Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 16 listopada 2025 19:58
  • Data zakończenia: 16 listopada 2025 20:29

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

We wzmacniaczu przeciwsobnym klasy B doszło do uszkodzenia jednego z elementów. Wskaż uszkodzony element wiedząc, że na wejście wzmacniacza podłączono napięcie sinusoidalnie zmienne.

Ilustracja do pytania
A. Ti
B. T2
C. C
D. R0
Wybór którejkolwiek z pozostałych odpowiedzi prowadzi do błędnych wniosków dotyczących funkcjonowania wzmacniaczy przeciwsobnych klasy B. R0, czyli rezystor, nie jest kluczowym elementem odpowiedzialnym za przewodzenie sygnału, lecz pełni funkcję ograniczającą prąd i stabilizującą działanie wzmacniacza. Właściwe zrozumienie roli rezystorów w obwodach wzmacniających jest istotne, jednak nie mogą one być przyczyną braku sygnału na wyjściu. Z kolei kondensator C, który mógłby być brany pod uwagę, pełni rolę filtrującą i stabilizującą, ale nie odpowiada za przewodzenie sygnału w konkretnej połówce cyklu. Odpowiedź Ti, sugerująca uszkodzenie pierwszego tranzystora, również jest błędna, ponieważ w przypadku wzmacniacza klasy B, jeśli na wyjściu widoczna jest tylko dodatnia połówka sygnału, to problem dotyczy dokładnie tranzystora odpowiedzialnego za negatywną połówkę, co w tym przypadku jest T2. Często ludzie mylą działania poszczególnych elementów w układzie, co prowadzi do mylnych interpretacji działania wzmacniaczy. Dlatego kluczowe jest zrozumienie, jak poszczególne komponenty współdziałają w kontekście całego układu, co pozwala na prawidłowe diagnozowanie problemów oraz ich kompleksowe rozwiązywanie w praktyce inżynierskiej.

Pytanie 3

Tabela przedstawia wybrane dane techniczne regulatora temperatury. Do jego wejścia można bezpośrednio podłączyć

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Zakres pomiarowy-100 °C ÷ 600 °C
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Pamięć danychEEPROM
Stopień ochrony frontu urządzeniaIP65
Stopień ochrony zaciskówIP20
A. termistor.
B. termoparę.
C. czujnik pirometryczny.
D. czujnik rezystancyjny.
Wiesz, czujniki takie jak termistor, termopara czy czujnik pirometryczny to często te, które ludzie mylą z czujnikami rezystancyjnymi. Ale one działają na zupełnie innych zasadach. Termistory zmieniają rezystancję w szerszym zakresie temperatur, ale mają ograniczony zakres pomiarowy, co nie jest najlepsze do długotrwałego monitorowania w skrajnych warunkach. Z kolei termopary działają dzięki zjawisku Seebecka – wytwarzają napięcie, gdy są różne temperatury na dwóch złączach z różnych materiałów. Można nimi mierzyć wysokie temperatury, ale są mniej dokładne niż czujniki rezystancyjne. A czujniki pirometryczne to zupełnie inna bajka, bo mierzą temperaturę z daleka, więc nie nadają się do bezpośredniego podłączenia do regulatora temperatury. Wszystkie te czujniki mają swoje miejsce, ale jeśli ich nie zrozumiesz, to możesz źle je wybrać, co nie jest fajne. Dlatego warto znać różnice między tymi technologiami i wiedzieć, gdzie je najlepiej wykorzystać.

Pytanie 4

W przypadku wzmacniaczy prądu stałego nie wykorzystuje się sprzężenia pojemnościowego pomiędzy poszczególnymi stopniami, ponieważ kondensator

A. prowadzi do przerwy dla sygnału o wysokiej częstotliwości
B. tak jak dioda, umożliwia przepływ sygnału tylko w jednym kierunku
C. nie przekazuje składowej stałej sygnału
D. działa jak zwarcie dla sygnału stałego
Kondensator w obwodach elektrycznych pełni kluczową rolę w separacji sygnałów stałych i zmiennych. Działając jako element filtrujący, blokuje składową stałą sygnału, co jest niezwykle istotne w aplikacjach wzmacniaczy prądu stałego. Wzmacniacze te muszą przenosić sygnały o składowej stałej, aby zapewnić stabilność i precyzję działania. Sprzężenie pojemnościowe, wykorzystujące kondensatory, nie tylko blokuje składową stałą, ale także może wprowadzać niepożądane zniekształcenia w sygnale, co może wpłynąć na wydajność całego obwodu. W praktyce oznacza to, że w przypadku wzmacniaczy prądu stałego, ich projektanci muszą unikać układów, które mogą wpływać na integralność sygnału, a tym samym stosować inne metody sprzężenia, które nie zakłócają składowej stałej. Ponadto, zgodnie z zasadami projektowania układów elektronicznych, bliskie związki między elementami w obwodach prądu stałego są kluczowe dla ich prawidłowego działania.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jaką wartość prądu z akumulatora o napięciu 6 V zużywa przetwornica napięcia 6 VDC / 12 VDC przy założonym teoretycznie 100% współczynniku sprawności energetycznej, podczas zasilania czterech zewnętrznych kamer systemu monitoringu napięciem 12 V, z których każda wymaga prądu rzędu około 50 mA?

A. 0,1 A
B. 0,3 A
C. 0,2 A
D. 0,4 A
Wybór niepoprawnej wartości natężenia prądu często wynika z błędnego zrozumienia zasad działania przetwornic napięcia oraz nieprawidłowego sumowania prądów pobieranych przez urządzenia. Odpowiedzi takie jak 0,1 A, 0,2 A lub 0,3 A mogą wydawać się atrakcyjne ze względu na to, że łączny prąd pobierany przez cztery kamery wynosi 200 mA, jednak nie uwzględniają one kluczowego aspektu, jakim jest sprawność przetwornicy oraz różnica napięć. Przetwornica przekształcająca napięcie z 6 V na 12 V musi pobrać więcej prądu z akumulatora, aby dostarczyć odpowiednią moc na wyjściu. Prawo Ohma oraz zasada zachowania energii mówiąc, że moc musi być zachowana, w szczególności w systemie idealnym, prowadzi do wniosku, że natężenie prądu pobieranego z akumulatora będzie większe niż natężenie prądu na wyjściu przetwornicy. W przypadku 100% sprawności przetwornicy, która jest w praktyce nieosiągalna, ale przyjmowana do uproszczenia obliczeń, dla 0,2 A na wyjściu 12 V musimy uwzględnić podwójne natężenie dla 6 V, co prowadzi do wartości 0,4 A. Ignorowanie tej zasady prowadzi do nieprawidłowych obliczeń i błędnych wniosków. W rzeczywistości, w projektowaniu systemów zasilania, dobrym zwyczajem jest zawsze przewidywać straty energii i obliczać wymaganą moc na podstawie rzeczywistych danych technicznych urządzeń oraz specyfikacji przetwornic.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jaką wartość ma liczba poziomów w dwunastobitowym przetworniku C/A?

A. (2-1)12
B. 212
C. 212-1
D. 212-1
Wszystkie odpowiedzi, które nie wskazują na 2^12, opierają się na błędnym zrozumieniu działania przetworników C/A. Liczba poziomów w przetworniku C/A jest obliczana na podstawie potęgi liczby 2, co wynika z tego, że każdy bit przetwornika może przyjmować dwie wartości: 0 lub 1. Dlatego dla dwunastu bitów mamy 2^12, a nie żadną inną kombinację. Opcje takie jak 2^12-1 mylą koncepcję, ponieważ sugerują, że poziomy są ograniczone do wartości mniejszych od maksymalnej, co jest istotne w kontekście niektórych zastosowań, jednak przy obliczaniu całkowitej liczby poziomów przetwornika C/A nie jest to właściwe podejście. Wartość (2-1)12 również jest niepoprawna, ponieważ nie odnosi się do liczby poziomów, a zrozumienie tej koncepcji jest kluczowe w projektowaniu systemów przetwarzania sygnałów. Typowym błędem jest myślenie, że liczba poziomów może być obliczona poprzez inne operacje matematyczne, co prowadzi do niewłaściwych wniosków. Ważne jest, aby zrozumieć podstawy działania przetworników C/A i ich znaczenie w praktycznych zastosowaniach technologicznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Do jakiej klasy urządzeń energoelektronicznych należy przekształtnik zwany czoperem?

A. Pośrednich konwerterów częstotliwości
B. Bezpośrednich konwerterów częstotliwości
C. Bezpośrednich konwerterów prądu stałego
D. Pośrednich konwerterów prądu stałego
Pojęcie przekształtników energetycznych może być dość skomplikowane i zrozumienie tego wymaga znajomości wielu różnych typów przekształtników. Zwłaszcza ważne jest, by wiedzieć, czym się różnią przekształtniki bezpośrednie od pośrednich. Bezpośrednie przekszładniki prądu stałego, jak czoper, działają tak, że nie potrzebują żadnych pośrednich form, żeby zmieniać energię elektryczną. Natomiast pośrednie przekształtniki, typu przekształtniki częstotliwości, najpierw potrzebują zamienić prąd stały na zmienny, co wiąże się z większymi stratami energii i złożonością. Często myli się czopery z pośrednimi przekształtnikami lub przekształtnikami częstotliwości, co może prowadzić do złych decyzji w inżynierii. Niedokładne rozumienie zasad działania różnych przekształtników, ich zastosowań i ograniczeń, może wprowadzać w błąd i prowadzić do naprawdę nieodpowiednich wyborów projektowych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Przedstawiony na zdjęciu klucz Dallas jest elementem systemu

Ilustracja do pytania
A. telewizji dozorowej.
B. sieci komputerowej.
C. dostępu i zabezpieczeń.
D. automatyki przemysłowej.
Klucz Dallas, znany również jako iButton, jest kluczowym elementem w systemach kontroli dostępu i zabezpieczeń. Jego zastosowanie polega na bezpiecznej identyfikacji użytkowników, co czyni go niezwykle użytecznym w różnych aplikacjach, takich jak automatyczne otwieranie drzwi, autoryzacja dostępu do systemów komputerowych oraz zabezpieczenia w budynkach użyteczności publicznej. Klucz działa na zasadzie komunikacji z czytnikiem, co pozwala na szybką weryfikację tożsamości. Praktyczne zastosowania obejmują m.in. systemy kontroli dostępu w biurach, fabrykach czy instytucjach finansowych, gdzie bezpieczeństwo jest priorytetem. Dobre praktyki w branży wskazują na konieczność używania unikalnych identyfikatorów, co znacznie podnosi poziom bezpieczeństwa. Warto również zwrócić uwagę na standardy, takie jak ISO/IEC 27001, które dotyczą zarządzania bezpieczeństwem informacji, a systemy oparte na kluczach Dallas mogą wspierać implementację tych standardów poprzez efektywne zarządzanie dostępem i identyfikacją użytkowników.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Liczba 3,5 w naturalnym systemie binarnym będzie zapisana jako

A. 10,1
B. 01,1
C. 11,0
D. 11,1
W przypadku błędnych odpowiedzi, istnieje kilka koncepcji, które mogą prowadzić do nieprawidłowego rozumienia konwersji liczb. Przykładowo, odpowiedź '01,1' sugeruje, że część całkowita liczby 3 powinna być zapisana jako '01', co jest mylnym podejściem. W systemie binarnym, przednie zera nie mają znaczenia, a liczba 3 zapisywana jest wyłącznie jako '11'. Kolejna niepoprawna odpowiedź '10,1' wynika z nieprawidłowego przeliczenia liczby całkowitej, która w tym przypadku zostałaby zinterpretowana jako 2, a nie 3. Wynikając z tego, część ułamkowa pozostaje prawidłowa, jednak całość jest błędna. Odpowiedź '11,0' również jest niewłaściwa, ponieważ sugeruje, że liczba 3,5 nie ma części ułamkowej, co jest sprzeczne z definicją liczby zmiennoprzecinkowej. Typowym błędem myślowym prowadzącym do takich niepoprawnych odpowiedzi jest niepełne zrozumienie, jak działają konwersje systemów liczbowych oraz pomijanie istotnych wartości w zapisie binarnym. Warto zwrócić uwagę na znaczenie znajomości zasad konwersji oraz ich zastosowania w praktyce, co jest niezbędne w wielu dziedzinach związanych z informatyką i inżynierią. Zrozumienie różnicy między reprezentacją binarną liczby całkowitej a ułamkowej jest kluczowe dla poprawnych obliczeń oraz efektywnego programowania.

Pytanie 24

Która z funkcji w oprogramowaniu EDA zajmuje się wyznaczaniem ścieżek przy projektowaniu układów PCB?

A. Placing
B. Annotation
C. Routing
D. RuleCheck
Routing to kluczowa funkcja w programach EDA (Electronic Design Automation), która odpowiada za wytyczanie ścieżek w projektowaniu obwodów drukowanych (PCB). Proces ten polega na automatycznym lub półautomatycznym tworzeniu połączeń między komponentami na płycie, zgodnie z określonymi regułami projektowymi i wymaganiami elektrycznymi. Dobrze zaprojektowany routing nie tylko zapewnia prawidłowe połączenia, ale również minimalizuje interferencje elektromagnetyczne, optymalizuje długości ścieżek oraz ułatwia proces produkcji. W praktyce, inżynierowie często korzystają z algorytmów routingu, które uwzględniają różne czynniki, takie jak szerokość ścieżek, odstępy między nimi, a także charakterystykę sygnałów. Zgodnie z najlepszymi praktykami, routing powinien być wykonywany z uwzględnieniem zasad projektowania, takich jak DFM (Design for Manufacturing) i DFT (Design for Testability), co przyczynia się do efektywności produkcji i późniejszej diagnostyki.

Pytanie 25

Parametr Vpp, który znajduje się w dokumentacji technicznej wzmacniacza mocy o niskiej częstotliwości, wskazuje na wartość

A. między szczytową sygnału
B. skuteczną sygnału
C. średnią sygnału
D. maksymalną sygnału
Parametr V<sub>pp</sub>, czyli napięcie między szczytowe, definiuje maksymalne napięcie sygnału, jakie wzmacniacz mocy może wygenerować pomiędzy dwoma szczytami. Sygnał ten jest kluczowy w analizie wydajności wzmacniaczy audio, ponieważ pozwala na ocenę ich zdolności do reprodukcji dynamicznych zakresów dźwięku. Przykładem zastosowania tego parametru jest projektowanie systemów audio, gdzie potrzebne jest określenie, czy wzmacniacz będzie w stanie obsłużyć sygnały o dużych amplitudach bez zniekształceń. W kontekście standardów branżowych, V<sub>pp</sub> jest często stosowany w dokumentacji technicznej, aby umożliwić inżynierom porównywanie różnych urządzeń. Dobrym przykładem może być sytuacja, w której inżynier projektujący system nagłośnienia wymaga wzmacniacza o określonym V<sub>pp</sub>, aby zapewnić odpowiednią moc wyjściową na poziomie, który zaspokoi wymagania konkretnego zastosowania, na przykład w sali koncertowej.

Pytanie 26

Język LD do tworzenia schematów drabinkowych pozwala na

A. wizualizację pracy układów GAL
B. komunikowanie z procesorem GPU
C. zaprogramowanie pamięci EPROM
D. programowanie sterowników PLC
Język schematów drabinkowych (LD) jest standardowym językiem programowania używanym w automatyce przemysłowej, szczególnie w kontekście programowania sterowników PLC (Programmable Logic Controllers). Jego struktura przypomina schematy elektryczne, co ułatwia inżynierom zrozumienie logiki działania aplikacji. Przez użycie elementów takich jak styki i cewki, LD pozwala na łatwą reprezentację operacji logicznych oraz sekwencyjnych, co jest kluczowe w sterowaniu procesami przemysłowymi. Typowe zastosowania obejmują automatyzację linii produkcyjnych, kontrolę urządzeń, a także monitorowanie i diagnostykę systemów. W praktyce, inżynierowie często używają oprogramowania takich jak RSLogix, które umożliwia tworzenie, testowanie i wdrażanie programów w języku LD zgodnie z normą IEC 61131-3. Wspieranie standardów branżowych oraz dobrych praktyk, takich jak dokumentacja oraz testowanie programów, jest kluczowe dla zapewnienia niezawodności i efektywności systemów automatyki.

Pytanie 27

Podczas fachowej wymiany uszkodzonego układu scalonego SMD – kontrolera przetwornicy impulsowej w odbiorniku TV – powinno się zastosować

A. stację na gorące powietrze
B. lutownicę transformatorową
C. lutownicę gazową
D. stację lutowniczą grzałkową
Stacja na gorące powietrze jest narzędziem idealnym do wymiany uszkodzonych układów scalonych SMD, takich jak sterowniki przetwornic impulsowych w odbiornikach TV. Dzięki zastosowaniu gorącego powietrza można jednocześnie podgrzewać wiele pinów układu, co znacząco ułatwia proces lutowania oraz odlutowywania. Metoda ta minimalizuje ryzyko uszkodzenia elementów sąsiadujących, ponieważ nie wprowadza bezpośredniego kontaktu z gorącą powierzchnią, jak ma to miejsce w przypadku lutownic. W praktyce, użytkownicy stacji na gorące powietrze powinni ustawić odpowiednią temperaturę (zwykle w zakresie 250-350°C) oraz przepływ powietrza, co zależy od konkretnego rozmiaru i typu układu. Użycie tej technologii jest zgodne z najlepszymi praktykami w branży, co podkreślają normy IPC, które promują odpowiednie techniki lutowania dla komponentów SMD. Ponadto, stacje na gorące powietrze są również używane do reworku i napraw, co czyni je wszechstronnym narzędziem w elektronice.

Pytanie 28

Rysunek przedstawia zasilanie

Ilustracja do pytania
A. symetryczne.
B. nie symetryczne.
C. trójfazowe.
D. jednofazowe.
Rysunek przedstawia zasilanie symetryczne, co oznacza, że mamy do czynienia z układem, w którym napięcia w poszczególnych fazach są równe i mają taki sam kąt przesunięcia. Zasilanie symetryczne jest kluczowe w systemach trójfazowych, gdzie zapewnia równomierne obciążenie wszystkich faz, co przekłada się na efektywność i stabilność systemu zasilania. Taki układ minimalizuje straty energii i eliminuje wibracje oraz zakłócenia w pracy silników elektrycznych. Przykładem zastosowania zasilania symetrycznego mogą być zasilacze w przemyśle, które wytwarzają moc potrzebną do zasilania urządzeń produkcyjnych. Standardy takie jak IEC 60038 definiują wartości nominalne napięć dla różnych systemów zasilania, co jest istotne dla zapewnienia spójności i bezpieczeństwa w instalacjach elektrycznych.

Pytanie 29

Który z symboli znajdujących się na tabliczce znamionowej określa warunki środowiskowe, w jakich może pracować urządzenie elektroniczne?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź A to dobry wybór, bo symbol "IP44" na tabliczce mówi, w jakich warunkach nasze urządzenie może działać. Klasyfikacja IP, czyli Ingress Protection, to taki międzynarodowy standard, który opisuje, jak dobrze urządzenie broni się przed kurzem i wodą. W IP44, ta pierwsza cyfra "4" zaznacza, że mamy ochronę przed dostępem do niebezpiecznych części przez małe przedmioty, większe niż 1 mm. To jest ważne w miejscach, gdzie mogą wpaść różne drobne rzeczy. Z kolei ta druga cyfra "4" oznacza, że urządzenie wytrzymuje zachlapanie wodą z różnych stron. To sprawia, że można je stosować tam, gdzie jest trochę wilgoci, ale niekoniecznie w pełnym zanurzeniu. Przykładowo, takie urządzenia są świetne w warsztatach, gdzie można mieć do czynienia z wodą, ale bezpieczeństwo to podstawa. Dlatego warto znać klasę IP, żeby dobrze dobrać sprzęt do miejsca, w którym ma pracować.

Pytanie 30

Jakiego typu procesor jest używany w wzmacniaczach z cyfrowym przetwarzaniem dźwięku?

A. CISC
B. RISC
C. DSP
D. AVR
Wzmacniacze z cyfrowym przetwarzaniem dźwięku (DSP - Digital Signal Processing) wykorzystują specjalizowane procesory, które są zoptymalizowane do realizacji skomplikowanych algorytmów manipulacji sygnałem. Procesory DSP charakteryzują się zdolnością do szybkiego przetwarzania danych w czasie rzeczywistym, co jest kluczowe w zastosowaniach audio, takich jak filtracja, kompresja, echo czy inny efekt dźwiękowy. Dzięki architekturze, która umożliwia równoległe przetwarzanie wielu operacji matematycznych, DSP potrafią efektywnie zarządzać dużymi zestawami danych audio. Przykłady zastosowań obejmują profesjonalne systemy nagłośnienia, gdzie jakość dźwięku ma kluczowe znaczenie, oraz w sprzęcie konsumenckim, takim jak procesory w soundbarach czy systemach hi-fi. Rekomendacje branżowe wskazują, że zastosowanie DSP w audio to standard w nowoczesnych urządzeniach, co potwierdza ich niezastąpioną rolę w obróbce dźwięku.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Sieć komputerowa obejmująca obszar miasta to sieć

A. MAN
B. PAN
C. LAN
D. WAN
Odpowiedź 'MAN' (Metropolitan Area Network) jest poprawna, ponieważ odnosi się do sieci komputerowej o zasięgu miejskim, która łączy różne lokalizacje w obrębie jednego miasta lub aglomeracji. Sieci MAN są zazwyczaj używane do połączeń między biurami, uczelniami, a także dostawcami usług internetowych w danym regionie, co pozwala na efektywną wymianę danych. W praktyce, sieci te mogą wykorzystywać różnorodne technologie, takie jak Ethernet, Wi-Fi czy światłowody. Przykładem zastosowania sieci MAN może być system komunikacji miejskiej, który łączy różne punkty obsługi pasażerów oraz sieci zarządzania ruchem. W branży telekomunikacyjnej, MAN stanowi istotny element architektury sieci, umożliwiając zbudowanie infrastruktury, która wspiera usługi szerokopasmowe i wideo, zapewniając jednocześnie odpowiednią przepustowość i niskie opóźnienia. Zgodnie z dobrymi praktykami, projektowanie sieci MAN powinno uwzględniać aspekty skalowalności i niezawodności, co jest kluczowe dla zapewnienia ciągłości usług.

Pytanie 35

Aby przeprowadzić demontaż uszkodzonego regulatora PID zamontowanego na szynie DIN, należy postępować zgodnie z poniższą kolejnością:

A. odłączyć zasilanie, odkręcić przewody, odpiąć regulator z szyny
B. odkręcić przewody, odpiąć regulator z szyny, odłączyć zasilanie
C. odpiąć regulator z szyny, odłączyć zasilanie, odkręcić przewody
D. odłączyć zasilanie, odpiąć regulator z szyny, odkręcić przewody
Poprawna odpowiedź opiera się na zasadach bezpieczeństwa oraz najlepszych praktykach w pracy z urządzeniami elektrycznymi. Pierwszym krokiem jest odłączenie napięcia, co jest kluczowe dla zapewnienia bezpieczeństwa podczas demontażu. W przeciwnym razie istnieje ryzyko porażenia prądem, co może prowadzić do poważnych obrażeń. Następnie, odkręcenie przewodów jest niezbędne, aby uniknąć ich uszkodzenia w trakcie usuwania regulatora PID. W momencie, gdy przewody są odkręcone, można bezpiecznie odpiąć regulator z szyny DIN. Proces ten jest zgodny z normami BHP (Bezpieczeństwa i Higieny Pracy), które stanowią fundament w każdej branży zajmującej się instalacjami elektrycznymi. Zastosowanie odpowiedniej kolejności działań minimalizuje ryzyko awarii sprzętu oraz zwiększa ogólną efektywność pracy. Przykładem praktycznym może być serwisowanie systemów automatyki przemysłowej, gdzie błędne podejście do demontażu może prowadzić do przestojów w produkcji.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Na rysunku przedstawiony jest

Ilustracja do pytania
A. układ całkujący.
B. wtórnik napięciowy.
C. wzmacniacz odwracający.
D. wzmacniacz różnicowy.
Wybór wzmacniacza odwracającego, układu całkującego lub wzmacniacza różnicowego jako odpowiedzi jest wynikiem pewnych nieporozumień dotyczących funkcji i konstrukcji tych układów. Wzmacniacz odwracający, na przykład, charakteryzuje się tym, że sygnał wejściowy jest podawany na jego wejście odwracające, a wyjście generuje sygnał, który jest inwersją sygnału wejściowego. W kontekście rysunku, nie widać dodatkowych rezystorów, które są kluczowe dla ustalenia wzmocnienia tego układu, co wyklucza tę możliwość. Podobnie, układ całkujący wymaga obecności odpowiednich elementów, takich jak kondensatory, aby móc realizować funkcję całkowania sygnału, a brak tych komponentów również dyskwalifikuje tę odpowiedź. Wzmacniacz różnicowy zaś, służy do porównywania dwóch sygnałów wejściowych i generowania wyjścia, które jest różnicą tych sygnałów. Przy braku takich połączeń, można stwierdzić, że układ przedstawiony na rysunku nie spełnia kryteriów dla wzmacniacza różnicowego. Często w takich sytuacjach dochodzi do błędnych analogii z bardziej złożonymi układami, co prowadzi do mylnego wyboru. Zrozumienie podstawowych funkcji tych układów oraz ich budowy jest kluczowe dla poprawnej analizy i rozwiązywania problemów w elektronice.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.