków. Kolejna opcja z prądem 5,0 A również jest niepoprawna. Tak duża wartość prądu przy napięciu 230 V wskazywałaby na wyższą moc, niż podana w tabeli. Niewłaściwe zrozumienie tych relacji to częsty błąd, który można skorygować poprzez dokładne studiowanie podstawowych praw fizycznych oraz przykładów zastosowań praktycznych. Dla elektryków i inżynierów kluczowe jest zrozumienie, jak parametry techniczne wpływają na działanie urządzeń oraz jakie skutki może mieć ich niepoprawne zastosowanie w rzeczywistości.

Pytanie 8

Na podstawie przedstawionej tabliczki znamionowej wskaż dopuszczalny zakres napięć zasilania silnika prądu przemiennego, posiadającego uzwojenia połączone w gwiazdę zasilanego z sieci o częstotliwości 60 Hz.

Ilustracja do pytania
A. 254 ÷ 277 V
B. 220 ÷ 240 V
C. 380 ÷ 420 V
D. 440 ÷ 480 V
Silnik przedstawiony na tabliczce znamionowej ma określony zakres napięć zasilania, w którym może bezpiecznie pracować. Dla częstotliwości sieci 60 Hz oraz uzwojeń połączonych w gwiazdę, dopuszczalny zakres napięć wynosi 440 ÷ 480 V. Taki zakres jest określony przez standardy międzynarodowe, które mają na celu zapewnienie bezpieczeństwa i efektywności pracy urządzeń elektrycznych. W praktyce oznacza to, że silnik będzie działał optymalnie w systemach elektrycznych, które dostarczają napięcie w tym przedziale. Jest to szczególnie ważne w zastosowaniach przemysłowych, gdzie stabilność i niezawodność są kluczowe. Z mojego doświadczenia, dobór odpowiedniego napięcia zasilania pozwala na uniknięcie problemów związanych z nadmiernym zużyciem energii oraz nadmiernym obciążeniem silnika, co może prowadzić do jego uszkodzenia. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi, które zawsze kładą nacisk na zrozumienie specyfikacji technicznych i ich zastosowanie w praktyce.

Pytanie 9

Który przyrząd pomiarowy należy wykorzystać do przygotowania korytek montażowych o wskazanej długości?

A. Mikrometr.
B. Przymiar kreskowy.
C. Średnicówkę.
D. Czujnik zegarowy.
Przymiar kreskowy, często zwany też miarą lub linijką, jest podstawowym narzędziem pomiarowym używanym do mierzenia długości na płaskich powierzchniach. To precyzyjne narzędzie, które pozwala na dokładne odmierzanie korytek montażowych, co jest kluczowe podczas prac konstrukcyjnych i montażowych. Przymiar kreskowy jest wykonany z metalu lub tworzywa sztucznego i ma naniesione podziałki, zazwyczaj w milimetrach i centymetrach. Dzięki swojej prostej konstrukcji i łatwości w użyciu, jest niezastąpiony w warsztatach i na budowach. W praktyce, przy produkcji korytek montażowych, ważne jest, aby długość była dokładnie taka, jaka została zaplanowana, aby uniknąć problemów z montażem. Przymiar kreskowy to narzędzie, które daje pewność, że wszystko jest mierzone precyzyjnie i zgodnie z projektem. W branży budowlanej i mechanicznej, dokładne wymiary są kluczowe dla trwałości i niezawodności konstrukcji, dlatego przymiar kreskowy jest tak powszechnie stosowany. Dodatkowo, jego kompaktowy rozmiar i łatwość w przechowywaniu sprawiają, że jest to narzędzie pierwszego wyboru, gdy mówimy o podstawowych narzędziach pomiarowych. Warto też wspomnieć, że w standardowych praktykach przemysłowych, użycie przymiaru kreskowego jest preferowane ze względu na jego dostępność i niską cenę, co czyni go idealnym dla małych i dużych projektów.

Pytanie 10

Który rozrusznik typu „softstart” należy zastosować do łagodnego rozruchu silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. Rozrusznik 2.
B. Rozrusznik 3.
C. Rozrusznik 4.
D. Rozrusznik 1.
Rozrusznik 3, ATS01N125, jest idealny do zastosowania w środowisku wysokiego zapylenia dzięki swojej obudowie o stopniu ochrony IP 67. To oznacza, że jest całkowicie odporny na kurz i może wytrzymać zanurzenie w wodzie do określonej głębokości i czasu. To kluczowy aspekt, gdy planujesz montaż urządzeń w trudnych warunkach środowiskowych, gdzie pył może wpływać na działanie sprzętu. Moim zdaniem, wybór odpowiedniego stopnia ochrony to absolutna podstawa w takich sytuacjach. Dodatkowo, ten model obsługuje napięcia 1x230 V, co jest zgodne z potrzebami dla silnika jednofazowego. Zastosowanie softstartu nie tylko wydłuża żywotność silnika, ale także zmniejsza zużycie energii podczas uruchamiania, co jest korzystne z punktu widzenia ekonomii i ochrony środowiska. Dzięki temu można uniknąć nagłych skoków prądu, które mogą uszkodzić inne komponenty systemu. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi i standardami branżowymi, gdzie zawsze warto kierować się niezawodnością i bezpieczeństwem.

Pytanie 11

Na podstawie fragmentu instrukcji przekaźnika czasowego wskaż, które położenie przełączników realizuje funkcję załączenia z opóźnieniem.

Ilustracja do pytania
A. Położenie I
B. Położenie II
C. Położenie IV
D. Położenie III
Położenie I jest właściwą odpowiedzią, bo realizuje funkcję załączenia z opóźnieniem. W tym ustawieniu po podaniu napięcia sterowniczego, przekaźnik nie zadziała od razu. Jest opóźnienie, które pozwala na pewne operacje zanim urządzenie zostanie załączone. To jest przydatne w sytuacjach, gdzie nie chcemy, by sprzęt działał natychmiast po włączeniu, na przykład w systemach wentylacyjnych, gdzie potrzebujemy chwili na stabilizację innych komponentów przed uruchomieniem głównego wentylatora. Standardy branżowe wskazują, że opóźnienie załączenia poprawia niezawodność systemu poprzez redukcję skoków napięcia i przeciążeń. Z mojego doświadczenia, ustawienie takie pomaga również w zarządzaniu systemami automatyzacji budynkowej, gdzie sekwencyjne włączanie urządzeń jest kluczowe dla optymalnej pracy. Warto pamiętać, że zgodnie z normami IEC, takie przekaźniki czasowe są często używane w układach sterowania maszyn, by zapewnić bezpieczne i efektywne działanie.

Pytanie 12

Który rysunek przedstawia symbol graficzny zestyku przekaźnika czasowego o opóźnionym załączeniu?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Poprawnie – to symbol zestyków przekaźnika czasowego o opóźnionym załączeniu. Charakterystycznym elementem jest łukowata linia przy stykach, oznaczająca działanie zależne od czasu. W praktyce oznacza to, że po podaniu napięcia na cewkę przekaźnika zestyk nie załącza się od razu, lecz dopiero po upływie określonego czasu ustawionego na przekaźniku. Takie przekaźniki są stosowane np. w układach automatyki, gdzie konieczne jest sekwencyjne uruchamianie urządzeń – wentylator włącza się dopiero po kilku sekundach od startu silnika, oświetlenie awaryjne reaguje z opóźnieniem lub grzałka załącza się po stabilizacji układu. W dokumentacji technicznej zapis symbolu jest zgodny z normami PN-EN 60617. Moim zdaniem warto zapamiętać, że łuk w symbolu zawsze oznacza funkcję czasową – a jego położenie względem styków określa, czy chodzi o opóźnione załączenie, czy opóźnione wyłączenie.

Pytanie 13

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0-100 ºC/0-20 mA dla wejścia sterownika PLC 0-20 mA?

Ilustracja do pytania
A. input SW1 - 01011010, output SW2 - 1001.
B. input SW1 - 01001001, output SW2 - 0000.
C. input SW1 - 01011010, output SW2 - 0110.
D. input SW1 - 10001100, output SW2 - 0000.
Odpowiedź jest prawidłowa, ponieważ konfiguracja input SW1 - 01001001 i output SW2 - 0000 jest idealna dla toru pomiarowego czujnika 0-100 ºC/0-20 mA przy wejściu sterownika PLC 0-20 mA. Wybierając taką konfigurację, ustawiamy właściwe zakresy działania czujnika i sterownika, co jest kluczowe dla dokładności pomiarów. W praktyce oznacza to, że sygnał prądowy 0-20 mA odpowiada mierzonym temperaturom od 0 do 100 ºC. Jest to zgodne z dobrymi praktykami, gdzie precyzyjne dopasowanie zakresu pomiarowego do rzeczywistych warunków pracy minimalizuje błędy. Taka konfiguracja pozwala na pełne wykorzystanie rozdzielczości i dokładności przetwarzania sygnałów w systemach sterowania. Warto pamiętać, że poprawne ustawienie dip-switchy jest istotne, gdyż nawet mała niedokładność może prowadzić do dużych błędów w przetwarzaniu danych w PLC, co w przypadku przemysłowych aplikacji może mieć poważne konsekwencje.

Pytanie 14

Aby zapewnić stałą wartość ciśnienia doprowadzanego do układu pneumatycznego, należy zastosować zawór

A. dławiący.
B. zwrotny.
C. bezpieczeństwa.
D. redukcyjny.
Zawór bezpieczeństwa pełni zupełnie inną rolę w układzie pneumatycznym. Jego zadaniem jest ochrona systemu przed nadmiernym wzrostem ciśnienia, co mogłoby prowadzić do uszkodzeń. Gdy ciśnienie przekroczy określoną wartość, zawór otwiera się, aby upuścić nadmiar gazu, zapobiegając w ten sposób awarii. To typowy komponent w systemach, gdzie bezpieczeństwo ma kluczowe znaczenie, jak na przykład w zbiornikach ciśnieniowych czy kompresorach. Z kolei zawór dławiący stosuje się do regulacji przepływu powietrza, co wpływa na prędkość działania elementów wykonawczych, takich jak siłowniki. Nie reguluje on jednak ciśnienia, a jedynie strumień przepływu. Natomiast zawór zwrotny, jak sama nazwa wskazuje, zapobiega cofaniu się medium w układzie, działając jak jednokierunkowe zamknięcie. Jego obecność jest kluczowa w systemach, gdzie cofanie medium mogłoby powodować nieprawidłowości w działaniu, ale również nie reguluje ciśnienia. Wybierając odpowiedź, można się łatwo pomylić, jeśli nie zrozumiemy pełni funkcji każdego z tych zaworów. Typowym błędem jest myślenie, że każdy zawór wpływający na przepływ mediów automatycznie będzie regulował ciśnienie, jednak w rzeczywistości każdy z tych komponentów ma swoje specyficzne zastosowanie i działanie zgodne z zasadami fizyki oraz potrzebami danego układu. Dlatego tak ważne jest, aby dokładnie znać specyfikę działania poszczególnych zaworów w kontekście ich praktycznych zastosowań.

Pytanie 15

Określ, który blok funkcyjny musi być użyty w programie sterującym urządzeniem służącym do pakowania określonej liczby zabawek do kartonu.

A. Multiplekser analogowy.
B. Regulator PID.
C. Timer TON.
D. Licznik dwukierunkowy.
Wybór licznika dwukierunkowego jako odpowiedniego bloku funkcyjnego do sterowania urządzeniem pakującym zabawki do kartonu jest jak najbardziej trafiony. Licznik dwukierunkowy to rodzaj licznika, który potrafi zarówno zwiększać, jak i zmniejszać swoją wartość, w zależności od sygnałów wejściowych. Jest to niezwykle przydatne w sytuacjach, gdzie musimy kontrolować precyzyjne ilości - na przykład liczbę zabawek, które mają zostać zapakowane do jednego kartonu. W praktyce, licznik dwukierunkowy można skonfigurować tak, aby zwiększał swoją wartość o jeden za każdym razem, gdy zabawka jest umieszczana w kartonie, a zmniejszał, gdy coś idzie nie tak i trzeba zabawkę usunąć. Dzięki temu mamy pełną kontrolę nad procesem pakowania i zapewniamy, że w każdym kartonie znajdzie się dokładnie tyle zabawek, ile potrzeba. Takie podejście jest zgodne z dobrymi praktykami inżynierskimi, gdzie dąży się do dokładności i precyzji w procesach produkcyjnych. Warto także podkreślić, że liczniki tego typu są szeroko stosowane w automatyce przemysłowej i stanowią podstawowy element wielu systemów kontrolnych, szczególnie tam, gdzie istotna jest możliwość reagowania na zmieniające się warunki procesu.

Pytanie 16

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na ilustracji funkcję

Ilustracja do pytania
A. interfejsu komunikacyjnego.
B. zasilacza sterownika PLC.
C. modułu wyjściowego.
D. modułu wejściowego.
Świetnie, zrozumiałeś funkcję tego urządzenia! ADMC-1801 działa jako moduł wejściowy w systemie sterowania PLC. Moduły wejściowe są kluczowe w zbieraniu danych z różnych czujników i urządzeń w celu monitorowania stanu systemu. W tym przypadku ADMC-1801 jest połączony z czujnikiem PT100, który mierzy temperaturę. Moduły wejściowe przetwarzają sygnały z czujników na sygnały cyfrowe, które PLC może analizować. Dzięki temu można efektywnie kontrolować procesy przemysłowe. Dobre praktyki w branży wskazują na używanie odpowiednich modułów wejściowych, aby zapewnić dokładność i niezawodność danych. Praktyczne zastosowanie takich modułów jest szerokie, od automatyki budynkowej po zaawansowane systemy produkcyjne. Upewnienie się, że moduł wejściowy jest poprawnie skonfigurowany i skalibrowany, jest kluczowe dla prawidłowego działania całego systemu. Moim zdaniem, zrozumienie roli modułów wejściowych jest fundamentem w nauce o systemach PLC.

Pytanie 17

Wskaż oznaczenie literowe gwintu metrycznego.

A. M
B. Tr
C. S
D. W
Gwinty metryczne to jedne z najczęściej stosowanych gwintów w przemyśle, zarówno w Polsce, jak i na świecie. Oznacza się je literą 'M', co pochodzi od 'metryczny'. Podstawową cechą gwintu metrycznego jest jego kształt: trójkątny profil z kątem wierzchołkowym 60°, który zapewnia dobre właściwości mechaniczne, takie jak wytrzymałość i trwałość. Gwinty te są normowane według standardu ISO, co ułatwia ich szerokie zastosowanie w produkcji masowej i umożliwia wymienność elementów. Przykładowo, śruby z gwintem metrycznym są używane w motoryzacji, budownictwie czy elektronice, gdzie precyzja i niezawodność są kluczowe. Warto też wspomnieć, że gwinty metryczne mogą być dostępne w różnych podziałkach, takich jak drobnozwojowe czy zwykłe, co pozwala na ich dopasowanie do specyficznych potrzeb projektowych. Dodatkowo, wybór gwintu metrycznego może wpływać na łatwość montażu i demontażu elementów konstrukcyjnych, co jest istotne w kontekście konserwacji i serwisu. Moim zdaniem, znajomość tych systemów jest niezbędna dla każdego inżyniera mechanika czy technika budowlanego, bo to podstawa w pracy z elementami złącznymi.

Pytanie 18

Aby zapewnić właściwy moment siły przy dokręcaniu nakrętek mocujących urządzenie do podłoża, należy zastosować klucz

A. hakowy.
B. imbusowy.
C. dynamometryczny.
D. oczkowy.
Klucz dynamometryczny to narzędzie, które pozwala na dokładne kontrolowanie momentu siły podczas dokręcania śrub i nakrętek. W przemyśle mechanicznym, budowlanym czy motoryzacyjnym jest nieoceniony, ponieważ gwarantuje, że złącze będzie dokręcone zgodnie ze specyfikacją producenta. Każda śruba czy nakrętka ma określony moment dokręcania, który zapewnia odpowiednie napięcie i siłę trzymania bez ryzyka uszkodzenia gwintu lub elementu złącznego. Przykładowo, w warsztacie samochodowym przy wymianie kół, mechanicy używają kluczy dynamometrycznych, by upewnić się, że każda śruba jest dokręcona do określonego momentu, zapobiegając luzowaniu się kół podczas jazdy. W branży lotniczej przestrzeganie właściwych momentów dokręcania jest kluczowe dla bezpieczeństwa. Klucze dynamometryczne są kalibrowane i regularnie sprawdzane pod kątem dokładności, co jest zgodne z normami ISO. Takie narzędzia mogą być mechaniczne, elektroniczne lub hydrauliczne, ale wszystkie mają ten sam cel: precyzyjne kontrolowanie siły dokręcania. Warto zaznaczyć, że stosowanie kluczy dynamometrycznych jest dobrą praktyką, która minimalizuje ryzyko błędów montażowych i przedłuża żywotność konstrukcji, bez względu na branżę. Moim zdaniem, w wielu przypadkach to narzędzie jest po prostu niezbędne do utrzymania wysokich standardów jakości i bezpieczeństwa.

Pytanie 19

Przedstawione na rysunkach narzędzie służy do montażu

Ilustracja do pytania
A. zabezpieczeń E-ring.
B. podkładek dystansowych.
C. kołków rozprężnych.
D. pierścieni Segera.
Narzędzie przedstawione na ilustracji to specjalistyczne szczypce do montażu zabezpieczeń E-ring. E-ring to popularny typ zabezpieczenia osiowego, często stosowany w układach mechanicznych, gdzie wymagane jest szybkie i pewne osadzenie elementu zabezpieczającego. Dzięki swojej konstrukcji zapewniają one pewne mocowanie na wałkach lub osiach. Szczypce do E-ringów posiadają charakterystyczne końcówki, które umożliwiają łatwe rozchylenie i precyzyjne umieszczenie pierścienia na właściwym miejscu. W praktyce, E-ring jest wykorzystywany w wielu aplikacjach przemysłowych, od mechanizmów precyzyjnych po duże maszyny, gdzie ważne jest szybkie i pewne mocowanie. Standardowo, narzędzie to jest wykonane z trwałych materiałów, często odpornych na korozję, co przedłuża jego żywotność. Moim zdaniem, takie szczypce to nieodzowny element w warsztacie, zwłaszcza tam, gdzie praca z mechaniką wymaga wielokrotnych i szybkich montażów. Warto pamiętać, że poprawne narzędzie to podstawa bezpiecznej i efektywnej pracy.

Pytanie 20

Na podstawie zamieszczonych w tabeli parametrów technicznych enkodera wskaż wartość napięcia zasilania, pozwalającą na jego prawidłową pracę.

Wybrane parametry techniczne enkodera
Zasilanie5 V DC ±10 %
Pobór prądu≤ 60 mA
Prędkość obrotowa10 000 rpm
Rozdzielczość5 ÷ 6000 imp./obr
Temperatura pracy-25 ÷ +100°C
Średnica osiØ10 mm
Średnica obudowyØ58 mm
A. 10,0 V DC
B. 5,4 V DC
C. 4,4 V DC
D. 15,0 V DC
Poprawna odpowiedź to 5,4 V DC i już tłumaczę dlaczego. Mamy w tabeli podane, że enkoder wymaga napięcia zasilania 5 V DC ±10%. Co to oznacza w praktyce? Oznacza to, że urządzenie może poprawnie pracować w zakresie napięcia od 4,5 V do 5,5 V. Odpowiedź 5,4 V DC mieści się w tym zakresie, więc jest prawidłowa. To ważne, ponieważ nieprawidłowe napięcie zasilania może prowadzić do niepoprawnej pracy enkodera lub nawet jego uszkodzenia. W praktyce, w zastosowaniach przemysłowych, zawsze należy trzymać się specyfikacji producenta, aby zapewnić nie tylko poprawną, ale i długotrwałą pracę urządzenia. Często w systemach automatyki mamy do czynienia z różnymi napięciami zasilania, dlatego tak ważne jest, by trzymać się wskazanych wartości. Moim zdaniem, dobrze jest też zaznajomić się z pojęciem tolerancji napięcia, które jest kluczowe przy doborze zasilania dla urządzeń elektronicznych. Świadomość tego, jak napięcie wpływa na działanie enkodera, może zapobiec wielu problemom w przyszłości.

Pytanie 21

Który z czujników należy zastosować przy wytłaczarce, jeśli wymagany jest zasięg działania 0,8 ÷ 0,9 mm oraz zmiany temperatury od 0 do +90 °C?

Ilustracja do pytania
A. Czujnik 2.
B. Czujnik 1.
C. Czujnik 4.
D. Czujnik 3.
Czujnik 2 jest idealnym wyborem do wytłaczarki, ponieważ spełnia kluczowe wymogi dotyczące zakresu pracy i temperatury. Zasięg działania tego czujnika wynosi od 0 do 1,6 mm, co doskonale pokrywa wymagany zakres 0,8 ÷ 0,9 mm. To ważne, aby czujnik mógł precyzyjnie wykrywać zmiany w tej specyficznej odległości, zapewniając optymalne działanie maszyny. Dodatkowo, czujnik ten działa w zakresie temperatur od -20 do +110°C, co w pełni obejmuje wymagany zakres 0 do +90°C. Dzięki temu niezawodnie funkcjonuje w różnych warunkach pracy, co jest kluczowe w dynamicznym środowisku przemysłowym. Warto zauważyć, że czujnik ten ma obudowę IP67, co zapewnia dobrą odporność na pył i wodę, co jest często nieuniknione w środowisku produkcyjnym. W praktyce oznacza to, że czujnik ten jest odporny na trudne warunki pracy, co zwiększa jego trwałość i niezawodność. W branży stosowanie czujników o odpowiednich parametrach jest kluczowe, aby uniknąć przestojów i nieplanowanych napraw, które mogą być kosztowne.

Pytanie 22

Aby dokręcić nakrętkę z określonym momentem obrotowym, należy zastosować klucz

A. dynamometryczny.
B. grzechotkowy.
C. udarowy.
D. przegubowy.
Klucz dynamometryczny to narzędzie, które pozwala na precyzyjne dokręcenie śruby czy nakrętki z określonym momentem obrotowym. Jego główną zaletą jest to, że umożliwia osiągnięcie dokładnie takiej siły dokręcania, jakiej potrzebujesz, co jest kluczowe w wielu zastosowaniach technicznych, np. w motoryzacji czy przemyśle lotniczym. Użycie klucza dynamometrycznego zapobiega przekręceniu, a co za tym idzie, uszkodzeniu elementów, co mogłoby prowadzić do poważnych awarii. Moment obrotowy jest mierzony w niutonometrach (Nm) i jest to standard przyjęty w branży. Przykładowo, dokręcając głowicę silnika, bardzo ważne jest, aby siła była równomiernie rozłożona na wszystkie śruby, co zapewnia prawidłowe funkcjonowanie silnika. Z mojego doświadczenia wynika, że posiadając wysokiej jakości klucz dynamometryczny, można uniknąć wielu błędów, które często pojawiają się przy używaniu innych narzędzi. Ważne jest też, aby regularnie kalibrować klucz dynamometryczny, co zapewnia jego dokładność i niezawodność. To narzędzie jest często stosowane w warsztatach samochodowych, gdzie specyfikacje producenta wymagają precyzyjnego dokręcania elementów. Pamiętaj, że ignorowanie momentu dokręcania może skutkować niebezpieczeństwem dla użytkownika bądź osób postronnych.

Pytanie 23

Do wykrycia nieciągłości okablowania w komunikacyjnej sieci przemysłowej stosowany jest

A. wykrywacz przewodów.
B. tester przewodów.
C. kamera termowizyjna.
D. miernik parametrów instalacji.
Tester przewodów jest narzędziem niezbędnym w diagnozowaniu problemów z okablowaniem w sieciach przemysłowych. Dzięki niemu możemy szybko i efektywnie zidentyfikować nieciągłości, zwarcia, a także inne problemy związane z połączeniami elektrycznymi. Testerzy często obsługują różne typy kabli, od miedzianych po światłowodowe, co czyni je wszechstronnym narzędziem w rękach technika. W praktyce, tester przewodów pozwala na szybkie sprawdzenie ciągłości obwodu, co jest kluczowe w utrzymaniu niezawodności komunikacyjnej w skomplikowanych sieciach przemysłowych. Z mojego doświadczenia wynika, że regularne testowanie przewodów jest również zgodne z dobrymi praktykami branżowymi, które zalecają regularne przeglądy i konserwacje infrastruktury sieciowej. Warto pamiętać, że w wielu normach, takich jak ISO/IEC 11801, zaleca się wykorzystanie takich urządzeń do testowania okablowania strukturalnego. Dzięki temu można zapobiec wielu problemom, zanim jeszcze wystąpią, co w kontekście dużych instalacji przemysłowych może oszczędzić nie tylko czas, ale i znaczne koszty związane z potencjalnymi awariami. Tester przewodów jest zatem jednym z bardziej opłacalnych narzędzi, które i tak szybko się zwróci, jeśli tylko będziemy korzystać z niego regularnie.

Pytanie 24

Które oznaczenie powinien zawierać przewód jeżeli jego płaszcz ochronny jest wykonany z polichlorku winylu odpornego na wysokie temperatury?

Ilustracja do pytania
A. N2
B. N4
C. V3
D. V2
Oznaczenie V2 jest kluczowe, gdy mówimy o przewodach, których płaszcz ochronny wykonany jest z polichlorku winylu odpornego na wysokie temperatury. To oznaczenie wskazuje, że materiał ten jest przygotowany do pracy w trudniejszych warunkach, gdzie temperatura może znacząco wzrosnąć. Polichlorek winylu, popularnie znany jako PVC, jest powszechnie stosowany w przemyśle elektrycznym ze względu na swoje właściwości izolacyjne i odporność chemiczną. Kiedy wybieramy przewód do zastosowań wymagających wyższej odporności termicznej, taki jak w instalacjach przemysłowych lub w miejscach narażonych na działanie promieniowania cieplnego, przewody oznaczone V2 spełniają te wymagania. Często spotyka się je w systemach oświetleniowych, w pobliżu urządzeń grzewczych, czy w instalacjach na dachach budynków. Ważne jest, aby przestrzegać odpowiednich norm i standardów, takich jak PN-EN czy VDE, które szczegółowo opisują wymagania dla materiałów przewodów w różnych zastosowaniach. Dzięki temu możemy zapewnić bezpieczeństwo i niezawodność naszych instalacji. V2 to gwarancja, że instalacja wytrzyma ekstremalne warunki bez ryzyka uszkodzeń.

Pytanie 25

Na schemacie przedstawiono

Ilustracja do pytania
A. konwerter łącza szeregowego na łącze światłowodowe.
B. przetwornik napięcia AC na prąd AC.
C. regulowany wzmacniacz napięć lub prądów zmiennych.
D. przetwornik pomiarowy prądu lub napięcia AC.
Na schemacie widzimy konwerter, który zamienia klasyczne łącze szeregowe RS-232 na łącze światłowodowe. Po lewej stronie oznaczenia TxD i RxD wskazują na typowy interfejs komunikacji szeregowej, natomiast po prawej znajdują się symbole nadajnika i odbiornika światłowodowego (FO – Fiber Optic). Urządzenie to umożliwia przesyłanie danych w formie impulsów świetlnych, co pozwala na transmisję na duże odległości bez zakłóceń elektromagnetycznych i bez konieczności galwanicznego połączenia między urządzeniami. Zasilanie w szerokim zakresie (24–240 V AC/DC) sugeruje zastosowanie przemysłowe – typowe dla automatyki, sterowników PLC i systemów monitoringu. Moim zdaniem to przykład nowoczesnego podejścia do komunikacji, które łączy prostotę RS-232 z niezawodnością światłowodu. W praktyce takie konwertery montuje się w szafach sterowniczych, by połączyć odległe stanowiska pomiarowe lub serwery. Dzięki nim można znacznie wydłużyć zasięg transmisji (nawet do kilku kilometrów) i uniezależnić się od szumów elektrycznych obecnych w fabrykach.

Pytanie 26

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór nieodpowiedniego miernika, jak te o zbyt małym lub zbyt dużym zakresie napięcia, prowadzi do nieprawidłowych odczytów i potencjalnie błędnych diagnoz. Miernik o zbyt niskim zakresie, np. do 6 V, nie jest w stanie zmierzyć sygnałów wyjściowych dochodzących do 10 V, co jest kluczowe w tym układzie. Taki miernik będzie przeciążony, co może prowadzić do jego uszkodzenia oraz fałszywych wyników pomiaru. Z drugiej strony, miernik z zakresem do 75 V, mimo że teoretycznie byłby w stanie zmierzyć sygnał, oferuje zbyt małą precyzję dla wartości w okolicach 10 V. Dlaczego? Ponieważ zakres miernika powinien być możliwie bliski oczekiwanej wartości sygnału, aby zapewnić dokładność i precyzję pomiaru. Typowym błędem myślowym jest założenie, że szerszy zakres zawsze jest lepszy, co nie jest prawdą, gdyż może to skutkować większym błędem względnym. Właściwy dobór miernika jest niezbędny dla rzetelności pomiarów, co ma bezpośredni wpływ na efektywność działań serwisowych i diagnostycznych.

Pytanie 27

Określ, który blok funkcjonalny musi być użyty w programie sterującym urządzeniem służącym do pakowania określonej liczby zabawek do kartonu.

A. Multiplekser analogowy.
B. Licznik jednokierunkowy.
C. Timer TON
D. Regulator PID
Analizując inne odpowiedzi, możemy zauważyć, że nie pasują one do zadania polegającego na sterowaniu urządzeniem pakującym zabawki. Timer TON, czyli timer opóźniający, jest przeznaczony do zadań związanych z czasowym opóźnieniem sygnałów. Jego użycie w kontekście zliczania zabawek byłoby nieadekwatne, gdyż nie spełnia on funkcji zliczania, a jedynie wprowadza opóźnienie czasowe. Typowym błędem jest mylenie potrzeby zliczania z potrzebą opóźniania sygnałów, co może prowadzić do nieodpowiednich wyborów w kontekście automatyki. Regulator PID z kolei jest narzędziem przeznaczonym do regulacji procesów ciągłych, np. temperatury czy prędkości, gdzie wymagane jest utrzymanie wartości na zadanym poziomie. W kontekście pakowania zabawek regulator PID byłby nadmiernie skomplikowany i nieefektywny, ponieważ proces pakowania zabawek do kartonu nie wymaga sterowania ciągłego. Trudno byłoby uzasadnić jego zastosowanie w tak prostym przypadku. Multiplekser analogowy jest komponentem używanym do przełączania sygnałów w systemach analogowych, co nie ma związku z funkcjonalnością zliczania. Często błędnym założeniem jest, że jeśli coś działa w elektronice analogowej, będzie miało zastosowanie wszędzie - co w tym przypadku prowadzi do mylnych wniosków. Wybór komponentów powinien zawsze być uzależniony od specyficznych wymagań aplikacji, a nie ogólnych założeń.

Pytanie 28

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PID
B. PD
C. P
D. PI
Regulatory P, PD oraz PID różnią się od PI i mają swoje specyficzne zastosowania. Regulator P wpływa jedynie proporcjonalnie na błąd, co może nie być wystarczające w systemach wymagających eliminacji błędu ustalonego. Takie podejście może prowadzić do utrzymywania się stałego uchybu, co nie jest pożądane w większości aplikacji precyzyjnych. Natomiast regulator PD, dodając człon różniczkowy, jest użyteczny w systemach, gdzie ważna jest szybka reakcja na zmiany. Często stosuje się go w aplikacjach, gdzie potrzebne jest tłumienie oscylacji, jednak jego brak zdolności eliminacji błędu ustalonego ogranicza jego zastosowalność. Z kolei regulator PID, łączący wszystkie trzy komponenty, jest najbardziej wszechstronny, ale jego implementacja bywa bardziej skomplikowana. Może prowadzić do przeregulowań, jeśli nie jest właściwie skonfigurowany. Często popełnianym błędem jest przyjmowanie, że uniwersalność PID jest zawsze pożądana, co nie jest prawdą, zwłaszcza w prostszych układach, gdzie PI wystarczy. Dlatego ważne jest, aby nie sugerować się intuicją, lecz zrozumieć specyfikę każdej aplikacji.

Pytanie 29

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 1.
B. Tabliczka 2.
C. Tabliczka 3.
D. Tabliczka 4.
Silnik opisany na tabliczce 1 jest przeznaczony do pracy ciągłej, co oznacza, że jest zaprojektowany do pracy przez długi czas bez przerw. Informację tę można znaleźć w oznaczeniu 'S1', które w standardach międzynarodowych, takich jak IEC 60034, wskazuje na ciągłą pracę. Tego typu silniki są często stosowane w aplikacjach, gdzie wymagana jest stabilność i niezawodność przez dłuższe okresy, na przykład w taśmociągach czy pompowaniu wody. Charakteryzują się dobrą sprawnością energetyczną oraz trwałością, co jest kluczowe w zastosowaniach przemysłowych. Standardy takie jak IEC 60034 definiują klasy ochrony IP, które w przypadku tego silnika wynoszą IP54, co oznacza ochronę przed pyłem oraz rozpryskami wody. To istotne w wielu środowiskach przemysłowych. Moim zdaniem, wybór silnika do pracy ciągłej powinien uwzględniać również czynniki takie jak koszty eksploatacji i konserwacji, co w dłuższej perspektywie przekłada się na oszczędności i wydajność operacyjną.

Pytanie 30

Do sygnalizacji położenia tłoka siłownika pneumatycznego, którego symbol graficzny pokazano na rysunku, należy zastosować czujnik

Ilustracja do pytania
A. ultradźwiękowy.
B. pojemnościowy.
C. magnetyczny.
D. indukcyjny.
Zastosowanie czujnika magnetycznego do sygnalizacji położenia tłoka siłownika pneumatycznego to bardzo trafny wybór. W praktyce przemysłowej najczęściej stosuje się siłowniki magnetyczne, gdzie na tłoku zamontowany jest magnes. Czujnik magnetyczny, zamontowany na korpusie siłownika, wykrywa obecność tego magnesu, co pozwala na precyzyjne określenie położenia tłoka. Jest to rozwiązanie powszechnie stosowane w automatyce, ponieważ czujniki magnetyczne są bezkontaktowe i odporne na zużycie mechaniczne, co wydłuża ich żywotność. Warto wspomnieć, że są one także odporne na wpływ zanieczyszczeń i mogą pracować w trudnych warunkach środowiskowych, co czyni je niezwykle wszechstronnymi. Standardy branżowe, takie jak ISO 5599 dotyczące pneumatyki, często wspominają o wykorzystaniu czujników magnetycznych w takich zastosowaniach. Moim zdaniem, takie rozwiązanie jest zarówno ekonomiczne, jak i efektywne, gdyż minimalizuje ryzyko awarii dzięki swojej prostocie i niezawodności. To podejście pozwala również na łatwe zintegrowanie z systemami automatyki, co jest niezwykle istotne w nowoczesnych zakładach produkcyjnych. Dodatkowo, czujniki magnetyczne mogą być wyposażone w różne funkcje, takie jak możliwość programowania punktów przełączania, co zwiększa ich funkcjonalność i elastyczność zastosowań.

Pytanie 31

Na rysunku przedstawiono listwę przyłączeniową regulatora temperatury. Do których zacisków regulatora należy podłączyć czujnik termoelektryczny?

Ilustracja do pytania
A. 1 i 3
B. 1 i 2
C. 2 i 3
D. 5 i 6
Dobra robota! Wybór odpowiedzi 2 i 3 jest prawidłowy, ponieważ te zaciski są przeznaczone do podłączenia czujnika termoelektrycznego, takiego jak termopara. Zaciski 2 i 3 w regulatorze temperatury pełnią funkcję wejścia dla sygnału pomiarowego z czujnika. Termopary, które są jednym z najczęściej stosowanych typów czujników temperatury, działają na zasadzie efektu Seebecka, generując napięcie proporcjonalne do różnicy temperatur na ich końcach. W praktyce ważne jest, aby poprawnie podłączać przewody termopary do odpowiednich zacisków, aby uniknąć błędów pomiarowych. Warto pamiętać, że zaciski te są często oznaczone w dokumentacji i na samym urządzeniu, co ułatwia właściwe podłączenie. Z mojego doświadczenia, odpowiednie podłączenie czujnika do regulatora jest kluczowe dla stabilności i dokładności działania całego systemu. Upewnij się zawsze, że używasz termopar zgodnych ze specyfikacją urządzenia, co zapewni optymalną pracę i długowieczność sprzętu. Warto też znać standardy, takie jak IEC 60584, które definiują charakterystyki termopar.

Pytanie 32

Na rysunku przedstawiono

Ilustracja do pytania
A. zawór odcinający.
B. zespół przygotowania powietrza.
C. elektrozawór.
D. blok rozdzielający.
To, co widzisz na rysunku, to typowy zespół przygotowania powietrza. Składa się z kilku kluczowych elementów: filtr, regulator ciśnienia oraz smarownica. Filtr ma za zadanie usuwać zanieczyszczenia z powietrza, takie jak kurz czy wilgoć, co jest niezwykle ważne w zapewnieniu prawidłowego działania narzędzi pneumatycznych. Regulator ciśnienia pozwala na utrzymanie stałego ciśnienia w systemie, co jest kluczowe dla stabilnej pracy urządzeń. Natomiast smarownica dodaje mgiełkę oleju do przepływającego powietrza, co zmniejsza tarcie i zużycie ruchomych części narzędzi pneumatycznych, wydłużając ich żywotność. Takie zespoły są powszechnie stosowane w warsztatach samochodowych, w przemyśle czy na liniach produkcyjnych. Znajomość ich działania jest kluczowa dla każdego technika zajmującego się systemami pneumatycznymi, ponieważ zapewnia to nie tylko niezawodność, ale także bezpieczeństwo pracy. Praktyka pokazuje, że regularne przeglądy i konserwacja tego typu urządzeń znacząco wpływają na wydajność całego systemu pneumatycznego.

Pytanie 33

Który termometr należy zastosować do bezkontaktowego pomiaru temperatury?

A. Rezystancyjny.
B. Dylatacyjny.
C. Pirometryczny.
D. Termoelektryczny.
Pirometryczny termometr to urządzenie, które doskonale nadaje się do bezkontaktowego pomiaru temperatury. Wykorzystuje on promieniowanie podczerwone emitowane przez badany obiekt, co umożliwia precyzyjne określenie temperatury bez potrzeby fizycznego kontaktu. To rozwiązanie jest niezwykle użyteczne w sytuacjach, gdy dostęp do mierzonego obiektu jest utrudniony lub niebezpieczny, na przykład w przemyśle hutniczym, gdzie temperatura powierzchni metali jest bardzo wysoka. Pirometry są również standardem w medycynie, szczególnie w kontekście szybkiego monitorowania temperatury ciała. W porównaniu do tradycyjnych metod, pirometryczne pomiary są szybkie i eliminują ryzyko zanieczyszczenia krzyżowego. Z mojego doświadczenia, pirometry są nie tylko praktyczne, ale także niezastąpione w wielu zastosowaniach. Ich zdolność do zdalnego pomiaru sprawia, że są preferowaną metodą w wielu branżach, od produkcji przemysłowej po ochronę zdrowia. Pomiar temperatury metodą bezkontaktową to także zgodność z wytycznymi bezpieczeństwa i higieny pracy, co jest niezmiernie ważne w wielu sektorach przemysłowych. Dodatkowo, pirometry zgodne z normami ISO i CE są gwarancją dokładności i jakości pomiarów.

Pytanie 34

W której przemysłowej sieci komunikacyjnej stosowane jest urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. Modbus
B. Profibus
C. DeviceNet
D. Profinet
To urządzenie to switch przemysłowy, wykorzystywany w sieciach Profinet. Profinet to nowoczesny otwarty standard przemysłowy, który opiera się na technologii Ethernetu. Jest to jeden z najczęściej wykorzystywanych protokołów w automatyce przemysłowej. Umożliwia integrację systemów automatyki z IT, co jest kluczowe w erze Przemysłu 4.0. Switche takie jak ten zarządzają ruchem danych w sieci, co pozwala na szybki i niezawodny przesył informacji między urządzeniami. Dzięki temu można łatwo monitorować i kontrolować procesy produkcyjne. Standard Profinet zapewnia wysoką wydajność i niezawodność, a także łatwość integracji z innymi systemami. Co ciekawe, Profinet obsługuje również przesył danych w czasie rzeczywistym, co jest niezbędne w wielu aplikacjach przemysłowych. Moim zdaniem, znajomość tego standardu to podstawa dla każdego inżyniera automatyki, zwłaszcza w kontekście rosnącego znaczenia sieci przemysłowych.

Pytanie 35

Który symbol graficzny oznacza przekładnię zębatą?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wiele osób myli symbol przekładni zębatej z symbolami innych rodzajów napędów, co jest całkiem zrozumiałe na początku nauki rysunku technicznego. Symbole z kołami połączonymi linią oznaczają przekładnie pasowe, w których napęd przenoszony jest przez pas, a nie przez zazębienie. To rozwiązanie pozwala na cichszą pracę i amortyzację drgań, ale ma mniejszą sprawność. Z kolei symbol z przerywaną linią wokół kół przedstawia przekładnię łańcuchową, w której moment obrotowy przenosi łańcuch z ogniwami współpracującymi z zębatkami. Inny symbol z ukośnymi liniami i strzałkami to element związany ze spawalnictwem, nie z mechaniką napędów. Wszystkie te błędne interpretacje wynikają z podobieństwa wizualnego – koła i linie często wyglądają podobnie, lecz zasada działania jest inna. W przekładni zębatej przeniesienie momentu odbywa się przez zazębienie kół, bez poślizgu i z dużą dokładnością. Dlatego poprawny symbol to ten, który pokazuje bezpośredni kontakt osi i zazębienie, a nie pas lub łańcuch.

Pytanie 36

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A. Miernik 1
Ilustracja do odpowiedzi A
B. Miernik 4
Ilustracja do odpowiedzi B
C. Miernik 3
Ilustracja do odpowiedzi C
D. Miernik 2
Ilustracja do odpowiedzi D
Wiele osób wybiera błędny miernik, bo patrzy jedynie na jednostkę „V” bez zwracania uwagi na zakres i typ napięcia. Miernik numer 1 ma zakres do 6 V – byłby zbyt mało czuły i mógłby się uszkodzić przy napięciu 10 V. Miernik numer 2 ma zakres aż do 75 V, przez co wskazówka przy pomiarze 10 V niemal się nie poruszy, co uniemożliwia dokładny odczyt. Z kolei miernik numer 4 jest przeznaczony do pomiaru napięcia przemiennego (oznaczenie „~”), a w naszym układzie występuje napięcie stałe (DC), więc jego zastosowanie byłoby błędem technicznym – nie pokaże prawidłowego wyniku, a w skrajnym przypadku może zostać uszkodzony. W praktyce automatyki i elektrotechniki zawsze trzeba dopasować zakres przyrządu do mierzonego sygnału – najlepiej, gdy maksymalna wartość na skali jest nieco wyższa od maksymalnej wartości sygnału. Typowy sygnał analogowy z czujnika lub przetwornika to 0–10 V DC, dlatego właściwy jest woltomierz o zakresie obejmującym ten przedział, np. –5...15 V. Stosowanie miernika do AC lub o zbyt dużym zakresie prowadzi do błędnych wniosków diagnostycznych, co w automatyce może skutkować niewłaściwą regulacją urządzenia, np. zaworu proporcjonalnego. Moim zdaniem właśnie znajomość zakresów i typów napięć odróżnia praktyka od kogoś, kto tylko „mierzy, żeby coś się ruszyło na wskazówce”.

Pytanie 37

Na podstawie stanów logicznych określ, która bramka przedstawionego na rysunku układu cyfrowego jest uszkodzona.

Ilustracja do pytania
A. OR
B. NOT
C. AND
D. NAND
Uszkodzona bramka to AND. Analizując schemat krok po kroku: pierwsza bramka to OR (oznaczenie ≥1) – przy wejściach 1 i 1 daje wyjście 1, co jest poprawne. Następnie sygnał trafia do bramki AND wraz z sygnałem 0 z dolnej gałęzi. Działanie logiczne AND wymaga, by oba wejścia były równe 1, aby wyjście było również 1. Tymczasem na rysunku widać, że przy wejściach 1 i 0 wyjście bramki AND wynosi 1 – co jest sprzeczne z jej funkcją logiczną. Prawidłowo wynik powinien wynosić 0. To jednoznacznie wskazuje, że bramka AND nie działa prawidłowo – jest uszkodzona. Moim zdaniem to klasyczny przykład diagnostyki prostych układów cyfrowych, gdzie analiza tablicy prawdy pozwala natychmiast wykryć błąd w logice. W praktyce, przy testowaniu rzeczywistych układów, takie błędy można potwierdzić miernikiem logicznym lub oscyloskopem. Czasem uszkodzenie bramki objawia się właśnie nieprawidłowym utrzymywaniem stanu wysokiego mimo niskiego sygnału wejściowego, co wskazuje na zwarcie wewnętrzne lub przebicie tranzystora wyjściowego. Dobrą praktyką serwisową jest porównanie wyników z modelem symulacyjnym albo sprawnym układem, by uniknąć pomyłki przy interpretacji stanów logicznych.

Pytanie 38

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. RJ-45
B. USB
C. RS-232
D. HDMI
To złącze to RS-232, znane również jako port szeregowy. Jest jednym z najstarszych standardów komunikacji szeregowej i choć dziś nie jest już tak popularne jak kiedyś, wciąż znajduje zastosowanie w pewnych niszowych urządzeniach i systemach. RS-232 jest często używane do połączeń między komputerami a urządzeniami peryferyjnymi, takimi jak modemy, drukarki, a nawet niektóre starsze typy myszy komputerowych. Złącza te zazwyczaj mają dziewięć pinów, jak na ilustracji, chociaż istnieją też wersje z 25 pinami. Jego zaletą jest prostota i niezawodność w przesyłaniu danych na krótkie odległości. Standard RS-232 definiuje sygnały elektryczne, poziomy napięcia oraz czasowanie, co gwarantuje zgodność między urządzeniami różnych producentów. Moim zdaniem, mimo że technologia poszła do przodu, RS-232 jest wciąż interesujący ze względu na swoją trwałość i wszechstronność. Jest to doskonały przykład standardu, który przetrwał próbę czasu, głównie dzięki swojej niezawodności w specyficznych zastosowaniach przemysłowych.

Pytanie 39

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 1 000 Ω
B. 0 Ω
C. 100 Ω
D. 500 Ω
Czujniki Pt500 są powszechnie używane w systemach regulacji temperatury, głównie ze względu na ich dokładność i stabilność. Tego rodzaju czujnik nazywany jest rezystancyjnym czujnikiem temperatury (RTD) i działa na zasadzie zmiany rezystancji w zależności od temperatury. Pt w nazwie odnosi się do platyny, materiału, z którego jest wykonany element reagujący na temperaturę. Przykładowo, w temperaturze 0 °C jego rezystancja wynosi 500 Ω, co wynika ze specyfikacji technicznej tego typu czujników. To, że czujnik Pt500 w 0 °C pokazuje 500 Ω, jest zgodne ze standardami kalibracji RTD. W praktyce, instalując taki czujnik, mamy pewność, że pomiary będą precyzyjne, jeśli są wykonane zgodnie z przyjętymi normami. Dodatkowo Pt500 jest kompatybilny z różnymi układami pomiarowymi, co czyni go elastycznym narzędziem w wielu zastosowaniach przemysłowych. Warto pamiętać, że w miarę wzrostu temperatury rezystancja czujnika również wzrasta, co pozwala na precyzyjne monitorowanie zmian termicznych. Poznanie charakterystyki czujników RTD, takich jak Pt500, to klucz do efektywnego projektowania układów pomiarowych w automatyce przemysłowej.

Pytanie 40

W przekaźniku elektromagnetycznym symbolami A1 i A2 oznaczone są zaciski

A. cewki przekaźnika.
B. styków zwiernych.
C. układów ochronnych.
D. styków rozwiernych.
W przekaźnikach elektromagnetycznych istnieje wiele elementów, które mogą być mylące, jeśli nie zna się ich dokładnego przeznaczenia. Zaciski oznaczone jako A1 i A2 odnoszą się do cewki przekaźnika, a nie do układów ochronnych, styków rozwiernych czy zwiernych. Układy ochronne zwykle mają za zadanie zapobiegać uszkodzeniom w obwodzie, ale nie są bezpośrednio związane z oznaczeniami A1 i A2. Styki rozwierne i zwierne to mechanizmy załączające lub wyłączające sygnał w przekaźniku, ale nie są to zaciski cewki. Mogą one być oznaczone innymi symbolami, jak np. NO (normalnie otwarty) lub NC (normalnie zamknięty). Typowe błędy myślowe polegają na myleniu funkcji cewki z innymi komponentami przekaźnika, co może wynikać z powierzchownej znajomości działania tych urządzeń. W praktyce, prawidłowe zrozumienie roli cewki i jej oznaczeń jest kluczowe dla zapewnienia poprawnego działania całego układu elektrycznego. Myślę, że zrozumienie tego tematu znacznie ułatwia rozwiązywanie problemów związanych z automatyką i może być przydatne przy projektowaniu bardziej złożonych systemów.