Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 8 grudnia 2025 10:43
  • Data zakończenia: 8 grudnia 2025 11:02

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z protokołów zapewnia bezpieczne połączenie między klientem a witryną internetową banku, zachowując prywatność użytkownika?

A. FTPS (File Transfer Protocol Secure)
B. HTTP (Hypertext Transfer Protocol)
C. SFTP (SSH File Transfer Protocol)
D. HTTPS (Hypertext Transfer Protocol Secure)
HTTPS (Hypertext Transfer Protocol Secure) jest protokołem, który zapewnia bezpieczne połączenie między klientem a serwerem, co jest szczególnie istotne w kontekście bankowości internetowej. W porównaniu do podstawowego protokołu HTTP, HTTPS stosuje warstwę bezpieczeństwa opartą na protokołach SSL (Secure Sockets Layer) lub TLS (Transport Layer Security). Dzięki temu przesyłane dane są szyfrowane, co uniemożliwia ich przechwycenie przez osoby trzecie. W praktyce oznacza to, że podczas logowania się do banku, dane takie jak hasła i numery kont są chronione. Wiele przeglądarek internetowych wyświetla także symbol kłódki obok adresu URL, co informuje użytkowników o tym, że połączenie jest zabezpieczone. Przy korzystaniu z usług bankowości online, odnalezienie adresu URL zaczynającego się od 'https://' jest kluczowe, aby upewnić się, że transakcje są dokonywane w bezpiecznym środowisku. Korzystanie z HTTPS jest obecnie standardem w branży i jest rekomendowane przez organizacje zajmujące się bezpieczeństwem sieciowym.

Pytanie 2

W systemie działającym w trybie wielozadaniowości z wywłaszczeniem program, który zatrzymał się

A. nie jest w stanie zawiesić systemu operacyjnego
B. nie umożliwi usunięcia się z pamięci operacyjnej
C. może spowodować zawieszenie całego systemu operacyjnego
D. zablokuje działanie wszystkich pozostałych programów
Twierdzenie, że zawieszony program zablokuje pracę wszystkich innych programów, jest nieprecyzyjne i wynika z niepełnego zrozumienia działania nowoczesnych systemów operacyjnych. W rzeczywistości, w trybie wielozadaniowości z wywłaszczeniem, każdy proces działa w swoim własnym kontekście i ma przydzielone zasoby systemowe. Jeśli jeden program przestaje odpowiadać, system operacyjny może go 'zabić' lub przerwać jego działanie, nie wpływając na resztę systemu. Koncepcja przerywania pracy procesów, aby umożliwić innym ich działanie, jest podstawą, na jakiej opiera się zarządzanie wielozadaniowością. W przypadku błędnych odpowiedzi, takich jak zablokowanie pracy wszystkich innych programów lub niemożność usunięcia się z pamięci operacyjnej, warto zauważyć, że system operacyjny zawsze posiada mechanizmy zarządzania pamięcią, które pozwalają na zwolnienie zasobów zajmowanych przez nieaktywny program. Często pojawiają się nieporozumienia związane z terminami takimi jak 'zawieszenie' i 'blokada', które są używane zamiennie, podczas gdy w rzeczywistości oznaczają różne stany procesów. Pamiętajmy, że praktyczne podejście do zarządzania procesami i ich zasobami w systemach operacyjnych opiera się na standardach i technikach, które zapewniają, że jeden nieudany proces nie stanie się przyczyną całkowitego zawieszenia systemu.

Pytanie 3

W systemie Windows, zainstalowanym w wersji obsługującej przydziały dyskowe, użytkownik o nazwie Gość

A. może być członkiem grup lokalnych oraz grup globalnych
B. nie może być wyłącznie członkiem grupy globalnej
C. nie może być członkiem żadnej grupy
D. nie może być tylko w grupie o nazwie Goście
Wszystkie błędne koncepcje zawarte w niepoprawnych odpowiedziach dotyczą zrozumienia zasad członkostwa w grupach użytkowników w systemie Windows. Twierdzenie, że użytkownik Gość nie może należeć do żadnej grupy, jest nieprawdziwe, ponieważ nawet użytkownicy o ograniczonych uprawnieniach mogą być przypisani do grup w celu zarządzania ich dostępem do zasobów. Kwestia grup globalnych i lokalnych, z którą wiąże się wiele mitów, wiąże się z rolą, jaką pełnią w systemach operacyjnych. Użytkownicy mogą być członkami grup lokalnych, co pozwala na przydzielenie im specyficznych uprawnień w danym systemie. Natomiast grupy globalne służą do zarządzania dostępem w ramach całej domeny, co oznacza, że nawet Gość może być członkiem takich grup, przy czym ich funkcjonalność jest ograniczona do przydzielania dostępu do zasobów w innych systemach w ramach tej samej domeny. W kontekście standardów, takie zrozumienie jest kluczowe w administracji i zarządzaniu IT, gdzie zasady dotyczące grupowania użytkowników są definiowane przez potrzeby bezpieczeństwa oraz ułatwienie zarządzania dostępem do systemów. Ignorowanie możliwości członkostwa Gościa w grupach lokalnych i globalnych prowadzi do nieefektywnego zarządzania użytkownikami oraz potencjalnych luk w zabezpieczeniach.

Pytanie 4

Urządzenie pokazane na ilustracji służy do

Ilustracja do pytania
A. dostarczenia zasilania po kablu U/UTP
B. monitorowania ruchu na porcie LAN
C. regeneracji sygnału
D. rozdziału domen kolizji
Urządzenie przedstawione na rysunku to tzw. injector PoE (Power over Ethernet). Jego główną funkcją jest dostarczanie zasilania do urządzeń sieciowych przez standardowy kabel Ethernet typu U/UTP. Technologia PoE jest szeroko stosowana w sieciach komputerowych, umożliwiając jednoczesne przesyłanie danych i energii elektrycznej do urządzeń takich jak punkty dostępowe WiFi kamery IP telefony VoIP czy urządzenia IoT. Standardy PoE definiują maksymalną moc, którą można przesłać kablem, co eliminuje potrzebę dodatkowych zasilaczy i kabli zasilających, upraszczając instalację i obniżając jej koszty. Istnieją różne standardy PoE takie jak 802.3af 802.3at (PoE+) oraz 802.3bt, które określają różne poziomy mocy. Zastosowanie PoE jest nie tylko praktyczne, ale także zwiększa elastyczność w rozmieszczaniu urządzeń sieciowych, ponieważ nie muszą one być zlokalizowane w pobliżu źródła zasilania. Injector PoE jest kluczowym elementem w wielu nowoczesnych infrastrukturach sieciowych, wspierając efektywność i skalowalność.

Pytanie 5

Aby podłączyć kabel w module Keystone, jakie narzędzie należy zastosować?

A. wkrętak typu Torx
B. narzędzie uderzeniowe
C. narzędzie ręczne do zaciskania
D. bit imbusowy
Praska ręczna, wkrętak typu Torx oraz bit imbusowy to narzędzia, które mogą być używane w różnych kontekstach związanych z instalacjami elektrycznymi i datowymi, ale nie są one właściwe do podłączenia kabli w module Keystone. Użycie praski ręcznej, choć może wydawać się logiczne, nie zapewnia odpowiedniej precyzji i może prowadzić do uszkodzenia kabli lub modułu. Praska służy zazwyczaj do zaciskania wtyków RJ-45 na końcówkach kabli, a więc nie jest przeznaczona do efektywnego wpinania przewodów w moduł Keystone, który wymaga zastosowania narzędzia uderzeniowego. Co więcej, wkrętak typu Torx oraz bit imbusowy są narzędziami stosowanymi do montażu lub demontażu elementów przykręcanych, ale nie mają zastosowania w kontekście podłączania kabli. Powszechnym błędem jest mylenie różnych narzędzi ze względu na ich zastosowanie, co może prowadzić do niewłaściwych decyzji w trakcie instalacji. Właściwe podejście do wyboru narzędzi jest kluczowe dla uzyskania trwałych i bezpiecznych połączeń, dlatego zaleca się stosowanie narzędzi zgodnych z zaleceniami producentów oraz standardami branżowymi.

Pytanie 6

Jakim protokołem połączeniowym w warstwie transportowej, który zapewnia niezawodność dostarczania pakietów, jest protokół

A. UDP (User Datagram Protocol)
B. TCP (Transmission Control Protocol)
C. IP (Internet Protocol)
D. ARP (Address Resolution Protocol)
TCP (Transmission Control Protocol) jest protokołem warstwy transportowej, który zapewnia niezawodność w dostarczaniu danych poprzez wprowadzenie mechanizmów kontroli błędów, retransmisji oraz kontroli przepływu. TCP ustanawia połączenie między nadawcą a odbiorcą przed przesłaniem danych, co pozwala na zapewnienie, że wszystkie pakiety dotrą do celu w odpowiedniej kolejności i bez błędów. Przykłady zastosowania protokołu TCP obejmują transmisję stron internetowych, pocztę elektroniczną oraz protokoły transferu plików, takie jak FTP. Standardy związane z TCP są ustalone przez IETF i są częścią większej specyfikacji, znanej jako suite protokołów internetowych (Internet Protocol Suite), która definiuje, jak dane są przesyłane przez sieci. Dobre praktyki obejmują monitorowanie wydajności TCP, aby zminimalizować opóźnienia i utratę pakietów, co jest szczególnie istotne w aplikacjach o wysokich wymaganiach, takich jak transmisje wideo na żywo.

Pytanie 7

Serwer, który realizuje żądania w protokole komunikacyjnym HTTP, to serwer

A. WWW
B. DHCP
C. FTP
D. DNS
Serwer WWW, znany również jako serwer HTTP, jest kluczowym elementem architektury internetowej, który obsługuje żądania protokołu komunikacyjnego HTTP. Kiedy użytkownik wprowadza adres URL w przeglądarkę internetową, przeglądarka wysyła żądanie HTTP do serwera WWW, który następnie przetwarza to żądanie i zwraca odpowiednią stronę internetową. Serwery WWW są odpowiedzialne za przechowywanie treści, takich jak HTML, CSS i JavaScript, oraz za ich udostępnienie użytkownikom za pośrednictwem sieci. W praktyce serwery WWW mogą być skonfigurowane do obsługi różnych typów treści, a także do stosowania zabezpieczeń, takich jak HTTPS, co jest standardem w branży. Przykłady popularnych serwerów WWW to Apache, Nginx oraz Microsoft Internet Information Services (IIS). Stosowanie dobrych praktyk, takich jak optymalizacja wydajności serwera oraz implementacja odpowiednich polityk bezpieczeństwa, jest kluczowe dla zapewnienia stabilności i ochrony przed zagrożeniami w Internecie.

Pytanie 8

Na ilustracji zobrazowano okno ustawień rutera. Wprowadzone parametry sugerują, że

Ilustracja do pytania
A. na komputerze z adresem MAC 44-8A-5B-5A-56-D0 skonfigurowano adres IP 192.168.17.30 przy użyciu Panelu Sterowania
B. komputer z adresem MAC 44-8A-5B-5A-56-D0 oraz adresem IP 192.168.17.30 nie będzie w stanie połączyć się z urządzeniami w tej sieci
C. komputer z adresem MAC 44-8A-5B-5A-56-D0 oraz adresem IP 192.168.17.30 został usunięty z sieci
D. komputerowi o adresie MAC 44-8A-5B-5A-56-D0 usługa DHCP rutera przydzieli adres IP 192.168.17.30
Prawidłowa odpowiedź wskazuje na to że usługa DHCP rutera została skonfigurowana w taki sposób aby przypisywać komputerowi o adresie MAC 44-8A-5B-5A-56-D0 stały adres IP 192.168.17.30. Tego typu konfiguracja jest znana jako rezerwacja DHCP i pozwala na przypisanie określonego adresu IP do konkretnego urządzenia w sieci co jest użyteczne w przypadku gdy chcemy zapewnić urządzeniu zawsze ten sam adres IP bez konieczności ręcznej konfiguracji na każdym urządzeniu. Przykładowo serwery drukarki czy inne urządzenia wymagające stałego adresu IP mogą korzystać z tej funkcji aby zapewnić stabilne i przewidywalne działanie w sieci. Rezerwacja IP jest kluczowym elementem zarządzania siecią pozwalającym na lepszą kontrolę nad alokacją zasobów sieciowych oraz uniknięcie konfliktów IP. Jest to szczególnie ważne w środowiskach biznesowych gdzie stabilność sieci ma bezpośredni wpływ na ciągłość operacyjną przedsiębiorstwa. Zgodnie z najlepszymi praktykami branżowymi rezerwacja DHCP jest preferowanym rozwiązaniem w porównaniu do ręcznego przypisywania adresów IP na urządzeniach co minimalizuje ryzyko błędów konfiguracyjnych.

Pytanie 9

Ile bitów zawiera adres MAC karty sieciowej?

A. 16
B. 48
C. 32
D. 64
Adres fizyczny MAC (Media Access Control) karty sieciowej składa się z 48 bitów, co odpowiada 6 bajtom. Adres ten jest unikalnym identyfikatorem przypisanym do każdej karty sieciowej, co pozwala na jednoznaczną identyfikację urządzenia w sieci lokalnej. MAC jest kluczowym elementem komunikacji w warstwie łącza danych modelu OSI, gdzie odpowiada za adresowanie i przesyłanie ramki danych w sieciach Ethernet oraz Wi-Fi. Dzięki standardowi IEEE 802.3, adresy MAC są formatowane w postaci szesnastkowej, co oznacza, że każdy bajt jest reprezentowany przez dwie cyfry szesnastkowe, co w sumie daje 12 znaków w zapisie heksadecymalnym. Przykładowy adres MAC to 00:1A:2B:3C:4D:5E. Zrozumienie struktury adresu MAC oraz jego funkcji jest istotne dla administratorów sieci, którzy muszą zarządzać dostępem do sieci oraz diagnozować problemy z połączeniami. Ponadto, znajomość adresów MAC jest niezbędna w kontekście zabezpieczeń sieciowych, w tym filtracji adresów MAC oraz monitoringu ruchu sieciowego.

Pytanie 10

Która para: protokół – warstwa, w której funkcjonuje protokół, jest prawidłowo zestawiona według modelu TCP/IP?

A. RARP – warstwa transportowa
B. DHCP – warstwa dostępu do sieci
C. ICMP – warstwa aplikacji
D. RIP – warstwa internetu
Pierwsza z niepoprawnych odpowiedzi wskazuje, że RARP (Reverse Address Resolution Protocol) działa na warstwie transportowej. Jest to błędne założenie, ponieważ RARP jest używany do tłumaczenia adresów IP na adresy MAC w sieciach lokalnych, a jego właściwą warstwą jest warstwa dostępu do sieci, nie transportowa. Warstwa transportowa, obejmująca protokoły takie jak TCP i UDP, zajmuje się segmentacją danych oraz zarządzaniem połączeniami i niezawodnością, co jest zupełnie inną funkcjonalnością. Z kolei DHCP (Dynamic Host Configuration Protocol) jest protokołem służącym do dynamicznego przydzielania adresów IP, ale jego właściwą warstwą jest warstwa aplikacji, a nie warstwa dostępu do sieci. W praktyce, DHCP działa na warstwie aplikacji, ponieważ operuje na wyższych poziomach modelu TCP/IP, zapewniając konfigurację urządzeń w sieci z odpowiednimi parametrami. ICMP (Internet Control Message Protocol) pełni funkcję diagnostyczną i zarządza komunikacją błędami w warstwie internetu. Przykładowo, polecenie 'ping' wykorzystuje ICMP do sprawdzania dostępności hostów w sieci. Wreszcie, RIP, który działa na warstwie internetu, został omyłkowo przypisany do warstwy aplikacji. Warto zwrócić uwagę, że zrozumienie hierarchii warstw w modelu TCP/IP oraz prawidłowego przyporządkowania protokołów do tych warstw jest kluczowe dla efektywnego zarządzania siecią oraz rozwiązywania problemów. Często nieporozumienia w tej kwestii prowadzą do błędów podczas projektowania i konfiguracji sieci, co może skutkować przeciążeniem, nieefektywnym trasowaniem, a w konsekwencji także przerwami w łączności.

Pytanie 11

Administrator Active Directory w domenie firma.local pragnie skonfigurować mobilny profil dla wszystkich użytkowników. Ma on być przechowywany na serwerze serwer1, w folderze pliki, który jest udostępniony w sieci jako dane$. Który z parametrów w ustawieniach profilu użytkownika spełnia opisane wymagania?

A. \serwer1\pliki\%username%
B. \firma.local\pliki\%username%
C. \firma.local\dane\%username%
D. \serwer1\dane$\%username%
Odpowiedź \serwer1\dane$\%username% jest poprawna, ponieważ odpowiada na wymagania dotyczące przechowywania profilu mobilnego użytkowników na serwerze serwer1 w folderze udostępnionym jako dane$. W kontekście Active Directory, profile mobilne powinny być przechowywane w lokalizacji, która jest dostępna dla użytkowników z różnych komputerów. Folder danych$ jest folderem ukrytym, co jest zgodne z dobrymi praktykami bezpieczeństwa, ponieważ ogranicza dostęp do plików użytkowników zgodnie z założeniami polityki zabezpieczeń. Użycie zmiennej %username% pozwala na tworzenie dedykowanych folderów dla każdego użytkownika, co ułatwia zarządzanie danymi i zapewnia ich izolację. Typowym przykładem zastosowania jest sytuacja w przedsiębiorstwie, gdzie pracownicy mogą logować się do różnych stacji roboczych, a ich ustawienia i pliki są automatycznie synchronizowane, co zwiększa efektywność pracy. Warto również podkreślić, że stosowanie odpowiednich ścieżek do folderów profilu mobilnego przyczynia się do ułatwienia administracji i zgodności z politykami zachowania danych.

Pytanie 12

Jakiego typu transmisję danych przesyłanych za pomocą interfejsu komputera osobistego pokazano na ilustracji?

Ilustracja do pytania
A. Równoległy synchroniczny
B. Równoległy asynchroniczny
C. Szeregowy asynchroniczny
D. Szeregowy synchroniczny
Transmisja szeregowa asynchroniczna polega na przesyłaniu danych w postaci bitów jeden po drugim wzdłuż jednego kanału komunikacyjnego. Kluczowym elementem tej metody jest brak konieczności synchronizacji zegarowej pomiędzy nadawcą a odbiorcą. Każda jednostka danych rozpoczyna się bitem startu, co sygnalizuje początek transmisji, a kończy bitem stopu, co informuje o jej zakończeniu. Dzięki temu odbiorca wie, kiedy zaczyna się i kończy odbierana wiadomość, niezależnie od przesunięć zegarowych. Praktyczne zastosowanie to m.in. komunikacja portów szeregowych w komputerach PC, jak RS-232. W typowych zastosowaniach np. komunikacja z czujnikami lub modułami GPS, gdzie prosta i niezawodna transmisja jest kluczowa, asynchroniczność pozwala na większą elastyczność i łatwość implementacji. Znaczącą cechą szeregowej transmisji asynchronicznej jest jej zdolność do radzenia sobie z różnicami w prędkościach nadawania i odbierania danych bez utraty informacji co czyni ją popularnym wyborem w prostych systemach komunikacyjnych.

Pytanie 13

Program o nazwie dd, którego przykład zastosowania przedstawiono w systemie Linux, umożliwia

A. ustawianie interfejsu karty sieciowej
B. stworzenie obrazu nośnika danych
C. zmianę systemu plików z ext3 na ext4
D. utworzenie symbolicznego dowiązania do pliku Linux.iso
Twoja odpowiedź na temat użycia polecenia dd w systemach Unix/Linux jest jak najbardziej na miejscu. Wiesz, że to narzędzie służy do kopiowania i konwertowania danych? W tym przykładzie, 'if=/dev/sdb' to wskazanie na źródło, czyli jakiś nośnik, jak dysk USB, a 'of=/home/uzytkownik/Linux.iso' to miejsce, gdzie zapiszesz ten obraz. Używając dd, tworzysz bitowy obraz całego nośnika, co jest super przydatne w różnych sytuacjach, jak tworzenie kopii zapasowych czy klonowanie dysków. Z doświadczenia wiem, że administratorzy chętnie korzystają z tego polecenia, żeby migracja danych była prostsza, a testowanie wydajności systemów łatwiejsze. Fajnie jest też używać opcji, takich jak 'bs', żeby zwiększyć szybkość operacji. Dlatego dd to naprawdę istotne narzędzie w rękach admina systemów Linux, które pozwala na sprawne zarządzanie danymi na poziomie sprzętowym.

Pytanie 14

Jakie składniki systemu komputerowego wymagają utylizacji w wyspecjalizowanych zakładach przetwarzania z powodu obecności niebezpiecznych substancji lub pierwiastków chemicznych?

A. Radiatory
B. Tonery
C. Przewody
D. Obudowy komputerów
Obudowy komputerów, przewody i radiatory nie są odpadami, które wymagają specjalistycznej utylizacji ze względu na zawartość niebezpiecznych substancji. Obudowy komputerowe zazwyczaj wykonane są z plastiku i metalu, które można poddać recyklingowi w standardowych procesach przetwarzania materiałów. Przewody, z kolei, często składają się z miedzi i innych metali, które również są cennymi surowcami do odzysku. Radiatory, które zazwyczaj są wykonane z aluminium lub miedzi, są recyklingowane w podobny sposób. Typowe błędne założenie, które może prowadzić do pomylenia tych elementów z odpadami niebezpiecznymi, wynika z niepełnej wiedzy na temat zawartości materiałów w tych komponentach i ich wpływie na środowisko. Użytkownicy komputerów powinni być świadomi, że niektóre materiały, takie jak tonery, mają wyraźne regulacje dotyczące ich utylizacji, podczas gdy inne, jak wymienione elementy, mogą być przetwarzane w bardziej standardowy sposób. Właściwe postrzeganie i klasyfikacja odpadów elektronicznych są kluczowe dla efektywnego recyklingu i ochrony środowiska.

Pytanie 15

Jakie polecenie w systemie Linux jest używane do planowania zadań?

A. top
B. cron
C. shred
D. taskschd
Wybór 'top' jako narzędzia do harmonogramowania zadań w systemie Linux jest błędny, ponieważ 'top' jest aplikacją służącą do monitorowania procesów działających w systemie w czasie rzeczywistym. Umożliwia ona użytkownikom obserwację zużycia CPU, pamięci oraz innych zasobów przez uruchomione procesy, jednak nie ma zdolności do automatycznego uruchamiania zadań w określonym czasie. Oznacza to, że choć 'top' może być użyteczny w diagnostyce i monitorowaniu, nie jest narzędziem do harmonogramowania jak 'cron'. Ponadto, użycie 'shred' jako narzędzia do harmonogramowania zadań również jest mylące. 'Shred' to program służący do bezpiecznego usuwania plików, co oznacza, że jego funkcjonalność nie dotyczy harmonogramowania zadań, lecz raczej ochrony prywatności danych poprzez ich nadpisywanie. Wreszcie, 'taskschd' to narzędzie specyficzne dla systemów operacyjnych Windows i nie ma zastosowania w kontekście systemu Linux. Typowym błędem jest mylenie funkcji narzędzi związanych z zarządzaniem systemem, co prowadzi do niewłaściwych wniosków o ich zastosowaniach. Właściwe zrozumienie ról i funkcji narzędzi dostępnych w systemie operacyjnym jest kluczowe dla efektywnej administracji oraz automatyzacji zadań.

Pytanie 16

Która z usług umożliwia centralne zarządzanie identyfikacjami, uprawnieniami oraz zasobami w sieci?

A. NFS (Network File System)
B. WDS (Windows Deployment Services)
C. DHCP (Dynamic Host Configuration Protocol)
D. AD (Active Directory)
WDS (Windows Deployment Services) to usługa służąca do zdalnego wdrażania systemów operacyjnych w sieciach komputerowych, co nie ma związku z zarządzaniem tożsamościami czy uprawnieniami użytkowników. Jej głównym celem jest uproszczenie procesu instalacji systemu Windows na wielu komputerach jednocześnie, jednak nie oferuje funkcji związanych z zarządzaniem użytkownikami ani ich dostępem do zasobów. DHCP (Dynamic Host Configuration Protocol) jest protokołem odpowiedzialnym za automatyczne przydzielanie adresów IP oraz innych informacji konfiguracyjnych urządzeniom w sieci, co również nie dotyczy zarządzania tożsamościami. DHCP nie ma możliwości kontrolowania uprawnień użytkowników ani zarządzania ich dostępem do danych. NFS (Network File System) z kolei to protokół umożliwiający zdalny dostęp do plików na systemach Unix/Linux. Chociaż ułatwia on współdzielenie plików w sieci, to nie ma funkcjonalności związanych z centralnym zarządzaniem tożsamościami czy uprawnieniami. Typowym błędem w rozumieniu tych kwestii jest mylenie zadań i funkcji różnych technologii w sieciach komputerowych. Każda z wymienionych usług ma swoje specyficzne zastosowania, ale żadna z nich nie pełni roli, jaką odgrywa Active Directory w kontekście zarządzania tożsamościami i uprawnieniami.

Pytanie 17

W systemie Linux prawa dostępu do katalogu są ustawione w formacie rwx--x--x. Jaką liczbę odpowiadają tę konfigurację praw?

A. 777
B. 621
C. 711
D. 543
Wartości numeryczne przyznawane prawom dostępu w systemie Linux są kluczowe dla zarządzania bezpieczeństwem i dostępem do zasobów. Wybór odpowiedzi 777 jest błędny, ponieważ oznacza, że zarówno właściciel, grupa, jak i inni użytkownicy mają pełne prawa dostępu (czytanie, pisanie i wykonywanie). Taki poziom dostępu jest niebezpieczny, ponieważ naraża system na potencjalne ataki oraz nieautoryzowany dostęp do danych. Odpowiedź 621 jest również niewłaściwa, ponieważ wartość 6 dla grupy wskazuje na prawo do czytania i pisania, co jest sprzeczne z brakiem praw dostępu w tym przypadku. Innym błędem jest odpowiedź 543, która zakłada, że grupa ma prawo do wykonywania, co nie jest zgodne z podanymi prawami dostępu. Często popełnianym błędem jest mylenie praw dostępu z ich wartością numeryczną, co prowadzi do niewłaściwego przyznawania uprawnień. Zrozumienie, jak prawidłowo przypisywać uprawnienia, jest kluczowe w kontekście dobrych praktyk w administracji systemami, gdzie zasady najmniejszych uprawnień powinny być zawsze stosowane, aby zminimalizować ryzyko nieautoryzowanego dostępu.

Pytanie 18

Podczas testowania połączeń sieciowych za pomocą polecenia ping użytkownik otrzymał wyniki przedstawione na rysunku. Jakie może być źródło braku odpowiedzi serwera przy pierwszym teście, zakładając, że domena wp.pl ma adres 212.77.100.101?

Ilustracja do pytania
A. Nieprawidłowy adres IP przypisany do karty sieciowej
B. Brak domyślnej bramy w ustawieniach karty sieciowej
C. Brak przypisania serwera DHCP do karty sieciowej
D. Nieobecność adresów serwera DNS w konfiguracji karty sieciowej
Brak adresów serwera DNS w konfiguracji karty sieciowej powoduje, że komputer nie jest w stanie przetłumaczyć nazwy domeny wp.pl na jej odpowiadający adres IP 212.77.100.101. DNS, czyli Domain Name System, jest kluczowym elementem infrastruktury internetowej, który umożliwia przekształcanie czytelnych dla człowieka nazw domen na adresy IP zrozumiałe dla komputerów. Bez poprawnie skonfigurowanych serwerów DNS, komputer nie może skutecznie nawiązać połączenia z serwerem, co skutkuje błędem przy pierwszej próbie użycia polecenia ping. W praktyce wiele systemów operacyjnych umożliwia automatyczne przypisywanie adresów DNS za pomocą DHCP, jednak w przypadku braku odpowiedniego serwera DHCP lub jego nieprawidłowej konfiguracji, użytkownik musi ręcznie wprowadzić adresy DNS. Dobrymi praktykami jest korzystanie z powszechnie dostępnych serwerów DNS, takich jak te dostarczane przez Google (8.8.8.8 i 8.8.4.4), które są znane z wysokiej wydajności i niezawodności. Prawidłowa konfiguracja serwerów DNS jest kluczowa dla stabilnego i szybkiego działania aplikacji sieciowych oraz ogólnego doświadczenia użytkownika w korzystaniu z Internetu.

Pytanie 19

Cienki klient (thin client) to?

A. terminal w sieci
B. niewielki przełącznik
C. klient o ograniczonym budżecie
D. szczupły programista
Odpowiedzi, które nie zostały wybrane, opierają się na błędnych założeniach dotyczących definicji cienkiego klienta. Pierwsza z nich, mówiąca o kliencie z małym budżetem, myli pojęcie thin clienta z kwestią kosztów. Chociaż thin clienty mogą być tańsze w eksploatacji, ich definicja nie wynika z budżetu użytkownika, lecz z ich architektury opierającej się na zdalnym dostępie do zasobów. Drugą odpowiedzią jest termin 'chudy informatyk', co jest nie tylko nieadekwatne, ale także mylące, ponieważ nie odnosi się do technologii, a raczej do stereotypów. Trzecia odpowiedź, sugerująca, że cienki klient to mały przełącznik, niewłaściwie łączy sprzęt sieciowy z pojęciem thin clienta. Thin client jest systemem komputerowym, który polega na minimalizacji procesów lokalnych, w przeciwieństwie do przełącznika, który zarządza ruchem danych w sieci. Wszystkie te błędne odpowiedzi wynikają z nieporozumień dotyczących technologii oraz ich zastosowań, co podkreśla znaczenie precyzyjnego rozumienia terminologii w branży IT. W praktyce, w celu uniknięcia takich mylnych interpretacji, warto zapoznać się z dokumentacją oraz standardami, które definiują różne architektury systemów i ich funkcje.

Pytanie 20

W dokumentacji systemu operacyjnego Windows XP opisano pliki o rozszerzeniu .dll. Czym jest ten plik?

A. uruchamialnego
B. inicjalizacyjnego
C. dziennika zdarzeń
D. biblioteki
Pliki z rozszerzeniem .dll (Dynamic Link Library) są kluczowymi komponentami systemu operacyjnego Windows, które umożliwiają współdzielenie kodu i zasobów pomiędzy różnymi programami. Dzięki tym bibliotekom, programy mogą korzystać z funkcji i procedur zapisanych w .dll, co pozwala na oszczędność pamięci i zwiększenie wydajności. Na przykład, wiele aplikacji może korzystać z tej samej biblioteki .dll do obsługi grafiki, co eliminuje potrzebę dublowania kodu w każdej z aplikacji. W praktyce, twórcy oprogramowania często tworzą aplikacje zależne od zestawów .dll, co również ułatwia aktualizacje – zmieniając jedynie plik .dll, można wprowadzić zmiany w działaniu wielu aplikacji jednocześnie. Dobre praktyki programistyczne zachęcają do modularności oraz wykorzystywania bibliotek, co przyczynia się do lepszej organizacji kodu oraz umożliwia łatwiejsze utrzymanie oprogramowania. Warto zaznaczyć, że pliki .dll są również używane w wielu innych systemach operacyjnych, co stanowi standard w branży programistycznej.

Pytanie 21

Złącze IrDA służy do bezprzewodowej komunikacji i jest

A. rozszerzeniem technologii BlueTooth
B. złączem umożliwiającym przesył danych na odległość 100m
C. złączem radiowym
D. złączem szeregowym
Złącza radiowe, jak Wi-Fi czy Zigbee, bardzo różnią się od IrDA, bo to ostatnie używa podczerwieni do komunikacji. Te złącza radiowe mogą działać na znacznie większych odległościach niż te standardowe 1-2 metry, dlatego są wykorzystywane w różnych zastosowaniach, od domowych sieci internetowych po smart home. Kolejna kiepska koncepcja to mówienie o przesyłaniu danych na 100 m – z jednej strony, standardy radiowe mogą to umożliwiać, ale IrDA nie ma takich możliwości zasięgowych. No i pomylenie IrDA z Bluetooth to dość powszechny błąd, bo Bluetooth ma większy zasięg i działa całkiem inaczej niż IrDA, która jest raczej do punktu do punktu, a Bluetooth potrafi łączyć więcej urządzeń naraz. Warto też pamiętać, że IrDA to złącze szeregowe, więc dane lecą w kolejności. Można w łatwy sposób się pomylić, myląc te technologie, co prowadzi do błędnych wniosków o ich funkcjonalności i zastosowaniu.

Pytanie 22

Jaki interfejs umożliwia transfer danych w formie cyfrowej i analogowej między komputerem a monitorem?

A. DISPLAY PORT
B. DFP
C. HDMI
D. DVI-I
DVI-I (Digital Visual Interface - Integrated) jest interfejsem, który umożliwia przesyłanie sygnałów wideo zarówno w formie cyfrowej, jak i analogowej. Dzięki temu, DVI-I jest niezwykle wszechstronny, gdyż pozwala na współpracę z różnymi typami monitorów, w tym starszymi modelami, które obsługują sygnał analogowy (VGA). W praktyce oznacza to, że użytkownicy mogą korzystać z DVI-I do podłączenia nowoczesnych ekranów LCD oraz starszych monitorów CRT, co czyni go idealnym rozwiązaniem w środowiskach, gdzie istnieje potrzeba elastyczności w doborze sprzętu. DVI-I jest zgodny z różnymi standardami, takimi jak VESA, co zapewnia wysoką jakość przesyłanego obrazu oraz możliwość obsługi rozdzielczości do 1920x1200. Interfejs ten cieszy się popularnością w zastosowaniach biurowych oraz wśród entuzjastów technologii, którzy chcą maksymalnie wykorzystać swoje urządzenia. Zrozumienie funkcji DVI-I oraz jego zastosowań w praktyce przynosi korzyści, takie jak optymalizacja wydajności wizualnej oraz minimalizacja potencjalnych problemów z kompatybilnością. Warto również zauważyć, że DVI-I może być używany w różnych kablach i adapterach, co zwiększa jego użyteczność w szerokim zakresie aplikacji technologicznych.

Pytanie 23

Urządzenie używane do zestawienia 6 komputerów w sieci lokalnej to:

A. przełącznik
B. most
C. serwer
D. transceiver
Transceiver to urządzenie, które ma za zadanie konwertować sygnały między różnymi typami kabli, ale nie zajmuje się routowaniem danych w sieci lokalnej. To coś, co najczęściej spotyka się przy łączeniu kabli albo w komunikacji optycznej. A serwer? To komputer, który udostępnia różne usługi innym urządzeniom, ale nie jest jakimś łącznikiem między nimi. W lokalnej sieci server może przechowywać dane lub uruchamiać aplikacje, ale głównie zajmuje się zarządzaniem danymi, nie komunikacją. Most to kolejne urządzenie, które łączy dwa segmenty sieci, ale też nie jest najlepszym wyborem do łączenia komputerów w lokalnej sieci. Działa na drugiej warstwie modelu OSI, ale w odróżnieniu od przełącznika, przesyła pakiety między segmentami, co może wprowadzać dodatkowe opóźnienia i problemy z wydajnością. Często ludzie mylą te urządzenia i ich funkcje, co może prowadzić do kłopotów przy projektowaniu sieci. Dlatego tak ważne jest, żeby dobrze wybierać urządzenia do budowy lokalnej sieci.

Pytanie 24

Jak wygląda sekwencja w złączu RJ-45 według normy TIA/EIA-568 dla zakończenia typu T568B?

A. Biało-zielony, zielony, biało-pomarańczowy, pomarańczowy, niebieski, biało-niebieski, biało-brązowy, brązowy
B. Biało-brązowy, brązowy, biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony
C. Biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy, brązowy
D. Biało-niebieski, niebieski, biało-brązowy, brązowy, biało-zielony, zielony, biało-pomarańczowy, pomarańczowy
Odpowiedź jest zgodna z normą TIA/EIA-568, która definiuje standardy okablowania sieciowego, w tym kolejność przewodów dla zakończenia typu T568B. W tej konfiguracji sekwencja przewodów zaczyna się od biało-pomarańczowego, następnie pomarańczowy, a potem biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy i na końcu brązowy. Zastosowanie właściwej kolejności przewodów jest kluczowe dla zapewnienia poprawnej komunikacji w sieciach Ethernet. Każdy przewód odpowiada za przesyłanie sygnałów w określony sposób, a ich niewłaściwe ułożenie może prowadzić do problemów z transmisją danych, takich jak zakłócenia, utrata pakietów czy zmniejszenie prędkości połączenia. W praktyce, prawidłowe zakończenie kabli RJ-45 według T568B jest standardem w wielu instalacjach sieciowych, co zapewnia interoperacyjność urządzeń oraz ułatwia przyszłe modyfikacje i konserwację sieci. Dodatkowo, znajomość tej normy jest istotna dla specjalistów zajmujących się projektowaniem i wdrażaniem infrastruktury sieciowej, co czyni ją niezbędnym elementem ich kompetencji zawodowych.

Pytanie 25

Jakie składniki systemu komputerowego muszą być usuwane w wyspecjalizowanych zakładach przetwarzania ze względu na obecność niebezpiecznych substancji lub chemicznych pierwiastków?

A. Obudowy komputerów
B. Kable
C. Chłodnice
D. Tonery
Przewody, radiatory i obudowy komputerów uznawane są za mniej niebezpieczne w kontekście utylizacji z powodu ich prostszej budowy i zastosowanych materiałów, które rzadziej zawierają szkodliwe substancje. Przewody zazwyczaj składają się z miedzi lub aluminium, które są materiałami łatwymi do recyklingu, a ich utylizacja odbywa się zgodnie z normami ekologicznymi, które regulują proces odzyskiwania metali szlachetnych. Radiatory, choć mogą zawierać niewielkie ilości substancji chemicznych, są głównie wykonane z materiałów takich jak aluminium lub miedź, które również nadają się do recyklingu i nie są klasyfikowane jako niebezpieczne odpady. Obudowy komputerów są najczęściej zrobione z plastiku lub metalu, co również nie kwalifikuje ich do kategorii substancji niebezpiecznych. Mylenie tych elementów z tonerami wynika z niewłaściwego zrozumienia ich składu chemicznego oraz wpływu na zdrowie i środowisko. Przykładem powszechnego błędu myślowego jest założenie, że wszystkie komponenty elektroniczne niosą takie samo ryzyko, co moze prowadzić do niewłaściwej utylizacji i zwiększenia zagrożenia dla zdrowia publicznego. Warto pamiętać, że każdy rodzaj odpadu elektronicznego powinien być oceniany indywidualnie, aby zastosować odpowiednie metody recyklingu i przetwarzania, w zgodzie z przepisami prawnymi oraz najlepszymi praktykami w dziedzinie gospodarki odpadami.

Pytanie 26

Najbardziej nieinwazyjnym, a zarazem efektywnym sposobem naprawy komputera zainfekowanego wirusem typu rootkit jest

A. zainstalowanie najskuteczniejszego oprogramowania antywirusowego i uruchomienie go w trybie monitorowania - z biegiem czasu wirus zostanie automatycznie wykryty
B. uruchomienie specjalnego programu do wykrywania rootkitów z zewnętrznego nośnika (np. LiveCD)
C. ponowne zainstalowanie systemu operacyjnego
D. usunięcie podejrzanych procesów z Menedżera zadań
Uruchomienie specjalnego programu wykrywającego rootkity z zewnętrznego nośnika, takiego jak LiveCD, jest najmniej inwazyjnym i skutecznym sposobem na zdiagnozowanie i usunięcie infekcji. Rootkity są zaawansowanymi wirusami, które potrafią ukrywać swoją obecność, a tradycyjne programy antywirusowe mogą nie być w stanie ich wykryć, zwłaszcza jeśli już działają w systemie. LiveCD działa w środowisku, które nie jest zainfekowane, co umożliwia skuteczne skanowanie i usuwanie złośliwego oprogramowania. Przykłady takich narzędzi to Kaspersky Rescue Disk czy AVG Rescue CD, które oferują pełne skanowanie systemu bez wpływania na zainfekowaną instalację. Standardy branżowe rekomendują stosowanie tego podejścia w sytuacjach zainfekowania systemów krytycznych oraz tam, gdzie bezpieczeństwo danych jest kluczowe. Korzystając z LiveCD, można również zminimalizować ryzyko dalszego rozprzestrzeniania się wirusa, co czyni tę metodę bardzo efektywną i preferowaną w profesjonalnych środowiskach IT.

Pytanie 27

Partycja, na której zainstalowany jest system operacyjny, określana jest jako partycja

A. rozszerzona
B. wymiany
C. systemowa
D. folderowa
Odpowiedź 'systemowa' jest poprawna, ponieważ partycja systemowa to ta, na której zainstalowany jest system operacyjny. W kontekście systemu Windows, Linux czy macOS, partycja systemowa zawiera pliki niezbędne do uruchomienia systemu oraz do jego działania. Przykładowo, w systemie Windows, domyślną partycją systemową jest zazwyczaj dysk C:, gdzie znajdują się pliki systemowe, programy oraz dane użytkownika. Dobrą praktyką jest, aby partycja systemowa była oddzielona od danych użytkownika; umożliwia to łatwiejsze zarządzanie danymi oraz ich backup. W przypadku problemów z systemem operacyjnym, posiadanie oddzielnej partycji na dane może znacznie ułatwić reinstalację systemu bez utraty osobistych plików. W standardach zarządzania systemami operacyjnymi, partycja systemowa jest kluczowym elementem architektury, umożliwiającym efektywne uruchamianie i zarządzanie zasobami komputera.

Pytanie 28

Użytkownicy dysków SSD powinni unikać wykonywania następujących działań konserwacyjnych

A. Defragmentacji dysku
B. Regularnego sprawdzania dysku przy użyciu programu antywirusowego
C. Regularnego tworzenia kopii zapasowych danych
D. Usuwania kurzu z wnętrza jednostki centralnej
Defragmentacja dysku jest procesem, który polega na reorganizacji danych na nośniku, aby zwiększyć wydajność dostępu do plików. Jednak w przypadku dysków SSD (Solid State Drive) jest to zbędne i wręcz szkodliwe. Dyski SSD działają na zasadzie pamięci flash, gdzie dane są przechowywane w komórkach pamięci. Ich architektura eliminuje problem fragmentacji, ponieważ odczyt i zapis danych nie zależy od fizycznej lokalizacji plików na nośniku. Dodatkowo, proces defragmentacji generuje zbędne cykle zapisu, co skraca żywotność dysków SSD. Zaleca się zamiast tego wykorzystywanie technologii TRIM, która optymalizuje zarządzanie przestrzenią na dysku. Na przykład, użytkownicy mogą ustawić automatyczne aktualizacje oprogramowania systemowego, które obsługują TRIM, co pozwala na optymalizację wydajności SSD bez konieczności ręcznej defragmentacji. W branży IT uznaje się, że najlepszym podejściem do konserwacji SSD jest unikanie defragmentacji, co jest zgodne z zaleceniami producentów tych nośników.

Pytanie 29

W nagłówku ramki standardu IEEE 802.3 w warstwie łącza danych znajduje się

A. adres IP
B. numer portu
C. adres MAC
D. parametr TTL
Adres IP, numer portu oraz parametr TTL to elementy i koncepcje związane z innymi warstwami modelu OSI, a nie warstwą łącza danych, do której odnosi się pytanie. Adres IP jest używany w warstwie sieciowej i odpowiada za identyfikację urządzeń w sieci globalnej, takich jak Internet. Jest to logiczny adres, który nie jest związany z fizycznym interfejsem urządzenia i może zmieniać się w zależności od miejsca, w którym urządzenie jest podłączone. Numery portów są integralną częścią protokołu transportowego, takiego jak TCP czy UDP, i służą do identyfikacji konkretnych aplikacji lub usług działających na urządzeniu. Parametr TTL (Time to Live) jest używany w protokole IP i określa maksymalny czas, przez jaki pakiet może krążyć w sieci, zanim zostanie odrzucony. Zrozumienie różnic między tymi pojęciami a adresem MAC jest kluczowe dla prawidłowego funkcjonowania sieci oraz dla umiejętności diagnozowania problemów sieciowych. Wiele osób myli te różne elementy, co prowadzi do nieporozumień w kontekście ich zastosowania w projektowaniu i zarządzaniu sieciami komputerowymi.

Pytanie 30

W systemie Linux do wyświetlania treści pliku tekstowego służy polecenie

A. list
B. cat
C. type
D. more
Polecenie 'cat', będące skrótem od 'concatenate', jest podstawowym narzędziem w systemie Linux służącym do wyświetlania zawartości plików tekstowych. Dzięki niemu użytkownik może szybko przeglądać zawartość pliku w terminalu. Jest to szczególnie przydatne w sytuacjach, gdy chcemy zobaczyć zawartość małych plików bez konieczności ich edytowania. Dodatkowo, polecenie 'cat' może być używane do łączenia kilku plików w jeden, co czyni je bardzo wszechstronnym narzędziem. Na przykład, używając komendy 'cat plik1.txt plik2.txt > połączony.txt', możemy stworzyć nowy plik o nazwie 'połączony.txt', który zawiera zarówno zawartość 'plik1.txt', jak i 'plik2.txt'. 'cat' jest uznawane za jedno z podstawowych narzędzi w codziennym użytkowaniu systemu Linux i znane wśród administratorów systemu oraz programistów. Zrozumienie i umiejętność wykorzystywania tego polecenia jest kluczowe w każdej pracy związanej z administracją systemami operacyjnymi Linux.

Pytanie 31

Jakie urządzenie powinno się zastosować do podłączenia żył kabla skrętki do gniazda Ethernet?

A. Zaciskarkę RJ-45
B. Wciskacz LSA
C. Zaciskarkę BNC
D. Zaciskarkę RJ-11
Zaciskarka BNC, RJ-45 i RJ-11 to narzędzia, które są niby do różnych zastosowań w telekomunikacji i nie da się ich użyć do podłączania żył kabli skrętki do gniazd Ethernet. Zaciskarka BNC jest głównie do kabli koncentrycznych, które są używane w systemach CCTV i do przesyłania sygnałów wideo. Nie zadziała z Ethernetem, bo nie obsługuje transmisji danych tak, jak skrętka. Zaciskarka RJ-45, mimo że wygląda na odpowiednią, nie jest do wciśnięcia żył w LSA, a to jest kluczowe dla jakości połączenia. Co do zaciskarki RJ-11, ona działa z cieńszymi kablami telefonicznymi, które mają inną konfigurację żył. Jak użyjesz tych narzędzi w niewłaściwy sposób, to możesz mieć problemy z połączeniem, takie jak utraty pakietów czy niska przepustowość. Ci, co zajmują się instalacją sieci, muszą pamiętać, że używanie odpowiednich narzędzi jest istotne, żeby mieć dobrze działającą infrastrukturę telekomunikacyjną. Wiedza o tym, jak i gdzie używać tych narzędzi, pozwala uniknąć typowych błędów, które mogą powodować poważne kłopoty w działaniu sieci.

Pytanie 32

Na schemacie przedstawiono sieć o strukturze

Ilustracja do pytania
A. drzew
B. siatek
C. gwiazd
D. magistrali
Topologia magistrali to struktura sieciowa, w której wszystkie urządzenia są podłączone do jednego wspólnego medium transmisyjnego, najczęściej kabla, nazywanego magistralą. W tego typu sieci każde urządzenie może komunikować się bezpośrednio z innym poprzez to wspólne medium, co upraszcza proces instalacji i zmniejsza koszty materiałowe. Główna zaleta topologii magistrali to jej prostota i efektywność w małych sieciach, gdzie dane są przesyłane w jednym kierunku i nie ma potrzeby skomplikowanego zarządzania ruchem. Współczesne przykłady zastosowania to starsze sieci Ethernet, gdzie przesyłanie danych odbywa się w postaci ramek. Standardy takie jak IEEE 802.3 opisują specyfikacje dla sieci tego typu. Magistrala jest korzystna tam, gdzie wymagane są ekonomiczne rozwiązania w prostych konfiguracjach. Jednakże w miarę wzrostu liczby urządzeń mogą pojawić się problemy z przepustowością oraz kolizjami danych, dlatego w dużych sieciach często wybiera się inne topologie. Dodatkową korzyścią jest łatwość diagnozowania problemów przy użyciu narzędzi takich jak analizatory sygnałów, co przyspiesza proces rozwiązywania problemów technicznych.

Pytanie 33

Jaką rolę pełnią elementy Tr1 i Tr2, które są widoczne na schemacie ilustrującym kartę sieciową Ethernet?

Ilustracja do pytania
A. Oferują szyfrowanie oraz deszyfrowanie danych przesyłanych przez sieć
B. Informują o aktywności karty sieciowej za pomocą dźwięków
C. Wskazują szybkość pracy karty sieciowej poprzez świecenie na zielono
D. Zapewniają separację obwodu elektrycznego sieci LAN od obwodu elektrycznego komputera
Izolacja obwodu elektrycznego jest kluczową funkcją transformatorów Tr1 i Tr2 w kartach sieciowych Ethernet. Transformator Ethernet zapewnia galwaniczne oddzielenie obwodów sieciowych od urządzeń, do których są podłączone. Dzięki temu zabezpiecza urządzenia przed różnicami potencjałów, które mogą występować w różnych segmentach sieci, co jest szczególnie istotne w środowiskach o dużych zakłóceniach elektrycznych. Izolacja transformatorowa chroni przed przepięciami i zwarciami, minimalizując ryzyko uszkodzenia sprzętu komputerowego. W praktyce oznacza to, że wszelkie zakłócenia i piki napięciowe występujące w sieci nie przenoszą się bezpośrednio na sprzęt komputerowy, co mogłoby spowodować jego uszkodzenie. Transformator Ethernet jest zatem zgodny z normami bezpieczeństwa i dobrymi praktykami branżowymi, które wymagają zapewnienia bezpieczeństwa i niezawodności w pracy sieci komputerowych. Standard IEEE 802.3 określa wymagania dotyczące izolacji galwanicznej, w tym minimalne napięcie probiercze, które transformator musi wytrzymać, aby spełniać normy bezpieczeństwa. W ten sposób transformator zapewnia bezpieczne użytkowanie sieci, chroniąc sprzęt i dane przed nieprzewidzianymi awariami elektrycznymi.

Pytanie 34

W dokumentacji technicznej procesora Intel Xeon Processor E3-1220, producent przedstawia następujące dane: # rdzeni: 4 # wątków: 4 Częstotliwość zegara: 3.1 GHz Maksymalna częstotliwość Turbo: 3.4 GHz Intel Smart Cache: 8 MB DMI: 5 GT/s Zestaw instrukcji: 64 bit Rozszerzenia zestawu instrukcji: SSE4.1/4.2, AVX Opcje wbudowane: Nie Litografia: 32 nm Maksymalne TDP: 80 W. Co to oznacza dla Menedżera zadań systemu Windows, jeśli chodzi o historię użycia?

# of Cores:4
# of Threads:4
Clock Speed:3.1 GHz
Max Turbo Frequency:3.4 GHz
Intel® Smart Cache:8 MB
DMI:5 GT/s
Instruction Set:64-bit
Instruction Set Extensions:SSE4.1/4.2, AVX
Embedded Options Available:No
Lithography:32 nm
Max TDP:80 W
A. 2 rdzenie
B. 8 rdzeni
C. 4 rdzenie
D. 16 rdzeni
Prawidłowa odpowiedź to 4 procesory ponieważ procesor Intel Xeon E3-1220 składa się z 4 fizycznych rdzeni co oznacza że w Menedżerze zadań systemu Windows zobaczymy historię użycia dla 4 procesorów. Każdy rdzeń obsługuje pojedynczy wątek co oznacza że technologia Intel Hyper-Threading nie jest tutaj zastosowana co w przypadku jej użycia mogłoby prowadzić do podwojenia liczby wątków. W zadaniach wymagających dużej mocy obliczeniowej takich jak hostowanie serwerów czy przetwarzanie danych duża liczba rdzeni jest korzystna ale liczba wątków jest ograniczona do liczby rdzeni ze względu na brak wspomnianej technologii. Procesory z większą ilością rdzeni i wątków są bardziej efektywne w rozdzielaniu pracy na części co jest kluczowe w środowiskach wymagających dużej wydajności obliczeniowej. Dla porównania procesory z technologią Hyper-Threading mogą zwiększyć liczbę wątków co z kolei może być korzystne w aplikacjach intensywnie obciążających procesor. W kontekście standardów branżowych optymalizacja liczby rdzeni do zadań jest kluczowa dla efektywnego wykorzystania zasobów sprzętowych.

Pytanie 35

W metodzie dostępu do medium CSMA/CD (Carrier Sense Multiple Access with Collision Detection) stacja planująca rozpoczęcie transmisji sprawdza, czy w sieci ma miejsce ruch, a następnie

A. oczekuje na przydzielenie priorytetu transmisji przez koncentrator
B. wysyła prośbę o rozpoczęcie transmisji
C. czeka na żeton pozwalający na rozpoczęcie nadawania
D. po zauważeniu ruchu w sieci czeka, aż medium stanie się dostępne
W metodzie CSMA/CD, kiedy stacja zamierza rozpocząć nadawanie, kluczowym etapem jest nasłuch na obecność sygnału w sieci. Gdy stacja wykryje ruch, musi czekać, aż nośnik będzie wolny. To podejście zapobiega kolizjom, które mogą wystąpić, gdy więcej niż jedna stacja podejmuje próbę nadawania jednocześnie. Czekanie na wolny nośnik jest istotne, ponieważ w przeciwnym razie dane mogą zostać usunięte lub zniekształcone, co wymagałoby ponownego nadawania, prowadząc do obniżenia efektywności sieci. Przykładem zastosowania tej zasady jest tradycyjna sieć Ethernet, gdzie kolizje są sygnalizowane przez specjalny sygnał zwrotny, a stacje muszą ponownie spróbować nadawania po losowym czasie. W praktyce, stosowanie CSMA/CD w sieciach lokalnych jest zgodne z normą IEEE 802.3, która definiuje ramy dla Ethernetu. Przestrzeganie tego wzorca działania jest kluczowe dla utrzymania płynności transmisji danych i minimalizacji opóźnień w komunikacji.

Pytanie 36

Co oznacza skrót WAN?

A. sieć komputerowa lokalna
B. rozległa sieć komputerowa
C. sieć komputerowa w mieście
D. sieć komputerowa prywatna
WAN, czyli Wide Area Network, odnosi się do rozległych sieci komputerowych, które rozciągają się na dużych odległościach, często obejmując wiele miast, krajów czy nawet kontynentów. WAN-y są kluczowe dla organizacji, które potrzebują połączyć swoje biura rozlokowane w różnych lokalizacjach. Przykładem zastosowania WAN może być sieć korporacyjna łącząca oddziały firmy w różnych krajach, umożliwiająca wymianę danych i komunikację. W praktyce WAN-y wykorzystują różne technologie, takie jak MPLS (Multiprotocol Label Switching), VPN (Virtual Private Network) czy połączenia dedykowane. Standardy takie jak ITU-T G.8031 dotyczące ochrony sieci w WAN-ach, są istotne dla zapewnienia niezawodności i bezpieczeństwa przesyłania danych. Dzięki zastosowaniu WAN, przedsiębiorstwa mogą centralizować swoje zasoby, zdalnie zarządzać danymi i aplikacjami oraz zapewniać pracownikom zdalny dostęp do informacji, co jest niezbędne w dzisiejszym zglobalizowanym świecie.

Pytanie 37

Jakie narzędzie służy do obserwacji zdarzeń w systemie Windows?

A. eventvwr.msc
B. gpedit.msc
C. dfrg.msc
D. tsmmc.msc
Odpowiedź eventvwr.msc jest poprawna, ponieważ jest to narzędzie w systemie Windows znane jako Podgląd zdarzeń. Umożliwia ono monitorowanie i przeglądanie logów systemowych, aplikacyjnych oraz zabezpieczeń. Dzięki temu administratorzy mogą identyfikować i diagnozować problemy systemowe, analizować błędy aplikacji oraz śledzić działania użytkowników. Oprogramowanie to jest nieocenione w zarządzaniu bezpieczeństwem i w audytach, ponieważ pozwala na zbieranie danych o zdarzeniach, które mogą wskazywać na nieautoryzowane działania. Przykładem zastosowania jest sytuacja, w której administrator zauważa nietypowe logi logowania i może szybko zareagować, aby zapobiec potencjalnemu zagrożeniu. Posługiwanie się Podglądem zdarzeń jest zgodne z najlepszymi praktykami w zarządzaniu systemami IT, gdzie regularne monitorowanie logów jest kluczowym elementem zapewnienia bezpieczeństwa i stabilności infrastruktury IT.

Pytanie 38

Jakie urządzenie jest używane do pomiaru wartości rezystancji?

A. amperomierz
B. omomierz
C. watomierz
D. woltomierz
Omomierz to przyrząd elektroniczny lub analogowy, który służy do pomiaru rezystancji elektrycznej. Wykorzystuje prawo Ohma, które stanowi, że napięcie (U) jest równe iloczynowi natężenia prądu (I) i rezystancji (R). Omomierz umożliwia szybkie i precyzyjne mierzenie oporu elektrycznego, co jest istotne w diagnostyce i konserwacji układów elektronicznych oraz elektrycznych. Przykładowo, w trakcie naprawy urządzeń, takich jak komputery czy sprzęt AGD, technicy stosują omomierze do sprawdzania ciągłości obwodów oraz identyfikowania uszkodzonych komponentów. W przemysłowych zastosowaniach, pomiar rezystancji izolacji jest kluczowy dla zapewnienia bezpieczeństwa urządzeń elektrycznych. Standardy takie jak IEC 61010 określają wymagania dotyczące bezpieczeństwa przyrządów pomiarowych, co czyni omomierz nieodłącznym narzędziem w pracy inżynierów i techników.

Pytanie 39

Do czynności konserwacyjnych związanych z użytkowaniem skanera płaskiego należy

A. systematyczne czyszczenie szyby skanera oraz płyty dociskowej
B. czyszczenie dysz wkładu kartridża
C. podłączenie sprzętu do listwy z zabezpieczeniem przed przepięciami
D. uruchomienie automatycznego pobierania rekomendowanych sterowników do urządzenia
Regularne czyszczenie szyby skanera oraz płyty dociskowej jest kluczowym elementem konserwacji skanera płaskiego. Z czasem na szybie mogą gromadzić się zanieczyszczenia, kurz czy odciski palców, co negatywnie wpływa na jakość skanowanych dokumentów. Czysta szyba pozwala na uzyskanie wyraźnych i dokładnych skanów, co jest szczególnie ważne w przypadku skanowania dokumentów zawierających drobne detale. Dodatkowo, płyta dociskowa, która ma za zadanie utrzymać dokument w odpowiedniej pozycji podczas skanowania, również powinna być regularnie czyszczona. Zastosowanie odpowiednich środków czyszczących i delikatnych narzędzi pomoże uniknąć zarysowań i innych uszkodzeń. Zgodnie z zaleceniami producentów skanerów, czyszczenie powinno być przeprowadzane co najmniej raz w miesiącu, a w przypadku intensywnej eksploatacji nawet częściej. Takie praktyki nie tylko przedłużają żywotność urządzenia, ale również znacząco podnoszą jakość pracy biurowej.

Pytanie 40

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. przełącznik
B. sterownik
C. router
D. koncentrator
Router jest kluczowym urządzeniem w architekturze sieci komputerowych, które pełni rolę bramy między lokalną siecią a Internetem. Dzięki funkcji routingu, router analizuje pakiety danych i decyduje o najlepszej trasie ich przesyłania, co pozwala na efektywne korzystanie z zasobów zewnętrznych, takich jak strony internetowe czy usługi w chmurze. W praktyce, routery są wykorzystywane w domowych sieciach Wi-Fi, gdzie łączą urządzenia lokalne z Internetem, a także w przedsiębiorstwach, gdzie zarządzają ruchem w bardziej złożonych architekturach sieciowych. Ponadto, współczesne routery często oferują dodatkowe funkcje, takie jak firewall, obsługa VPN czy zarządzanie pasmem, co czyni je wszechstronnymi narzędziami w kontekście bezpieczeństwa i optymalizacji przepustowości. Dobrą praktyką jest również regularne aktualizowanie oprogramowania układowego routera, co zapewnia bezpieczeństwo oraz wprowadza nowe funkcjonalności.