Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 17 grudnia 2025 08:30
  • Data zakończenia: 17 grudnia 2025 08:44

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Do wykrycia nieciągłości okablowania w komunikacyjnej sieci przemysłowej stosuje się

A. miernik parametrów instalacji.
B. kamerę termowizyjną.
C. wykrywacz przewodów.
D. tester przewodów.
Miernik parametrów instalacji, wykrywacz przewodów oraz kamera termowizyjna to narzędzia, które pełnią inne funkcje niż tester przewodów, jeśli chodzi o diagnostykę sieci. Miernik parametrów instalacji jest bardziej zaawansowanym urządzeniem, które mierzy różne aspekty instalacji elektrycznej, takie jak rezystancja, impedancja czy napięcie. Chociaż jest to przydatne w kontekście analizy wydajności instalacji, nie jest to narzędzie dedykowane do wykrywania nieciągłości okablowania. Wykrywacz przewodów z kolei służy do lokalizowania przewodów ukrytych w ścianach czy podłogach. Może być przydatny w sytuacjach, gdy chcemy uniknąć uszkodzenia przewodów podczas prac budowlanych, jednak nie jest w stanie wykryć nieciągłości w sensie przerwania czy uszkodzenia wewnętrznego przewodu. Kamera termowizyjna natomiast pozwala na obrazowanie różnic temperatury, co może służyć do wykrywania przeciążeń czy przegrzań w instalacji, ale jej zastosowanie w kontekście wykrywania nieciągłości okablowania jest ograniczone. Częstym błędem jest przekonanie, że każde zaawansowane urządzenie diagnostyczne może pełnić funkcję uniwersalną, jednak w rzeczywistości każde z tych narzędzi ma swoje specyficzne zastosowanie i nie zawsze mogą one zastąpić specjalistyczny sprzęt, jakim jest tester przewodów. Dlatego ważne jest, aby dobierać narzędzia zgodnie z ich przeznaczeniem i specyfiką problemów, które chcemy rozwiązać.

Pytanie 2

Do przykręcenia zaworu za pomocą śruby przedstawionej na rysunku należy użyć

Ilustracja do pytania
A. klucza hydraulicznego nastawnego.
B. klucza imbusowego.
C. wkrętaka gwiazdkowego.
D. klucza „francuskiego”.
Klucz imbusowy jest nieodzownym narzędziem w przypadku pracy ze śrubami posiadającymi sześciokątne gniazdo. Ten typ śruby, znany jako śruba z łbem na klucz imbusowy, jest szeroko stosowany w wielu dziedzinach, od meblarstwa po inżynierię mechaniczną. Klucz imbusowy, czasami nazywany kluczem sześciokątnym, cechuje się prostotą budowy, co czyni go niezwykle praktycznym w użyciu. Jednym z głównych powodów popularności tego rozwiązania jest możliwość uzyskania dużego momentu obrotowego bez ryzyka uszkodzenia łba śruby. Użycie klucza imbusowego jest zgodne ze standardami ISO dla narzędzi ręcznych, co gwarantuje jego uniwersalność i zgodność z większością śrub tego typu na całym świecie. W praktyce, śruby na klucz imbusowy są często wykorzystywane w konstrukcjach, gdzie dostęp jest ograniczony, ponieważ klucz imbusowy może być stosowany pod kątem. To także narzędzie, które z powodzeniem znajdziemy w wielu zestawach do samodzielnego montażu, popularnych wśród skandynawskich firm meblowych. Moim zdaniem, jeśli ktoś często pracuje z montażem lub demontażem różnych elementów, posiadanie zestawu kluczy imbusowych to absolutna konieczność.

Pytanie 3

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801 pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. zasilacza sterownika PLC.
B. interfejsu komunikacyjnego.
C. modułu wejściowego.
D. modułu wyjściowego.
Moduł wejściowy, w tym przypadku oznaczony jako ADMC-1801, to kluczowy komponent w systemach sterowania opartych na PLC. Jego główną funkcją jest przetwarzanie sygnałów z różnych czujników i przekazywanie ich do sterownika PLC. Dzięki temu sterownik może podjąć decyzje na podstawie aktualnych danych z procesu, co jest fundamentalne w automatyce przemysłowej. Moduły wejściowe mogą obsługiwać różne typy sygnałów, w tym cyfrowe i analogowe, co pozwala na elastyczność w projektowaniu systemów. W naszym przypadku, czujnik PT100, który jest czujnikiem temperatury, podłączony jest do tego modułu. To typowy przykład zastosowania modułu wejściowego do monitorowania parametrów procesowych. Dzięki takim rozwiązaniom, systemy sterowania mogą być bardziej precyzyjne i niezawodne. Dobre praktyki branżowe zalecają regularne testowanie i kalibrację modułów wejściowych, aby zapewnić ich dokładność i niezawodność. Warto również pamiętać o zgodności z normami, takimi jak IEC 61131, które definiują wymagania dla systemów sterowania. Moim zdaniem, zrozumienie roli modułów wejściowych jest kluczowe dla każdego, kto zajmuje się automatyką przemysłową, ponieważ pozwala to na lepsze zaprojektowanie i optymalizację procesów.

Pytanie 4

Na schemacie zespołu przygotowania powietrza, symbolem X oznaczono

Ilustracja do pytania
A. manometr.
B. filtr.
C. smarownicę.
D. zawór.
Manometr to urządzenie służące do pomiaru ciśnienia w systemach pneumatycznych. Na schemacie oznaczony symbolem przypominającym zegar, jest kluczowym elementem w diagnostyce i utrzymaniu systemów. Bez dokładnego pomiaru ciśnienia trudno ocenić, czy system działa poprawnie – zbyt wysokie ciśnienie może prowadzić do awarii, a zbyt niskie wpływa na efektywność pracy. W praktyce manometry są umieszczane w strategicznych miejscach, aby zapewnić stały nadzór nad parametrami systemu. Istnieją różne typy manometrów, w tym analogowe oraz cyfrowe – każde z nich ma swoje zastosowania, ale zasada działania pozostaje taka sama. Dobre praktyki branżowe wskazują na regularną kalibrację tych urządzeń, co zapewnia dokładność pomiarów, a tym samym bezpieczeństwo i wydajność pracy całego układu pneumatycznego. Warto również pamiętać, że manometry mogą być wyposażone w różne rodzaje przyłączy, co pozwala na ich elastyczne stosowanie w różnych konfiguracjach systemowych.

Pytanie 5

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. cięcia przewodów.
B. zaciskania końcówek tulejkowych.
C. zaciskania wtyków RJ45.
D. ściągania izolacji.
Zrozumienie różnicy między różnymi narzędziami używanymi w elektryce jest kluczowe. Zacznijmy od narzędzi do ściągania izolacji. Służą one do usuwania zewnętrznej osłony przewodów, co umożliwia dostęp do miedzianego rdzenia. Ich konstrukcja jest dostosowana do precyzyjnego nacinania izolacji bez uszkadzania przewodu. Natomiast narzędzia do cięcia przewodów, jak sama nazwa wskazuje, są używane do przecinania przewodów. Zazwyczaj są to nożyce o ostrych krawędziach, które zapewniają czyste cięcie bez deformacji przewodu. Z kolei narzędzia do zaciskania wtyków RJ45 są używane głównie w pracach związanych z sieciami komputerowymi. Zaciskają złącza RJ45 na końcach kabli sieciowych (np. skrętki), umożliwiając ich podłączenie do routerów, switchów czy komputerów. Każde z tych narzędzi ma swoje specyficzne zastosowanie i użycie ich w niewłaściwy sposób może prowadzić do błędnych połączeń czy nawet uszkodzeń. Właściwe rozróżnienie i zastosowanie narzędzi zapewnia nie tylko profesjonalizm, ale też bezpieczeństwo i efektywność w pracy elektryka czy technika sieciowego. Ważne jest, by być świadomym, jakie narzędzie jest potrzebne do konkretnej pracy i dlaczego. Dzięki temu unikasz typowych błędów, które mogą prowadzić do problemów w późniejszym użytkowaniu instalacji.

Pytanie 6

W przekaźniku elektromagnetycznym symbolami A1 i A2 oznaczone są zaciski

A. styków zwiernych.
B. układów ochronnych.
C. cewki przekaźnika.
D. styków rozwiernych.
W przekaźnikach elektromagnetycznych symbole A1 i A2 to oznaczenia zacisków cewki przekaźnika, która jest kluczowym elementem tego urządzenia. Cewka jest odpowiedzialna za generowanie pola magnetycznego, które w efekcie przyciąga kotwicę przekaźnika, zmieniając jego stan. Jest to mechanizm podstawowy, lecz niezmiernie istotny w automatyce i elektronice. Dzięki cewce, przekaźniki mogą sterować sygnałami w obwodach elektrycznych, umożliwiając kontrolę nad różnymi urządzeniami. W praktyce, cewki są stosowane w układach zabezpieczeń, automatyce budynkowej czy w przemyśle, gdzie wymagana jest precyzyjna kontrola przepływu prądu elektrycznego. Standardy, takie jak IEC 61810, określają szczegółowe wymagania dotyczące konstrukcji i działania przekaźników, w tym oznaczeń zacisków, co ułatwia identyfikację i podłączanie urządzeń. Znajomość tych zasad jest kluczowa dla każdego, kto chce efektywnie i bezpiecznie korzystać z przekaźników w praktycznych zastosowaniach. Moim zdaniem, zrozumienie roli cewki w przekaźniku to fundament, który otwiera drzwi do świata bardziej zaawansowanej elektroniki.

Pytanie 7

Elektronarzędzie, którym można wykonywać precyzyjną obróbkę mechaniczną polegającą na frezowaniu i szlifowaniu powierzchni, przedstawiono

A. Elektronarzędzie 1
Ilustracja do odpowiedzi A
B. Elektronarzędzie 3
Ilustracja do odpowiedzi B
C. Elektronarzędzie 2
Ilustracja do odpowiedzi C
D. Elektronarzędzie 4
Ilustracja do odpowiedzi D
Wybrałeś odpowiedź numer dwa, która przedstawia narzędzie znane jako miniszlifierka. To urządzenie jest idealne do precyzyjnej obróbki mechanicznej, takiej jak frezowanie, szlifowanie, grawerowanie czy polerowanie. Miniszlifierki są często używane w modelarstwie, jubilerstwie, a także w elektronice do prac wymagających dużej precyzji. Dzięki możliwości zamontowania różnych końcówek, takich jak frezy, tarcze szlifierskie, czy kamienie polerskie, narzędzie to jest bardzo wszechstronne. W praktyce, miniszlifierki pozwalają na osiągnięcie dokładności, która jest nieosiągalna dla większych narzędzi, co jest kluczowe w wielu branżach. Standardy branżowe zalecają stosowanie miniszlifierek w miejscach trudno dostępnych, gdzie wymagana jest precyzyjna obróbka materiału. Zapewnienie odpowiedniej prędkości obrotowej i dobór właściwych akcesoriów są kluczowe, aby osiągnąć zamierzony efekt i zachować bezpieczeństwo pracy. Miniszlifierki są również bardzo popularne wśród hobbystów, co dodatkowo świadczy o ich funkcjonalności i niezawodności.

Pytanie 8

Oszacuj na podstawie charakterystyki pompy wysokość podnoszenia cieczy, jeżeli przy prędkości obrotowej n = 1 850 1/min pracuje ona z wydajnością 550 m³/h.

Ilustracja do pytania
A. 4,2 m
B. 8,5 m
C. 2,2 m
D. 6,4 m
Analizując błędne odpowiedzi, należy zwrócić uwagę na to, jak kluczowe jest prawidłowe odczytanie wykresów charakterystyki pompy. Wysokość podnoszenia cieczy przez pompę jest ściśle związana z jej wydajnością oraz prędkością obrotową. Przy prędkości n = 1850 obr/min i wydajności 550 m³/h, wysokość podnoszenia wynosi około 4,2 m, co jest jasno widoczne na wykresie. Inne wartości, takie jak 2,2 m, 6,4 m, czy 8,5 m, nie mieszczą się w zakresie, który wykres wskazuje dla zadanej wydajności i prędkości. Częstym błędem jest nieuwzględnienie skali wykresu, co prowadzi do mylnych wniosków. Na przykład, wartość 2,2 m sugeruje znacznie mniejszą wydajność lub zupełnie inną prędkość obrotową, natomiast 8,5 m wskazuje na znacznie wyższe obroty, co jest niezgodne z danymi zadania. Błędne interpretacje mogą wynikać z nieprawidłowego zrozumienia zasad działania pomp, gdzie istotne jest uwzględnienie wszystkich parametrów jednocześnie. Dobór pomp w praktyce wymaga analizy całego systemu, a nie tylko poszczególnych elementów, co podkreśla znaczenie precyzyjnego odczytu i interpretacji danych.

Pytanie 9

Jakie powinny być nastawy przełącznika przemiennika częstotliwości, aby można było sterować jego pracą za pomocą sygnału 0÷20 mA?

Ilustracja do pytania
A. 1-ON, 2-ON, 3-ON, 4-ON
B. 1-OFF, 2-OFF, 3-OFF, 4-OFF
C. 1-OFF, 2-ON, 3-OFF, 4-OFF
D. 1-ON, 2-OFF, 3-OFF, 4-OFF
Ta odpowiedź jest prawidłowa, ponieważ ustawienie przełącznika przemiennika częstotliwości 1-ON, 2-OFF, 3-OFF, 4-OFF odpowiada sygnałowi sterującemu 0-20 mA. W praktyce oznacza to, że przemiennik został skonfigurowany do pracy z urządzeniami, które wysyłają sygnały o natężeniu prądu w tym zakresie. Jest to częsty standard w automatyce przemysłowej, gdzie sygnały 0-20 mA są wykorzystywane do komunikacji pomiędzy czujnikami a urządzeniami wykonawczymi. Dzięki temu można płynnie regulować parametry pracy, jak prędkość obrotową silnika, co jest niezwykle istotne w aplikacjach wymagających precyzyjnego sterowania. Warto też pamiętać, że stosowanie sygnałów prądowych zamiast napięciowych ma tę zaletę, że jest mniej podatne na zakłócenia elektromagnetyczne, co jest szczególnie ważne w środowiskach przemysłowych. Z mojego doświadczenia, dobrze jest pamiętać, aby zawsze sprawdzać specyfikacje urządzeń, z którymi pracujemy, aby uniknąć błędnych konfiguracji, które mogą prowadzić do nieprawidłowej pracy systemu.

Pytanie 10

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na ilustracji to

Ilustracja do pytania
A. ETHERNET
B. RS-232
C. OBD II
D. USB
Sterownik PLC przedstawiony na ilustracji korzysta z interfejsu ETHERNET, co jest powszechnym standardem w nowoczesnych systemach automatyki przemysłowej. Ethernet umożliwia szybkie przesyłanie danych i łatwą integrację z siecią lokalną oraz Internetem. Dzięki temu możemy zdalnie monitorować i kontrolować pracę systemów, co znacznie zwiększa ich elastyczność i efektywność. W praktyce oznacza to, że można na przykład zdalnie wgrywać nowe programy, aktualizować oprogramowanie, a także diagnozować ewentualne problemy bez potrzeby fizycznego dostępu do urządzenia. Z mojego doświadczenia, Ethernet w PLC to właściwie standard. Jest też niezwykle pomocny w integracji z innymi systemami, jak SCADA, co pozwala na kompleksowe zarządzanie procesami produkcyjnymi. Warto też wspomnieć, że Ethernet w sterownikach PLC wspiera protokoły takie jak Modbus TCP/IP czy Profinet, co dodatkowo ułatwia komunikację między różnymi urządzeniami w sieci.

Pytanie 11

Element zaznaczony na rysunku strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. multimetr cyfrowy.
B. silnik prądu stałego.
C. opornik dekadowy.
D. autotransformator.
Autotransformator to urządzenie elektryczne, które mimo swojej prostoty, odgrywa kluczową rolę w wielu aplikacjach. Jego główną funkcją jest zmiana poziomu napięcia przemiennego, co jest niezwykle przydatne w różnych systemach elektroenergetycznych. W przeciwieństwie do klasycznych transformatorów, autotransformator ma tylko jedno uzwojenie, co czyni go bardziej kompaktowym i efektywnym pod względem materiałowym. Z mojego doświadczenia, autotransformatory są nie tylko tańsze, ale także bardziej energooszczędne, co jest zgodne z trendami oszczędzania energii. Jest to szczególnie ważne w czasach, gdy optymalizacja zużycia energii staje się priorytetem. Autotransformatory znalazły zastosowanie nie tylko w dużych systemach elektroenergetycznych, ale także w codziennych urządzeniach, takich jak regulatory napięcia czy zasilacze laboratoryjne. Dzięki możliwości płynnej regulacji napięcia są one niezastąpione w miejscach, gdzie precyzyjne ustawienie napięcia jest kluczowe. Warto też zauważyć, że autotransformatory mogą pracować zarówno jako transformatory obniżające, jak i podwyższające napięcie, co czyni je niezwykle wszechstronnymi. Dobre praktyki branżowe zalecają stosowanie autotransformatorów w miejscach, gdzie wymagana jest stabilizacja napięcia przy jednoczesnym zachowaniu wysokiej efektywności energetycznej.

Pytanie 12

Na podstawie fragmentu karty katalogowej zaworu elektromagnetycznego określ maksymalne wartości ciśnienia roboczego i temperatury medium.

Fragment karty katalogowej
Typ modułu pneumatykizawór elektromagnetyczny
GwintBSP 3/4"
Średnica zewnętrzna przewodu20 mm
Ciśnienie robocze0.1÷16 bar
Temperatura pracymax. 50°C
Temperatura medium maks.90°C
Napięcie zasilania24 V DC
Klasa szczelnościIP65
Materiał korpusumosiądz
Materiał uszczelnieniakauczuk NBR
Podłączenie elektryczneDIN 43650 typ A
A. Ciśnienie robocze 16 barów i temperatura 50°C
B. Ciśnienie robocze 0,1 bara i temperatura 50°C
C. Ciśnienie robocze 16 barów i temperatura 90°C
D. Ciśnienie robocze 10 barów i temperatura 90°C
A więc, odpowiedź z ciśnieniem roboczym 16 barów i temperaturą medium 90°C jest prawidłowa. W dokumentacji technicznej zaworu elektromagnetycznego, ciśnienie robocze podane jest jako zakres od 0,1 do 16 barów. Oznacza to, że zawór jest zaprojektowany, aby pracować bezpiecznie w tym przedziale ciśnienia. Temperatura medium podana jako maksymalna wynosi 90°C, co informuje, że zawór może pracować przy takich temperaturach bez ryzyka uszkodzeń. W praktyce, takie zawory są często używane w systemach przemysłowych, gdzie wymagana jest precyzyjna kontrola przepływu cieczy lub gazów pod dużym ciśnieniem i w wysokich temperaturach. Standardy przemysłowe, takie jak ISO 8573 dotyczące jakości sprężonego powietrza, mogą mieć zastosowanie przy doborze odpowiednich komponentów, w tym zaworów, do systemów pneumatycznych. Ważne jest, aby zrozumieć, że przekroczenie maksymalnych wartości może prowadzić do awarii systemu, dlatego zawsze należy działać w ramach specyfikacji technicznych. Dbanie o odpowiednie parametry pracy zapewnia długowieczność i niezawodność systemu. To również minimalizuje ryzyko przestojów i zwiększa efektywność operacyjną, co jest kluczowe w wielu branżach produkcyjnych.

Pytanie 13

Wartość temperatury wskazana przez termometr przedstawiony na rysunku wynosi

Ilustracja do pytania
A. 19°C
B. 9°C
C. 8°C
D. 18°C
Prawidłowo: 18°C. Na termometrze cieczowym odczyt wykonuje się na wysokości górnej krawędzi menisku słupa cieczy (rtęci lub alkoholu). Skala bywa opisana co 10°C grubszymi kreskami (np. 10, 20), a pomiędzy nimi znajdują się równomierne podziałki drobne. Jeśli między 10 a 20 widzisz 10 równych kresek, to każda odpowiada 1°C; jeśli jest ich 5 – to 2°C. Menisk w rysunku zatrzymuje się dokładnie przy znaku odpowiadającym 18°C – poniżej 20, wyraźnie powyżej 17, bez „zawieszenia” na 19. Dobra praktyka pomiarowa (WMO/ISO 7726) zaleca odczyt w osi wzroku, bez kąta, żeby uniknąć błędu paralaksy, oraz podanie wyniku z rozdzielczością równą najmniejszej działce. W technice HVAC i automatyce od 18°C startuje często nastawa komfortu nocnego; w chłodnictwie domowym 18°C to już poza zakresem bezpiecznego przechowywania żywności, co ma znaczenie szkoleniowe. Moim zdaniem warto nawykowo sprawdzać: etykiety liczby (10, 20, 30…), liczbę działek pośrednich i pozycję menisku. I drobiazg, ale ważny: nie dotykamy palcami zbiorniczka podczas odczytu – można podgrzać i przekłamać wynik. W laboratoriach stosuje się też korektę na rozszerzalność szkła i cieczy, ale w szkolnym odczycie wystarczy rzetelne policzenie działek i proste oko, serio.

Pytanie 14

Przed podłączeniem układu pneumatycznego do układu zasilającego ustawia się odpowiednią wartość ciśnienia. Do odczytu nastawianej wartości trzeba użyć

A. manometru.
B. pirometru.
C. rotametru.
D. termometru.
Manometr to jedno z podstawowych narzędzi w pneumatyce, które pozwala na dokładne monitorowanie ciśnienia w systemie. Użycie manometru jest niezbędne, aby zapewnić odpowiednią pracę układu, ponieważ zbyt wysokie lub zbyt niskie ciśnienie może prowadzić do uszkodzeń komponentów lub niewłaściwego działania całego systemu. W praktyce, manometr umożliwia odczyt ciśnienia w jednostkach takich jak bary czy PSI, co jest standardem w branży. Dzięki manometrom operatorzy maszyn mogą kontrolować ciśnienie w czasie rzeczywistym i dostosowywać je według potrzeb, co jest kluczowe w wielu procesach przemysłowych. Dobre praktyki w pneumatyce nakazują regularne kalibrowanie manometrów, aby zapewnić dokładność odczytów. Manometr jest nieodzownym elementem podczas uruchamiania i konserwacji systemów pneumatycznych, a jego zastosowanie jest szerokie - od prostych instalacji warsztatowych po zaawansowane systemy przemysłowe. Dzięki temu urządzeniu jesteśmy w stanie zapewnić nie tylko bezpieczeństwo, ale także efektywność energetyczną układów pneumatycznych.

Pytanie 15

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Ta odpowiedź jest prawidłowa, ponieważ miernik o zakresie do 15 V idealnie pasuje do pomiaru sygnału wyjściowego +Q1 analogowego łącznika krańcowego. W przypadku układów, które operują w zakresie do 10 V, jak to przedstawiono na schemacie, wybór miernika z zakresem do 15 V zapewnia odpowiednią precyzję i bezpieczeństwo pomiaru. Dlaczego to ważne? Ponieważ miernik powinien mieć zakres nieco większy niż maksymalna wartość sygnału, aby uniknąć przeciążenia i zapewnić dokładny odczyt. W praktyce często zaleca się, aby zakres miernika wynosił około 120% maksymalnej wartości mierzonej, co w tym przypadku jest spełnione. Dobre praktyki w branży wskazują na znaczenie wyboru odpowiednio skalowanego miernika, aby minimalizować błędy pomiarowe i ryzyko uszkodzenia sprzętu. Warto pamiętać, że wybór odpowiedniego miernika jest kluczowy w uzyskiwaniu wiarygodnych i powtarzalnych wyników, co jest istotne w kontekście utrzymania ruchu i diagnostyki systemów automatyki przemysłowej.

Pytanie 16

Który termometr należy zastosować do bezkontaktowego pomiaru temperatury?

A. Rezystancyjny.
B. Dylatacyjny.
C. Pirometryczny.
D. Termoelektryczny.
Pirometryczny termometr to urządzenie, które doskonale nadaje się do bezkontaktowego pomiaru temperatury. Wykorzystuje on promieniowanie podczerwone emitowane przez badany obiekt, co umożliwia precyzyjne określenie temperatury bez potrzeby fizycznego kontaktu. To rozwiązanie jest niezwykle użyteczne w sytuacjach, gdy dostęp do mierzonego obiektu jest utrudniony lub niebezpieczny, na przykład w przemyśle hutniczym, gdzie temperatura powierzchni metali jest bardzo wysoka. Pirometry są również standardem w medycynie, szczególnie w kontekście szybkiego monitorowania temperatury ciała. W porównaniu do tradycyjnych metod, pirometryczne pomiary są szybkie i eliminują ryzyko zanieczyszczenia krzyżowego. Z mojego doświadczenia, pirometry są nie tylko praktyczne, ale także niezastąpione w wielu zastosowaniach. Ich zdolność do zdalnego pomiaru sprawia, że są preferowaną metodą w wielu branżach, od produkcji przemysłowej po ochronę zdrowia. Pomiar temperatury metodą bezkontaktową to także zgodność z wytycznymi bezpieczeństwa i higieny pracy, co jest niezmiernie ważne w wielu sektorach przemysłowych. Dodatkowo, pirometry zgodne z normami ISO i CE są gwarancją dokładności i jakości pomiarów.

Pytanie 17

Zgodnie z programem sterującym przedstawionym na rysunku załączenie wyjścia %Q0.1 w sterowniku PLC nastąpi

Ilustracja do pytania
A. po 5 sekundach od zmiany stanu z 1 na 0 na wejściu %I0.1
B. po 5 sekundach od pojawienia się stanu 1 na wejściu %I0.1
C. natychmiast i będzie trwało 5 sekund od zmiany stanu z 0 na 1 na wejściu %I0.1
D. natychmiast i będzie trwało przez 5 sekund gdy wejście %I0.1 będzie aktywne
Odpowiedź jest poprawna, ponieważ timer TON w sterowniku PLC jest używany do opóźnienia załączenia wyjścia o określony czas po pojawieniu się sygnału wejściowego. W tym przypadku, gdy na wejściu %I0.1 pojawia się stan wysoki, timer zaczyna odliczać czas 5 sekund, co jest zdefiniowane w parametrach timera jako PT (preset time). Po upływie tego czasu wyjście %Q0.1 zostaje załączone. Timer TON jest jednym z najczęściej wykorzystywanych bloków w programowaniu PLC, szczególnie w automatyzacji procesów produkcyjnych, gdzie niezbędne jest precyzyjne sterowanie czasem. Typowymi zastosowaniami mogą być np. sterowanie oświetleniem w halach produkcyjnych, gdzie światło włącza się z opóźnieniem, aby zapewnić bezpieczeństwo pracowników opuszczających stanowiska pracy. Warto również pamiętać, że zgodnie ze standardami IEC 61131-3, timer TON jest jednym z elementów struktury programistycznej języka LD (Ladder Diagram), co czyni go uniwersalnym i powszechnie rozumianym w branży. Dzięki temu, że jest to rozwiązanie standardowe, można go łatwo zastosować w różnych systemach automatyki, co zwiększa elastyczność i kompatybilność projektów PLC.

Pytanie 18

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. timera opóźniającego wyłączenie TOF
B. timera opóźniającego załączenie TON
C. licznika impulsów zliczającego w górę CTU
D. licznika impulsów zliczającego w dół CTD
Wybrałeś prawidłową odpowiedź, a mianowicie licznik impulsów zliczający w dół (CTD). Liczniki impulsów są niezwykle istotne w automatyce przemysłowej, ponieważ pozwalają na kontrolowanie sekwencji zdarzeń w procesach produkcyjnych. Licznik zliczający w dół będzie zmniejszał swoją wartość przy każdym impulsie, co można wykorzystać do odmierzania czasu bądź ilości cykli, aż do osiągnięcia zera. W takim momencie można wyzwolić różne działania, na przykład zatrzymanie maszyny lub przełączenie na inne zadanie. W kontekście PLC, liczniki CTD są często używane w połączeniu z innymi blokami funkcjonalnymi, jak liczniki CTU czy timery, aby tworzyć bardziej złożone układy logiczne. Licznik CTD w diagramie pokazuje proces, gdzie wartość licznika zmniejsza się za każdym razem, gdy otrzymuje impuls CD, co jest typowym działaniem dla tego typu bloków. W praktyce liczniki te są bardzo przydatne w systemach sortowania, pakowania czy nawet w przemyśle spożywczym, gdzie ilość przetwarzanych elementów musi być precyzyjnie kontrolowana.

Pytanie 19

Na schemacie przedstawiającym elektrozawór, strzałka wskazuje

Ilustracja do pytania
A. gniazdo.
B. sprężynę.
C. cewkę.
D. zworę.
Cieszę się, że wybrałeś poprawną odpowiedź – cewkę. W elektrozaworach cewka to kluczowy komponent, który przekształca energię elektryczną w energię magnetyczną. Dzięki temu możliwe jest sterowanie ruchem zwory, co z kolei otwiera lub zamyka przepływ medium, jak woda czy powietrze. Cewka jest nawijana z cienkiego drutu miedzianego i umieszczona wokół rdzenia, który staje się elektromagnesem po zasileniu prądem. W praktyce na przykład w systemach automatyki przemysłowej czy w samochodowych układach klimatyzacji, niezawodność elektrozaworów jest kluczowa. Ważne jest, aby cewki były zgodne ze standardami, takimi jak IP67, zapewniającymi odporność na kurz i wodę. Moim zdaniem, zrozumienie działania cewki pozwala lepiej projektować i diagnozować usterki w systemach, które polegają na precyzyjnej kontroli przepływu. Cewka jest jak serce elektrozaworu – choć niewidoczna na co dzień, to jej działanie jest kluczowe dla całego układu.

Pytanie 20

Według której zasady należy w układzie sterowania zaprojektować działanie umożliwiające wyłączenie zautomatyzowanego systemu sterowanego przez sterownik PLC?

A. Zasady blokady programowej sygnałów wejściowych.
B. Zasady blokady sygnałów wyjściowych.
C. Zasady przerwy roboczej - podanie stanu 0 na wejście sterownika.
D. Zasady prądu roboczego - podanie stanu 1 na wejście sterownika.
W kontekście projektowania systemów sterowania, zasady blokady sygnałów wyjściowych i blokady programowej sygnałów wejściowych są często źle interpretowane. Blokada sygnałów wyjściowych oznacza, że urządzenia wykonawcze przestają otrzymywać sygnały sterujące, co oczywiście może doprowadzić do zatrzymania systemu. Jednakże, nie jest to optymalna metoda, ponieważ nie każde urządzenie reaguje przewidywalnie na brak sygnału. Na przykład, niektóre siłowniki mogą pozostać w swoim ostatnim położeniu, co w sytuacjach awaryjnych nie jest pożądane. Blokada programowa sygnałów wejściowych z kolei koncentruje się na ignorowaniu danych wchodzących do sterownika. Choć może to być przydatne w przypadku uszkodzonych czujników, to jednak nie jest to efektywna metoda wyłączania systemu, gdyż nie zapewnia natychmiastowego zatrzymania jego działania. Zasady prądu roboczego polegają na podawaniu stanu 1 na wejście sterownika, co zakłada, że urządzenie pracuje tylko wtedy, gdy jest zasilane. Takie podejście jest mniej bezpieczne w sytuacjach awaryjnych, ponieważ wymaga aktywnej interwencji i nie działa w przypadku utraty zasilania. Często spotykanym błędem myślowym jest założenie, że brak działania sygnałów wyjściowych lub programowych wystarczy do wyłączenia systemu. W rzeczywistości, w sytuacjach awaryjnych, wyłączenie zasilania przez wprowadzenie stanu 0 jest najbardziej niezawodnym i bezpiecznym rozwiązaniem, co potwierdzają standardy branżowe. Dlatego zasady przerwy roboczej są preferowane w projektowaniu systemów sterowania.

Pytanie 21

Silnik trójfazowy napędzający taśmociąg linii montażowej jest sterowany za pomocą układu łagodnego rozruchu. Aby czas zatrzymania silnika wynosił 1 sekundę, konieczne jest ustawienie pokrętła

Ilustracja do pytania
A. dolnego i górnego na 1
B. górnego na 1
C. dolnego na 1
D. środkowego na 100
Błąd wynika z mylenia funkcji poszczególnych pokręteł w układzie łagodnego rozruchu. Na schemacie widać trzy regulatory: górny (t-Start) odpowiada za czas rozruchu silnika, środkowy (U-Start) za napięcie początkowe podczas startu, a dolny (t-Stop) za czas łagodnego zatrzymania. Często uczniowie wybierają górny lub środkowy, bo intuicyjnie kojarzą je z „czasem” lub „mocą”, ale przy zatrzymywaniu to właśnie dolne pokrętło reguluje proces zwalniania. W praktyce softstarty działają w ten sposób, że układ elektroniczny stopniowo obniża napięcie na wyjściu, zmniejszając moment obrotowy, aż do całkowitego zatrzymania. Jeśli ustawi się górne pokrętło (t-Start), to zmienimy tylko sposób uruchamiania silnika – nie zatrzymywania. Z kolei środkowe (U-Start) dotyczy napięcia początkowego, które wpływa na moment rozruchowy, ale nie ma wpływu na czas zatrzymania. W zastosowaniach przemysłowych, takich jak przenośniki taśmowe czy wentylatory, poprawne dobranie czasu t-Stop jest kluczowe, ponieważ zbyt gwałtowne zatrzymanie powoduje przeciążenia mechaniczne i skraca żywotność elementów napędu. Właściwe ustawienie t-Stop na 1 sekundę pozwala uniknąć uderzeń momentu oraz zachować bezpieczeństwo i płynność pracy całego systemu.

Pytanie 22

Aby przekaźnik czasowy PCU-504 realizował funkcję opóźnionego załączenia po czasie 2 minut, kolejno przełączniki P1, P2 i P3 powinny być ustawione w następujących pozycjach:

Ilustracja do pytania
A. P1 – 1, P2 – 2, P3 – B0,1
B. P1 – 1, P2 – 1, P3 – A10
C. P1 – 2, P2 – 2, P3 – A0,1
D. P1 – 2, P2 – 1, P3 – B10
Wybrana konfiguracja P1 – 2, P2 – 1, P3 – B10 jest prawidłowa, ponieważ pozwala na opóźnione załączenie przekaźnika czasowego na 2 minuty. Ustawienie P1 na 2 oraz P2 na 1 oznacza, że czas opóźnienia wynosi 20 jednostek bazowych. W przypadku P3 ustawionego na B10, przekaźnik działa w trybie opóźnionego załączenia (B), a jednostką bazową jest 10 sekund. Mnożymy więc 20 jednostek przez 10 sekund, co daje nam dokładnie 200 sekund, czyli 2 minuty. W praktyce ustawienia te są często wykorzystywane w aplikacjach, gdzie konieczne jest precyzyjne sterowanie czasowe, np. w automatyce przemysłowej do sterowania sekwencjami maszyn. Ważne jest, aby zawsze stosować się do instrukcji producenta, by uniknąć błędów w konfiguracji. Warto również wiedzieć, że takie przekaźniki są niezastąpione w systemach automatyki budynkowej, gdyż pozwalają na oszczędność energii i zwiększenie efektywności operacyjnej poprzez optymalizację czasu działania urządzeń.

Pytanie 23

Zintegrowany interfejs komunikacyjny w sterowniku PLC przedstawionym na rysunku to

Ilustracja do pytania
A. RS-232
B. OBD II
C. USB
D. 8P8C
Dokładnie, interfejs 8P8C jest właściwym wyborem dla tego sterownika PLC. Znany także jako RJ-45, to standardowy port stosowany najczęściej w sieciach komputerowych do łączenia urządzeń za pomocą kabli Ethernet. W kontekście PLC, używa się go do komunikacji z innymi urządzeniami w sieci lokalnej, co umożliwia integrację z systemami SCADA czy HMI. Dzięki temu, można monitorować i sterować procesami przemysłowymi z dowolnego miejsca w sieci. Jest to zgodne z dobrą praktyką stosowania znormalizowanych interfejsów komunikacyjnych, które zapewniają niezawodność i kompatybilność. Wartość tego rozwiązania polega na prostocie konfiguracji oraz szerokim wsparciu w oprogramowaniu przemysłowym. Systemy oparte na interfejsie 8P8C zyskują na elastyczności i łatwości integracji, co jest kluczowe w nowoczesnych fabrykach zorientowanych na Przemysł 4.0.

Pytanie 24

Które narzędzie należy zastosować do nacięcia gwintu w otworze?

A. Narzędzie 3.
Ilustracja do odpowiedzi A
B. Narzędzie 4.
Ilustracja do odpowiedzi B
C. Narzędzie 2.
Ilustracja do odpowiedzi C
D. Narzędzie 1.
Ilustracja do odpowiedzi D
W tym pytaniu łatwo pomylić narzędzia, bo kilka z nich ma podobny kształt, ale zupełnie inne zastosowanie. Narzędzie 2 to rozwiertak – używa się go do powiększania lub wygładzania otworów, nie do nacinania gwintów. Ma gładkie ostrza, które nie tworzą zwojów, tylko lekko skrawają materiał. Narzędzie 3 natomiast to narzynka, którą wykonuje się gwinty zewnętrzne na prętach, śrubach lub wałkach. Ma podobny profil do gwintownika, ale odwrotny kierunek pracy – na zewnątrz, a nie do środka. Z kolei narzędzie 4 to klasyczne wiertło spiralne, które służy do wiercenia otworów przed gwintowaniem, a nie do samego tworzenia gwintu. Typowym błędem jest próba wykonania gwintu tylko jednym narzędziem lub z pominięciem etapu wiercenia otworu o odpowiedniej średnicy (tzw. pod gwint). W praktyce proces wygląda tak: najpierw wiercimy otwór wiertłem o średnicy dobranej do średnicy gwintu, potem stosujemy zestaw gwintowników. Tylko taki sposób gwarantuje czysty, trwały i równy gwint.

Pytanie 25

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 4.
B. Tabliczka 3.
C. Tabliczka 1.
D. Tabliczka 2.
Twoja odpowiedź jest prawidłowa, ponieważ tabliczka 1 wskazuje na silnik przeznaczony do pracy ciągłej, co opisuje symbol S1. Praca ciągła oznacza, że silnik może działać bez przerw przez długi czas na stałym obciążeniu bez ryzyka przegrzania. To jest istotne w wielu zastosowaniach przemysłowych, gdzie stabilność i niezawodność są kluczowe, np. w produkcji masowej lub liniach montażowych. Standard IEC 60034, który jest podany na tabliczce, zapewnia zgodność z międzynarodowymi normami dotyczącymi wydajności i bezpieczeństwa silników elektrycznych. Ważne jest, aby silniki do pracy ciągłej były prawidłowo chłodzone i miały odpowiednią klasę ochrony IP, jak IP54, co oznacza ochronę przed kurzem i rozbryzgami wody. Praktyczne zastosowanie takiego silnika może być widoczne w przypadku ciągłej pracy pomp, wentylatorów czy taśm produkcyjnych, gdzie przestoje mogą prowadzić do strat finansowych. Ważne jest, aby zawsze dobierać silnik odpowiedni do specyfiki pracy, co zwiększa jego trwałość i niezawodność.

Pytanie 26

Przedstawione na rysunku narzędzie służy do

Ilustracja do pytania
A. oznaczania przewodów.
B. zaciskania tulejek.
C. ściągania izolacji.
D. cięcia przewodów pneumatycznych.
Narzędzie, które widzisz, jest specjalistycznym przyrządem do cięcia przewodów pneumatycznych. Tego typu narzędzia są zaprojektowane tak, aby zapewnić czyste i precyzyjne cięcie, co jest kluczowe w systemach pneumatycznych. Niedokładnie przycięty wąż może prowadzić do nieszczelności lub trudności z montażem w złączkach. W praktyce, zastosowanie narzędzia do cięcia przewodów pneumatycznych jest nie tylko wygodne, ale również zapewnia, że cięcie nie uszkadza struktury przewodu. Moim zdaniem, to narzędzie jest niezastąpione w warsztatach, gdzie często pracuje się z instalacjami pneumatycznymi. Warto również zwrócić uwagę, że tego typu narzędzia są zgodne z branżowymi standardami, które zalecają używanie narzędzi dostosowanych do specyficznego typu przewodów. Standardowe nożyce mogą nie zapewniać takiej samej precyzji, a co za tym idzie, mogą prowadzić do problemów eksploatacyjnych. Dobre praktyki mówią, że użycie właściwego narzędzia zwiększa bezpieczeństwo i wydajność pracy.

Pytanie 27

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. przetwornika pomiarowego.
B. wzmacniacza operacyjnego.
C. separatora.
D. przepływomierza.
Przetwornik pomiarowy to urządzenie niezbędne w systemach automatyki i pomiarów, które przekształca jedną formę sygnału w inną. Może to być np. zamiana sygnału analogowego na cyfrowy lub przetwarzanie wielkości fizycznej, jak temperatura, na sygnał elektryczny. Moim zdaniem, to kluczowy element, który pozwala na integrację i automatyzację procesów przemysłowych. Przetworniki są powszechnie stosowane w systemach monitoringu i kontroli, gdzie precyzyjne dane są nieodzowne dla optymalizacji procesów. W praktyce, przy wyborze przetwornika, warto zwrócić uwagę na jego dokładność, zakres pomiarowy oraz kompatybilność z innymi elementami systemu. Przykładowo, w przemyśle chemicznym, przetwornik może mierzyć stężenie substancji i przekazywać te dane do systemu zarządzania produkcją. Standardy takie jak IEC i ANSI definiują wytyczne dotyczące konstrukcji i działania przetworników, co zapewnia ich niezawodność i bezpieczeństwo w różnych aplikacjach. Z tego powodu, prawidłowe zrozumienie funkcji i specyfikacji przetworników jest kluczowe dla specjalistów zajmujących się projektowaniem systemów pomiarowych.

Pytanie 28

Do demontażu przyłącza przedstawionego na rysunku należy użyć

Ilustracja do pytania
A. klucza imbusowego.
B. wkrętaka krzyżowego.
C. wkrętaka płaskiego.
D. klucza płaskiego.
Najczęstszy błąd w tym pytaniu polega na myleniu rodzaju narzędzia z rodzajem gniazda. Widziane na zdjęciu przyłącze nie ma żadnego nacięcia na wkrętak, więc użycie zarówno płaskiego, jak i krzyżowego śrubokręta nie ma sensu – końcówka nie miałaby punktu zaczepienia i tylko zarysowałaby metal. Klucz imbusowy również nie pasuje, ponieważ nie ma tu gniazda sześciokątnego wewnętrznego, lecz klasyczny sześciokąt zewnętrzny. W praktyce warsztatowej takie błędy zdarzają się, gdy ktoś na siłę próbuje odkręcać złącze czymkolwiek, co akurat ma pod ręką. Merytorycznie warto wiedzieć, że złącza pneumatyczne są wykonywane najczęściej z mosiądzu lub stali niklowanej i mają precyzyjnie obrobione powierzchnie, które łatwo uszkodzić. Każde narzędzie inne niż klucz płaski lub oczkowy może zdeformować krawędzie i spowodować nieszczelność gwintu. W systemach pneumatycznych taka nieszczelność prowadzi do spadku ciśnienia, hałasu, a nawet awarii całej instalacji. Moim zdaniem to przykład, że nawet proste czynności montażowe wymagają świadomości narzędziowej – dobra praktyka to nie tylko szybkość, ale i dbałość o detale.

Pytanie 29

Do montażu czujnika przedstawionego na rysunku niezbędne jest użycie

Ilustracja do pytania
A. szczypiec Segera.
B. kluczy płaskich.
C. wkrętaków płaskich.
D. kluczy nasadowych.
Wkrętaki płaskie są używane głównie do śrub z nacięciem prostym, więc ich zastosowanie do montażu tego czujnika jest nieodpowiednie. Czujnik na zdjęciu posiada gwintowaną nakrętkę, która wymaga użycia klucza, a nie wkrętaka. Użycie wkrętaka w tej sytuacji mogłoby prowadzić do uszkodzenia nakrętki lub obudowy czujnika. Klucze nasadowe, choć również stosowane do nakrętek, wymagają dostępu osiowego, co w przypadku montażu w wąskich przestrzeniach może być utrudnione. Klucze płaskie, w przeciwieństwie do nasadowych, są bardziej uniwersalne w zastosowaniu do nakrętek zewnętrznych. Szczypce Segera służą do obsługi pierścieni osadczych sprężynowych, a nie do gwintowanych połączeń, więc są zupełnie nieadekwatne do tego zadania. Użycie niewłaściwego narzędzia nie tylko komplikuje montaż, ale także niesie ryzyko uszkodzenia, co jest częstym błędem popełnianym przez osoby nieuwzględniające specyfikacji technicznych narzędzi. W branży technicznej kluczowe jest stosowanie się do zaleceń producenta i wykorzystywanie narzędzi zgodnych z normami, aby zapewnić trwałość i funkcjonalność montowanych elementów.

Pytanie 30

Przedstawiony na rysunku przewód sterowniczy, wymieniony w dokumentacji projektowej, może być zastosowany podczas łączenia elementów systemu sterowania, jeżeli napięcie pracy nie przekracza wartości

Ilustracja do pytania
A. 300 V/500 V
B. 300 V/400 V
C. 100 V/500 V
D. 200 V/400 V
Przewód widoczny na zdjęciu ma oznaczenie 300/500 V, co oznacza, że jego napięcie znamionowe wynosi 300 V dla układania w izolacji i 500 V dla napięcia roboczego. To jest zgodne z normami europejskimi jak np. VDE, które definiują standardy dla przewodów stosowanych w automatyce przemysłowej. Kiedy mówimy o przewodach sterowniczych, ważne jest, aby napięcie robocze nie przekraczało wskazanych wartości, ponieważ mogłoby to prowadzić do uszkodzenia izolacji i awarii systemu. Przewody o takich parametrach są często stosowane w środowiskach przemysłowych, gdzie wymagana jest wysoka odporność na zakłócenia elektromagnetyczne oraz trwałość mechaniczna. Moim zdaniem, znajomość parametrów przewodów jest kluczowa dla bezpieczeństwa i niezawodności instalacji. W praktyce, takie przewody można spotkać w szafach sterowniczych, gdzie łączą różne elementy systemu automatyki. Dobre praktyki zalecają także regularną kontrolę stanu przewodów, aby zapobiec potencjalnym awariom.

Pytanie 31

Którą cyfrą na prezentowanej płycie oznaczono diodę prostowniczą?

Ilustracja do pytania
A. 3
B. 1
C. 4
D. 2
Dioda prostownicza oznaczona jest na płytce cyfrą 3, co jest kluczowe w kontekście układów elektronicznych. Dioda prostownicza pełni rolę zaworu jednokierunkowego, umożliwiając przepływ prądu tylko w jednym kierunku. W praktyce, wykorzystuje się ją głównie do prostowania prądu zmiennego (AC) na prąd stały (DC). W elektronice jest to niezbędne, na przykład w zasilaczach, które muszą dostarczyć prąd stały do urządzeń. Standardowo, zgodnie z normami branżowymi, oznaczenie na płytce drukowanej (PCB) pozwala na szybkie zidentyfikowanie komponentów, co jest ważne dla serwisu i napraw. Warto zwrócić uwagę, że diody prostownicze mogą różnić się parametrami, takimi jak prąd przewodzenia czy napięcie przebicia, co determinuje ich zastosowanie w różnych układach. Pamiętaj, że dobre praktyki projektowe zalecają stosowanie odpowiednich zabezpieczeń, np. bezpieczników, aby uniknąć uszkodzeń w przypadku awarii diody.

Pytanie 32

Podczas montażu został nacięty przewód zasilający 3-fazowy silnik hydroforu. Uszkodzeniu uległy izolacja zewnętrzna oraz izolacja żyły N niepodłączonej do silnika. Które zdanie poprawnie określa możliwość użytkowania tak uszkodzonej instalacji?

Ilustracja do pytania
A. Ta instalacja nie może być eksploatowana.
B. Eksploatacja tej instalacji jest możliwa, ale przy uszkodzonym przewodzie trzeba umieścić tabliczkę ostrzegawczą.
C. Mimo tego uszkodzenia instalacja może być normalnie eksploatowana.
D. Można tę instalację eksploatować pod warunkiem, że nie ma wycieku wody z hydroforu.
Taka instalacja nie może być eksploatowana. Nacięty przewód z uszkodzoną izolacją, nawet jeśli dotyczy tylko żyły neutralnej N, stanowi poważne zagrożenie porażeniowe oraz pożarowe. Zgodnie z normą PN-HD 60364-4-41 oraz zasadami eksploatacji urządzeń elektrycznych każda uszkodzona izolacja przewodów musi zostać natychmiast naprawiona lub wymieniona, ponieważ nie gwarantuje odpowiedniej ochrony przed dotykiem pośrednim. W miejscu przecięcia może dojść do przebicia lub łuku elektrycznego, szczególnie w wilgotnym otoczeniu, takim jak pomieszczenia z hydroforem. Moim zdaniem w praktyce najlepiej wymienić cały odcinek przewodu – prowizoryczne naprawy taśmą izolacyjną nie spełniają wymagań bezpieczeństwa. W zakładach przemysłowych i gospodarstwach domowych obowiązuje zasada: przewód z uszkodzoną izolacją natychmiast wycofuje się z użytkowania, aż do momentu przeprowadzenia kontroli i naprawy przez osobę z uprawnieniami SEP. To prosta zasada, ale ratuje życie.

Pytanie 33

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na ilustracji funkcję

Ilustracja do pytania
A. modułu wyjściowego.
B. modułu wejściowego.
C. zasilacza sterownika PLC.
D. interfejsu komunikacyjnego.
Moduł oznaczony jako ADMC-1801 pełni funkcję modułu wejściowego w układzie sterowania z użyciem PLC. Moduły wejściowe są kluczowe w systemach automatyki, ponieważ pozwalają na zbieranie sygnałów z różnych czujników i urządzeń pomiarowych. W tym przypadku, jak widać na schemacie, moduł ten jest wykorzystywany do odbierania sygnału z czujnika PT100, który mierzy temperaturę. PT100 to zresztą standardowy czujnik rezystancyjny, cieszący się dużą popularnością ze względu na swoją dokładność i stabilność pomiarów. Odczyty z tego czujnika są następnie przekształcane przez moduł wejściowy na sygnał zrozumiały dla PLC, co umożliwia dalsze przetwarzanie i odpowiednie sterowanie procesem. Z mojego doświadczenia, użycie odpowiedniego modułu wejściowego jest kluczowe dla zapewnienia dokładności i niezawodności całego systemu sterowania. Dobre praktyki branżowe sugerują również regularne kalibrowanie takich czujników i modułów, aby utrzymać najwyższy poziom precyzji. Takie podejście zapewnia, że system działa zgodnie z założeniami projektowymi, a ewentualne odchylenia są szybko wychwytywane i korygowane.

Pytanie 34

Przedstawione na rysunkach narzędzie służy do montażu

Ilustracja do pytania
A. kołków rozprężnych.
B. podkładek dystansowych.
C. zabezpieczeń E-ring.
D. pierścieni Segera.
Narzędzie przedstawione na ilustracji to specjalistyczne szczypce do montażu zabezpieczeń E-ring. E-ring to popularny typ zabezpieczenia osiowego, często stosowany w układach mechanicznych, gdzie wymagane jest szybkie i pewne osadzenie elementu zabezpieczającego. Dzięki swojej konstrukcji zapewniają one pewne mocowanie na wałkach lub osiach. Szczypce do E-ringów posiadają charakterystyczne końcówki, które umożliwiają łatwe rozchylenie i precyzyjne umieszczenie pierścienia na właściwym miejscu. W praktyce, E-ring jest wykorzystywany w wielu aplikacjach przemysłowych, od mechanizmów precyzyjnych po duże maszyny, gdzie ważne jest szybkie i pewne mocowanie. Standardowo, narzędzie to jest wykonane z trwałych materiałów, często odpornych na korozję, co przedłuża jego żywotność. Moim zdaniem, takie szczypce to nieodzowny element w warsztacie, zwłaszcza tam, gdzie praca z mechaniką wymaga wielokrotnych i szybkich montażów. Warto pamiętać, że poprawne narzędzie to podstawa bezpiecznej i efektywnej pracy.

Pytanie 35

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 0 Ω
B. 100 Ω
C. 1 000 Ω
D. 500 Ω
Czujniki Pt500 są powszechnie używane w systemach regulacji temperatury, głównie ze względu na ich dokładność i stabilność. Tego rodzaju czujnik nazywany jest rezystancyjnym czujnikiem temperatury (RTD) i działa na zasadzie zmiany rezystancji w zależności od temperatury. Pt w nazwie odnosi się do platyny, materiału, z którego jest wykonany element reagujący na temperaturę. Przykładowo, w temperaturze 0 °C jego rezystancja wynosi 500 Ω, co wynika ze specyfikacji technicznej tego typu czujników. To, że czujnik Pt500 w 0 °C pokazuje 500 Ω, jest zgodne ze standardami kalibracji RTD. W praktyce, instalując taki czujnik, mamy pewność, że pomiary będą precyzyjne, jeśli są wykonane zgodnie z przyjętymi normami. Dodatkowo Pt500 jest kompatybilny z różnymi układami pomiarowymi, co czyni go elastycznym narzędziem w wielu zastosowaniach przemysłowych. Warto pamiętać, że w miarę wzrostu temperatury rezystancja czujnika również wzrasta, co pozwala na precyzyjne monitorowanie zmian termicznych. Poznanie charakterystyki czujników RTD, takich jak Pt500, to klucz do efektywnego projektowania układów pomiarowych w automatyce przemysłowej.

Pytanie 36

W celu zmierzenia mocy czynnej pobieranej z sieci elektrycznej przez klimatyzator, należy użyć

A. woltomierza i amperomierza.
B. woltomierza i miernika natężenia przepływu powietrza.
C. termometru i miernika natężenia przepływu powietrza.
D. termometru i woltomierza.
Pierwsza odpowiedź sugeruje użycie termometru i woltomierza, co jest błędnym podejściem do pomiaru mocy czynnej. Termometr, choć jest przydatny do oceny temperatury otoczenia lub powietrza wylotowego z klimatyzatora, nie dostarcza żadnych informacji o ilości energii elektrycznej przetwarzanej przez urządzenie. Brak tu pomiaru prądu, który jest niezbędny do obliczenia mocy czynnej. Druga błędna koncepcja to użycie termometru i miernika natężenia przepływu powietrza. Miernik ten rzeczywiście mierzy ilość powietrza przemieszczającego się przez urządzenie, co może być wskaźnikiem wydajności chłodzenia, ale znowu - nie dostarcza informacji o zużyciu energii elektrycznej. To typowy błąd myślowy, gdzie myli się wskaźniki wydajności z rzeczywistym zużyciem energii. Trzecia błędna odpowiedź to woltomierz i miernik natężenia przepływu powietrza. Choć tutaj pojawia się już element pomiaru napięcia, które jest potrzebne do obliczenia mocy, to brak pomiaru natężenia prądu czyni tę odpowiedź niekompletną. Wszystkie te błędne odpowiedzi opierają się na niepełnym zrozumieniu, że moc czynna to wynik oddziaływania napięcia i prądu w obwodzie, a nie tylko ich częściowych miar. Dla poprawnego pomiaru zawsze trzeba zastosować oba przyrządy: woltomierz i amperomierz, zgodnie z dobrymi praktykami w branży elektrycznej. Szczególne znaczenie ma to w kontekście dużych instalacji, gdzie precyzyjny pomiar umożliwia optymalizację kosztów energii. Dlatego warto pogłębiać wiedzę na temat właściwego stosowania tych narzędzi.

Pytanie 37

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. analogowo-cyfrowy konwerter USB.
B. zadajnik cyfrowo-analogowy.
C. przetwornik PWM.
D. przetwornica napięcia.
Zgadza się, przedstawiony przetwornik to analogowo-cyfrowy konwerter USB. Dlaczego? Konwertery tego rodzaju służą do przekształcania sygnałów analogowych na cyfrowe, co jest kluczowe w wielu aplikacjach, gdzie potrzebujemy monitorować i analizować sygnały analogowe za pomocą komputerów. Proces ten odbywa się dzięki przetwornikowi analogowo-cyfrowemu (A/D), który zamienia sygnał analogowy na cyfrowy, a następnie poprzez interfejs USB przekazuje go do komputera. USB zapewnia także zasilanie i komunikację, co czyni te urządzenia bardzo praktycznymi i wszechstronnymi. W praktyce takie konwertery są często używane w laboratoriach, przemyśle oraz w projektach inżynieryjnych, gdzie dokładne pomiary i analiza danych są niezbędne. Z mojego doświadczenia, są one również bardzo wygodne w zastosowaniach edukacyjnych, ponieważ pozwalają na szybkie i bezproblemowe podłączenie urządzeń pomiarowych do PC.

Pytanie 38

Na podstawie stanów logicznych określ, która bramka przedstawionego na rysunku układu cyfrowego jest uszkodzona.

Ilustracja do pytania
A. AND
B. NOT
C. OR
D. NAND
W tym układzie uszkodzona nie jest ani bramka OR, ani NOT, ani NAND – tylko AND. Warto to prześledzić logicznie. Pierwsza bramka (OR) ma na wejściach dwa sygnały 1, więc poprawnie daje 1 na wyjściu. Dolna część układu zawiera inwerter (NOT), który z wejścia 1 tworzy 0 – i to także działa prawidłowo. Te dwa sygnały (1 z OR i 0 z NOT) trafiają następnie do bramki AND. Zgodnie z tablicą prawdy dla bramki AND, wynik powinien być 0, ponieważ jedno z wejść ma wartość 0. Na rysunku jednak wyjście tej bramki ma stan 1 – co jest logicznie niemożliwe, jeśli bramka działa poprawnie. Wskazuje to na jej uszkodzenie, np. zwarcie wewnętrzne powodujące utrzymanie stałego poziomu wysokiego niezależnie od wejść. Ostatnia bramka w układzie ma oznaczenie NAND, ale w tym przypadku działa poprawnie – jej wyjście 1 odpowiada wejściom 1 i 0, bo NAND daje 1, gdy nie wszystkie wejścia są jednocześnie 1. Typowy błąd przy analizie takich schematów to nieuwzględnienie, że jedna z bramek może być zrealizowana w technologii negującej (z kółkiem na wyjściu). W praktyce napraw układów logicznych bramka AND jest często pierwszym podejrzanym elementem, jeśli mimo wejść 0 i 1 na wyjściu pojawia się stała jedynka logiczna – to oznacza awarię toru wyjściowego lub zwarcie z zasilaniem. Poprawna diagnoza wymaga zrozumienia podstaw algebry Boole’a i tabel prawdy dla poszczególnych typów bramek.

Pytanie 39

Do montażu czujnika przedstawionego na rysunku niezbędne jest użycie

Ilustracja do pytania
A. kluczy nasadowych.
B. kluczy płaskich.
C. wkrętaków płaskich.
D. szczypiec Segera.
zujnik pokazany na zdjęciu ma gwintowany korpus i nakrętki montażowe, co oznacza, że do jego zamontowania potrzebny jest klucz płaski – narzędzie dopasowane do sześciokątnych nakrętek. Wkrętaki płaskie czy szczypce Segera nie mają tu zastosowania, ponieważ czujnik nie ma śrub ani pierścieni sprężystych. Klucze nasadowe w niektórych przypadkach mogłyby się sprawdzić, ale zwykle przestrzeń montażowa przy czujnikach jest ograniczona, więc użycie klucza płaskiego jest wygodniejsze i bezpieczniejsze. W praktyce montaż polega na wsunięciu czujnika w otwór, a następnie przykręceniu dwóch nakrętek – jednej od strony czujnika i drugiej kontrującej z drugiej strony. Dzięki temu czujnik jest stabilnie osadzony i nie zmienia położenia pod wpływem drgań. Zbyt mocne dokręcenie może jednak uszkodzić obudowę czujnika lub gwint, dlatego zaleca się umiarkowaną siłę i czasem użycie podkładek sprężystych. Poprawna odpowiedź to klucze płaskie.

Pytanie 40

Czujnik przedstawiony na schemacie ma wyjście sygnałowe typu

Ilustracja do pytania
A. PNP NO
B. NPN NC
C. PNP NC
D. NPN NO
Odpowiedź NPN NC jest prawidłowa, ponieważ czujnik na schemacie wskazuje na tranzystor NPN z wyjściem normalnie zamkniętym (NC). W przypadku wyjść typu NPN, prąd płynie od kolektora do emitera, co oznacza, że wyjście czujnika jest połączone z masą, gdy czujnik jest aktywowany. Wyjście NC oznacza, że w stanie nieaktywnym obwód jest zamknięty, a po aktywacji czujnika obwód się otwiera. To konsekwentnie stosowane rozwiązanie, zwłaszcza w aplikacjach, gdzie konieczne jest zapewnienie bezpieczeństwa. W praktycznych zastosowaniach, takie czujniki są często używane w systemach automatyki przemysłowej. Pomagają w monitorowaniu i kontrolowaniu pozycji elementów maszyn, dostarczając istotnych informacji o stanie systemu. Standardy przemysłowe często zalecają stosowanie wyjść typu NPN NC ze względu na ich niezawodność i bezpieczeństwo, szczególnie w sytuacjach, gdzie błąd w detekcji mógłby prowadzić do uszkodzenia sprzętu lub obrażeń.