Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 11:25
  • Data zakończenia: 8 grudnia 2025 11:34

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Schemat przedstawia układ podłączenia żarówki

Ilustracja do pytania
A. łukowej.
B. fluorescencyjnej.
C. rtęciowej.
D. sodowej.
No cóż, wybór lamp sodowych, łukowych albo rtęciowych nie był najlepszy. Te lampy działają na innych zasadach niż fluorescencyjne. Na przykład, lampy sodowe używają wyładowań w parze sodu i dają specyficzne żółte światło, co nie pasuje do schematu. Lampy łukowe, które często spotykasz na ulicy, działają na ciągłym wyładowaniu w gazie, więc mają zupełnie inny układ. A lampy rtęciowe, mimo że też wykorzystują wyładowania, mają różne części, jak dławiki, które nie występują w lampach fluorescencyjnych. Moim zdaniem, błędy w myśleniu mogą wynikać z mylenia różnych typów lamp i ich zasad działania. Zrozumienie tych różnic jest ważne, bo złe podłączenie może prowadzić do problemów. Dobrze jest też pamiętać, że są normy IEC, które mówią o odpowiednich technologiach do różnych źródeł światła.

Pytanie 2

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 2,5 mm2
B. 10 mm2
C. 1,5 mm2
D. 4 mm2
Minimalny przekrój przewodu ochronnego w obwodzie oświetleniowym, ułożonym we wspólnej osłonie z przewodami roboczymi, wynosi 1,5 mm2. Zgodnie z Polskimi Normami, takimi jak PN-IEC 60364, przewody ochronne muszą być odpowiednio wymiarowane, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym. Przewód ochronny, często oznaczany jako PE (Protective Earth), ma za zadanie odprowadzenie prądu zwarciowego do ziemi w przypadku uszkodzenia izolacji innych przewodów. W praktyce oznacza to, że zastosowanie przewodu o odpowiednim przekroju jest kluczowe dla bezpieczeństwa instalacji. W przypadku oświetlenia, które często jest wykorzystywane w różnych warunkach, zachowanie tych norm jest szczególnie istotne. Warto również zwrócić uwagę, że w przypadku dłuższych odcinków przewodów lub większych obciążeń zaleca się użycie przewodów o większym przekroju, co zwiększa ich zdolność do przewodzenia prądu bez ryzyka przegrzania. Właściwe dobranie przekroju przewodu ochronnego to kluczowy element projektowania bezpiecznej instalacji elektrycznej.

Pytanie 3

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 16 A
B. 26 A
C. 20 A
D. 6 A
Zrozumienie mocy oraz obciążenia w obwodach elektrycznych jest kluczowe dla prawidłowego działania instalacji. Wybór niewłaściwej wartości prądu, na przykład 6 A, 16 A lub 26 A, wynika z typowych błędów myślowych związanych z analizą schematu. Udzielając odpowiedzi 6 A lub 16 A, można sądzić, że prąd ograniczający jest możliwy do przyjęcia na podstawie zastosowanych komponentów. Jednakże, wyłącznik B20 oraz stycznik SM-320, które są kluczowe w tym obwodzie, mogą bezpiecznie obsłużyć znacznie wyższy prąd – aż do 20 A. Wybór 26 A jest również niewłaściwy, ponieważ przekracza maksymalną wartość obciążenia, co prowadziłoby do ryzyka uszkodzenia elementów instalacji. Warto również zauważyć, że w praktyce inżynierskiej wymagane jest przestrzeganie standardów znamionowych oraz zapewnienie odpowiednich marginesów bezpieczeństwa. Właściwy dobór elementów i obliczeń jest zatem kluczowy dla bezpieczeństwa i długowieczności instalacji elektrycznych, a każdy element w obwodzie powinien być dostosowany do jego przewidywanego obciążenia. Analizując powyższe, nie powinno się pomijać znaczenia norm i przepisów, które mają na celu ochronę zarówno osób, jak i mienia przed niebezpieczeństwami wynikającymi z niewłaściwego doboru lub eksploatacji instalacji elektrycznych.

Pytanie 4

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. niepriorytetowym, zostaje wyłączony obwód priorytetowy
B. priorytetowym, zostaje wyłączony obwód priorytetowy
C. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
D. priorytetowym, zostaje wyłączony obwód niepriorytetowy
Wyjątkowo istotne jest zrozumienie, jak działają przekaźniki priorytetowe i jakie mają zastosowanie w instalacjach elektrycznych. Nieprawidłowe odpowiedzi sugerują, że obwód priorytetowy może być wyłączany lub że obwód niepriorytetowy nie jest wyłączany w odpowiedzi na przekroczenie natężenia prądu. Te koncepcje są mylne, ponieważ przekaźniki priorytetowe zostały zaprojektowane właśnie po to, aby chronić obwody priorytetowe przed opróżnieniem z energii lub przeciążeniem, co mogłoby prowadzić do poważnych awarii. Zamiast tego, w momencie, gdy prąd w obwodzie priorytetowym wzrasta, przekaźnik powinien odciąć zasilanie z obwodu, który nie jest kluczowy dla działania systemu. Wiele osób myli tę funkcję, zakładając, że priorytetowe obwody są te, które zawsze muszą być zasilane, co nie jest zgodne z rzeczywistością. Typowy błąd myślowy polega na nazywaniu obwodu priorytetowego jako tego, który w każdej sytuacji powinien mieć dostęp do energii, co jest niezgodne z zasadami zarządzania energią. W rzeczywistości, kluczowym celem przekaźników priorytetowych jest ochrona zasobów i ich racjonalne zarządzanie, co oznacza, że w sytuacji zagrożenia ważniejsze staje się odłączenie obwodu niepriorytetowego. W instalacjach elektrycznych, szczególnie w kontekście norm branżowych i dobrych praktyk, zrozumienie hierarchii obwodów jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa systemów.

Pytanie 5

Na rysunku przedstawiono schemat łącznika

Ilustracja do pytania
A. hotelowego.
B. dwubiegunowego.
C. schodowego.
D. jednobiegunowego.
Wybór odpowiedzi dotyczącej łącznika hotelowego jest nieprawidłowy ze względu na błędną interpretację schematu. Łącznik hotelowy służy do sterowania oświetleniem w sposób dostosowany do potrzeb gości, jednak jego charakterystyka różni się od łącznika schodowego. Odpowiedzi dotyczące łączników jednobiegunowych i dwubiegunowych również są błędne, ponieważ te typy łączników nie posiadają funkcji umożliwiającej sterowanie oświetleniem z wielu punktów. Łącznik jednobiegunowy jest przeznaczony do włączania lub wyłączania obwodu z jednego miejsca, co wyklucza możliwość sterowania z więcej niż jednego punktu. Z kolei łącznik dwubiegunowy, mimo że może kontrolować dwa różne obwody, nie jest zaprojektowany do wspólnej obsługi jednego źródła światła z różnych lokalizacji. Typowym błędem jest mylenie funkcji i zastosowań różnych typów łączników. Prawidłowe podejście do analizy schematów łączników elektrycznych wymaga znajomości ich funkcji oraz kontekstu, w jakim są stosowane. Ważne jest, aby przy wyborze odpowiedniego rozwiązania brać pod uwagę specyfikę instalacji oraz potrzeby użytkowników. Zgodnie z praktykami inżynieryjnymi, właściwe rozróżnienie typów łączników oraz ich zastosowań jest kluczowe dla zapewnienia efektywności i bezpieczeństwa instalacji elektrycznych.

Pytanie 6

Który z przedstawionych zestawów wyłączników nadprądowych należy dobrać do zabezpieczenia obwodów pralki automatycznej i piekarnika w przedstawionej instalacji elektrycznej?

Ilustracja do pytania
A. Zestaw 2.
B. Zestaw 1.
C. Zestaw 4.
D. Zestaw 3.
Jak źle dobierzesz wyłączniki nadprądowe, to może być nieciekawie, zwłaszcza dla urządzeń elektrycznych. Zestaw 1 z wyłącznikiem o za dużej wartości nominalnej nie będzie działał jak trzeba przy przeciążeniu, a to może uszkodzić pralkę albo piekarnik. Wysokie wartości wyłączników potrafią spowolnić reakcję na awarie, co sprzyja przegrzewaniu sprzętów. A Zestaw 4 ma wyłącznik o za niskiej wartości, co wiąże się z częstymi wyłączeniami przy normalnym użytkowaniu – to może być denerwujące dla klientów. Zestaw 3 pokazuje, że dobór wyłączników nie powinien opierać się tylko na ich wartościach, ale też na charakterystyce sprzętów, które mają chronić. Często ludzie nie myślą o prądach startowych czy chwilowych skokach, które mogą być problematyczne przy uruchamianiu silników w pralce. Dobrze dobrany wyłącznik to taki, który odpowiada nie tylko obliczonemu prądowi roboczemu, ale także specyfice pracy danego sprzętu.

Pytanie 7

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór odpowiedzi A, B lub C wskazuje na nieporozumienia dotyczące funkcji poszczególnych przyrządów pomiarowych. Miernik grubości powłoki, choć istotny w kontekście badania kondycji materiałów, nie ma zastosowania w lokalizacji przewodów elektrycznych. Jego głównym zadaniem jest pomiar grubości różnych powłok ochronnych, co nie jest pomocne przy planowaniu tras instalacji elektrycznych. Kamera termowizyjna, z kolei, jest używana do wykrywania różnic temperatur na powierzchniach, co może być przydatne przy diagnostyce problemów z instalacjami, ale nie oferuje precyzyjnego wskazania położenia przewodów. Miernik poziomu dźwięku również nie jest narzędziem właściwym do tego celu, ponieważ jego funkcja polega na rejestrowaniu natężenia dźwięku, co nie ma związku z lokalizacją przewodów. Typowe błędy myślowe, które prowadzą do takich wyborów, to utożsamianie przyrządów pomiarowych z ich funkcjami, które nie są bezpośrednio związane z konkretnym zadaniem. Właściwe dobieranie narzędzi do pracy jest kluczowe dla efektywności i bezpieczeństwa instalacji elektrycznych, dlatego warto dokładnie zapoznać się z charakterystyką każdego z nich i ich przeznaczeniem w praktyce.

Pytanie 8

Który z poniższych przewodów powinien być użyty do zasilania ruchomego odbiornika w II klasie ochronności z sieci jednofazowej?

A. H05VV-K 3×1,5
B. H03VVH2-F 2×0,75
C. H05VV-U 2×1,5
D. H03VV-F 3×0,75
Wybór przewodów H03VV-F 3×0,75, H05VV-K 3×1,5 oraz H05VV-U 2×1,5 do zasilenia ruchomego odbiornika wykonane w II klasie ochronności nie jest odpowiedni z kilku powodów. Przewód H03VV-F, chociaż elastyczny, jest przewodem o trzech żyłach, co sugeruje możliwość uziemienia, co nie jest zgodne z zasadami dotyczącymi urządzeń w II klasie ochronności. II klasa nie wymaga dodatkowej żyły uziemiającej, a zatem użycie przewodu z uziemieniem może prowadzić do niepotrzebnych komplikacji w instalacji elektrycznej. Przewód H05VV-K, pomimo że oferuje dobry poziom elastyczności, ma również dodatkową żyłę, co jest zbędne dla urządzeń tej klasy ochronności. Zastosowanie przewodów z uziemieniem w przypadkach, gdzie nie jest to wymagane, może prowadzić do nieprawidłowego podłączenia oraz zwiększać ryzyko uszkodzenia sprzętu. Natomiast H05VV-U, będący przewodem sztywnym, nie jest zalecany do aplikacji ruchomych, ponieważ jego konstrukcja ogranicza elastyczność, co jest kluczowe w przypadku sprzętu, który może być często przestawiany. Wybór niewłaściwego przewodu do zasilania ruchomych odbiorników może skutkować nieefektywną pracą urządzenia, a w najgorszym przypadku stwarzać zagrożenie dla użytkownika oraz dla samego sprzętu, gdyż niektóre przewody mogą nie wytrzymać obciążeń mechanicznych czy niekorzystnych warunków środowiskowych.

Pytanie 9

Które oznaczenie literowe ma przewód o przekroju przedstawionym na rysunku?

Ilustracja do pytania
A. LgY
B. YDYp
C. DY
D. YDY
Odpowiedź YDY jest poprawna, ponieważ oznaczenie to dotyczy przewodów miedzianych, które są izolowane polwinitiem i posiadają ekran zewnętrzny. Przewody te znajdują zastosowanie w instalacjach elektrycznych, gdzie wymagane jest zabezpieczenie przed zakłóceniami elektromagnetycznymi oraz ochrona przed wpływem warunków atmosferycznych. W praktyce, przewody YDY są często stosowane w budynkach mieszkalnych i użyteczności publicznej do zasilania urządzeń elektrycznych, a także w obiektach przemysłowych. Dzięki zastosowaniu ekranu, przewody te charakteryzują się wysoką odpornością na zakłócenia, co jest kluczowe dla utrzymania stabilności i jakości sygnałów. Oznaczenie to jest zgodne z normami PN-EN 50525-2-51, które określają wymagania dla przewodów w instalacjach niskiego napięcia. Znajomość tych oznaczeń jest niezbędna dla każdej osoby zajmującej się projektowaniem lub wykonawstwem instalacji elektrycznych.

Pytanie 10

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego grzejnika rezystancyjnego o danych znamionowych: Pₙ = 3 kW, Uₙ = 230 V?

A. gB 20 A
B. aR 16 A
C. gG 16 A
D. aM 20 A
Wkładka topikowa gG 16 A jest odpowiednia dla obwodu jednofazowego grzejnika rezystancyjnego o mocy 3 kW przy napięciu znamionowym 230 V. Obliczając wartość prądu znamionowego, stosujemy wzór: I = P / U, gdzie P to moc, a U to napięcie. W tym przypadku: I = 3000 W / 230 V ≈ 13 A. Wybór wkładki gG 16 A jest uzasadniony, ponieważ jest ona przeznaczona do zabezpieczania obwodów przed przeciążeniem oraz zwarciem, a jej wartość znamionowa (16 A) zapewnia odpowiednią margines dla ewentualnych chwilowych wzrostów prądu, które mogą wystąpić przy rozruchu grzejnika. Zastosowanie wkładek gG w instalacjach domowych jest zgodne z normami IEC 60269, które podkreślają ich właściwości ochronne i dostosowanie do obciążeń rezystancyjnych. W praktyce wkładki gG są często stosowane w systemach zasilania urządzeń grzewczych, co czyni je idealnym wyborem w tym przypadku.

Pytanie 11

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Sprawdzenie stanu izolacji oraz powłok przewodów
B. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
C. Zamiana wszystkich źródeł oświetlenia w oprawach
D. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
Sprawdzenie stanu izolacji i powłok przewodów jest kluczowym elementem konserwacji instalacji elektrycznych w mieszkaniach. Izolacja przewodów jest niezbędna do zapewnienia bezpieczeństwa użytkowania, ponieważ uszkodzona lub niewłaściwa izolacja może prowadzić do zwarć, pożarów, a także porażenia prądem. Regularne inspekcje stanu izolacji powinny być przeprowadzane zgodnie z obowiązującymi standardami, takimi jak norma PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych w obiektach budowlanych. Przykładowe metody oceny stanu izolacji obejmują pomiar rezystancji przy użyciu megomierza. Zastosowanie odpowiednich technik, takich jak testy izolacji, pozwala na wczesne wykrycie problemów i ich naprawę, co przekłada się na dłuższą żywotność instalacji oraz zwiększa bezpieczeństwo mieszkańców. Dbanie o stan izolacji to nie tylko spełnienie wymogów prawnych, ale także odpowiedzialność za bezpieczeństwo domowników i ich majątek.

Pytanie 12

Który schemat przestawia poprawny i zgodny ze sztuką monterską sposób podłączenia instalacji oświetleniowej?

Ilustracja do pytania
A. Schemat 2.
B. Schemat 3.
C. Schemat 1.
D. Schemat 4.
Analizując inne schematy, można zauważyć szereg błędów, które mogą prowadzić do nieprawidłowego działania instalacji oświetleniowej. W przypadku pierwszego schematu, błędne podłączenie przewodu neutralnego i ochronnego stwarza ryzyko nieprawidłowego działania, co może skutkować zwarciem lub porażeniem prądem. Z kolei w drugim schemacie zauważalne są nieprawidłowości w podłączeniu przewodu fazowego, co wprowadza niebezpieczeństwo w eksploatacji urządzenia. Schemat czwarty, który również zawiera błędy przy podłączeniu przewodów fazowego i neutralnego, może prowadzić do problemów z zasilaniem, a w skrajnych przypadkach do uszkodzenia sprzętu. Zrozumienie, jak powinny być poprawnie podłączone przewody, jest kluczowe, aby uniknąć takich błędów. Często błędne interpretacje wynikają z braku znajomości zasad działania obwodów elektrycznych oraz niewłaściwego schematyzowania połączeń. Kluczowe jest, aby przestrzegać standardów i regulacji dotyczących instalacji elektrycznych, aby zapewnić ich bezpieczeństwo i funkcjonalność. W kontekście norm, takich jak PN-IEC 60364, wyraźnie zaznaczone są zasady dotyczące podłączenia i organizacji instalacji, które mają na celu minimalizowanie ryzyka i zwiększenie efektywności działania systemów elektrycznych.

Pytanie 13

Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?

Ilustracja do pytania
A. Wymiana złączki.
B. Czyszczenie obudowy i styków.
C. Wymiana oprawki.
D. Wykonanie pomiarów natężenia oświetlenia.
Czyszczenie obudowy i styków jest kluczowym elementem konserwacji opraw oświetleniowych. Regularne usuwanie kurzu, brudu oraz osadów poprawia nie tylko estetykę, ale przede wszystkim funkcjonalność urządzenia. Zabrudzenia na obudowie mogą prowadzić do przegrzewania się oprawy, co skraca jej żywotność i zwiększa ryzyko awarii. Czyszczenie styków zapewnia dobry kontakt elektryczny, co jest niezbędne do prawidłowego działania źródeł światła. W kontekście standardów branżowych, takich jak normy dotyczące bezpieczeństwa elektrycznego oraz efektywności energetycznej, regularna konserwacja opraw oświetleniowych jest wymagana do utrzymania ich w dobrym stanie technicznym. Przykładowo, w obiektach przemysłowych czy biurowych, gdzie oświetlenie ma kluczowe znaczenie dla bezpieczeństwa i wydajności pracy, regularne czyszczenie oraz konserwacja opraw są niezbędne do spełnienia norm BHP i ergonomii. Właściwe praktyki konserwacyjne przyczyniają się także do zmniejszenia kosztów eksploatacji poprzez ograniczenie konieczności przeprowadzania napraw oraz wymiany uszkodzonych elementów.

Pytanie 14

Jeśli do pomiaru napięcia w sieci 230 V zastosowano miernik analogowy o dokładności 0,5 i zakresie 300 V, jakie będą wskazania tego miernika?

A. 230 V (±1,30 V)
B. 230 V (±1,50 V)
C. 230 V (±1,40 V)
D. 230 V (±1,20 V)
Pomiar napięcia sieciowego o wartości 230 V za pomocą miernika analogowego o klasie dokładności 0,5 w zakresie 300 V daje wskazania w formacie 230 V (±1,50 V). Klasa dokładności 0,5 oznacza, że maksymalny błąd pomiarowy wynosi 0,5% wartości wskazania. W przypadku napięcia 230 V, obliczamy błąd jako 0,5% z 230 V, co daje 1,15 V. Z uwagi na standardowe zaokrąglanie, zaokrąglamy do najbliższego wyższego błędu, co daje nam 1,50 V. W praktyce, taki parametr może stać się kluczowy w instalacjach elektrycznych, gdzie precyzyjne pomiary napięcia są niezbędne do zapewnienia bezpieczeństwa i efektywności działania urządzeń. Użycie mierników o odpowiednich klasach dokładności i zakresach pomiarowych jest zgodne z normami IEC 61010, które regulują wymogi dotyczące bezpieczeństwa i dokładności przyrządów pomiarowych.

Pytanie 15

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Żarowe.
B. Półprzewodnikowe.
C. Wyładowcze niskoprężne.
D. Wyładowcze wysokoprężne.
Wybór źródła światła wyładowczego niskoprężnego, żarowego lub wyładowczego wysokoprężnego jest błędny z kilku powodów. Źródła wyładowcze niskoprężne, takie jak lampy fluorescencyjne, wymagają odpowiednich warunków ciśnienia, aby generować światło, co jest zupełnie inne niż zasada działania źródeł półprzewodnikowych. Te lampy są również mniej efektywne energetycznie, a ich żywotność jest znacznie krótsza w porównaniu do źródeł LED. Źródła żarowe działają na zasadzie podgrzewania włókna, co prowadzi do znaczących strat energii w postaci ciepła, a ich niska efektywność sprawia, że są mniej preferowane w nowoczesnych zastosowaniach. Wyładowcze wysokoprężne lampy, chociaż bardziej efektywne niż ich niskoprężne odpowiedniki, mają ograniczone zastosowanie w porównaniu do technologii LED, a ich konstrukcja oraz waga mogą być problematyczne w wielu aplikacjach. Często błędne założenia wynikają z nieznajomości różnic technicznych między tymi klasami źródeł światła oraz ich zastosowaniami w praktyce. Współczesne normy dotyczące oświetlenia, takie jak EN 12464-1, zwracają uwagę na znaczenie efektywności energetycznej oraz jakości światła, co wyklucza tradycyjne technologie na rzecz bardziej innowacyjnych rozwiązań, jak diody LED.

Pytanie 16

Na którym rysunku przedstawiono prawidłowe połączenie łącznika świecznikowego z żyrandolem?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór odpowiedzi, która nie przedstawia poprawnego połączenia łącznika świecznikowego z żyrandolem, może wynikać z kilku typowych nieporozumień związanych z zasadami działania obwodów elektrycznych. W przypadku, gdy przewód fazowy L nie jest podłączony do łącznika, a zamiast tego łącznik jest połączony bezpośrednio z przewodem neutralnym N, obwód nie będzie działał prawidłowo. Taki układ może prowadzić do sytuacji, w której żyrandol nie świeci, ponieważ brak jest możliwości włączenia zasilania. Ponadto, jeśli przewód neutralny jest podłączony tylko do żarówki, a nie do łącznika, dochodzi do nieprawidłowego rozdzielenia obwodu, co może prowadzić do uszkodzeń instalacji oraz zwiększonego ryzyka pożaru. Innym typowym błędem jest pominięcie istotnych zasad bezpieczeństwa, takich jak stosowanie odpowiednich izolacji czy zabezpieczeń. To może skutkować nie tylko nieprawidłowym działaniem obwodu, ale również stwarzać zagrożenie dla użytkowników. Niezrozumienie roli przewodów fazowych i neutralnych w obwodzie elektrycznym jest kluczowym czynnikiem prowadzącym do tych błędów. W każdym przypadku, fundamentalne zasady dotyczące instalacji elektrycznych powinny być przestrzegane, aby zapewnić ich bezpieczeństwo i niezawodność.

Pytanie 17

Który przewód oznacza symbol PE?

A. Ochronno-neutralny
B. Uziemiający
C. Ochronny
D. Wyrównawczy
Odpowiedzi takie jak "Wyrównawczy", "Uziemiający" czy "Ochronno-neutralny" mogą prowadzić do pewnych nieporozumień związanych z funkcją przewodów w instalacjach elektrycznych. Wyrównawcze przewody służą do eliminacji różnic potencjałów między różnymi elementami metalowymi w instalacji, co ma na celu zwiększenie bezpieczeństwa. Jednakże, przewód oznaczony symbolem PE ma bardziej specyficzną rolę jako przewód ochronny, który zabezpiecza przed porażeniem prądem poprzez skierowanie niebezpiecznego prądu do ziemi. Uziemiający przewód pełni z kolei funkcję uziemienia, ale nie jest tożsame z przewodem ochronnym; jego głównym zadaniem jest odprowadzanie nadmiaru energii elektrycznej do ziemi w celu ochrony przed przepięciami. Ochronno-neutralny przewód zaś jest połączeniem funkcji ochronnej i neutralnej, co może być mylące. Kluczowe jest zrozumienie, że przewód PE jest skoncentrowany na zapewnieniu bezpieczeństwa użytkowników przed porażeniem prądem, podczas gdy inne przewody pełnią różne, choć równie istotne, funkcje w systemach elektrycznych. Błędne rozumienie tych ról może prowadzić do niewłaściwych instalacji oraz potencjalnych zagrożeń dla zdrowia i życia użytkowników, stąd tak istotne jest przestrzeganie norm i przepisów dotyczących instalacji elektrycznych.

Pytanie 18

W instalacji domowej jako dodatkowy element zabezpieczający przed porażeniem prądem powinno się użyć wyłącznika różnicowoprądowego o wartościach prądu różnicowego

A. 100 mA
B. 30 mA
C. 300 mA
D. 10 mA
Wyłącznik różnicowoprądowy z prądem różnicowym 30 mA to coś, co naprawdę warto mieć w elektrycznych instalacjach w naszych domach. Jego główną rolą jest ochrona osób przed porażeniem prądem, szczególnie gdy zdarzy się jakieś uszkodzenie, które może prowadzić do groźnych sytuacji. Prąd różnicowy 30 mA jest uznawany za najlepszy w miejscach, gdzie może być ryzyko kontaktu z wodą, jak łazienki czy kuchnie. Dzięki temu wyłącznikowi system szybko reaguje i odcina prąd w czasie krótszym niż 30 ms, co w praktyce oznacza, że w przypadku porażenia prądem, osoba ma większe szanse na przeżycie. Po prostu wyłącznik zadziała tak szybko, że może uratować życie. W dodatku zgodnie z normą PN-IEC 61008, stosowanie tych wyłączników o prądzie 30 mA w budynkach mieszkalnych to naprawdę dobry standard bezpieczeństwa. Gdzieś, gdzie ryzyko jest jeszcze większe, jak basen czy sauna, warto otworzyć się na wyłączniki o prądzie 10 mA, bo zapewniają one jeszcze lepszą ochronę.

Pytanie 19

Jakim z podanych wyłączników nadprądowych można zamienić bezpieczniki typu gG w obwodzie 3/N/PE ~ 400/230 V 50 Hz, który zasila trójfazowy rezystancyjny grzejnik elektryczny o mocy znamionowej 7kW?

A. S192B16
B. S194B10
C. S193B16
D. S193B10
Wybór niewłaściwego wyłącznika nadprądowego do obwodu zasilającego może być wynikiem kilku błędnych rozważań. Na przykład, jeśli ktoś zdecyduje się na S194B10, musi pamiętać, że ten model jest przeznaczony do zasilania jednofazowego, co czyni go nieodpowiednim w kontekście obwodu trójfazowego. Problemy pojawiają się, gdy nie uwzględnia się specyfiki obwodu, w którym ma pracować dany wyłącznik. Użycie wyłącznika, który nie jest przystosowany do pracy z obciążeniem trójfazowym, może prowadzić do jego przedwczesnego zadziałania lub braku reakcji w razie przeciążenia. Kolejną nieprzemyślaną decyzją może być wybór modelu S192B16, który, choć ma odpowiednią wartość prądową, nie jest przeznaczony do zastosowań trójfazowych. W kontekście instalacji elektrycznych niezwykle istotne jest, aby urządzenia zabezpieczające były dostosowane do specyfikacji i norm obowiązujących w danej instalacji. Warto zwrócić uwagę na wymagania dotyczące kategorii prądowej i liczby faz, aby uniknąć poważnych problemów z użytkowaniem urządzeń elektrycznych. Niezrozumienie tego aspektu może prowadzić do wyboru niewłaściwych komponentów, co w praktyce może skutkować awariami, a nawet zagrożeniem dla bezpieczeństwa. Właściwy dobór wyłącznika nadprądowego powinien być zawsze oparty na obliczeniach i analizach zgodnych z zasadami bezpieczeństwa oraz normami prawnymi, co podkreśla znaczenie wiedzy i doświadczenia w tej dziedzinie.

Pytanie 20

Na którym rysunku przedstawiono przewód spawalniczy OnS-1?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Wybór innej odpowiedzi może wynikać z braku zrozumienia specyfikacji i zastosowania przewodu spawalniczego OnS-1. Istotne jest, aby wiedzieć, że przewody spawalnicze są projektowane z myślą o konkretnych technikach spawania i warunkach pracy. Na rysunkach, które zostały przedstawione, wiele przewodów może wydawać się podobnych, jednak różnice w konstrukcji mają kluczowe znaczenie. Przewód spawalniczy OnS-1, złożony z cienkich drutów miedzianych, charakteryzuje się dużą elastycznością oraz doskonałym przewodnictwem prądu, co jest niezbędne przy spawaniu łukowym. Wybierając inne odpowiedzi, można popełnić błąd myślowy, zakładając, że każdy przewód o podobnym wyglądzie będzie odpowiedni do każdego zastosowania. Na przykład, przewody, które są nieodpowiednio zaprojektowane do spawania, mogą prowadzić do przegrzewania się, co z kolei może spowodować ich uszkodzenie oraz obniżenie jakości wykonanej spoiny. W praktyce, kluczowe jest stosowanie przewodów zgodnych z normami branżowymi, takimi jak IEC 60228 i EN 50525, aby zapewnić bezpieczeństwo i skuteczność pracy. Zrozumienie konstrukcji przewodów oraz ich przeznaczenia jest istotne dla każdego specjalisty zajmującego się spawaniem.

Pytanie 21

Który sposób połączenia przewodów jest zgodny z przedstawionym na rysunku schematem ideowym instalacji elektrycznej pracującej w sieci TN-S?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Niepoprawne odpowiedzi bazują na nieprawidłowym zrozumieniu zasad działania systemu TN-S. W instalacjach tego typu kluczowe jest, aby przewód ochronny PE był całkowicie oddzielony od przewodu neutralnego N. W przypadku odpowiedzi, które nie spełniają tego warunku, ryzyko porażenia prądem znacząco wzrasta, a to może prowadzić do poważnych wypadków. Często występującym błędem jest mylenie funkcji przewodu neutralnego z funkcją przewodu ochronnego. Przewód neutralny ma za zadanie zamykanie obwodu elektrycznego, natomiast przewód uziemiający jest dedykowany ochronie przed awariami elektrycznymi. W systemie TN-S, nieodpowiednie połączenie tych przewodów prowadzi do sytuacji, w której prąd awaryjny może swobodnie krążyć przez obwody, co stwarza zagrożenie dla osób i urządzeń. W praktyce błędne połączenie przewodów może prowadzić do zwarcia lub uszkodzenia sprzętu elektrycznego oraz stwarzać zagrożenie pożaru. Warto pamiętać, że normy i przepisy regulujące instalacje elektryczne mają na celu właśnie eliminację takich nieprawidłowości, a ich przestrzeganie to nie tylko wymóg prawny, ale również dbałość o bezpieczeństwo ludzi i mienia. Dlatego tak istotne jest, aby zrozumieć różnice pomiędzy poszczególnymi rodzajami przewodów i stosować je zgodnie z określonymi normami.

Pytanie 22

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. zwarciem
B. porażeniem
C. przepięciem
D. przeciążeniem
Wyłączniki różnicowoprądowe (RCD) są kluczowymi urządzeniami w systemach elektrycznych, szczególnie w sieciach TN-S, gdzie pełnią funkcję zabezpieczenia przed porażeniem elektrycznym. Ich działanie opiera się na wykrywaniu różnic prądów między przewodami fazowymi a przewodem neutralnym. W przypadku, gdy wystąpi upływ prądu do ziemi (np. wskutek przypadkowego dotknięcia uszkodzonego sprzętu) RCD natychmiast odcina zasilanie, minimalizując ryzyko porażenia. Stosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które określają wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, RCD są często instalowane w obwodach zasilających gniazdka w domach oraz w obiektach użyteczności publicznej, gdzie dostęp do energii elektrycznej mają osoby nieprzeszkolone. Dodatkowo, RCD powinny być regularnie testowane, aby zapewnić ich prawidłowe funkcjonowanie, co jest standardową praktyką w utrzymaniu instalacji elektrycznych.

Pytanie 23

Który kolor izolacji przewodu w instalacjach elektrycznych jest przypisany do przewodu neutralnego?

A. Żółty
B. Czerwony
C. Zielony
D. Niebieski
Kolor niebieski jest zastrzeżony dla przewodu neutralnego w instalacjach elektrycznych, zgodnie z międzynarodowymi standardami, takimi jak IEC 60446. Przewód neutralny pełni kluczową rolę w systemach elektrycznych, ponieważ służy do zamykania obwodu i umożliwia przepływ prądu z powrotem do źródła. Użycie koloru niebieskiego dla przewodów neutralnych pozwala na ich łatwe zidentyfikowanie, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy elektryków. W praktyce, podczas instalacji systemów elektrycznych, korzystanie z ustalonych kolorów przewodów ma na celu minimalizację ryzyka błędów przy podłączaniu urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz ochrony przed porażeniem prądem. Dodatkowo, w przypadku konserwacji lub naprawy, wyraźne oznaczenie przewodów neutralnych znacząco ułatwia pracę elektryków, co podkreśla znaczenie standardyzacji w branży elektrycznej.

Pytanie 24

W którym z punktów spośród wskazanych strzałkami na charakterystyce diody prostowniczej przedstawionej na rysunku odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Napięcie przebicia diody prostowniczej to kluczowy parametr, który odgrywa istotną rolę w projektowaniu układów elektronicznych. Odczytywane w punkcie A, napięcie przebicia wskazuje na moment, w którym dioda zaczyna przewodzić prąd w kierunku wstecznym, co może prowadzić do jej uszkodzenia, jeśli nie jest odpowiednio zabezpieczona. W praktyce, zrozumienie tego zjawiska jest niezbędne podczas projektowania układów z diodami prostowniczymi, takich jak zasilacze impulsowe czy układy zabezpieczeń. Warto pamiętać o standardach, takich jak IEC 60747, które definiują charakterystyki diod, w tym ich napięcie przebicia. Właściwe zastosowanie wartości napięcia przebicia w projektach pozwala na uniknięcie awarii i zwiększa niezawodność urządzeń. Zastosowanie tego w praktyce, na przykład w zasilaczach, pozwala na dobór odpowiednich komponentów, co jest kluczowe dla długoterminowej stabilności systemów elektronicznych.

Pytanie 25

Rysunek przedstawia oprawę oświetlenia

Ilustracja do pytania
A. bezpośredniego - klasy I
B. przeważnie pośredniego - klasy IV
C. pośredniego - klasy V
D. przeważnie bezpośredniego - klasy II
Wybór odpowiedzi wskazującej na przeważające oświetlenie bezpośrednie lub klasy niższe w kontekście oprawy oświetleniowej na rysunku jest konsekwencją nieprawidłowego zrozumienia podstawowych zasad klasyfikacji opraw oświetleniowych. Oświetlenie bezpośrednie, które zazwyczaj klasyfikuje się jako klasa I lub II, polega na emisji światła bezpośrednio z oprawy na obiekty bez pośrednictwa dodatkowych powierzchni. Takie podejście jest właściwe dla przestrzeni, gdzie konieczne jest skoncentrowane źródło światła, jednak w przypadku rysunku, oprawa została zaprojektowana w sposób, który eliminowałby ryzyko olśnienia oraz nadmiernej koncentracji światła w jednym punkcie. W efekcie, klasy IV i V, które obejmują oświetlenie przeważnie pośrednie oraz pośrednie, są bardziej odpowiednie dla zrównoważonego rozkładu oświetlenia. Pomijając tę subtelność, można wpaść w pułapkę myślenia, że wszystkie oprawy muszą emitować światło w sposób bezpośredni, co jest błędnym założeniem. Należy również uwzględnić, że standardy oświetleniowe, takie jak EN 12464, jednoznacznie wskazują na korzyści płynące z zastosowania opraw pośrednich w kontekście poprawy ergonomii oraz komfortu wizualnego, co jest kluczowe w środowiskach pracy oraz przestrzeniach publicznych.

Pytanie 26

Na którym rysunku przedstawiono oprawę oświetleniową rastrową?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Oprawa oświetleniowa rastrowa, jak wskazuje poprawna odpowiedź, odgrywa kluczową rolę w zapewnieniu efektywnego oświetlenia w różnych przestrzeniach, takich jak biura, hale produkcyjne czy sale wykładowe. Charakteryzuje się ona specyficzną konstrukcją rastrową, której celem jest równomierne rozprowadzanie światła oraz zmniejszenie efektu olśnienia. W oprawie oznaczonej jako B dostrzegamy zastosowanie takiej osłony, co jest zgodne z normami oświetleniowymi, np. PN-EN 12464-1, które podkreślają znaczenie komfortu użytkowników w środowisku pracy. Praktycznym zastosowaniem oświetlenia rastrowego jest jego umiejscowienie w przestrzeniach biurowych, gdzie odpowiednie rozproszenie światła zmniejsza zmęczenie wzroku oraz poprawia efektywność pracy. Warto również zaznaczyć, że tego typu oprawy są dostępne w różnych wariantach, co pozwala na ich dopasowanie do specyficznych potrzeb architektonicznych i użytkowych, przy jednoczesnym zachowaniu estetyki wnętrza.

Pytanie 27

Którego z wymienionych narzędzi należy użyć do połączenia przewodów przy użyciu złączki przedstawionej na rysunku?

Ilustracja do pytania
A. Wkrętaka.
B. Praski hydraulicznej.
C. Szczypiec uniwersalnych.
D. Lutownicy.
Wybór narzędzi, które nie są przeznaczone do zaciskania złączek tulejowych, prowadzi do nietrwałych połączeń oraz potencjalnych awarii. Wkrętaka nie stosuje się do tego celu, ponieważ jego funkcja ogranicza się do wkręcania i wykręcania śrub, a nie do zaciskania elementów. Użycie lutownicy wydaje się być zrozumiałe, jednak lutowanie nie jest zalecaną metodą w przypadku złączek tulejowych, które zostały zaprojektowane do mechanicznych połączeń, a lutowanie może osłabić przewód i wprowadzać dodatkowe problemy z przewodnictwem elektrycznym. Szczypce uniwersalne również nie są odpowiednie, ponieważ nie oferują wymaganej siły i precyzji, które są niezbędne do prawidłowego zaciskania. Warto również zwrócić uwagę na standardy ochrony elektrycznej, które wymagają, aby wszelkie połączenia były wykonane zgodnie z wytycznymi zapewniającymi ich trwałość i bezpieczeństwo. Użycie niewłaściwego narzędzia może prowadzić do zwarć, uszkodzeń, a nawet pożarów, co jest poważnym zagrożeniem w instalacjach elektrycznych. Dlatego istotne jest, aby dobierać stosowne narzędzia zgodnie z przeznaczeniem oraz przestrzegać dobrych praktyk, które pozwolą osiągnąć bezpieczne i niezawodne połączenia elektryczne.

Pytanie 28

Na którym rysunku przedstawiono schemat montażowy?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Schematy montażowe są kluczowym elementem w projektowaniu instalacji elektrycznych, a ich nieprawidłowe zrozumienie może prowadzić do poważnych błędów montażowych. Odpowiedzi A, B i D nie przedstawiają schematu montażowego, co skutkuje ich niepoprawnością. Odpowiedzi te mogą przedstawiać inne typy rysunków, takie jak schematy ideowe, które z kolei koncentrują się na przedstawieniu funkcji urządzeń i ich wzajemnych połączeń bez wskazywania szczegółów montażowych, lub diagramy blokowe, które ilustrują ogólną koncepcję systemu. Takie nieścisłości prowadzą do mylnych przekonań, że schemat ideowy może zastąpić schemat montażowy. Przykładem błędnego myślenia jest utożsamianie rysunków z ogólnymi zasadami działania urządzeń z dokumentacją wymagającą szczegółowych informacji o montażu. W praktyce, brak wyraźnego schematu montażowego może prowadzić do nieprawidłowego montażu, co z kolei może skutkować awarią systemu lub zagrożeniem dla bezpieczeństwa użytkowników. Dlatego kluczowe jest, aby każdy projektant instalacji elektrycznych posiadał umiejętność odróżniania schematów montażowych od innych typów dokumentacji, aby uniknąć tych nieporozumień i zapewnić zgodność z normami oraz bezpieczeństwo instalacji.

Pytanie 29

W jaki sposób powinno się podłączyć obwód prądowy oraz obwód napięciowy jednofazowego elektronicznego licznika energii elektrycznej do systemu pomiarowego?

A. Prądowy i napięciowy równolegle
B. Prądowy równolegle, napięciowy szeregowo
C. Prądowy szeregowo, napięciowy równolegle
D. Prądowy i napięciowy szeregowo
Zastosowanie różnych konfiguracji połączeń prądowego i napięciowego może prowadzić do nieprawidłowego działania licznika energii elektrycznej. W przypadku podłączenia zarówno obwodu prądowego, jak i napięciowego równolegle, pojawia się ryzyko, że prąd nie przepłynie przez licznik, co uniemożliwi jego prawidłowe zarejestrowanie. Równoległe połączenie obwodu prądowego sprawia, że licznik nie mierzy rzeczywistego przepływu prądu przez obciążenie, co prowadzi do fałszywych odczytów. Analogicznie, podłączenie obwodu napięciowego szeregowo z prądowym również jest nieodpowiednie, ponieważ pomiar napięcia nie będzie reprezentatywny dla napięcia zasilającego odbiornik. Warto zauważyć, że takie pomyłki często wynikają z braku zrozumienia zasad działania liczników energii oraz z nieodpowiedniej analizy schematów połączeń. Dobrze skonfigurowany układ pomiarowy powinien być zgodny z najlepszymi praktykami branżowymi, które zalecają szeregowe połączenie obwodu prądowego oraz równoległe połączenie obwodu napięciowego, co zapewnia dokładne i wiarygodne pomiary energii elektrycznej.

Pytanie 30

Na której ilustracji przedstawiono przewód przeznaczony do wykonania trójfazowego przyłącza ziemnego do budynku jednorodzinnego w sieci TN-S?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 4.
C. Na ilustracji 2.
D. Na ilustracji 1.
Ilustracja 4 przedstawia przewód czterordzeniowy, co jest zgodne z wymaganiami dotyczącymi trójfazowego przyłącza ziemnego w systemie TN-S. W tym systemie mamy do czynienia z trzema przewodami fazowymi (L1, L2, L3), jednym przewodem neutralnym (N) oraz oddzielnym przewodem ochronnym (PE). Taki układ zapewnia odpowiednią separację przewodów, co jest niezbędne dla bezpieczeństwa i efektywności instalacji elektrycznej. Przewody czterordzeniowe są powszechnie stosowane w budynkach jednorodzinnych z przyłączami trójfazowymi, ponieważ pozwalają na równomierne obciążenie faz oraz minimalizują ryzyko przeciążenia. Zgodnie z normami europejskimi, instalacje elektryczne powinny być projektowane zgodnie z zasadami bezpieczeństwa, a wybór odpowiednich przewodów jest kluczowy. Przewód czterordzeniowy na ilustracji 4 jest idealnym rozwiązaniem, ponieważ zapewnia zarówno zasilanie dla urządzeń trójfazowych, jak i ochronę przed porażeniem elektrycznym, co jest zgodne z normą PN-EN 60204-1. W praktyce, użycie takiego przewodu umożliwia również elastyczność w rozbudowie instalacji o dodatkowe urządzenia lub obwody, co jest istotnym aspektem w nowoczesnym budownictwie.

Pytanie 31

Który układ sterowania przedstawiono na schemacie?

Ilustracja do pytania
A. Do rozruchu silnika pierścieniowego.
B. Do pracy równoległej dwóch styczników.
C. Do pracy zależnej dwóch styczników.
D. Do załączenia silnika z opóźnieniem.
Pytania dotyczące układów sterowania często prowadzą do nieporozumień związanych z interpretacją schematów. Odpowiedzi sugerujące rozruch silnika pierścieniowego lub załączenie silnika z opóźnieniem nie uwzględniają specyfiki przedstawionego układu. Pierwsza z tych koncepcji odnosi się do złożonego procesu uruchamiania silników o dużych momentach rozruchowych, który wymaga zastosowania specjalnych układów sterujących, takich jak styczniki z pierścieniami. Takie układy są złożone i nie mają związku z przedstawionym schematem, który dotyczy pracy zależnej dwóch styczników. Druga koncepcja, dotycząca załączenia z opóźnieniem, również jest błędna, ponieważ w przypadku układu pracy zależnej nie ma mowy o opóźnieniu, a jedynie o synchronizacji działania dwóch styczników. Dodatkowo, opcje dotyczące pracy równoległej dwóch styczników nie uwzględniają zasady, że jeden stycznik wpływa na drugi, co jest kluczowym elementem omawianego schematu. Tego typu błędy myślowe mogą wynikać z braku zrozumienia zasad działania układów sterujących oraz z mylenia różnych typów połączeń w automatyce. Aby poprawnie interpretować schematy, ważne jest, aby dobrze znać zasady działania układów oraz ich zastosowanie w praktyce. Warto zapoznać się z literaturą branżową oraz standardami, które precyzują zasady projektowania i stosowania układów sterujących.

Pytanie 32

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Rozpoznaje przeciążenia
B. Zatrzymuje łuk elektryczny
C. Rozpoznaje zwarcia
D. Napina sprężynę napędu
Wyzwalacz elektromagnetyczny w wyłączniku nadprądowym odgrywa kluczową rolę w systemach zabezpieczeń elektrycznych, szczególnie w detekcji zwarć. Działa na zasadzie natychmiastowego reagowania na nagły wzrost prądu, co jest charakterystyczne dla sytuacji zwarciowych. Gdy prąd przekracza ustaloną wartość progową, wyzwalacz elektromagnetyczny generuje siłę, która otwiera obwód, przerywając tym samym przepływ prądu. To działanie jest niezwykle istotne, ponieważ pozwala na szybkie odcięcie zasilania, co chroni urządzenia i instalacje przed uszkodzeniami spowodowanymi nadmiernym prądem. W praktyce, wyzwalacze elektromagnetyczne są szeroko stosowane w obiektach przemysłowych, budynkach mieszkalnych oraz w instalacjach komercyjnych do zapewnienia bezpieczeństwa. Zgodnie z normami IEC 60947-2, które regulują wyłączniki niskonapięciowe, właściwe działanie wyzwalacza elektromagnetycznego jest kluczowe dla zapewnienia skutecznej ochrony. Warto zauważyć, że stosowanie wyłączników z odpowiednio dobranymi wyzwalaczami, uwzględniając charakterystykę obciążenia, jest najlepszą praktyką w branży elektrycznej.

Pytanie 33

Na którym rysunku przedstawiono adapter z gniazda E27 na gniazdo GU10?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Adapter oznaczony literą A jest prawidłową odpowiedzią, ponieważ łączy gniazdo E27 z gniazdem GU10, co czyni go niezwykle praktycznym elementem w zastosowaniach oświetleniowych. Gniazdo E27, szerokie i standardowe, jest powszechnie stosowane w oprawach żarówkowych, co pozwala na łatwe wkręcanie tradycyjnych żarówek. Z kolei gniazdo GU10, charakteryzujące się dwoma bolcami, jest szeroko używane w nowoczesnych żarówkach halogenowych oraz LED, dając możliwość uzyskania pożądanego efektu świetlnego i oszczędności energii. W praktyce adaptery tego typu ułatwiają modernizację oświetlenia, umożliwiając użytkownikom wykorzystanie różnych typów żarówek, nawet w istniejących instalacjach. Zastosowanie adapterów E27-GU10 jest zgodne z dobrymi praktykami branżowymi, które zalecają elastyczność i dostosowanie systemów oświetleniowych do potrzeb użytkowników.

Pytanie 34

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 2500 V
B. 250 V
C. 1000 V
D. 500 V
Pomiar rezystancji izolacji przewodu YDY 5x6 450/700 V powinien być przeprowadzany przy użyciu induktora na napięciu 1000 V. Taki poziom napięcia jest zgodny z normami i standardami branżowymi, które zalecają używanie wyższych napięć w celu uzyskania dokładnych i wiarygodnych wyników pomiarów izolacji. Przy pomiarze rezystancji izolacji na napięciu 1000 V można skutecznie sprawdzić, czy izolacja przewodu wytrzymuje wymagane napięcia robocze oraz czy nie występują mikrouszkodzenia, które mogłyby prowadzić do awarii. Przykładem zastosowania pomiaru na takim poziomie napięcia jest testowanie instalacji elektrycznych w budynkach przemysłowych, gdzie zabezpieczenie przed porażeniem prądem jest kluczowe. Dobrą praktyką jest także przeprowadzanie takich pomiarów w cyklu konserwacyjnym, aby zapobiec ewentualnym uszkodzeniom i zapewnić bezpieczeństwo użytkowników.

Pytanie 35

W którym z wymienionych miejsc można zainstalować oprawę oświetleniową posiadającą w karcie katalogowej następujące oznaczenia?

Ilustracja do pytania
A. W pomieszczeniach z łatwopalnymi oparami.
B. W pomieszczeniu zagrożonym wybuchem.
C. Na zewnątrz, do oświetlenia placu budowy.
D. Na dnie basenu o głębokości 4 m.
Wybór lokalizacji dla oprawy oświetleniowej o oznaczeniu IP65 w nieodpowiednich miejscach, takich jak dno basenu o głębokości 4 m, pomieszczenia zagrożone wybuchem, czy w przestrzeniach z łatwopalnymi oparami, wskazuje na istotne nieporozumienia dotyczące zastosowania opraw oświetleniowych. Oprawa z oznaczeniem IP65 nie jest przystosowana do pracy pod wodą, co wynika z braku certyfikacji umożliwiającej jej działanie w takich warunkach. W przypadku instalacji na dnie basenu, konieczne są urządzenia przystosowane do pracy w wodzie, często posiadające oznaczenie IP68, które zapewnia pełną ochronę przed wodą na dużą głębokość. Instalacja w pomieszczeniu zagrożonym wybuchem wymaga stosowania opraw specjalistycznych, które są certyfikowane zgodnie z normą ATEX lub innymi odpowiednimi regulacjami. W takich środowiskach używane są oprawy, które minimalizują ryzyko zapłonu i są dostosowane do specyfikacji chemicznych obecnych w danym pomieszczeniu. Z kolei miejsca z łatwopalnymi oparami wymagają zastosowania dodatkowych zabezpieczeń, aby uniknąć ryzyka pożaru. Wybierając miejsce instalacji oprawy oświetleniowej, istotne jest, aby dokładnie zapoznać się ze specyfikacją techniczną urządzenia oraz z odpowiednimi normami, co pozwoli na zapewnienie bezpieczeństwa i prawidłowego funkcjonowania oświetlenia w każdych warunkach.

Pytanie 36

Które z przedstawionych na rysunkach narzędzi najlepiej nadaje się do wyznaczania tras przebiegu przewodów przed montażem instalacji elektrycznej w pomieszczeniu o dużej powierzchni?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybór odpowiedzi A, C lub D wskazuje na zrozumienie ograniczeń narzędzi, które nie są przystosowane do precyzyjnego wyznaczania tras w dużych pomieszczeniach. Narzędzie przedstawione w odpowiedzi A może być użyteczne w mniejszych projektach, ale nie zapewnia odpowiedniej dokładności na większych powierzchniach, co jest kluczowe w przypadku instalacji elektrycznych. Natomiast odpowiedzi C i D wskazują na narzędzia, które w ogóle nie są przeznaczone do precyzyjnego wyznaczania linii, a ich zastosowanie w kontekście planowania instalacji elektrycznej może prowadzić do poważnych błędów. Często przyczyną wyboru niewłaściwego narzędzia jest niedostateczna wiedza na temat specyfiki pracy z instalacjami elektrycznymi. W przypadku instalacji elektrycznych, kluczowe jest, aby narzędzia używane do wyznaczania tras były w stanie zapewnić dokładność oraz widoczność linii przez dłuższy czas i na większych dystansach. Użycie niewłaściwych narzędzi może prowadzić do nieprawidłowego rozmieszczenia przewodów, co w konsekwencji może wpłynąć na funkcjonalność oraz bezpieczeństwo całej instalacji. Dlatego istotne jest, aby przed przystąpieniem do pracy z instalacjami elektrycznymi, każdy specjalista posiadał wiedzę na temat odpowiednich narzędzi i ich właściwego zastosowania, zgodnie z najnowszymi standardami branżowymi.

Pytanie 37

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do transformatorów
B. Do prądnic tachometrycznych
C. Do wzmacniaczy maszynowych
D. Do indukcyjnych sprzęgieł dwukierunkowych
Wybór odpowiedzi związanej z wzmacniaczami maszynowymi, prądnicami tachometrycznymi lub indukcyjnymi sprzęgłami dwukierunkowymi jest mylny, ponieważ te urządzenia pełnią zupełnie inne funkcje w systemach elektrycznych. Wzmacniacze maszynowe są wykorzystywane do amplifikacji sygnałów, co oznacza, że zwiększają one moc sygnału elektrycznego, ale nie mają nic wspólnego z pomiarami prądu czy napięcia. Prądnice tachometryczne, z kolei, są zaprojektowane do konwersji prędkości obrotowej na sygnał elektryczny, co jest kluczowe w zastosowaniach związanych z kontrolą ruchu, ale nie dotyczą one transformacji sygnałów do pomiarów. Indukcyjne sprzęgła dwukierunkowe stosowane są w systemach napędowych, gdzie przekazują moment obrotowy między maszynami, jednak nie zajmują się przekształcaniem wartości prądu czy napięcia. Kluczowym błędem w rozumieniu tych urządzeń jest mylenie ich funkcji z funkcją przekładników pomiarowych. Aby uniknąć takich pomyłek, warto dokładnie zapoznać się z definicjami i zastosowaniami różnych grup urządzeń elektrycznych, co pomoże zrozumieć ich rolę w infrastrukturze energetycznej oraz przemysłowej.

Pytanie 38

Zdjęcie przedstawia

Ilustracja do pytania
A. wyłącznik.
B. rozłącznik.
C. przełącznik.
D. odłącznik.
Rozważając inne urządzenia, które zostały wymienione jako możliwości odpowiedzi, można zauważyć, że rozłącznik, wyłącznik i przełącznik mają różne funkcje i zastosowania, które nie odpowiadają charakterystykom odłącznika. Rozłącznik jest urządzeniem, które również służy do odłączania obwodu, ale jego działanie jest często bardziej złożone i może być stosowane w sytuacjach awaryjnych. Wyłącznik, z kolei, jest przystosowany do pracy pod obciążeniem, co oznacza, że może być używany do regularnego włączania i wyłączania obwodów elektrycznych, co nie jest celem odłącznika. Przełącznik natomiast, jego podstawowa funkcja polega na zmianie kierunku przepływu prądu lub włączaniu i wyłączaniu obwodów bez funkcji zapewnienia widocznego odłączenia. Często mylące jest myślenie, że te urządzenia mogą być używane zamiennie, co prowadzi do nieprawidłowych wniosków. Kluczowym błędem jest nieodróżnianie urządzeń przeznaczonych do pracy pod obciążeniem od tych, które mają na celu jedynie bezpieczne odłączenie obwodu. W praktyce, stosowanie niewłaściwego urządzenia w danej aplikacji może prowadzić do zagrożeń dla bezpieczeństwa, dlatego ważne jest, aby znać specyfikę każdego z tych urządzeń oraz ich prawidłowe zastosowanie zgodnie z obowiązującymi normami branżowymi.

Pytanie 39

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Zbyt duża moc urządzenia
B. Luźne połączenie w listwie neutralnej
C. Zbyt duży przekrój uszkodzonego przewodu
D. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 40

Wiatrołap jest oświetlany dwoma żarówkami. Żarówki w oprawach są włączane przez wyłącznik zmierzchowy. Gdy jedna z żarówek przestała świecić, jakie kroki należy podjąć, aby zidentyfikować i usunąć potencjalne przyczyny tej usterki?

A. Zweryfikować przewody, sprawdzić działanie wyłącznika, wymienić żarówkę
B. Wymienić żarówkę, która się nie świeci, sprawdzić przewody i oprawę oświetleniową
C. Zamienić żarówkę, która nie świeci, sprawdzić funkcjonowanie wyłącznika oraz oprawy oświetleniowej
D. Sprawdzić działanie wyłącznika, zweryfikować oprawę i przewody
Analizując inne odpowiedzi, można zauważyć, że skupiają się one na fragmentarycznych rozwiązaniach, co może prowadzić do niepełnej diagnozy problemu. Na przykład, wymiana tylko żarówki, bez sprawdzenia innych elementów instalacji, może spowodować, że użytkownik nie zauważyłby dalszych problemów, na przykład uszkodzenia przewodów lub wyłącznika. Zignorowanie konieczności weryfikacji przewodów może prowadzić do sytuacji, w której nowa żarówka również przestanie działać z powodu braku zasilania, co byłoby nieefektywnym i kosztownym rozwiązaniem. Podobnie, choć sprawdzenie działania wyłącznika jest istotne, nie powinno być to jedyne działanie, ponieważ uszkodzenie oprawy oświetleniowej też może być przyczyną problemu. Takie podejście jest typowe dla błędów myślowych, gdzie użytkownicy koncentrują się na jednym elemencie systemu, zaniedbując jego całościową analizę. Praktyczne podejście do diagnozowania usterek elektrycznych wymaga holistycznego spojrzenia na całą instalację, co zapewnia skuteczną identyfikację i eliminację problemów. Właściwe postępowanie zgodne z zasadami bezpieczeństwa i dobrymi praktykami branżowymi powinno obejmować kompleksowe sprawdzenie wszystkich komponentów systemu oświetleniowego, co jest kluczowe dla utrzymania efektywności energetycznej i niezawodności instalacji.