Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 19 grudnia 2025 01:24
  • Data zakończenia: 19 grudnia 2025 01:45

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Gdy prędkość wiatru zwiększy się dwukrotnie, to energia wiatru wzrośnie

A. czterokrotnie
B. ośmiokrotnie
C. dwukrotnie
D. dziesięciokrotnie
Prędkość wiatru ma kluczowe znaczenie dla obliczeń związanych z energią wiatrową, a niepoprawne odpowiedzi na to pytanie często wynikają z błędnego zrozumienia zależności między prędkością a energią. Wiele osób mylnie zakłada, że podwojenie prędkości wiatru automatycznie prowadzi do podwojenia energii. W rzeczywistości energia wiatru rośnie w kwadracie prędkości, co oznacza, że wzrost prędkości o 100% prowadzi do wzrostu energii o 400%. Takie myślenie prowadzi do częstych nieporozumień i nieprawidłowych obliczeń w projektach związanych z energią odnawialną, co może skutkować nieefektywnymi systemami. Jeśli ktoś wskazuje, że energia rośnie dziesięciokrotnie, może to wynikać z błędnego zrozumienia, że energetyczny potencjał wiatru nie jest liniowy, co jest kluczowym aspektem w projektowaniu turbin wiatrowych. Z kolei błędna odpowiedź mówiąca o wzroście czterokrotnym również nie uwzględnia rzeczywistego wpływu prędkości na energię, co z kolei może prowadzić do niedoszacowania mocy niezbędnej do wydajnej konwersji energii wiatrowej. Ostatecznie, aby skutecznie wykorzystać energię wiatru, konieczne jest zrozumienie dynamiki ruchu powietrza oraz zastosowanie odpowiednich obliczeń, które są zgodne z branżowymi standardami, takimi jak IEC 61400, które określają wymagania dotyczące turbin wiatrowych.

Pytanie 2

Całkowity koszt materiałów do zainstalowania systemu pompy ciepła wynosi 62 000 zł, a koszt sprzętu to 8 900 zł. Wiedząc, że koszt robocizny wynosi 20 % wartości materiałów, oblicz całkowitą wartość inwestycji?

A. 70 900 zł
B. 86 800 zł
C. 74 400 zł
D. 83 300 zł
Wybór błędnych odpowiedzi może wynikać z nieprecyzyjnego zrozumienia zasad liczenia kosztów inwestycji. Często osoby rozwiązujące takie zadania mylnie obliczają koszty robocizny lub sprzętu, co prowadzi do błędnych wyników. Na przykład, jeśli ktoś zignoruje koszt robocizny w całości lub przyjmie złą wartość procentową, całkowity koszt inwestycji zostanie zaniżony. W niektórych przypadkach, respondent może błędnie ocenić koszt sprzętu, co również wpłynie na końcowy wynik. Dobrą praktyką jest zawsze dokładnie weryfikować wszystkie wartości oraz stosować wzory, które jasno określają, jak obliczać koszty związane z danym projektem. Ważne jest również, aby na etapie planowania inwestycji uwzględnić nie tylko bezpośrednie koszty materiałów i robocizny, ale również ewentualne dodatkowe wydatki związane z montażem oraz przyszłym użytkowaniem systemu. Takie podejście nie tylko pozwoli na dokładniejsze oszacowanie całkowitych kosztów, ale także zapewni, że inwestycja będzie bardziej przewidywalna i mniej podatna na nieprzewidziane wydatki w trakcie realizacji projektów budowlanych.

Pytanie 3

Aby w zbiorniku buforowym umożliwić dostarczanie na różnych poziomach czynnika o określonej temperaturze, trzeba zainstalować

A. stratyfikator
B. zespół pompowy
C. regulator przepływu
D. odpowietrznik
Stratyfikator jest urządzeniem wykorzystywanym w zbiornikach buforowych, które pozwala na efektywne zarządzanie różnymi poziomami temperatury czynnika. Działa on na zasadzie oddzielania warstw cieczy o różnych temperaturach, co umożliwia ich jednoczesne przechowywanie i pobieranie. Dzięki zastosowaniu stratyfikatora możliwe jest uzyskanie lepszej efektywności energetycznej, a także minimalizacja strat ciepła. W praktyce, stratyfikatory są stosowane w systemach ogrzewania i chłodzenia, gdzie kluczowe jest dostarczanie czynnika o odpowiedniej temperaturze do różnych odbiorników. Na przykład, w systemach ogrzewania budynków, stratyfikator pozwala na pobieranie ciepłej wody na górze zbiornika, podczas gdy zimniejsza woda pozostaje w dolnej warstwie. Takie podejście jest zgodne z dobrymi praktykami inżynieryjnymi, które promują efektywność energetyczną i optymalizację procesów technologicznych, co przekłada się na oszczędności kosztów eksploatacyjnych.

Pytanie 4

Korzystając z przedstawionego fragmentu instrukcji określ, w jakiej odległości od odgromnika należy usytuować ogniwo fotowoltaiczne, jeżeli na budynku istnieje już instalacja antyodgromowa.

Jeżeli istnieje już na budynku instalacja antypiorunowa, to konstrukcja mocująca generatora PV musi zostać połączona najkrótszą drogą z odgromnikiem.
A. 20 cm
B. 30 cm
C. 50 cm
D. 40 cm
Wybór 50 cm, 30 cm lub 40 cm jako odległości od odgromnika dla ogniwa fotowoltaicznego jest nieprawidłowy z kilku powodów. Przede wszystkim, takie podejście może prowadzić do zwiększonego ryzyka uszkodzeń systemu fotowoltaicznego w przypadku wyładowania atmosferycznego. W przepisach dotyczących ochrony odgromowej oraz zasadach instalacji fotowoltaicznych podkreśla się, że minimalizacja odległości pomiędzy ogniwem a odgromnikiem jest kluczowa dla zapewnienia skutecznej ochrony. Ustalenie zbyt dużej odległości może skutkować nieefektywnym połączeniem, co z kolei prowadzi do niebezpiecznych sytuacji, gdy wyładowanie nie znajduje optymalnej drogi do ziemi. W praktyce, gdy ogniwo fotowoltaiczne jest umieszczone zbyt daleko od odgromnika, może dojść do zjawiska zwanego „przeciekiem” prądu, co zwiększa ryzyko uszkodzenia zarówno ogniw, jak i innych elementów instalacji. Ponadto, odległość ta jest regulowana przez aktualne normy, które dostarczają wytycznych opartych na badaniach dotyczących bezpieczeństwa elektrycznego. Nieprzestrzeganie tych zasad może prowadzić do niewłaściwego funkcjonowania systemu oraz powodować niepotrzebne koszty związane z naprawami czy wymianą uszkodzonych komponentów. Dlatego kluczowe jest, aby podczas projektowania instalacji PV na budynkach zapewnić przestrzeganie odpowiednich norm i standardów dotyczących instalacji odgromowych.

Pytanie 5

Klient, który pragnie jednocześnie uzyskiwać energię elektryczną oraz ciepło z odnawialnych źródeł, powinien rozważyć użycie

A. kolektora rurowego próżniowego
B. kolektora słonecznego hybrydowego
C. kotła dwufunkcyjnego
D. pompy ciepła multi-split
Propozycje, takie jak kocioł dwufunkcyjny, pompa ciepła multi-split oraz kolektor rurowy próżniowy, nie są odzwierciedleniem nowoczesnych potrzeb w zakresie jednoczesnego pozyskiwania energii elektrycznej i ciepła ze źródeł odnawialnych. Kocioł dwufunkcyjny, mimo że potrafi efektywnie ogrzewać wodę i pomieszczenia, nie jest zaprojektowany do produkcji energii elektrycznej. Zwykle wykorzystuje paliwa kopalne, co jest sprzeczne z ideą wykorzystywania odnawialnych źródeł energii. Pompa ciepła multi-split, choć efektywna w pozyskiwaniu energii cieplnej z otoczenia, również koncentruje się na ogrzewaniu i chłodzeniu, a nie na wytwarzaniu energii elektrycznej. Kolektor rurowy próżniowy jest doskonały do produkcji ciepła, zwłaszcza w warunkach niskich temperatur, jednak nie generuje energii elektrycznej. Typowe błędy myślowe prowadzące do takich wniosków to mylenie funkcji i zastosowań różnych technologii OZE oraz brak zrozumienia, że dla efektywnej produkcji energii elektrycznej potrzebne są urządzenia, które mogą zarówno produkować prąd, jak i ciepło, jak właśnie kolektory hybrydowe, a nie jedynie koncentrować się na jednym z tych aspektów.

Pytanie 6

Przy transporcie kolektora słonecznego na dach, co należy zrobić?

A. zastosować pas transportowy przymocowany do przyłączy kolektora
B. usunąć osłony zabezpieczające
C. skorzystać z drabiny i w dwie osoby wciągnąć kolektor
D. użyć bloczków wyciągowych
Wybór drabiny i wspólnego wciągania kolektora może wydawać się praktyczny, jednak takie podejście niesie ze sobą poważne ryzyko. Przede wszystkim, użycie drabiny do transportu ciężkiego przedmiotu wymaga znacznej koordynacji i siły, co może prowadzić do utraty równowagi, a w konsekwencji do upadku. Kiedy dwie osoby starają się jednocześnie wciągnąć kolektor, istnieje duże prawdopodobieństwo, że jedna z nich może nieoczekiwanie puścić przedmiot, co stanowi poważne zagrożenie dla zdrowia. Zdejmowanie osłon zabezpieczających przed transportem również nie jest zalecane, ponieważ osłony te mają na celu ochronę delikatnych elementów kolektora przed uszkodzeniami mechanicznymi i warunkami atmosferycznymi. Ich usunięcie może prowadzić do nieodwracalnych uszkodzeń przed transportem i negatywnie wpłynąć na wydajność kolektora po jego zainstalowaniu. Użycie pasa transportowego przymocowanego do przyłączy kolektora również nie jest właściwe, ponieważ takie podejście może prowadzić do uszkodzenia przyłączy, co może skutkować nieszczelnościami lub innymi problemami eksploatacyjnymi po zamontowaniu kolektora. Właściwe metody transportu powinny opierać się na standardach bezpieczeństwa i dobrych praktykach, które zapewniają zarówno bezpieczeństwo, jak i integralność transportowanego urządzenia.

Pytanie 7

Na rysunku przedstawiono grupę pompową układu solarnego. Cyfrą 1 oznaczono

Ilustracja do pytania
A. regulator przepływu.
B. pompę cyrkulacyjną.
C. separator powietrza z odpowietrznikiem.
D. zawór bezpieczeństwa.
Odpowiedź wskazująca na pompę cyrkulacyjną jako element układu solarnego jest prawidłowa z kilku kluczowych powodów. Pompa cyrkulacyjna, oznaczona cyfrą 1 na rysunku, odgrywa fundamentalną rolę w zapewnieniu efektywnego obiegu płynu grzewczego pomiędzy kolektorami a zasobnikiem ciepła. Dzięki niej możliwe jest utrzymanie optymalnej temperatury w systemie oraz maksymalizacja efektywności energetycznej instalacji solarnej. W praktyce, wybór odpowiedniej pompy cyrkulacyjnej powinien opierać się na jej wydajności oraz dostosowaniu do specyfiki instalacji, co jest zgodne z zaleceniami norm EN 16297 oraz wytycznymi zawartymi w dokumentach branżowych. Oprócz podstawowej funkcji cyrkulacji, pompy te często wyposażone są w regulatory, co pozwala na automatyczne dostosowywanie pracy urządzenia w zależności od zapotrzebowania na ciepło. Przykłady zastosowania pomp cyrkulacyjnych obejmują zarówno instalacje domowe, jak i większe systemy grzewcze, takie jak obiekty komercyjne, gdzie efektywność obiegu czynnika grzewczego jest kluczowa dla uzyskania oszczędności energetycznych oraz ekologicznych.

Pytanie 8

Podczas łączenia modułów fotowoltaicznych w układzie szeregowym, jakie efekty się uzyskuje?

A. zwiększenie natężenia prądu i zwiększenie mocy
B. zmniejszenie napięcia i zwiększenie natężenia prądu
C. zwiększenie napięcia i zwiększenie natężenia prądu
D. zwiększenie napięcia i zwiększenie mocy
Niektóre z odpowiedzi mogą prowadzić do mylnych wniosków na temat zasad działania fotowoltaiki. W przypadku połączenia szeregowego nie dochodzi do wzrostu natężenia prądu; wręcz przeciwnie, natężenie prądu pozostaje na poziomie równym natężeniu prądu pojedynczego modułu. To fundamentalne zrozumienie jest kluczowe, ponieważ nieprawidłowe założenie, że połączenie szeregowe zwiększa natężenie, może prowadzić do niewłaściwego doboru komponentów systemu. Wzrost mocy, mimo iż może wydawać się intuicyjny, również nie jest dokładnie zrozumiały w kontekście połączeń szeregowych. Moc nie wzrasta automatycznie ze względu na połączenie szeregowe, ponieważ taka konfiguracja nie zwiększa wydajności pojedynczych modułów, a jedynie ich napięcie. Różnice w mocy mogą wynikać z warunków zewnętrznych, takich jak nasłonecznienie i temperatura. Ponadto, mylenie połączeń szeregowych z równoległymi prowadzi do błędów przy projektowaniu systemów PV. W połączeniach równoległych natężenie prądu rzeczywiście wzrasta, co jest korzystne w niektórych scenariuszach, ale w przypadku połączenia szeregowego kluczowym aspektem pozostaje napięcie. Ogólnie rzecz biorąc, należy zwracać uwagę na to, jak różne konfiguracje wpływają na ogólne parametry systemu, a nie zakładać, że wszystkie połączenia automatycznie prowadzą do wzrostu wydajności. Właściwe zrozumienie tych koncepcji jest istotne dla skutecznego projektowania oraz realizacji instalacji fotowoltaicznych.

Pytanie 9

Materiał o najwyższym współczynniku absorpcji spośród wymienionych to

A. czarna farba
B. blacha aluminiowa
C. blacha miedziana
D. czarny chrom
Mówi się, że czarna farba jest dobra w pochłanianiu światła, ale tak naprawdę czarny chrom ma lepsze wyniki. Często można usłyszeć, że czarna farba, bo jest ciemna, powinna być lepsza, ale to nieprawda. Czarne pigmenty w farbie mają swoje ograniczenia, a to, jak naniesiemy farbę, też ma spore znaczenie. A jeśli weźmiemy blachę aluminiową czy miedzianą, to one raczej odbijają światło, bo mają gładką powierzchnię. Wiele osób myli odbicie i absorpcję, szczególnie w przypadku metali, które nie zawsze pochłaniają światło tak jak byśmy się spodziewali. Dobrze jest zrozumieć, jak działają te materiały w kontekście optyki, bo to ważne przy projektowaniu różnych systemów optycznych. Dlatego wybór czarnego chromu to nie przypadek – stoi za tym solidna wiedza naukowa.

Pytanie 10

Czym jest niskotemperaturowe źródło energii cieplnej?

A. kocioł na gaz ziemny o wysokim metanie
B. kocioł opalany olejem grzewczym
C. kocioł na paliwo stałe
D. pompa ciepła
Kocioł na olej opałowy, kocioł na paliwo stałe oraz kocioł na gaz ziemny wysokometanowy są przykładami urządzeń grzewczych, które działają na zasadzie spalania paliwa. Te źródła ciepła wytwarzają ciepło poprzez proces spalania, który generuje wysokotemperaturowe gazy spalane. Ogrzewanie przy użyciu tych kotłów wiąże się z koniecznością dostarczenia paliwa, co może zwiększać koszty eksploatacji oraz wpływać na środowisko przez emisję zanieczyszczeń. Na przykład, kocioł na olej opałowy emituje spaliny, w tym dwutlenek węgla oraz inne szkodliwe substancje, co jest sprzeczne z dążeniem do ograniczenia emisji gazów cieplarnianych. Podobnie, kotły na paliwo stałe, takie jak węgiel czy drewno, mogą generować dużą ilość dymu i pyłów, które są szkodliwe dla zdrowia i środowiska. Również kocioł na gaz ziemny, mimo że jest bardziej efektywny i emitujący mniej zanieczyszczeń w porównaniu do paliw stałych, nadal opiera się na paliwie kopalnym, co w dłuższej perspektywie nie jest zrównoważonym rozwiązaniem. Użytkownicy powinni zatem być świadomi ograniczeń tych tradycyjnych systemów grzewczych oraz ich wpływu na środowisko, co czyni pompy ciepła bardziej atrakcyjną alternatywą w kontekście dążenia do zrównoważonego rozwoju i efektywności energetycznej.

Pytanie 11

Kogenerator w trakcie spalania np. biogazu wytwarza energię

A. tylko energię elektryczną
B. elektryczną i cieplną
C. wyłącznie energię cieplną
D. jedynie mechaniczną
Wybór odpowiedzi, która sugeruje, że kogenerator dostarcza tylko energię mechaniczną, nie uwzględnia istoty jego działania. Kogeneratory przekształcają energię chemiczną zawartą w paliwach, takich jak biogaz, w energię elektryczną oraz cieplną, a nie mechaniczną. Odpowiedzi wskazujące na produkcję tylko energii elektrycznej lub tylko cieplnej są również błędne, ponieważ nie uwzględniają podstawowej funkcji kogeneracji, która polega na jednoczesnej produkcji obu tych form energii. W praktyce, jeśli kogenerator dostarczałby jedynie energię elektryczną, straty ciepła stanowiłyby ogromny zmarnowany potencjał, co jest niezgodne z zasadą efektywności energetycznej. Ponadto, niektóre z tych odpowiedzi sugerują mylną interpretację procesu produkcji energii, gdzie mechaniczne aspekty działania urządzenia są mylone z jego rzeczywistą funkcjonalnością. W rzeczywistości, kogeneracja jest procesem, który znacząco poprawia efektywność systemów energetycznych poprzez wykorzystanie zarówno energii elektrycznej, jak i cieplnej, co jest zgodne z najlepszymi praktykami w branży energetycznej. Warto również zaznaczyć, że wspieranie efektywnych technologii, takich jak kogeneracja, jest kluczowym aspektem strategii zrównoważonego rozwoju i efektywnego zarządzania zasobami energetycznymi.

Pytanie 12

Zawór STB w kotłach opalanych biomasą z wentylatorem i podajnikiem chroni kocioł przed

A. zablokowaniem podajnika paliwa
B. zbyt wysokim wzrostem temperatury wody
C. cofaniem płomienia
D. niedostatecznym spalaniem
Odpowiedzi sugerujące, że zawór STB zabezpiecza kocioł przed niezupełnym spalaniem, zatkaniem podajnika paliwa lub cofnięciem płomienia, wskazują na powszechne nieporozumienia dotyczące funkcji tego urządzenia. Zawór STB jest związany z regulacją temperatury wody w kotle, a nie z procesem spalania paliwa. Niezupełne spalanie jest wynikiem niewłaściwego doprowadzenia powietrza, niewłaściwych parametrów paliwa lub wadliwego działania elementów grzewczych, a nie bezpośrednio związane z działaniem zaworu STB. Zatkanie podajnika paliwa z kolei może prowadzić do przerwy w dostarczaniu paliwa, ale nie jest to sytuacja, którą zawór STB ma na celu rozwiązać. Cofnięcie płomienia, które może spowodować zagrożenie pożarowe, również nie jest funkcją zaworu STB, lecz wymaga zastosowania innych zabezpieczeń, takich jak klapy zwrotne czy systemy detekcji płomienia. Zrozumienie, że zawór STB działa głównie jako zabezpieczenie przed wzrostem temperatury, a nie jako element systemu kontroli procesów spalania, jest kluczowe dla zapewnienia prawidłowego eksploatowania kotłów na biomasę. Właściwe zrozumienie funkcji każdego elementu systemu grzewczego jest niezbędne do zapewnienia ich efektywności oraz bezpieczeństwa, a ignorowanie tej zasady może prowadzić do niepożądanych sytuacji i poważnych awarii.

Pytanie 13

Gdzie w instalacji solarnej umieszcza się mieszacz wody użytkowej?

A. pomiędzy wodą zimną a obiegiem wody ciepłej
B. pomiędzy centralnym ogrzewaniem a obiegiem wody zimnej
C. pomiędzy obiegiem solarnym a obiegiem wody ciepłej
D. pomiędzy obiegiem solarnym a obiegiem wody zimnej
Mieszacz wody użytkowej w instalacji solarnej jest kluczowym elementem, który zapewnia optymalne wykorzystanie ciepła generowanego przez kolektory słoneczne. Jego prawidłowe umiejscowienie pomiędzy obiegiem wody zimnej a obiegiem wody ciepłej pozwala na efektywne zarządzanie temperaturą wody dostarczanej do odbiorników, takich jak krany czy urządzenia sanitarno-grzewcze. Mieszacz umożliwia regulację proporcji wody zimnej i ciepłej, co jest niezbędne do uzyskania komfortu użytkowania oraz ochrony instalacji przed przegrzewaniem. Przykładowo, w sytuacji, gdy temperatura wody z kolektorów jest zbyt wysoka, mieszacz może wprowadzać zimną wodę, obniżając tym samym temperaturę mieszanki. Zgodnie z dobrymi praktykami branżowymi, takie rozwiązanie minimalizuje ryzyko uszkodzenia urządzeń oraz poprawia ich żywotność. Ponadto, zastosowanie mieszacza przyczynia się do efektywności energetycznej całego systemu solarnego, co jest szczególnie istotne w kontekście zrównoważonego rozwoju i ochrony środowiska.

Pytanie 14

Jaki maksymalny roczny poziom wydajności jednostkowej może uzyskać instalacja solarna z powierzchnią absorberów kolektorów słonecznych równą 15 m2, zaplanowana do podgrzewania wody użytkowej przy dobowym zapotrzebowaniu wynoszącym 500 dm3?

A. 700 ÷ 800 kWh/m2/rok
B. 100 ÷ 200 kWh/m2/rok
C. 400 ÷ 500 kWh/m2/rok
D. 1000 ÷ 1100 kWh/m2/rok
Wartości wydajności jednostkowej dla instalacji solarnej są kluczowe do zrozumienia jej efektywności energetycznej, a nieprawidłowe szacowanie tych wartości prowadzi do mylnych wniosków. Odpowiedzi wskazujące na zakres 100 ÷ 200 kWh/m²/rok oraz 1000 ÷ 1100 kWh/m²/rok nie uwzględniają typowych parametrów dla systemów solarnych, zwłaszcza w kontekście podgrzewania wody użytkowej. Wydajność w przedziale 100 ÷ 200 kWh/m²/rok jest zbyt niska w porównaniu do standardów branżowych, ponieważ nowoczesne kolektory słoneczne, w zależności od lokalnych warunków, powinny osiągać znacznie wyższe wyniki. Z drugiej strony, wysokie wartości w zakresie 1000 ÷ 1100 kWh/m²/rok są wysoce nierealistyczne i wykraczają poza typowe osiągi kolektorów słonecznych, które w rzeczywistości nie są w stanie przetworzyć tak dużej ilości energii w ciągu roku. Błędne podejścia do oceny wydajności mogą wynikać z ignorowania wpływu czynników środowiskowych, takich jak kąt nachylenia kolektorów, ich orientacja oraz lokalne warunki atmosferyczne, które są niezbędne do uzyskania dokładnych szacunków. Ponadto, brak uwzględnienia standardów branżowych, takich jak normy EN 12975, które regulują efektywność kolektorów słonecznych, prowadzi do błędnych ocen ich możliwości. Zrozumienie tych parametrów jest kluczowe dla skutecznego projektowania systemów solarnych, które spełniają wymagania użytkowników.

Pytanie 15

Osoba inwestująca w system fotowoltaiczny, który ma zapewnić energię elektryczną dla domu jednorodzinnego i umożliwić sprzedaż nadwyżki prądu do sieci energetycznej, powinna dysponować

A. odbiornikiem energii, akumulatorem, licznikiem energii elektrycznej wyprodukowanej, licznikiem energii zużytej, panelami fotowoltaicznymi
B. akumulatorem, inwerterem, licznikiem energii elektrycznej wyprodukowanej, licznikiem energii zużytej, panelami fotowoltaicznymi
C. odbiornikiem energii, akumulatorem, inwerterem, kontrolerem ładowania, licznikiem energii elektrycznej wyprodukowanej, licznikiem energii zużytej, panelami fotowoltaicznymi
D. akumulatorem, inwerterem, kontrolerem ładowania, licznikiem energii elektrycznej wyprodukowanej, panelami fotowoltaicznymi
Odpowiedź ta jest prawidłowa, ponieważ zawiera wszystkie niezbędne elementy potrzebne do stworzenia efektywnego systemu fotowoltaicznego, który zaspokaja potrzeby energetyczne domu jednorodzinnego oraz umożliwia sprzedaż nadmiaru energii do sieci. Odbiornik energii jest kluczowy, ponieważ to on wykorzystuje energię wytwarzaną przez panele fotowoltaiczne. Akumulator jest niezbędny do magazynowania nadwyżek energii, co pozwala na jej wykorzystanie w czasie, gdy produkcja energii jest niższa, na przykład w nocy. Inwerter konwertuje prąd stały generowany przez panele na prąd zmienny, co jest wymagane do zasilania urządzeń domowych oraz wprowadzenia energii do sieci. Kontroler ładowania dba o prawidłowe ładowanie akumulatora, co zwiększa jego żywotność i efektywność. Liczniki energii umożliwiają ścisłe monitorowanie zarówno energii wyprodukowanej, jak i zużytej, co jest istotne dla rozliczeń z lokalnym dostawcą energii. Przykładem zastosowania takiego systemu może być dom, który w ciągu dnia produkuje więcej energii, niż zużywa, a nadwyżkę sprzedaje, co zmniejsza koszty rachunków za prąd oraz przyczynia się do ochrony środowiska poprzez wykorzystanie odnawialnych źródeł energii.

Pytanie 16

Nie należy stosować technologii PEX-Al-PEX w słonecznych instalacjach grzewczych, ponieważ

A. brakuje odpowiednich złączek do połączenia rur z kolektorem
B. polietylenowe części rur mają słabe przewodnictwo cieplne
C. rury nie wytrzymują wysokich temperatur
D. aluminium w rurach prowadzi do degradacji glikolu
Wygląda na to, że odpowiedź nie uwzględnia ważnych aspektów technicznych rur PEX-Al-PEX. Nie jest prawdą, że aluminium w tych rurach wpływa negatywnie na glikol, bo glikol ma za zadanie zapobiegać zamarzaniu i nie rozkłada się w obecności aluminium w normalnych warunkach. Stwierdzenie, że polietylenowe warstwy mają zły przewodnictwo ciepła, to nie do końca sedno sprawy, bo głównym problemem jest ich niska odporność na wysokie temperatury. Polietylen sprawdza się w wielu systemach grzewczych, ale nie w instalacjach słonecznych. Jak mówisz o braku odpowiednich złączek do rur, to też jest trochę nie tak, bo na rynku jest sporo adapterów, które sprawiają, że można te rury połączyć z innymi elementami. Ważne, żebyśmy rozumieli, że odpowiednie złącza nie naprawią kiepskich właściwości materiałowych, które mogą prowadzić do awarii. Wybierając materiały do instalacji, dobrze jest zwrócić uwagę na ich właściwości i normy, które zapewniają bezpieczeństwo i skuteczność systemu, zwłaszcza w kontekście energii solarnej.

Pytanie 17

W celu przygotowania materiałowego zestawienia do montażu instalacji solarnej, tworzy się

A. harmonogram wykonywanych prac
B. obmiar robót
C. zapytanie ofertowe
D. przedmiar robót
Odpowiedź "przedmiar robót" jest prawidłowa, ponieważ przedmiar robót to dokument, który szczegółowo określa rodzaje i ilości materiałów, które będą potrzebne do realizacji projektu, w tym montażu instalacji solarnej. W kontekście instalacji solarnej, przedmiar robót powinien zawierać elementy takie jak panele słoneczne, inwertery, okablowanie oraz inne komponenty niezbędne do prawidłowego działania systemu. Sporządzenie przedmiaru robót jest kluczowe dla dokładnego oszacowania kosztów projektu oraz dla zapewnienia, że wszystkie niezbędne materiały zostaną uwzględnione i dostarczone na czas. Standardy branżowe, takie jak normy ISO dotyczące zarządzania projektami, podkreślają znaczenie rzetelnego przedmiaru jako podstawy do efektywnego planowania i kontroli wydatków. W praktyce, dobrze opracowany przedmiar robót umożliwia również lepsze porównanie ofert od różnych dostawców oraz ułatwia komunikację z wykonawcami, co przyczynia się do bardziej płynnego przebiegu realizacji projektu.

Pytanie 18

W skład odnawialnych źródeł energii wchodzą

A. energia wiatru, energia wody, ropa naftowa
B. energia geotermalna, energia biomasy, biogaz
C. energia geotermalna, energia słoneczna, węgiel
D. węgiel kamienny, węgiel brunatny, gaz ziemny
Odpowiedź wskazująca na energię geotermalną, energię biomasy oraz biogaz jako odnawialne źródła energii jest prawidłowa, ponieważ wszystkie te źródła są zdolne do regeneracji w krótkim czasie i nie prowadzą do wyczerpywania zasobów naturalnych. Energia geotermalna wykorzystuje ciepło z wnętrza Ziemi, co sprawia, że jest to jeden z najbardziej stabilnych i niezawodnych źródeł energii. Można ją wykorzystać do ogrzewania budynków oraz do produkcji energii elektrycznej. Energia biomasy, z kolei, jest pozyskiwana z materiałów organicznych, takich jak odpady rolnicze czy drewno, co pozwala na zamianę odpadów w wartościowe źródło energii, przyczyniając się jednocześnie do zrównoważonego rozwoju. Biogaz, wytwarzany z fermentacji organicznych odpadów, może być wykorzystywany jako paliwo do silników czy do produkcji energii elektrycznej. Dobre praktyki branżowe promują rozwój technologii związanych z tymi źródłami, aby zwiększyć efektywność i zmniejszyć emisję gazów cieplarnianych. Te odnawialne źródła energii mają ogromny potencjał w ramach strategii zrównoważonego rozwoju i walki ze zmianami klimatycznymi.

Pytanie 19

Na przedstawionym schemacie pośredniego przygotowania ciepłej wody użytkowej cyfrą 1 oznaczono

Ilustracja do pytania
A. zawór bezpieczeństwa.
B. pompę cyrkulacyjną.
C. separator powietrza.
D. zawór zwrotny.
Pompa cyrkulacyjna, oznaczona na schemacie jako numer 1, jest naprawdę ważnym elementem w systemach ciepłej wody użytkowej. Jej głównym zadaniem jest zapewnienie, żeby woda ciągle krążyła w instalacji. Dzięki temu, jak tylko otworzysz kran, masz od razu ciepłą wodę, a nie musisz czekać, co jest naprawdę wygodne. To nie tylko oszczędza czas, ale też zmniejsza straty energii. Użycie pompy cyrkulacyjnej jest zgodne z normami efektywności energetycznej, które zalecają takie rozwiązania w nowoczesnych systemach. Co więcej, często mają one regulatory, które dostosowują ich pracę do potrzeb użytkowników, więc są bardziej wydajne i tańsze w eksploatacji. Nie zapomnij też, że prawidłowe umiejscowienie pompy w systemie jest kluczowe, aby wszystko działało sprawnie. Regularna konserwacja też jest super ważna – dzięki niej pompa będzie długo działać bez awarii.

Pytanie 20

Aby ochronić kocioł na biomasę przed niską temperaturą czynnika powracającego z systemu c.o., należy zainstalować zawór

A. mieszający na powrocie z systemu.
B. mieszający na zasilaniu systemu.
C. termostatyczny na powrocie z systemu c.o.
D. termostatyczny przed grzejnikami c.o.
Wybór zaworu termostatycznego na powrocie z instalacji c.o. jest nieodpowiedni, ponieważ jego głównym zadaniem jest regulacja temperatury wody w systemie, a nie mieszanie jej z innymi strumieniami. Choć zawory termostatyczne kontrolują przepływ na podstawie temperatury, nie są wystarczające do ochrony kotła na biomasę przed niską temperaturą. Zawory mieszające, w przeciwieństwie do termostatycznych, mają na celu aktywne mieszanie wody o różnych temperaturach, co jest kluczowe w kontekście utrzymania stabilnej i odpowiedniej temperatury roboczej kotła. Podobnie, zastosowanie zaworu mieszającego na zasilaniu instalacji również nie rozwiązuje problemu, ponieważ ciepła woda z kotła powinna być odpowiednio schładzana, aby uniknąć przegrzania układu. Zawory termostatyczne przed grzejnikami c.o. również nie są odpowiednim rozwiązaniem, ponieważ działają na zasadzie regulacji lokalnych temperatur, a nie globalnej ochrony kotła. Zrozumienie funkcji różnych typów zaworów w kontekście instalacji grzewczych jest kluczowe dla efektywności systemu. Wybór niewłaściwego elementu może prowadzić do problemów z komfortem cieplnym i wydajnością energetyczną, co jest niezgodne z najlepszymi praktykami w branży grzewczej. Dlatego kluczowe jest, aby przed podjęciem decyzji o zastosowaniu konkretnego rozwiązania, dokładnie przeanalizować jego funkcjonalności i zastosowanie w kontekście całego systemu grzewczego.

Pytanie 21

Ile wynosi współczynnik wydajności pompy ciepła COP, obliczony na podstawie danych technicznych urządzenia zamieszczonych w tabeli, dla temperatury otoczenia 7°C i temperatury wody 50°C?

Dane techniczne
Warunki pomiaruOpisJednostkaWartość
Temp. otoczenia 7°C
Temp. wody 50°C
Moc grzewczakW3,0
Moc elektryczna doprowadzona
do sprężarki
kW1,0
Pobór prąduA4,5
Temp. otoczenia 2°C
Temp. wody 30°C
Moc grzewczakW3,2
Moc elektryczna doprowadzona
do sprężarki
kW0,98
Pobór prąduA4,45
Zasilanie elektryczneV/Hz230/50
Temperatura maksymalna°C60
A. 4,0
B. 4,5
C. 1,0
D. 3,0
Wybierając inne wartości współczynnika COP, można nieprawidłowo ocenić efektywność pompy ciepła. Odpowiedzi takie jak 4,0, 1,0 czy 4,5 mogą wynikać z typowych błędów myślowych związanych z interpretacją danych. Warto zauważyć, że współczynnik COP o wartości 1,0 oznaczałby, że moc grzewcza jest równa mocy elektrycznej, co jest nieefektywne i niepraktyczne w kontekście nowoczesnych rozwiązań grzewczych. Pompy ciepła są projektowane tak, aby przewyższały zużycie energii, dlatego COP powinien wynosić przynajmniej 3,0. Z kolei wartości takie jak 4,0 czy 4,5 sugerują, że pompa ciepła dostarczałaby jeszcze więcej energii cieplnej, co może być mylące, ponieważ takie wskaźniki wymagają specyficznych warunków pracy, często przy znacznie niższych temperaturach otoczenia. W realnych warunkach operacyjnych, na które wpływają zmienne takie jak temperatura zewnętrzna czy rodzaj medium grzewczego, osiągnięcie tak wysokiego COP może być niezwykle trudne. Praktyki branżowe podkreślają, że wartości COP należy analizować w kontekście specyficznych danych technicznych oraz warunków użytkowania, co czyni odpowiedź 3,0 najbardziej zbliżoną do rzeczywistości.

Pytanie 22

Który typ podłoża wspomaga przekazywanie ciepła do kolektora gruntowego?

A. Wilgotny i piaszczysty
B. Twardy i piaszczysty
C. Suchy i gliniasty
D. Wilgotny i gliniasty
Wybór odpowiedzi dotyczących suchego gruntu, zarówno piaszczystego, jak i gliniastego, nie jest najlepszy. Te materiały mają słabe właściwości przewodzenia ciepła. Suchy grunt piaszczysty może przepuszczać wodę, ale ciepło ucieka mu zbyt szybko. Z kolei suchy grunt gliniasty, mimo że lepszy od piasku, też musi być trochę wilgotny, żeby dobrze przewodzić ciepło. A jak jest za suchy, to się kurczy i mogą powstawać szczeliny, co wpływa na kontakt z kolektorem. Ważne jest, żeby nie lekceważyć roli wilgotności gruntu przy projektowaniu systemów geotermalnych. Warto zrozumieć, jak wilgoć, rodzaj gruntu i przewodnictwo cieplne się ze sobą łączą, bo to klucz do efektywnego działania takich systemów. Wilgotne gliny naprawdę robią różnicę w wymianie energii z kolektorem gruntowym.

Pytanie 23

Jakie narzędzie należy wykorzystać do łączenia rur miedzianych w systemie biogazowym, w obiekcie, gdzie nie można stosować technologii termicznych?

A. zgrzewarki elektrooporowej
B. zaciskarki promieniowej
C. zaciskarki osiowej
D. palnika gazowego
Zastosowanie zgrzewarki elektrooporowej w kontekście instalacji biogazowych może wydawać się atrakcyjne, jednak wiąże się z technologią termiczną, która jest zabroniona w omawianych warunkach. Zgrzewarka elektrooporowa działa na zasadzie wytwarzania ciepła poprzez przepływ prądu elektrycznego przez element oporowy, co prowadzi do rozgrzania materiałów i ich zespawania. W przypadku biogazów, które mogą być łatwopalne i mają specyfikę chemiczną, proces ten stwarza ryzyko niebezpiecznych sytuacji, takich jak wybuchy czy pożary. Podobnie, palnik gazowy, który wykorzystuje otwarty ogień do lutowania, również nie spełnia wymogów bezpieczeństwa w instalacjach biogazowych, gdzie obecność gazów może tworzyć niebezpieczne mieszanki. Zaciskarka osiowa, choć eliminuje potrzebę wysokotemperaturowego łączenia, nie zapewnia takiego samego poziomu szczelności i wytrzymałości jak zaciskarka promieniowa, co w kontekście biogazu jest kluczowe. Typowym błędem myślowym jest przypuszczenie, że każda technika łączenia rur może być stosowana zamiennie, co prowadzi do wyboru nieodpowiednich narzędzi i metod, a tym samym do obniżenia jakości instalacji oraz zwiększenia ryzyka awarii. Właściwe podejście do wyboru narzędzi i technologii łączenia rur ma istotne znaczenie dla długotrwałej i bezpiecznej eksploatacji instalacji biogazowych.

Pytanie 24

Do instalacji ogrzewania podłogowego zasilanego pompą ciepła wykorzystuje się rury

A. stalowe
B. z tworzywa sztucznego
C. kamionkowe
D. żeliwne
Wybór niewłaściwych materiałów do instalacji ogrzewania podłogowego może prowadzić do poważnych problemów w późniejszym użytkowaniu systemu. Na przykład, rury stalowe, mimo że są powszechnie stosowane w innych systemach grzewczych, charakteryzują się dużą podatnością na korozję, co w kontekście ogrzewania podłogowego zasilanego pompą ciepła jest nieakceptowalne. Stal nie tylko traci swoje właściwości mechaniczne z upływem czasu, ale także może prowadzić do zanieczyszczenia systemu, co w konsekwencji wpływa na jego wydajność oraz trwałość. Rury żeliwne, chociaż były popularne w przeszłości, są zbyt ciężkie i trudne w montażu, co czyni je niewłaściwym wyborem w nowoczesnych instalacjach. Również rury kamionkowe, choć mają swoje zastosowanie w niektórych systemach, są zbyt sztywne i podatne na pęknięcia, co w przypadku ogrzewania podłogowego, gdzie konieczne jest dostosowanie do zmieniających się warunków, jest istotnym ograniczeniem. Wybór niewłaściwego materiału do instalacji może prowadzić do zwiększenia kosztów eksploatacji oraz konieczności naprawy lub wymiany systemu, co jest nie tylko nieekonomiczne, ale także czasochłonne. Dlatego ważne jest, aby przy projektowaniu systemów grzewczych korzystać z materiałów zgodnych z normami i dobrymi praktykami branżowymi, które zapewnią ich długoterminową efektywność.

Pytanie 25

Tworząc harmonogram prac związanych z montażem instalacji do usuwania pyłów z gazów spalinowych, wybrano cyklon, którego rolą jest zatrzymywanie zanieczyszczeń powietrza pod wpływem działania

A. siły odśrodkowej
B. pola elektromagnetycznego
C. grawitacji
D. filtracji
Chociaż pojawiają się różne koncepcje dotyczące mechanizmu działania urządzeń do usuwania zanieczyszczeń, takie jak pola elektromagnetyczne, grawitacja czy filtracja, każda z tych odpowiedzi nie uwzględnia kluczowych zasad, które rządzą cyklonami. Pola elektromagnetyczne nie mają zastosowania w procesie separacji pyłów, ponieważ działanie cyklonów opiera się na mechanice fluidów, gdzie dominującą rolę odgrywa grawitacja i siła odśrodkowa, a nie przyciąganie elektromagnetyczne. Grawitacja wpływa na osadzanie się cząstek, ale sama w sobie nie wyjaśnia procesu separacji, który zachodzi w cyklonie. Filtracja, z kolei, jest procesem, w którym cząstki są zatrzymywane przez medium filtracyjne, a nie poprzez rotację i siły odśrodkowe. W kontekście cyklonów, zrozumienie, że to siła odśrodkowa jest kluczowa dla ich działania, jest fundamentem prawidłowego pojmowania ich funkcji. Wiele osób myli proces separacji z ogólnymi zasadami fizyki, co prowadzi do błędnych wniosków. Kluczowe jest, aby rozpoznać, że skuteczna separacja pyłów występuje w wyniku działania wiru, w którym cięższe cząstki są odrzucane na zewnątrz przez siły odśrodkowe, a nie jakiekolwiek inne mechanizmy, które mogą wydawać się bardziej intuicyjne, ale nie są odpowiednie w kontekście cyklonów.

Pytanie 26

Urządzenie przedstawione na rysunku przeznaczone jest do

Ilustracja do pytania
A. zaciskania rur.
B. wykonywania otworów w izolacji cieplnej.
C. kielichowania rur.
D. ogrzewania rur.
To, co widzisz na zdjęciu, to kielichówka do rur. To naprawdę super narzędzie, które ma ogromne znaczenie w instalacjach. Używamy go do kielichowania, co oznacza, że końce rur są rozszerzane, a to pozwala na ich efektywne łączenie. No i mniejsza ilość złączek to mniejsze ryzyko wycieków, więc to na pewno plus! W praktyce, dzięki kielichowaniu, można szybko i sprawnie łączyć rury w systemach wodociągowych i grzewczych. To po prostu ułatwia robotę. I tak, jak zalecają standardy ISO czy normy PN-EN 1057, kielichówka zapewnia, że połączenia są naprawdę trwałe i odporne na wysokie temperatury czy ciśnienie. Idealne do różnych zastosowań budowlanych i przemysłowych.

Pytanie 27

Głównym składnikiem biogazu jest

A. propan
B. etan
C. butan
D. metan
Metan, jako główny składnik biogazu, jest gazem o wysokim potencjale energetycznym, stanowiącym od 50% do 75% objętości biogazu. Jest produktem fermentacji beztlenowej organicznych materiałów, takich jak odpady rolnicze, resztki kuchenne czy osady ściekowe. Proces ten zachodzi w biogazowniach, które są coraz częściej wykorzystywane do produkcji energii odnawialnej. Metan jest paliwem, które można wykorzystać do wytwarzania ciepła, energii elektrycznej oraz jako paliwo do silników gazowych. Dobre praktyki w zakresie produkcji biogazu obejmują optymalizację warunków fermentacji, takich jak temperatura, pH i stosunek C:N, co pozwala zwiększyć wydajność produkcji metanu. Ponadto, metan jest kluczowym składnikiem w kontekście zrównoważonego rozwoju, ponieważ jego wykorzystanie przyczynia się do redukcji emisji gazów cieplarnianych poprzez ograniczenie uwalniania CO2 z tradycyjnych paliw kopalnych. Zastosowanie biogazu jako odnawialnego źródła energii wspiera również lokalne gospodarki oraz przyczynia się do poprawy jakości środowiska.

Pytanie 28

Jakie narzędzie powinno być zastosowane do eliminacji zadziorów powstających po przecięciu rury polietylenowej o średnicy 40 mm?

A. Nażynki
B. Tarnika
C. Frezu
D. Gratownika
Gratownik jest narzędziem zaprojektowanym specjalnie do usuwania zadziorów oraz nierówności na krawędziach materiałów, w tym rur z polietylenu. Jego zastosowanie jest kluczowe w procesie obróbki rur, ponieważ zadzior to ostry, wystający fragment materiału, który może prowadzić do uszkodzeń podczas dalszej instalacji lub eksploatacji. W praktyce, gratownik umożliwia uzyskanie gładkiej krawędzi, co jest istotne z punktu widzenia bezpieczeństwa i funkcjonalności systemów rurociągowych. Zgodnie z normami branżowymi, takim jak PN-EN 1555, zaleca się stosowanie gratowników po każdej operacji cięcia, aby zminimalizować ryzyko przecieków i awarii. Dobre praktyki wskazują, że prawidłowe użycie gratownika poprawia nie tylko estetykę wykonania, ale również wydłuża żywotność instalacji. Warto również zaznaczyć, że gratowanie powinno być częścią standardowego procesu przygotowania przed montażem rur, co pozwala na uniknięcie potencjalnych problemów w przyszłości.

Pytanie 29

Jaka jest najbardziej korzystna wartość współczynnika efektywności pompy ciepła COP?

A. 3,50
B. 4,35
C. 0,35
D. 0,25
Wartość współczynnika efektywności pompy ciepła (COP) na poziomie 4,35 oznacza, że na każdą jednostkę energii elektrycznej zużytej przez pompę, uzyskuje się 4,35 jednostek energii cieplnej. Tak wysoki wskaźnik COP jest charakterystyczny dla nowoczesnych systemów grzewczych, które są projektowane z myślą o maksymalnej efektywności energetycznej. Przykładem mogą być pompy ciepła typu powietrze-woda lub grunt-woda, które przy odpowiednich warunkach zewnętrznych osiągają bardzo korzystne wartości COP. W kontekście standardów branżowych, warto zauważyć, że pompy ciepła powinny być zgodne z normą EN 14511, która określa metody badań i klasyfikacji tych urządzeń. Dzięki stosowaniu pomp ciepła o wysokim COP można znacząco obniżyć koszty ogrzewania, jednocześnie przyczyniając się do zmniejszenia emisji CO2, co jest zgodne z duchem zrównoważonego rozwoju i polityki ekologicznej wielu krajów.

Pytanie 30

W trakcie modernizacji elektrowni wodnej dokonano wymiany turbiny na nowy model o znamionowym przepływie Qn większym o 20%. Następnie zainstalowano rurę ssącą, co spowodowało wzrost użytecznego spadu Hu na turbinie z 1,6 m do 2 m. W rezultacie moc nominalna elektrowni Pn, wyrażona równaniem Pn = 9,81xQnxHuxη, wzrosła o około

A. 20%
B. 30%
C. 50%
D. 40%
Analiza błędnych odpowiedzi na zagadnienie dotyczące wzrostu mocy nominalnej elektrowni wodnej ujawnia typowe pomyłki w zrozumieniu wpływu zmian parametrów na wydajność systemu. Odpowiedzi, które sugerują wzrost o 20%, 30% lub 40%, ignorują kluczową rolę współzależności pomiędzy przełykiem znamionowym a spadem użytecznym w obliczeniach mocy. Warto zrozumieć, że wzrost przełyku o 20% oraz wzrost spadu użytecznego o 25% nie są niezależnymi zjawiskami, lecz komplementarnymi elementami, które należy rozpatrywać łącznie. Wiele osób błędnie zakłada, że zmiana jednego parametru wystarczy do oszacowania wzrostu mocy, co prowadzi do niedoszacowania rzeczywistego potencjału wzrostu mocy w wyniku modernizacji systemu. Kolejnym typowym błędem myślowym jest lekceważenie zasady mnożenia wpływów, co jest kluczowe w przypadku złożonych systemów, jakimi są elektrownie wodne. W praktyce, nie uwzględnianie interakcji między zmiennymi może prowadzić do nieefektywnych decyzji w zakresie modernizacji oraz niewłaściwego planowania inwestycji. Zrozumienie tych zasad jest istotne dla inżynierów oraz osób odpowiedzialnych za zarządzanie i rozwój systemów energetycznych, aby optymalnie wykorzystać dostępne zasoby i zminimalizować straty energetyczne.

Pytanie 31

Największa dozwolona wysokość hałd przy magazynowaniu materiału aktywnego biologicznie powinna wynosić

A. 6m
B. 4m
C. 5m
D. 3 m
Maksymalna wysokość hałd materiału czynnego biologicznie, ustalona na 4 m, jest zgodna z wytycznymi dotyczącymi bezpiecznego składowania tych substancji. Wysokość hałdy wpływa na stabilność materiału, a także na ryzyko samozapłonu oraz emisję gazów. Praktyczne przykłady pokazują, że przestrzeganie tej wysokości zmniejsza ryzyko kontaminacji gleby i wód gruntowych. W przypadku składowania odpadów organicznych kluczowe jest zapewnienie odpowiedniej wentylacji, co również jest łatwiejsze do osiągnięcia przy wysokości 4 m. Zgodnie z normami ISO 14001 dotyczącymi zarządzania środowiskowego, ograniczenie wysokości składowania materiałów bioaktywnych jest niezbędne do minimalizacji negatywnego wpływu na ekosystemy. Warto zauważyć, że takie praktyki są kluczowe w kontekście regulacji dotyczących ochrony środowiska, a niewłaściwe składowanie może prowadzić do poważnych konsekwencji prawnych oraz finansowych dla przedsiębiorstw.

Pytanie 32

Jaką maksymalną różnicę temperatur Δt pomiędzy kolektorem a zbiornikiem solarnym należy osiągnąć, aby uruchomić pompę solarną?

A. 33 °C
B. 15 °C
C. 20 °C
D. 25 °C
Odpowiedź 15 °C jest poprawna, ponieważ maksymalna różnica temperatur, która uruchamia pompę solarną, powinna być utrzymywana w optymalnym zakresie w celu zapewnienia efektywności układu solarnego. W praktycznych zastosowaniach systemów solarnych, różnica ta jest kluczowa dla efektywnego transportu ciepła z kolektora do zasobnika. W przypadku zbyt dużej różnicy temperatur, może dojść do nieefektywnego działania systemu, co prowadzi do strat energii oraz zwiększa ryzyko uszkodzenia komponentów systemu. Standardy branżowe, takie jak EN 12976, wskazują na znaczenie monitorowania i regulacji różnic temperatur w systemach solarnych. Przykładowo, w nowoczesnych instalacjach solarnych, różnica 15 °C zapewnia optymalne warunki do wymiany ciepła, co skutkuje lepszym wykorzystaniem energii słonecznej i zwiększeniem efektywności energetycznej budynku. Takie podejście jest zgodne z najlepszymi praktykami projektowymi i eksploatacyjnymi w branży OZE.

Pytanie 33

W jakiej technologii łączy się kolektor słoneczny z wymiennikiem ciepła?

A. Zgrzewanie
B. Lutowanie twarde
C. Klejenie
D. Lutowanie miękkie
Lutowanie twarde jest techniką, która jest powszechnie stosowana do łączenia elementów w systemach grzewczych, w tym kolektorów słonecznych z wymiennikami ciepła. Proces lutowania twardego polega na użyciu stopu metalu o wysokiej temperaturze topnienia, co zapewnia mocne i trwałe połączenie. Dzięki temu, że lutowanie twarde tworzy spoiny odporne na wysoką temperaturę oraz ciśnienie, jest idealne do zastosowań w układach, w których występują ekstremalne warunki operacyjne, takie jak w instalacjach solarnych. Przykładem może być połączenie miedzi w instalacjach solarnych, gdzie zastosowanie lutowania twardego jest zgodne z normą PN-EN 12792:2007, która określa wymagania dla systemów solarnych. Dodatkowo, lutowanie twarde pozwala na osiągnięcie wysokiej wydajności wymiany ciepła, co zwiększa efektywność całego systemu. W praktyce, lutowanie twarde może być stosowane do łączenia elementów o różnych grubościach, co czyni tę metodę bardzo wszechstronną w inżynierii cieplnej.

Pytanie 34

W ciągu roku pompa ciepła funkcjonowała przez 1 950 godzin, pobierając średnio moc wynoszącą około 1,67 kW. To przekłada się na roczne zużycie energii równe 3 257 kWh, głównie w czasie nocnej taryfy. Zakładając przeciętny koszt 1 kWh na poziomie 0,30 zł, ile wyniesie roczny wydatek na ogrzewanie oraz przygotowanie CWU?

A. 1 631,75 zł
B. 977,10 zł
C. 4 280,00 zł
D. 585,00 zł
Zrozumienie kosztów ogrzewania i przygotowania ciepłej wody użytkowej wymaga dokładnych obliczeń opartych na zużyciu energii i kosztach jednostkowych. W przypadku niepoprawnych odpowiedzi, można zauważyć kilka typowych błędów myślowych. Jednym z nich jest pomylenie jednostek energii i mocy. Niekiedy osoby, które nie są zaznajomione z zasadami obliczeń energetycznych, mogą próbować oszacować roczny koszt, mnożąc moc pompy ciepła przez liczbę godzin, a następnie nie uwzględniając właściwego kosztu jednostkowego energii. W rezultacie mogą dojść do błędnych wniosków, które prowadzą do nieadekwatnych prognoz kosztów. Innym częstym błędem jest ignorowanie wpływu taryf energii elektrycznej, co może wpływać na całkowity koszt eksploatacji. Osoby obliczające koszty ogrzewania powinny również pamiętać, że zużycie energii w różnych porach dnia może być zmienione, zwłaszcza w przypadku taryf nocnych, gdzie koszt energii jest niższy. Niezrozumienie tego aspektu może prowadzić do przeceniania rocznych kosztów ogrzewania. W praktyce, pełne zrozumienie tych zagadnień jest kluczowe dla skutecznego zarządzania systemami grzewczymi oraz dla podejmowania świadomych decyzji dotyczących inwestycji w technologie energii odnawialnej, takie jak pompy ciepła. Wiedza na temat obliczeń i zastosowania pompy ciepła nie tylko umożliwia lepsze zarządzanie kosztami, ale także przyczynia się do zrównoważonego rozwoju i efektywności energetycznej.

Pytanie 35

Do kotła, który spala zrębki, można za jednym razem załadować 0,5 m3 paliwa. W ciągu 24 godzin kocioł powinien być załadowany 3 razy. Jaki będzie tygodniowy koszt paliwa, jeśli jego cena za 1 m3 wynosi 50,00 zł?

A. 150,00 zł
B. 25,00 zł
C. 50,00 zł
D. 525,00 zł
Wybór niepoprawnej odpowiedzi często wynika z błędnych założeń dotyczących obliczeń związanych z użytkowaniem kotłów na paliwa stałe. Przykładowo, jeżeli ktoś wybiera 50,00 zł, może to świadczyć o nieporozumieniu w interpretacji pytania, gdzie cena jednostkowa paliwa została podana, ale nie wzięto pod uwagę faktycznego zużycia w skali tygodnia. Z drugiej strony, odpowiedzi takie jak 150,00 zł mogą wynikać z błędu w obliczeniach, gdzie osoba mogła pomyśleć, że 1,5 m³ dziennie przez 3 dni to całkowite zużycie w tygodniu, co jest błędne, ponieważ kocioł pracuje przez 7 dni. Warto także zaznaczyć, że niektóre odpowiedzi mogą być wynikiem błędnych założeń na temat częstotliwości ładowania paliwa lub jego objętości. Często problemem jest również nieuwzględnienie faktu, że każdy dzień użytkowania kotła wymaga trzykrotnego załadunku paliwa, co dodatkowo zwiększa całkowite zużycie. Przy analizie kosztów eksploatacyjnych kluczowe jest zrozumienie, jak różne parametry wpływają na całkowite wydatki, a także stosowanie właściwych jednostek miar oraz przeliczeń, co jest niezbędne w codziennej pracy inżynierów i managerów odpowiedzialnych za zarządzanie energią i kosztami operacyjnymi.

Pytanie 36

Która z boków dachu jest najodpowiedniejsza do instalacji kolektorów słonecznych?

A. Wschodnia
B. Zachodnia
C. Północna
D. Południowa
Montaż kolektorów słonecznych na dachu południowym jest uważany za najbardziej efektywny, ponieważ ta strona dachu otrzymuje najwięcej promieniowania słonecznego w ciągu dnia. W zależności od lokalizacji geograficznej, dachy skierowane na południe mogą korzystać ze słońca przez większą część dnia, co znacznie zwiększa wydajność systemu solarnego. Na przykład, w Polsce, instalacje na dachu południowym mogą osiągać ponad 80% efektywności w porównaniu z innymi kierunkami. W praktyce oznacza to, że kolektory słoneczne zamontowane na tej stronie będą produkować więcej energii cieplnej, co przekłada się na niższe rachunki za energię i szybszy zwrot z inwestycji. Ponadto, zgodnie z dobrymi praktykami i standardami branżowymi, zaleca się unikanie zacienienia dachu, co jest istotne na południowej stronie, gdzie słońce jest najbardziej intensywne. Instalacja powinna być również skierowana pod odpowiednim kątem, aby maksymalizować eksponowanie na promieniowanie słoneczne przez cały rok.

Pytanie 37

Klejenie stanowi kluczową metodę łączenia rur oraz kształtek

A. z polietylenu
B. ze stali
C. z polipropylenu
D. z polichlorku winylu
Klejenie elementów z polichlorku winylu (PVC) jest powszechnie stosowaną technologią łączenia rur i kształtek w branży budowlanej i sanitarno-kanalizacyjnej. Klej PVC, będący specjalnie opracowaną substancją chemiczną, skutecznie łączy powierzchnie rur, tworząc trwałe i szczelne połączenie, które jest odporne na działanie wody oraz substancji chemicznych. W praktyce, klejenie z PVC znajduje zastosowanie w instalacjach wodociągowych, kanalizacyjnych oraz w systemach odprowadzania wód deszczowych. Zgodnie z normami branżowymi, przed przystąpieniem do klejenia, należy odpowiednio przygotować powierzchnie - oczyszczenie z kurzu, tłuszczu oraz zmatowienie ich, co zwiększa przyczepność kleju. Ponadto, stosowanie klejów zatwierdzonych przez odpowiednie organy regulacyjne, takich jak American National Standards Institute (ANSI) czy International Organization for Standardization (ISO), zapewnia wysoką jakość i bezpieczeństwo instalacji. Warto również zauważyć, że rynek oferuje różnorodne rodzaje klejów, dostosowanych do specyficznych zastosowań, co pozwala na optymalne dobieranie materiałów w zależności od warunków eksploatacyjnych.

Pytanie 38

Aby chronić instalację centralnego ogrzewania przed nadmiernym wzrostem ciśnienia czynnika grzewczego spowodowanym temperaturą i związanym ze wzrostem objętości, należy zastosować

A. zawór bezpieczeństwa
B. zawór zwrotny
C. grupę pompową
D. naczynie wzbiorcze
Naczynie wzbiorcze to naprawdę istotny element w systemie centralnego ogrzewania. Jego głównym zadaniem jest ochrona instalacji przed zbyt wysokim ciśnieniem czynnika grzewczego. Kiedy temperatura rośnie, to wiadomo - objętość wody też się zwiększa, a to prowadzi do podwyższenia ciśnienia. I tu właśnie wchodzi naczynie wzbiorcze, które działa jak bufor, czyli tłumi te zmiany. Jeśli odpowiednio je dobierzemy, nadmiar wody zostaje skierowany do zbiornika, co sprawia, że ciśnienie w instalacji jest stabilne. To ważne szczególnie w instalacjach z kotłami gazowymi czy olejowymi – naczynie nie tylko zapobiega uszkodzeniom samej instalacji, ale też urządzeń grzewczych. Ważne, żeby naczynie miało odpowiednią pojemność i ciśnienie wstępne, bo to wynika z norm EN 12828 i PN-EN 12831. W praktyce, dzięki naczyniu wzbiorczemu można uniknąć niebezpiecznych sytuacji, jak awarie czy wręcz eksplozje, które mogą się zdarzyć przy dużym wzroście ciśnienia. Więc można powiedzieć, że to obowiązkowy, ale też kluczowy element, żeby cała instalacja grzewcza działała bezproblemowo.

Pytanie 39

Umiejscowienie kolektorów gruntowych należy realizować

A. na obszarze pokrytym drzewami iglastymi
B. na obszarze osłoniętym wysokimi krzewami
C. na obszarze pokrytym drzewami liściastymi
D. na obszarze nieosłoniętym przez budynki, drzewa i krzewy
Dobra odpowiedź! Ustawienie kolektorów gruntowych w miejscach, gdzie nie ma żadnych przeszkód, jak budynki czy drzewa, jest mega ważne dla działania systemów geotermalnych. Te kolektory czerpią ciepło z ziemi i ich wydajność mocno zależy od tego, jak dużo słońca do nich dociera oraz jak dobrze krąży powietrze wokół nich. Jak są osłonięte, to ciepło może być trudniej dostępne, a system mniej efektywny. Dla przykładu, w domach jednorodzinnych, jak kolektory są w odpowiednim miejscu, są w stanie super wspierać ogrzewanie, co przekłada się na niższe rachunki. W branży geotermalnej działamy według zasad, które mówią, żeby stawiać kolektory tam, gdzie słońce grzeje najlepiej, a otoczenie nie przeszkadza. Taki sposób działania jest zgodny z zaleceniami branżowymi, które kierują się maksymalizowaniem efektywności energetycznej systemów.

Pytanie 40

Do pełnego systemu fotowoltaicznego, który produkuje energię elektryczną z wykorzystaniem energii słonecznej, zaliczają się:

A. kolektor płaski, zasobnik dwuwężownicowy, grupa hydrauliczna, naczynie przeponowe
B. panele fotowoltaiczne, falownik, konstrukcja montażowa na dach, konektor, przewód solarny, naczynie przeponowe
C. panele fotowoltaiczne, inwerter sieciowy, konstrukcja montażowa na dach, konektor
D. powietrzna pompa, elektroniczny mikroprocesorowy system sterujący, elektroniczna pompa wody, zestaw montażowy zawierający kable, rury, zawiesia
W pierwszej odpowiedzi wskazane elementy, takie jak kolektor płaski i zasobnik dwuwężownicowy, są typowe dla systemów solarnych służących do podgrzewania wody, a nie do produkcji energii elektrycznej. Kolektory płaskie wykorzystują promieniowanie słoneczne do podgrzewania cieczy, co jest całkowicie innym procesem niż produkcja prądu elektrycznego. Zastosowanie tych komponentów w kontekście systemu fotowoltaicznego pokazuje brak zrozumienia różnicy pomiędzy technologiami solarnymi. W kolejnej odpowiedzi zawarto odpowiednie elementy, jednak dodanie naczynia przeponowego, które jest stosowane w systemach grzewczych, wprowadza zamieszanie. Naczynie to ma na celu utrzymanie odpowiedniego ciśnienia w systemach cyrkulacyjnych, a nie w instalacjach fotowoltaicznych. Ostatnia propozycja z powietrzną pompą i systemem sterującym jest także nieadekwatna, ponieważ pompy ciepła działają na zupełnie innych zasadach i nie są integralną częścią systemów fotowoltaicznych. Typowe błędy, które prowadzą do takich nieporozumień, to mylenie technologii odnawialnych oraz nieznajomość ich zastosowań. Rozróżnienie między systemami produkcji energii elektrycznej i cieplnej jest kluczowe dla zrozumienia, jakie komponenty są niezbędne w danym kontekście, a także dla efektywnego projektowania instalacji, które będą spełniać oczekiwania użytkowników.