Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 2 listopada 2025 20:23
  • Data zakończenia: 2 listopada 2025 20:31

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie narzędzia będą konieczne do zamocowania listew elektroizolacyjnych na ścianie z płyt gipsowych?

A. Piła do cięcia, przecinak, młotek.
B. Zestaw kluczy, wkrętarka, wiertło, przecinak.
C. Wiertarka, wiertło, piła do cięcia, wkrętak.
D. Nóż monterski, wiertarka, zestaw kluczy.
Wybór odpowiedzi 'Wiertarka, wiertło, piła do cięcia, wkrętak' jest prawidłowy, ponieważ montaż listew elektroizolacyjnych na ścianie gipsowej wymaga precyzyjnych narzędzi do wykonania otworów oraz odpowiedniego przymocowania listew. Wiertarka z wiertłem pozwala na wykonanie otworów w ścianie, co jest kluczowe dla stabilnego montażu. Piła do cięcia jest niezbędna, gdyż listew często trzeba dostosować do długości, co wymaga precyzyjnego cięcia. Ostatnim kluczowym narzędziem jest wkrętak, który umożliwia przymocowanie listew do ściany za pomocą odpowiednich śrub. Zastosowanie wiertarki i wiertła zgodnie z zasadami bhp jest niezbędne, aby uniknąć uszkodzeń ściany i zapewnić, że otwory są odpowiedniej głębokości. Dobrą praktyką jest także stosowanie wkrętów samowiercących, co ułatwia montaż oraz zwiększa trwałość mocowania.

Pytanie 2

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Zagniatarka
B. Płaskoszczypce
C. Nóż monterski
D. Szczypce boczne
Obcinaczki boczne, zagniatarka oraz płaskoszczypce to narzędzia, które mają swoje specyficzne zastosowania, ale nie są wystarczające do naprawy przeciętego przewodu poprzez lutowanie. Obcinaczki boczne służą głównie do cięcia przewodów, co jest przydatne w przypadku eliminowania uszkodzonych odcinków, jednak nie pomagają w przygotowaniu końców przewodów do lutowania. Przy lutowaniu konieczne jest, aby końcówki były gładkie i odpowiednio odizolowane, co wymaga użycia innego narzędzia. Z kolei zagniatarka jest narzędziem przeznaczonym do łączenia przewodów poprzez zaciśnięcie końcówek, co nie ma zastosowania w przypadku naprawy poprzez lutowanie. Płaskoszczypce mogą być użyte do trzymania lub formowania przewodów, ale nie są one wystarczające do ich właściwego przygotowania do lutowania. Typowym błędem myślowym jest założenie, że narzędzia wielofunkcyjne mogą zastąpić specjalistyczne narzędzia, takie jak nóż monterski. Każde narzędzie ma swoje ściśle określone zastosowanie i dla uzyskania optymalnych efektów w naprawach elektrycznych kluczowe jest korzystanie z odpowiedniego zestawu narzędzi. W branży, standardy bezpieczeństwa i jakości pracy wymagają, aby korzystać z narzędzi, które są przeznaczone do konkretnych zadań, a nie improwizować z narzędziami, które nie spełniają tej funkcji.

Pytanie 3

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania. Który z wyłączników nie spełnia warunku sprawności pod względem rzeczywistego prądu zadziałania (0,5 ÷ 1,0) IΔN?

Wyłącznik 1.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P302 25-10-AC8 mA
Wyłącznik 2.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P202 25-30-AC12 mA
Wyłącznik 3.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-30-AC25 mA
Wyłącznik 4.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-100-AC70 mA
A. Wyłącznik 4.
B. Wyłącznik 3.
C. Wyłącznik 1.
D. Wyłącznik 2.
Wybierając inne odpowiedzi niż wyłącznik 2, istnieje ryzyko zrozumienia, które nie uwzględnia rzeczywistych parametrów zadziałania wyłączników różnicowoprądowych. W przypadku wyłączników, kluczowe jest zrozumienie, że ich działanie opiera się na prawidłowym wykrywaniu różnic prądowych. Wyłączniki różnicowoprądowe powinny działać w określonym zakresie prądów zadziałania, zazwyczaj między 15 mA a 30 mA. Wybór wyłącznika 1, 3 lub 4 może wynikać z błędnego założenia, że wszystkie wymienione urządzenia działają poprawnie, co jest sprzeczne z zasadami bezpieczeństwa. Często popełnianym błędem jest ignorowanie wyników pomiarów, które wskazują na rzeczywisty prąd zadziałania. W praktyce, błędna interpretacja danych pomiarowych może prowadzić do sytuacji, w których wyłącznik nie zadziała w przypadku wystąpienia awarii, co stwarza poważne zagrożenie. Aby uniknąć takich problemów, zaleca się regularne testowanie wyłączników różnicowoprądowych oraz ich wymianę w przypadku stwierdzenia niesprawności. Warto również zaznajomić się z normami i parametrami technicznymi, które regulują działanie wyłączników, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 4

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Rezystancji uziemienia
B. Prądu zadziałania wyłącznika RCD
C. Czasu działania wyłącznika RCD
D. Rezystancji izolacji
Rezystancja izolacji jest kluczowym parametrem w kontekście ochrony przeciwporażeniowej podstawowej, gdyż pomaga ocenić, czy elementy instalacji elektrycznej są odpowiednio zabezpieczone przed przenikaniem prądu do ziemi. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane, co minimalizuje ryzyko porażenia prądem w przypadku uszkodzenia. Zgodnie z normą PN-EN 61010-1, rezystancja izolacji powinna wynosić co najmniej 1 MΩ dla urządzeń o napięciu do 1000 V. Przykładem zastosowania tej wiedzy może być rutynowe sprawdzanie instalacji w obiektach przemysłowych, gdzie odpowiednia izolacja jest niezbędna dla bezpieczeństwa pracowników. Regularne pomiary rezystancji izolacji mogą wykrywać problemy, zanim dojdzie do uszkodzenia, co jest szczególnie ważne w przypadku starszych instalacji, które mogą mieć uszkodzenia wynikające z degradacji materiałów izolacyjnych.

Pytanie 5

Gdzie powinny być umieszczone liczniki zużycia energii elektrycznej w budynkach wielorodzinnych?

A. poza lokalami mieszkalnymi w miejscach o łatwym dostępie
B. w lokalach mieszkalnych tylko w zamkniętych szafkach
C. w lokalach mieszkalnych w miejscach o łatwym dostępie
D. poza lokalami mieszkalnymi jedynie w zamkniętych szafkach
Umieszczanie liczników zużycia energii elektrycznej w lokalach mieszkalnych, w tym w zamkniętych szafkach lub w miejscach łatwo dostępnych, nie jest zgodne z aktualnymi standardami i dobrymi praktykami w zakresie zarządzania infrastrukturą budowlaną. Istnieje kilka kluczowych powodów, które tłumaczą, dlaczego takie rozwiązanie może być niewłaściwe. Po pierwsze, lokalizacja liczników w mieszkaniach może prowadzić do naruszenia prywatności mieszkańców, co jest nieakceptowalne z punktu widzenia ochrony danych osobowych. Liczniki są urządzeniami technicznymi, a ich obecność w lokalach mieszkalnych może generować dodatkowe problemy, takie jak hałas czy ograniczenie przestrzeni. Ponadto, umieszczanie ich w łatwo dostępnych miejscach w lokalach może stwarzać ryzyko przypadkowego uszkodzenia lub manipulacji przez osoby trzecie, co jest szczególnie niebezpieczne. W kontekście wymogów dotyczących bezpieczeństwa, przechowywanie liczników w wydzielonych pomieszczeniach technicznych, zamykanych szafkach, pozwala na skuteczną kontrolę i ograniczenie dostępu do nich. Warto pamiętać, że zgodnie z przepisami prawa budowlanego oraz normami branżowymi, liczniki powinny być umiejscowione tak, aby mogły być łatwo dostępne dla wykwalifikowanego personelu, ale jednocześnie maksymalnie chronione przed dostępem osób nieuprawnionych. Tego typu podejścia zapewniają lepszą kontrolę nad systemem dystrybucji energii oraz zwiększają bezpieczeństwo zarówno użytkowników, jak i samej infrastruktury.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
B. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
C. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
D. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
Wybór odpowiedzi związanej z pomiarem rezystancji izolacji przewodów i sprawdzeniem ciągłości przewodów ochronnych może wydawać się logiczny, jednakże nie obejmuje kluczowego aspektu oględzin instalacji elektrycznej, jakim jest nastawienie urządzeń zabezpieczających. Oględziny powinny skupiać się nie tylko na pomiarach, ale także na funkcjonalności i dostępności urządzeń, które mają na celu ochronę użytkowników przed zagrożeniami. Pomiar rezystancji izolacji jest istotny, ale nie wystarczy sam w sobie, aby zapewnić bezpieczeństwo instalacji. Z kolei sprawdzenie ochrony poprzez separację elektryczną lub inne metody, takie jak SELV czy PELV, jest ważne w kontekście ochrony przed porażeniem prądem, ale również nie wyczerpuje tematu oględzin. Kluczowym aspektem jest również zrozumienie, że urządzenia zabezpieczające muszą być regularnie nastawiane oraz testowane, aby spełniały swoje funkcje w momencie awarii. Odpowiedź dotycząca pomiaru ciągłości przewodów również nie oddaje pełnego obrazu, ponieważ nie uwzględnia aspektu dostępności czy identyfikacji urządzeń, które są niezbędne dla ich efektywnej konserwacji. To prowadzi do niepełnej oceny stanu instalacji oraz potencjalnych zagrożeń, co jest kluczowe dla zapewnienia bezpieczeństwa w budynku mieszkalnym.

Pytanie 10

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy B
B. Klasy D
C. Klasy C
D. Klasy A
Wybór odpowiedzi z klas A, B, C niestety nie odpowiada rzeczywistym potrzebom ochrony przed przepięciami, jeśli mówimy o ogranicznikach klasy D. Klasa A jest do ochrony sprzętu przed przepięciami z atmosfery, ale to działa przy średnio niskich energiach, więc przy silnych przepięciach to może być za mało. Klasa B, która jest stworzona do ochrony przed przepięciami z zewnątrz, też nie bardzo sobie poradzi w aplikacjach, które mogą dostać nagłe, wysokie przepięcia. Klasa C, mimo że daje jakąś formę ochrony, nie nadaje się do intensywnej ochrony przed przepięciami, jak w przypadku systemów komputerowych czy telekomunikacyjnych. Ważne jest, żeby znać różnice między tymi klasami i ich zastosowania, bo źle dobrane rozwiązanie może skutkować poważnymi uszkodzeniami sprzętu i kosztownymi naprawami. Często ludzie błędnie myślą, że te klasy są równoważne, co prowadzi do zaniżania ryzyka, a to jest naprawdę powszechna pułapka przy projektowaniu systemów ochrony przeciwprzepięciowej.

Pytanie 11

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Chwilową moc obciążenia.
B. Prąd upływu.
C. Impedancję pętli zwarcia.
D. Rezystancję izolacji.
Rezystancja izolacji jest kluczowym parametrem, który można zmierzyć przy pomocy miernika izolacji, znanego również jako megomierz. Urządzenie to jest wykorzystywane do oceny stanu izolacji elektrycznej w instalacjach i urządzeniach elektrycznych. Pomiar ten jest niezwykle istotny, ponieważ odpowiednia rezystancja izolacji zapewnia bezpieczeństwo użytkowania i zapobiega porażeniom prądem, a także minimalizuje ryzyko awarii. Miernik izolacji generuje wysokie napięcie, które powoduje, że prąd przepływa przez izolację. Na podstawie zmierzonego prądu można obliczyć rezystancję, która jest wyrażana w megaomach (MΩ). W praktyce, normy takie jak PN-EN 61557-2 określają wymagania dotyczące pomiarów rezystancji izolacji. Regularne pomiary rezystancji izolacji są zalecane w ramach działań prewencyjnych, szczególnie w przemyśle, gdzie eksploatacja urządzeń elektrycznych odbywa się w trudnych warunkach. Dbanie o odpowiednie wartości rezystancji izolacyjnej to nie tylko wymóg prawny, ale również dobra praktyka, która przyczynia się do zapewnienia długotrwałej i bezawaryjnej pracy instalacji.

Pytanie 12

Przedstawiona na ilustracji wstawka kalibrowa bezpiecznika przeznaczona jest do instalacji o napięciu znamionowym

Ilustracja do pytania
A. co najmniej 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
B. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
C. co najmniej 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
D. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
Analizując błędne odpowiedzi, należy skupić się na kilku kluczowych koncepcjach, które mogą prowadzić do mylnych wniosków. W wielu przypadkach odpowiedzi sugerujące, że wstawka kalibrowa może obsługiwać napięcie co najmniej 500 V, są nieprawdziwe. Oznaczenie "500 V" jednoznacznie wskazuje maksymalną wartość, a nie minimalną. W kontekście bezpieczeństwa elektrycznego, przekroczenie tego napięcia może skutkować poważnymi konsekwencjami, w tym ryzykiem pożaru czy porażenia prądem. Ponadto, odpowiedzi sugerujące wyższe wartości prądu znamionowego, takie jak "co najmniej 63 A", również są nieprawidłowe. Tego typu błędne rozumienie wynika najczęściej z niedostatecznej wiedzy na temat parametrów technicznych bezpieczników oraz ich zastosowania. Ważnym aspektem jest również zrozumienie, że każdy rodzaj zabezpieczenia musi być odpowiednio dobrany do specyfikacji instalacji, aby zapewnić maksymalną efektywność i bezpieczeństwo. W praktyce, stosowanie wzorców i standardów, jak PN-EN 60269, jest kluczowe dla prawidłowego doboru elementów zabezpieczających. Ignorowanie tych zasad może prowadzić do poważnych awarii oraz zagrożeń dla osób obsługujących instalacje elektryczne.

Pytanie 13

Ile maksymalnie gniazd wtyczkowych można zainstalować w jednym obwodzie w systemach odbiorczych?

A. 12 szt.
B. 10 szt.
C. 6 szt.
D. 2 szt.
Maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu w instalacjach elektrycznych, wynosi 10 sztuk. Taka wartość wynika z przepisów zawartych w normie PN-IEC 60364 oraz wytycznych dotyczących projektowania instalacji elektrycznych. Ograniczenie to ma na celu zapewnienie bezpieczeństwa użytkowania oraz ochrony przed przeciążeniem obwodu. W praktyce, jeżeli do obwodu podłączonych jest zbyt wiele gniazd, może to prowadzić do znacznego wzrostu obciążenia, co z kolei zwiększa ryzyko przegrzania przewodów, a w skrajnych przypadkach może prowadzić do pożaru. Warto zwrócić uwagę na rzeczywiste obciążenie urządzeń, które będą podłączane do gniazd, a także na rodzaj przewodów użytych w danym obwodzie. Przykładowo, jeśli planujemy podłączenie urządzeń o wysokim poborze mocy, takich jak czajniki elektryczne czy grzejniki, lepiej jest zredukować liczbę gniazd do mniejszej wartości, aby zabezpieczyć obwód przed nadmiernym przeciążeniem. Dobrą praktyką jest także stosowanie zabezpieczeń w postaci wyłączników różnicowoprądowych oraz odpowiedniego doboru przekrojów przewodów, co dodatkowo zwiększa bezpieczeństwo korzystania z instalacji elektrycznej.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Rtęciowej
B. Halogenowej
C. Żarowej
D. Sodowej
Tyrystorowy układ zapłonowy znajduje zastosowanie głównie w obwodach zasilania lamp sodowych, ze względu na ich specyfikę działania oraz wymagania dotyczące zapłonu. Lampy sodowe, znane z wysokiej efektywności świetlnej oraz długu czasu życia, potrzebują odpowiedniego układu, który umożliwia ich szybkie i stabilne zapłonienie. Tyrystory, jako elementy półprzewodnikowe, pozwalają na kontrolowanie dużych prądów oraz napięć, co jest niezbędne w przypadku lamp sodowych, które charakteryzują się dużymi wartościami prądów startowych. Dodatkowo, tyrystory umożliwiają oszczędność energii poprzez precyzyjne zarządzanie cyklem pracy lampy, co jest zgodne z najlepszymi praktykami w projektowaniu systemów oświetleniowych, które dążą do minimalizacji strat energii oraz wydłużenia żywotności źródeł światła. Warto również zauważyć, że tyrystory, jako elementy zabezpieczające i sterujące, są często wykorzystywane w różnych zastosowaniach przemysłowych, co podkreśla ich wszechstronność i znaczenie w nowoczesnych systemach oświetleniowych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Przedstawiony na rysunku zrzut ekranu miernika zawiera między innymi wyświetlaną w trakcie pomiaru wartość

Ilustracja do pytania
A. maksymalnego prądu obciążenia.
B. prądu zadziałania zabezpieczenia.
C. znamionowego prądu instalacji.
D. spodziewanego prądu zwarcia.
Wybranie odpowiedzi o prądzie zadziałania zabezpieczenia czy znamionowym prądzie instalacji pokazuje, że mogłeś nie do końca zrozumieć niektóre zasady pomiarów elektrycznych. Prąd zadziałania zabezpieczenia to wartość, przy której powinno zadziałać dane zabezpieczenie, takie jak wyłącznik nadprądowy, żeby chronić instalację przed uszkodzeniem. Ale to nie to samo, co prąd zwarcia, który mierzysz podczas pomiaru impedancji pętli zwarcia. Z kolei znamionowy prąd instalacji to maksimum, na jakie była projektowana instalacja, nie rzeczywisty prąd zwarcia, który mógłby się pojawić w przypadku awarii. Takie odpowiedzi mogą prowadzić do błędnych wniosków, bo nie uwzględniają, jak ważna jest znajomość prądu zwarcia dla bezpieczeństwa. Choć prąd zadziałania i znamionowy prąd są ważne, to nie odnoszą się do konkretnych pomiarów, które robimy. Błędna interpretacja tych pojęć może prowadzić do złego doboru zabezpieczeń, a to może narazić instalację na uszkodzenia i zwiększyć ryzyko dla użytkowników. Dlatego warto dobrze zrozumieć znaczenie każdego pomiaru, w tym prądu zwarcia, w kontekście bezpieczeństwa instalacji.

Pytanie 19

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. AC 500 V i DC 10 V
B. DC 500 V i AC 50 V
C. AC 500 V i DC 50 V
D. DC 500 V i AC 100 V
Wybór zakresów AC 500 V i DC 50 V dla multimetru używanego do prac konserwacyjnych w systemie sterowania bramą garażową jest uzasadniony ze względu na specyfikę zasilania urządzeń. Zasilanie silników prądu stałego o napięciu 24 V wymaga, by woltomierz mierzył napięcia stałe w zakresie do 50 V, co jest wystarczające dla takich zastosowań. Z kolei, zasilanie układu sterowania z sieci 230 V wymaga pomiaru napięcia zmiennego, dlatego górny zakres 500 V w AC jest konieczny dla zapewnienia bezpieczeństwa i dokładności pomiarów. W praktyce, tego typu pomiar może być użyty do diagnozowania i konserwacji obwodów sterujących, co jest kluczowe w zapewnieniu ich prawidłowej pracy. Używając multimetru o odpowiednich zakresach, technicy mogą swobodnie sprawdzać zarówno napięcia niskie, jak i wysokie bez ryzyka uszkodzenia urządzenia, co jest zgodne z zasadami dobrych praktyk branżowych oraz normami bezpieczeństwa.

Pytanie 20

Który łącznik elektryczny ma dwa przyciski oraz trzy terminale?

A. Krzyżowy
B. Dwubiegunowy
C. Schodowy
D. Świecznikowy
Świecznikowy łącznik instalacyjny jest odpowiednim rozwiązaniem w sytuacjach, gdy chcemy sterować jednym źródłem światła z dwóch miejsc, co jest typowe w korytarzach, schodach czy dużych pomieszczeniach. Posiada on dwa klawisze i trzy zaciski elektryczne, co pozwala na realizację funkcji przełączania obwodu. Dzięki zastosowaniu tego typu łącznika, użytkownik ma możliwość włączania i wyłączania oświetlenia z dwóch różnych lokalizacji, co znacząco zwiększa komfort użytkowania. W praktyce, łącznik świecznikowy jest często wykorzystywany w instalacjach domowych, w których architektura wnętrza wymaga takiej funkcjonalności. Dobrą praktyką jest stosowanie łączników zgodnych z normami elektrycznymi, co zwiększa bezpieczeństwo i niezawodność instalacji. Warto również zauważyć, że w przypadku modernizacji instalacji elektrycznej, wybór łącznika świecznikowego może być kluczowy dla poprawy ergonomii użytkowania oświetlenia.

Pytanie 21

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 20 mA
B. IΔ = 30 mA
C. IΔ = 40 mA
D. IΔ = 10 mA
Odpowiedź IΔ = 10 mA jest poprawna, ponieważ sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA nie powinien zadziałać przy prądzie różnicowym mniejszym od jego nominalnej wartości. Wartości prądu różnicowego, które są poniżej tego poziomu, nie powinny aktywować mechanizmu wyłączającego. Na przykład, jeżeli w instalacji elektrycznej wystąpi niewielki prąd upływowy spowodowany np. wilgocią lub wadliwym urządzeniem, to przy prądzie 10 mA wyłącznik nie zareaguje, co oznacza, że urządzenie może dalej działać. Wyłączniki różnicowoprądowe są kluczowym elementem w systemach zabezpieczeń, a zgodnie z normami IEC 61008-1, powinny być stosowane w instalacjach, aby zapewnić bezpieczeństwo użytkowników przed porażeniem prądem elektrycznym. Odpowiednia konfiguracja takich wyłączników jest istotna w kontekście ochrony zdrowia i życia, a ich prawidłowe działanie powinno być regularnie kontrolowane.

Pytanie 22

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 450/750 V
B. 300/500 V
C. 600/1000 V
D. 300/300 V
Wybór napięcia dla przewodów elektrycznych to bardzo ważna sprawa, bo wpływa na ich bezpieczeństwo i niezawodność. Przewody o napięciach 600/1000 V, 300/500 V i 300/300 V nie nadają się do instalacji jednofazowych przy 230/400 V, bo nie spełniają minimalnych wymogów. Takie 600/1000 V są robione do cięższych warunków, więc są drogie i niepotrzebne tam, gdzie wystarczą przewody 450/750 V. Natomiast 300/500 V i 300/300 V mają za małe wartości, co zwiększa ryzyko uszkodzeń i awarii. Użycie takich przewodów w instalacjach jednofazowych może prowadzić do problemów z bezpieczeństwem, jak przepięcia czy porażenia. Wiem, że często to wynika z braku wiedzy o standardach w branży. Ważne jest, żeby projektanci i instalatorzy rozumieli te specyfikacje, by uniknąć niebezpiecznych sytuacji i zapewnić, że instalacje elektryczne będą działać długo i sprawnie.

Pytanie 23

Podczas wymiany uszkodzonego gniazdka w instalacji powierzchniowej prowadzonej w rurach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na odcinku kilku centymetrów straciła elastyczność oraz zmieniła barwę. Jak należy przeprowadzić naprawę tego uszkodzenia?

A. Zaizolować uszkodzoną część izolacji przewodu taśmą
B. Nałożyć koszulkę termokurczliwą na uszkodzoną część izolacji przewodu
C. Wymienić wszystkie przewody na nowe o większej średnicy
D. Wymienić uszkodzony przewód na nowy o identycznej średnicy
Wymiana wszystkich przewodów na nowe o większym przekroju nie jest właściwym podejściem. Takie działanie jest nie tylko kosztowne, ale również zbędne, ponieważ uszkodzenie dotyczy jednego przewodu, a nie całej instalacji. Ponadto, stosowanie przewodów o większym przekroju może prowadzić do nieprzewidzianych problemów z obciążeniem, a także do zmiany właściwości instalacji, co może być niezgodne z wcześniej ustalonymi parametrami. Zastosowanie taśmy izolacyjnej jako metody naprawy jest również niewłaściwe, ponieważ taśmy nie przywracają elastyczności i nie zabezpieczają przewodu przed dalszymi uszkodzeniami. Izolacja taśmy może nie wytrzymać w trudnych warunkach, takich jak wysoka temperatura, co może prowadzić do ponownego uszkodzenia. Nałożenie koszulki termokurczliwej to tymczasowe rozwiązanie, które nie zastępuje wymiany uszkodzonego przewodu. Może to być pomocne w niektórych sytuacjach, ale nie eliminuje ryzyka, które wiąże się z uszkodzoną izolacją. Użycie takich rozwiązań bez wymiany przewodu naraża użytkowników na elektryczne zagrożenia, a zgodność z normami bezpieczeństwa może być niewystarczająca. Kluczowe jest, aby działać zgodnie z zasadami dobrych praktyk i norm, co w tym przypadku obejmuje pełną wymianę uszkodzonego elementu.

Pytanie 24

Który z podanych materiałów charakteryzuje się najniższą rezystywnością?

A. Miedź
B. Nichrom
C. Stal
D. Aluminium
Miedź to materiał o wyjątkowo niskiej rezystywności, wynoszącej około 1.68 µΩ·m w temperaturze 20°C. Dzięki temu jest szeroko stosowana w aplikacjach elektrycznych, takich jak przewody, złączki i komponenty elektroniczne. Wysoka przewodność miedzi sprawia, że jest idealnym wyborem w sytuacjach, gdzie minimalizacja strat energii jest kluczowa. Przykładem może być wykorzystanie miedzi w instalacjach elektrycznych w budynkach mieszkalnych oraz w przemyśle motoryzacyjnym, gdzie przewody miedziane są standardem. Inne materiały, takie jak aluminium, mają wyższą rezystywność, co wpływa na zwiększenie strat energii w systemach elektrycznych. W praktyce, miedź jest również preferowana w zastosowaniach wymagających dużej odporności na korozję oraz wysokiej trwałości, co czyni ją materiałem pierwszego wyboru w wielu normach branżowych dotyczących elektryczności i elektroniki.

Pytanie 25

Podczas korzystania z sprawnie działającego piekarnika elektrycznego z termostatem, żarówka oświetleniowa w pokoju często nieznacznie przygasa. Jakie mogą być przyczyny tego zjawiska?

A. Słaby styk w lampie
B. Zbyt mały przekrój przewodów zasilających pomieszczenie
C. Uszkodzony obwód zasilający piekarnik
D. Nadpalony styk wyłącznika światła
Odpowiedź wskazująca na za mały przekrój przewodów zasilających pomieszczenie jest poprawna, ponieważ zbyt mały przekrój może prowadzić do nadmiernego spadku napięcia w instalacji elektrycznej. W momencie, gdy piekarnik elektryczny, który pobiera znaczne ilości prądu, jest włączony, powoduje to wzrost obciążenia na obwodzie zasilającym. Jeśli przewody zasilające są niewłaściwie dobrane do obciążenia, mogą nie być w stanie dostarczyć wystarczającej ilości energii, co skutkuje chwilowym spadkiem napięcia i przygasaniem żarówek oświetleniowych. Praktycznym przykładem może być sytuacja, gdy piekarnik i inne urządzenia są podłączone do jednego obwodu, co zwiększa obciążenie. Zgodnie z normami PN-IEC 60364, projektując instalacje elektryczne, należy dobierać przekroje przewodów na podstawie przewidywanego obciążenia, co pozwala uniknąć takich problemów. W przypadku zauważenia takich objawów, warto skonsultować się z elektrykiem, który oceni sytuację i doradzi ewentualne zmiany w instalacji.

Pytanie 26

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 16 A, 20 A, 20 A, 16 A
B. 16 A, 20 A, 20 A, 16 A
C. 20 A, 16 A, 20 A, 16 A
D. 20 A, 16 A, 16 A, 20 A
Odpowiedź 20 A, 16 A, 16 A, 20 A jest poprawna, ponieważ wartości prądów znamionowych wyłączników instalacyjnych dobierane są na podstawie mocy znamionowej odbiorników oraz zastosowanej metody ochrony. Przepływowy podgrzewacz wody o mocy 12 kW w obwodzie 3-fazowym wymaga prądu wynoszącego około 20 A (12 kW / (sqrt(3) * 400 V) ≈ 17,3 A, zaokrąglając do standardowej wartości 20 A). Zmywarka o mocy 3,5 kW w obwodzie jednofazowym wymaga 16 A, co jest standardową wartością dla tego typu urządzeń. Kuchenka elektryczna o mocy 9,5 kW w obwodzie 3-fazowym również powinna być zabezpieczona wyłącznikiem o prądzie 20 A, ponieważ 9,5 kW / (sqrt(3) * 400 V) ≈ 13,7 A. Pralka automatyczna o mocy 4,5 kW w obwodzie jednofazowym również wymaga wyłącznika o prądzie 16 A, co odpowiada normom dla urządzeń AGD. Takie dobory zabezpieczeń są zgodne z praktykami określonymi w normie PN-IEC 60364, co zapewnia zarówno bezpieczeństwo, jak i odpowiednią ochronę urządzeń. Wartości te są również zgodne z typowymi zabezpieczeniami dostępnymi na rynku.

Pytanie 27

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Kontrola zabezpieczeń i stanu osłon części wirujących
B. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
C. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
D. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
Czynności kontrolne takie jak sprawdzenie stanu przewodów ochronnych i ich połączeń, kontrola poziomu drgań oraz sprawdzenie zabezpieczeń i stanu osłon części wirujących są niezwykle istotne podczas eksploatacji urządzeń napędowych. Zabezpieczenia, takie jak osłony części wirujących, pełnią kluczową rolę w ochronie operatorów przed urazami oraz zabezpieczają mechanizm przed uszkodzeniami. Ich sprawność jest niezbędna dla zapewnienia bezpieczeństwa operacji. Kontrola stanu przewodów ochronnych również nie powinna być pomijana, ponieważ ich uszkodzenie może prowadzić do niebezpiecznych sytuacji związanych z wyciekiem prądu lub zwarciem. Z kolei monitorowanie poziomu drgań jest kluczowe dla diagnostyki stanu maszyny; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, uszkodzenia łożysk lub inne problemy mechaniczne. Ponadto, pomiary elektryczne, chociaż ważne, są zwykle częścią rutynowych przeglądów, a nie codziennych czynności kontrolnych w trakcie pracy. Warto pamiętać, że każde z tych działań służy do wczesnego wykrywania nieprawidłowości i zapobiegania poważniejszym awariom, co jest zgodne z najlepszymi praktykami w dziedzinie utrzymania ruchu i zarządzania bezpieczeństwem pracy. Ostatecznie, aby zapewnić długowieczność i niezawodność systemów napędowych, konieczne jest regularne przeprowadzanie kompleksowych analiz stanu technicznego w oparciu o odpowiednie normy i zalecenia branżowe.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Elektryczne połączenie, które umożliwia przesył energii elektrycznej, znajdujące się pomiędzy złączem a systemem odbiorczym w budynku, określane jest mianem

A. przyłącza napowietrznego
B. przyłącza kablowego
C. instalacji wewnętrznej
D. wewnętrznej linii zasilającej
Odpowiedź "wewnętrzna linia zasilająca" jest poprawna, ponieważ odnosi się do połączenia elektrycznego, które służy do dostarczania energii elektrycznej wewnątrz budynków. Tego rodzaju linie zasilające są kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych, zapewniając stabilne i bezpieczne przesyłanie energii do urządzeń i systemów odbiorczych. W praktyce, wewnętrzne linie zasilające są projektowane zgodnie z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa, jakości oraz efektywności energetycznej. Stosowanie odpowiednich materiałów, takich jak przewody miedziane lub aluminiowe oraz odpowiednie zabezpieczenia, takie jak wyłączniki nadprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku budynków komercyjnych, takich jak biura czy hale produkcyjne, projektowanie wewnętrznych linii zasilających wymaga szczególnej uwagi na obciążenia energetyczne oraz możliwość przyszłej rozbudowy instalacji.

Pytanie 33

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik liniowy
B. Silnik synchroniczny trójfazowy
C. Silnik indukcyjny jednofazowy
D. Silnik krokowy
Silniki indukcyjne jednofazowe są najczęściej stosowane w urządzeniach gospodarstwa domowego ze względu na ich prostotę konstrukcji, niezawodność oraz stosunkowo niskie koszty produkcji. Jednofazowe silniki indukcyjne działają w oparciu o zasadę indukcji elektromagnetycznej, gdzie prąd zmienny przepływający przez uzwojenie stojana wytwarza pole magnetyczne, które indukuje prąd w wirniku. To z kolei generuje siłę napędową, która wprawia wirnik w ruch obrotowy. Tego typu silniki są powszechnie stosowane w urządzeniach takich jak pralki, lodówki, wentylatory czy miksery. Ich zaletą jest brak szczotek komutatora, co eliminuje problem iskrzenia i konieczność częstej konserwacji. Dzięki swojej prostocie, silniki te charakteryzują się długą żywotnością i są odporne na przeciążenia. Ponadto są stosunkowo ciche i energooszczędne, co czyni je idealnym wyborem do zastosowań domowych. Standardy przemysłowe i dobre praktyki również preferują użycie jednofazowych silników indukcyjnych w kontekście urządzeń gospodarstwa domowego, podkreślając ich efektywność i trwałość.

Pytanie 34

Jaką maksymalną wartość impedancji pętli zwarcia powinien mieć obwód o napięciu 230/400 V, aby wyłącznik instalacyjny nadprądowy C10 mógł skutecznie zapewnić ochronę przed porażeniem?

A. 0,4 Ω
B. 7,7 Ω
C. 4,6 Ω
D. 2,3 Ω
Jeśli chodzi o odpowiedzi, które mówią, że maksymalna wartość impedancji pętli zwarcia to 0,4 Ω, 7,7 Ω czy 4,6 Ω, to niestety, to nie jest dobre podejście. Ta pierwsza wartość, 0,4 Ω, jest zdecydowanie za mała. W praktyce, tak niski poziom nie jest potrzebny dla systemów z wyłącznikami nadprądowymi. Taki wynik by znaczył, że nawet niewielkie napięcie mogłoby wyzwolić zabezpieczenia, a to nie jest ani realne, ani praktyczne. Potem mamy 7,7 Ω i 4,6 Ω, które są już poza dopuszczalnym poziomem. To przekłada się na to, że wyłącznik będzie działał za wolno, a przy poważnych zwarciach może być naprawdę niebezpiecznie. Ważne jest, żeby zrozumieć, że wyłączniki nadprądowe trzeba zaprojektować tak, by reagowały w określonym czasie, a to jest ściśle związane z impedancją pętli zwarcia. Jak ta wartość jest za wysoka, to ochrona przed porażeniem elektrycznym jest słaba, a to niezgodne z zasadami bezpieczeństwa. Taka sytuacja może sprawić, że system nie zadziała jak trzeba w razie zagrożenia elektrycznego, a to zdecydowanie nie jest dobra praktyka.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Reflektometru
B. Watomierza
C. Waromierza
D. Woltomierza
Waromierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru mocy biernej w układach elektrycznych. Moc bierna jest kluczowym pojęciem w systemach prądu przemiennego, szczególnie w kontekście obciążeń indukcyjnych i pojemnościowych. W odróżnieniu od mocy czynnej, która jest wykorzystywana do wykonania pracy, moc bierna nie przyczynia się do rzeczywistego zużycia energii, ale jest niezbędna do utrzymania pola elektromagnetycznego w takich urządzeniach jak silniki czy transformatory. Przykład zastosowania waromierza można znaleźć w analizie układów zasilania w przemyśle, gdzie istotne jest monitorowanie i optymalizacja zużycia energii. Użycie waromierza pozwala na dokładne określenie ilości mocy biernej w instalacji, co jest ważne dla poprawnej regulacji oraz zminimalizowania strat energetycznych, zgodnie z normami IEC 62053. Praktycznie, pomiary te są często wykorzystywane w celu obliczenia współczynnika mocy, który jest niezbędny dla oceny efektywności energetycznej układów elektrycznych.

Pytanie 38

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
B. Wykorzystywanie urządzeń o zbyt dużej mocy
C. Użycie wyłącznika o zbyt długim czasie reakcji
D. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
Częściowe zwarcie między przewodem L a PE to jedna z najczęstszych przyczyn, przez które wyłącznik różnicowoprądowy (RCD) może zadziałać. Tego typu zwarcie grozi niebezpiecznymi sytuacjami, bo prąd upływowy może pojawiać się na obudowach urządzeń, co zagraża bezpieczeństwu osób je używających. Te wyłączniki są zaprojektowane, żeby w momencie wykrycia różnicy prądów automatycznie przerywać obwód, co oznacza, że prąd może płynąć do ziemi przez niezamierzony kanał, na przykład przez osobę dotykającą urządzenia. Dlatego warto regularnie testować RCD, co jest zalecane przez normy, takie jak PN-EN 60947-2. To naprawdę ważne dla naszej ochrony przed porażeniem w instalacjach elektrycznych. Jeśli masz problemy z RCD, dobrze byłoby zlecić sprawdzenie instalacji elektrycznej profesjonalnemu elektrykowi, żeby zidentyfikował problem i usunął przyczynę zwarcia, co pozwoli nam bezpiecznie korzystać z urządzeń elektrycznych.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Napięcia dotykowego
B. Rezystancji uziemienia
C. Rezystancji izolacji
D. Impedancji zwarciowej
Pomiar rezystancji izolacji jest kluczowym elementem oceny skuteczności ochrony przed dotykiem bezpośrednim w instalacjach elektrycznych do 1 kV. W przypadku takich systemów, odpowiednia izolacja jest niezbędna do zapewnienia bezpieczeństwa użytkowników oraz niezawodności działania instalacji. Rezystancja izolacji wskazuje na zdolność materiału do odseparowania prądu elektrycznego od części dostępnych dla użytkowników, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym. Przykładowo, normy IEC 60364 dotyczące instalacji elektrycznych wymagają, aby pomiar rezystancji izolacji wynosił co najmniej 1 MΩ. W praktyce oznacza to, że przed oddaniem do użytku nowej instalacji, a także podczas jej regularnej konserwacji, wykonuje się pomiary rezystancji izolacji, co pozwala na identyfikację potencjalnych uszkodzeń oraz degradacji materiałów izolacyjnych. W przypadku wykrycia niskiej rezystancji należy niezwłocznie podjąć działania naprawcze, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami.