Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 4 lutego 2026 12:50
  • Data zakończenia: 4 lutego 2026 13:15

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. przyłącze
B. złącze
C. rozdzielnicę główną
D. instalacje odbiorcze
Przyłącze, choć często mylone z złączem, pełni inną funkcję w systemie elektroenergetycznym. Przyłącze odnosi się do punktu, w którym instalacja elektryczna łączy się z siecią energetyczną. Jest to miejsce, gdzie energia elektryczna dostarczana jest do budynku, a nie element, który zarządza rozdzieleniem energii na kilka obwodów. W konsekwencji, przyłącze nie spełnia roli rozdzielnika dla linii wewnętrznych. Rozdzielnica główna, z kolei, jest odpowiedzialna za dystrybucję energii elektrycznej do różnych obwodów w instalacji, ale nie jest bezpośrednio przeznaczona do łączenia wielu linii zasilających w jednym punkcie, jak ma to miejsce w przypadku złącza. Instalacje odbiorcze również nie są właściwą odpowiedzią, gdyż odnosi się to do urządzeń, które pobierają energię elektryczną z sieci, takich jak oświetlenie czy urządzenia domowe. Błędne zrozumienie funkcji tych elementów może prowadzić do nieefektywnych lub niebezpiecznych rozwiązań w instalacji, dlatego istotne jest zrozumienie różnicy między złączem a innymi komponentami systemu elektroenergetycznego. Właściwe rozpoznanie funkcji złącz i innych elementów jest kluczowe dla bezpieczeństwa oraz efektywności każdej instalacji elektrycznej.

Pytanie 2

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 1,5 mm2
B. 4 mm2
C. 2,5 mm2
D. 6 mm2
Odpowiedź 2,5 mm² jest poprawna, ponieważ obciążalność długotrwała przewodów miedzianych powinna być dobrana na podstawie maksymalnej gęstości prądu, która wynosi 8 A/mm². Aby obliczyć minimalny wymagany przekrój żyły dla prądu znamionowego 15,5 A, należy podzielić ten prąd przez maksymalną gęstość prądu: 15,5 A / 8 A/mm² = 1,9375 mm². W praktyce zaokrąglamy wynik do najbliższego standardowego rozmiaru, co daje 2,5 mm². Zgodnie z normami, dobór odpowiedniego przekroju żyły jest kluczowy dla zapewnienia bezpieczeństwa i efektywności w instalacjach elektrycznych. Zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co zwiększa ryzyko pożaru oraz uszkodzeń sprzętu. W zastosowaniach praktycznych, takich jak zasilanie urządzeń przemysłowych czy domowych, wybór właściwego przekroju żył jest niezbędny dla długotrwałej niezawodności systemu zasilania. Przykładem może być instalacja elektryczna w budynkach mieszkalnych, gdzie przewody muszą być odpowiednio dobrane do obciążenia, aby zapewnić komfort i bezpieczeństwo użytkowników.

Pytanie 3

W jaki sposób należy połączyć zaciski sieci zasilającej L, N, PE do zacisków puszki zasilającej instalację elektryczną, której schemat przedstawiono na rysunku, aby połączenia były zgodne z przedstawionym schematem ideowym?

Ilustracja do pytania
A. L - 3, N - 4, PE - 1
B. L - 1, N - 4, PE - 3
C. L - 2, N - 3, PE - 4
D. L - 1, N - 3, PE - 4
Każda z błędnych odpowiedzi opiera się na nieporozumieniach dotyczących zasadności podłączenia zacisków w instalacji elektrycznej. W przypadku pierwszej odpowiedzi, gdzie L jest łączony z punktem 2, N z punktem 3, a PE z punktem 4, pojawia się problem z tym, że zacisk L powinien być zawsze podłączony w sposób zapewniający właściwy przepływ prądu. Punkt 2 nie jest zgodny z układami normatywnymi, co może prowadzić do nieprawidłowości w zasilaniu. Kolejna odpowiedź, gdzie L jest podłączony do punktu 1, ale N do punktu 4 i PE do punktu 3, wprowadza zamieszanie dotyczące roli zacisków. Neutralny zacisk N nie powinien mieć kontaktu z zaciskiem ochronnym, co narusza podstawowe zasady bezpieczeństwa. Trzecia możliwość, gdzie L jest łączony z 1, N z 3, a PE z 4, jest poprawna, ale jej odwrócenie w wcześniejszych odpowiedziach pokazuje brak zrozumienia zasadności podziału funkcji zacisków. Wreszcie, ostatnia odpowiedź, która sugeruje, że L łączy się z punktem 3, N z 4, a PE z 1, całkowicie zmienia przeznaczenie zacisków. Tego typu błędy są często wynikiem mylnego zrozumienia funkcji fazowej, neutralnej i ochronnej w instalacjach elektrycznych, co może prowadzić do groźnych konsekwencji, takich jak ryzyko porażenia prądem czy awarie sprzętu. Warto pamiętać, że w każdej instalacji elektrycznej kluczowe jest przestrzeganie norm i zasad bezpieczeństwa, co podkreśla znaczenie dokładności w łączeniach elektrycznych oraz ich zgodności z obowiązującymi regulacjami.

Pytanie 4

Co powoduje zwęglenie izolacji na końcu przewodu fazowego blisko zacisku w puszce rozgałęźnej?

A. Wzrost napięcia zasilającego spowodowany przepięciem
B. Zbyt mały przekrój użytego przewodu
C. Zbyt wysoka wartość prądu długotrwałego
D. Poluzowanie śruby mocującej w puszce
Poluzowanie się śruby dociskowej w puszce rozgałęźnej jest jedną z najczęstszych przyczyn zwęglenia izolacji na końcu przewodu fazowego. Kiedy śruba mocująca luzuje się, może to prowadzić do niewłaściwego kontaktu elektrycznego, co powoduje wzrost oporu na styku. W wyniku tego oporu generowane jest ciepło, które może spalić izolację przewodu, prowadząc do zwęglenia. Praktyczne przykłady wskazują, że regularne przeglądy instalacji elektrycznych oraz zastosowanie odpowiednich narzędzi do prawidłowego dokręcania połączeń są niezbędne dla zapewnienia bezpieczeństwa. W standardach branżowych, takich jak PN-IEC 60364, zwraca się uwagę na konieczność stosowania wysokiej jakości materiałów oraz odpowiednich technik montażu, aby zminimalizować ryzyko wystąpienia takich problemów. Dobrą praktyką jest także oznaczanie i dokumentowanie przeprowadzonych kontroli oraz konserwacji połączeń, co sprzyja długoterminowemu bezpieczeństwu użytkowania instalacji elektrycznej.

Pytanie 5

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K1, K5, K4, K6, K3, K2, K7
B. K1, K5, K4, K6, K3, K7, K2
C. K7, K2, K3, K6, K4, K5, K1
D. K1, K2, K3, K4, K5, K6, K7
Podczas analizy niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów myślowych, które mogą prowadzić do nieporozumień w kontekście działania styczników i przekaźników. Odpowiedzi takie jak K7, K2, K3, K6, K4, K5, K1 czy inne sekwencje z pominięciem K1 jako pierwszego stycznika pokazują, że użytkownik nie uwzględnił podstawowej zasady działania obwodów elektrycznych – aktywacja elementów musi być logiczna i zgodna z kolejnością zaprogramowaną w obwodzie. Prawidłowe sterowanie stycznikami zapewnia, że każdy kolejne element jest aktywowany w odpowiednim momencie, co jest niezbędne dla właściwego rozruchu silnika. W przypadku przedstawionych odpowiedzi brakuje zrozumienia, jak styk pomocniczy K1 wpływa na działanie K5. Ignorowanie tego faktu może prowadzić do nieefektywnego rozruchu silnika, co może skutkować uszkodzeniem sprzętu lub nawet zagrożeniem dla bezpieczeństwa. Kluczowym jest zrozumienie, dlaczego takie sekwencje są istotne w praktycznych zastosowaniach, zwłaszcza w kontekście norm i standardów branżowych. Właściwe zrozumienie logiki działania styczników oraz ich połączeń jest fundamentem w automatyce i elektrotechnice, a nieprzestrzeganie tych zasad może prowadzić do błędnych wniosków w projektowaniu układów rozruchowych.

Pytanie 6

Na podstawie rysunku montażowego określ, na jakiej wysokości od podłogi należy zamontować dolną krawędź rozdzielnicy.

Ilustracja do pytania
A. 1,5 m
B. 1,4 m
C. 0,80 m
D. 0,90 m
Wybór niewłaściwej wysokości montażu rozdzielnicy może wynikać z niejasności dotyczących norm oraz zasad ergonomii. Na przykład, wyniki wskazujące na wysokości 0,90 m lub 0,80 m są często podyktowane próbą dostosowania sprzętu do niższych użytkowników, co może prowadzić do trudności w dostępie do urządzeń elektrycznych, szczególnie w sytuacjach awaryjnych. Takie umiejscowienie naraża również rozdzielnicę na ryzyko zalania lub uszkodzenia przez zanieczyszczenia na podłodze, co jest sprzeczne z zasadami bezpieczeństwa. Z drugiej strony, montowanie rozdzielnicy na wysokości 1,4 m nie spełnia norm ergonomicznych i może powodować trudności w obsłudze, zwłaszcza dla osób o mniejszym wzroście. W przypadku standardów instalacyjnych, kluczowa jest zgodność z lokalnymi regulacjami oraz międzynarodowymi normami, które jednoznacznie wskazują na preferowane wysokości montażu, aby zapewnić nie tylko wygodę, lecz także bezpieczeństwo użytkowników. Właściwe podejście do montażu rozdzielnicy jest zatem nie tylko kwestią estetyki, lecz przede wszystkim bezpieczeństwa i funkcjonalności systemu elektrycznego.

Pytanie 7

Jakie oznaczenie powinno być umieszczone na puszce instalacyjnej, która ma być użyta do połączenia uszkodzonego przewodu YDYo 5x4 mm2 w obszarze myjni samochodowej?

A. IP54 4x4 mm2
B. IP43 5x4 mm2
C. IP45 5x6 mm2
D. IP56 5x4 mm2
Prawidłowa odpowiedź, IP56 5x4 mm2, odnosi się do odpowiednich standardów ochrony przed pyłem i wodą, które są kluczowe w środowisku myjni samochodowych. Oznaczenie IP56 wskazuje na wysoką odporność na kurz oraz możliwość ochrony przed silnymi strumieniami wody, co jest istotne w kontekście pracy w mokrym środowisku. W przypadku połączeń elektrycznych w takich miejscach, szczególnie przy przewodach o przekroju 5x4 mm2, ważne jest, aby wybrać elementy spełniające normy bezpieczeństwa. W praktyce, zastosowanie puszki z oznaczeniem IP56 zapewnia, że instalacja będzie chroniona przed niekorzystnymi warunkami zewnętrznymi, co przekłada się na dłuższą żywotność komponentów oraz mniejsze ryzyko awarii. Standardy takie jak IEC 60529 definiują klasyfikację ochrony, co pozwala na dobór odpowiednich materiałów w zależności od specyfiki danego miejsca. W przypadku myjni, wytrzymałość na działanie wody oraz odporność na pył są niezbędne dla zapewnienia niezawodności i bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 8

Z którym zaciskiem będzie połączony zacisk 23 stycznika K2, jeżeli układ elektryczny zostanie zmontowany zgodnie z przedstawionym schematem montażowym?

Ilustracja do pytania
A. Z zaciskiem 2 listwy zaciskowej X1
B. Z zaciskiem 1 listwy zaciskowej X1
C. Z zaciskiem 21 przycisku S1
D. Z zaciskiem X1 lampki kontrolnej H1
Wybór innych zacisków, takich jak zacisk 21 przycisku S1 lub zacisku 1 listwy zaciskowej X1, jest wynikiem nieporozumienia dotyczącego funkcji poszczególnych elementów w układzie. Zacisk 21 przycisku S1 jest z reguły odpowiedzialny za aktywację obwodu, a nie za bezpośrednie połączenie ze stycznikiem K2. Podobnie, zacisk 1 listwy zaciskowej X1 może pełnić inną rolę, na przykład zasilania, co sprawia, że jego wybór w tej sytuacji jest błędny. Warto zauważyć, że selekcja niewłaściwych połączeń często wynika z niepełnego zrozumienia schematu, co może prowadzić do konsekwencji w postaci niesprawności urządzenia. W przypadku lampki kontrolnej H1, która jest zazwyczaj używana do sygnalizacji stanu pracy układu, jej zacisk także nie ma bezpośredniego związku z zaciskiem 23 stycznika K2. Ignorowanie schematów montażowych i standardowych procesów może prowadzić do poważnych problemów nie tylko w funkcjonowaniu urządzeń, ale również w kontekście bezpieczeństwa elektrycznego. Dlatego kluczowe jest, aby każda osoba pracująca z instalacjami elektrycznymi miała solidne podstawy teoretyczne i praktyczne, co pozwoli uniknąć typowych błędów w analizie schematów i połączeń.

Pytanie 9

Której końcówki wkrętaka należy użyć do demontażu wyłącznika nadprądowego z szyny TH 35?

Ilustracja do pytania
A. Końcówki 1.
B. Końcówki 2.
C. Końcówki 4.
D. Końcówki 3.
Końcówka 2. jest właściwym rozwiązaniem, ponieważ wyłączniki nadprądowe montowane na szynie TH 35 wymagają użycia wkrętaka o płaskiej końcówce do ich demontażu. Końcówka płaska zapewnia odpowiednią stabilność i precyzję podczas wkręcania i wykręcania śrub mocujących, co jest kluczowe w kontekście pracy z instalacjami elektrycznymi. Użycie odpowiedniego narzędzia minimalizuje ryzyko uszkodzenia złączy oraz zwiększa bezpieczeństwo pracy. Przykładowo, używając końcówki płaskiej, można z łatwością uzyskać dostęp do wyłącznika, co jest szczególnie istotne w przypadku rutynowych przeglądów lub konserwacji instalacji elektrycznych. Standardy branżowe zalecają korzystanie z narzędzi, które są dostosowane do specyfiki montażu, dlatego znajomość odpowiednich końcówek wkrętaka, jak w tym przypadku, jest niezbędna dla każdego elektryka.

Pytanie 10

Jakie oznaczenie, zgodnie z Europejskim Komitetem Normalizacyjnym Elektrotechniki CENELEC posiada przewód przedstawiony na rysunku?

Ilustracja do pytania
A. H07V-U
B. NYM-J
C. NAYY-O
D. H03VV-F
Przewody 'NAYY-O' i 'H07V-U' niestety nie spełniają wymagań do tej instalacji, co można zauważyć na rysunku. 'NAYY-O' to przewody aluminiowe, które zazwyczaj wykorzystuje się w instalacjach na zewnątrz. Mają inną konstrukcję izolacyjną, więc nie nadają się do stałych instalacji w budynkach. Natomiast 'H07V-U' to przewód jednożyłowy, który również nie pasuje do wielożyłowych przewodów, jakie były potrzebne, by zapewnić prawidłowe zasilanie. Użycie takich przewodów może prowadzić do różnych błędów, bo jak źle dobierzesz przewód, to wpływa na bezpieczeństwo i funkcjonowanie całego systemu elektrycznego. Oznaczenie 'H03VV-F' odnosi się do przewodów elastycznych, używanych głównie w urządzeniach przenośnych, a nie w stałych instalacjach. Wybór niewłaściwego typu przewodu to nie tylko obniżona efektywność, ale też większe ryzyko awarii systemu, co jest wbrew normom CENELEC, które sugerują dobór przewodów odpowiednich do danej instalacji. Warto pamiętać, żeby wybierając przewody, kierować się ich przeznaczeniem oraz obowiązującymi normami, by zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 11

Na ilustracji przedstawiono schemat układu zasilania silnika elektrycznego zawierający

Ilustracja do pytania
A. czujnik kolejności i zaniku faz.
B. wyłącznik silnikowy.
C. przekaźnik termobimetalowy.
D. cyklokonwertor.
Czujnik kolejności i zaniku faz jest kluczowym elementem w układach zasilania silników trójfazowych. Jego podstawowym zadaniem jest monitorowanie obecności oraz kolejności faz, co ma istotne znaczenie dla prawidłowej pracy silników elektrycznych. W sytuacji, gdy jedna z faz zniknie lub dojdzie do zmian w kolejności, czujnik natychmiast odcina zasilanie, co zapobiega uszkodzeniu silnika. Przykładowo, w aplikacjach przemysłowych, gdzie silniki są narażone na różne warunki pracy, użycie czujnika pozwala na zwiększenie bezpieczeństwa i niezawodności systemu. W standardzie PN-EN 60204-1, który dotyczy bezpieczeństwa urządzeń elektrycznych w maszynach, podkreślono znaczenie ochrony silników przed negatywnymi skutkami zasilania. Dodatkowo, czujniki te mogą być wyposażone w dodatkowe funkcje, takie jak sygnalizacja optyczna stanu pracy, co ułatwia diagnostykę i konserwację systemów zasilania.

Pytanie 12

Na którym rysunku przedstawiono świetlówkę kompaktową?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wybór odpowiedzi A, B lub C może wynikać z nieporozumienia dotyczącego różnic między różnymi rodzajami lamp. Tradycyjne żarówki mają inny, bardziej okrągły kształt i emitują światło w sposób mniej efektywny, co może prowadzić do błędnego utożsamiania ich z świetlówkami kompaktowymi. Odpowiedzi te nie odzwierciedlają charakterystycznych cech świetlówek typu CFL, które są projektowane z myślą o maksymalizacji wydajności oraz minimalizacji zużycia energii. Innym częstym błędem jest pomylenie świetlówki kompaktowej z innymi rodzajami lamp, np. LED, które również oferują oszczędność energii, ale mają zupełnie inny kształt i budowę. Kluczowe dla rozróżnienia tych lamp jest zrozumienie ich konstrukcji oraz zasad działania. Świetlówki kompaktowe wykorzystują gaz i fosfor, co sprawia, że są bardziej skomplikowane w produkcji i wymagają innej technologii niż tradycyjne żarówki. Osoby, które mylnie identyfikują świetlówki kompaktowe, mogą nie doceniać ich zalet w kontekście oszczędności energii oraz wpływu na środowisko. W związku z powyższym, istotne jest, aby przed podjęciem decyzji o wyborze odpowiedniego źródła światła, zrozumieć ich zastosowanie i korzyści, jakie mogą przynieść w codziennym użytkowaniu.

Pytanie 13

Na którym rysunku przedstawiono typ schematu, na podstawie którego istnieje możliwość lokalizacji braku ciągłości rzeczywistych połączeń w instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór innych schematów, takich jak A, C lub D, nie dostarcza wystarczających informacji do lokalizacji braków ciągłości w połączeniach elektrycznych. Schemat A może przedstawiać ogólny zarys instalacji, ale brak w nim szczegółowych oznaczeń, które są kluczowe dla identyfikacji problemów. W przypadku schematu C, być może ilustruje on różne komponenty, ale ich rozmieszczenie i brak wyraźnych połączeń uniemożliwiają efektywną diagnostykę. Schemat D z kolei może dotyczyć innego aspektu instalacji, co wprowadza w błąd, ponieważ nie odnosi się bezpośrednio do problemu lokalizacji awarii. W praktyce, niektóre schematy nie uwzględniają standardów, które nakładają obowiązek na techników przedstawiania instalacji w sposób umożliwiający łatwe zrozumienie i diagnozowanie. Problemy te mogą prowadzić do nieporozumień i wydłużenia czasu potrzebnego na naprawę, co jest nieefektywne i kosztowne. Oparcie się na schematach, które nie spełniają tych norm, generuje ryzyko dla bezpieczeństwa i niezawodności instalacji elektrycznych. Niezrozumienie różnicy między detalami przedstawionymi na schemacie a ich praktycznym zastosowaniem może skutkować nieprawidłowym podejściem do diagnozowania awarii, co może być szkodliwe zarówno dla instalatora, jak i dla użytkowników danego systemu.

Pytanie 14

W którym z punktów spośród wskazanych strzałkami na charakterystyce diody prostowniczej przedstawionej na rysunku odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór punktów B, C lub D wskazuje na zrozumienie jedynie części charakterystyki diody prostowniczej, co prowadzi do mylnych wniosków. Punkt B znajduje się na początku krzywej charakterystyki, gdzie dioda praktycznie nie przewodzi prądu, więc nie można tam mówić o napięciu przebicia. Taki wybór może sugerować niedostateczne zrozumienie podstawowych zasad działania diod. Punkt C, który wskazuje na prąd zwrotny, jest również błędny, ponieważ w tym miejscu dioda nie osiągnęła jeszcze napięcia przebicia i nie przewodzi w kierunku wstecznym. Punkt D natomiast odnosi się do obszaru pracy diody w kierunku przewodzenia, co również nie ma nic wspólnego z napięciem przebicia. Kluczowym błędem w myśleniu może być ignorowanie, że napięcie przebicia to punkt, w którym zachodzi gwałtowna zmiana w charakterystyce diody, a nie stan spoczynku czy też obszar przewodzenia. Wiedza na temat tych różnic jest niezbędna dla prawidłowego projektowania układów elektronicznych oraz unikania typowych problemów związanych z elektroniką, takich jak przegrzewanie czy uszkodzenia spowodowane nieodpowiednim napięciem.

Pytanie 15

Pomiar którego parametru wyłącznika różnicowoprądowego przedstawiono na rysunku?

Ilustracja do pytania
A. Prądu obciążenia.
B. Czasu zadziałania.
C. Rezystancji izolacji.
D. Rzeczywistego prądu zadziałania.
Zrozumienie działania wyłączników różnicowoprądowych i ich pomiarów jest kluczowe dla bezpieczeństwa instalacji. Odpowiedzi dotyczące rezystancji izolacji, czasu zadziałania oraz prądu obciążenia wskazują na typowe nieporozumienia związane z funkcjonowaniem tych urządzeń. Rezystancja izolacji nie jest parametrem, który wpływa na działanie wyłącznika różnicowoprądowego, lecz na jego bezpieczeństwo względem przebicia do ziemi oraz inne aspekty dotyczące izolacji. Czas zadziałania odnosi się do momentu, w którym urządzenie zareaguje na określony poziom prądu różnicowego, ale nie jest to tożsame z pomiarem rzeczywistego prądu zadziałania, który jest kluczowy dla zabezpieczeń. Z kolei prąd obciążenia odnosi się do wartości prądu płynącego przez obciążenie, a nie do prądu różnicowego, który jest kluczowym czynnikiem dla zadziałania wyłącznika. Ważne jest, aby w kontekście pomiarów, takich jak te dotyczące wyłączników różnicowoprądowych, mieć na uwadze różnice między różnymi typami prądów oraz ich znaczeniem dla bezpieczeństwa. Typowe błędy myślowe mogą prowadzić do mylnego rozumienia, że wszystkie te parametry są równoważne, podczas gdy każdy z nich pełni inną rolę w ocenie bezpieczeństwa i skuteczności instalacji elektrycznej. Właściwe zrozumienie tych różnic jest kluczowe dla prawidłowego stosowania wyłączników i zapewnienia ich efektywności w ochronie przed zagrożeniami elektrycznymi.

Pytanie 16

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. ZL-PE RCD
B. ZL-L
C. ZL-PE
D. ZL-N
Wybór innych opcji pomiarowych, takich jak ZL-PE, ZL-N, czy ZL-L, nie uwzględnia specyfiki działania urządzeń różnicowoprądowych, które są kluczowe w modernych instalacjach elektrycznych. Opcja ZL-PE, choć zawiera przewód ochronny, nie uwzględnia działania RCD, co jest istotne dla skuteczności ochrony przeciwporażeniowej. Pomiar ZL-N również jest niewłaściwy, ponieważ nie bierze pod uwagę ochrony, którą zapewnia przewód PE. W przypadku zadań związanych z analizą bezpieczeństwa instalacji, nie można ignorować wpływu urządzeń RCD, które wykrywają różnice w prądzie między przewodami fazowymi a ochronnymi, co jest kluczowe w sytuacjach awaryjnych. Odpowiedź ZL-L dotyczy pomiarów między przewodami fazowymi, co nie tylko mija się z celem w kontekście analizy impedancji pętli zwarcia, ale również pomija ważne aspekty ochrony. Te błędy myślowe mogą prowadzić do poważnych konsekwencji bezpieczeństwa, gdyż pomijają istotne elementy ochronne w instalacjach elektrycznych. Właściwe zrozumienie koncepcji pomiaru ZL-PE RCD jest kluczowe dla zapewnienia najwyższych standardów bezpieczeństwa w instalacjach elektroenergetycznych.

Pytanie 17

Na rysunku przedstawiono symbol graficzny przewodu

Ilustracja do pytania
A. PEN
B. L
C. PE
D. N
Symbol przedstawiony na rysunku oznacza przewód neutralny, który w instalacjach elektrycznych jest kluczowym elementem systemu zasilania. Oznaczenie "N" wskazuje na przewód, który ma za zadanie prowadzić prąd powracający z obciążenia do źródła zasilania. Przewód neutralny jest niezbędny w układach jedno- i trójfazowych, gdzie zapewnia równowagę obciążenia w instalacji. W praktyce oznaczenie to jest stosowane zgodnie z normami IEC 60446, które definiują sposób oznaczania przewodów w instalacjach elektrycznych. Poprawne rozróżnianie między przewodami fazowymi a neutralnym jest kluczowe dla bezpieczeństwa eksploatacji instalacji. Przykładowo, w budynkach mieszkalnych przewód neutralny jest wykorzystywany w instalacjach oświetleniowych oraz gniazdach elektrycznych, gdzie zapewnia powrót prądu do źródła zasilania, co jest niezbędne do prawidłowego działania urządzeń elektrycznych. Bez przewodu neutralnego, obwody nie byłyby w stanie funkcjonować prawidłowo, co mogłoby prowadzić do niebezpiecznych sytuacji takich jak przegrzanie czy zwarcia.

Pytanie 18

Do którego typu źródeł światła zalicza się lampę przedstawioną na rysunku?

Ilustracja do pytania
A. Żarowych.
B. Rtęciowych.
C. Indukcyjnych.
D. Elektroluminescencyjnych.
Lampa przedstawiona na rysunku to lampa LED, która należy do grupy źródeł światła elektroluminescencyjnych. Emituje ona światło dzięki procesowi elektroluminescencji, gdzie prąd elektryczny przepływa przez półprzewodnikowe diody, powodując emisję fotonów. W przeciwieństwie do lamp żarowych, które generują światło poprzez podgrzewanie włókna, lampy LED są znacznie bardziej energooszczędne i mają dłuższą żywotność. Zastosowanie diod LED w oświetleniu wnętrz, ulic, a także w elektronice użytkowej, przyczynia się do zmniejszenia zużycia energii i emisji dwutlenku węgla. Zgodnie z normami, lampy LED są preferowane w nowoczesnych rozwiązaniach oświetleniowych ze względu na ich wysoką efektywność energetyczną i niski poziom ciepła generowanego podczas pracy. Dobre praktyki w zakresie oświetlenia wskazują na coraz szersze wykorzystanie technologii LED w różnych sektorach, od komercyjnych po domowe, co czyni je kluczowym elementem zrównoważonego rozwoju w branży oświetleniowej.

Pytanie 19

W którym miejscu układu przedstawionego na schemacie powinny zostać zainstalowane zabezpieczenia nadprądowe o największej wartości prądu znamionowego?

Ilustracja do pytania
A. W rozdzielnicy głównej.
B. W rozdzielnicy mieszkaniowej.
C. Bezpośrednio przed licznikami.
D. W złączu.
Wydaje się, że instalowanie zabezpieczeń nadprądowych w rozdzielnicy głównej, mieszkaniowej lub przed licznikami to dobry pomysł, ale nie do końca tak jest. Rozdzielnica główna służy do rozdzielania obwodów, ale nie jest najlepszym miejscem na montaż zabezpieczeń o najwyższej wartości prądu, bo nie będzie chronić całego układu przed przeciążeniami na etapie przyłączenia do sieci. Jak się je włoży w rozdzielnicy mieszkaniowej, to chronią tylko lokalne obwody, a nie całą instalację. A umiejscowienie ich przed licznikami może prowadzić do problemów, jak źle dobrane przewody czy izolacja, co sprawi, że nie zadziałają, gdy dojdzie do awarii. Najlepiej, żeby te zabezpieczenia były w złączu, aby mogły działać w momencie zwarcia i przeciążenia, gdzie energia z sieci wchodzi do instalacji. Źle dobrane miejsce do montażu zabezpieczeń może prowadzić do poważnych problemów, jak pożar lub uszkodzenia urządzeń elektrycznych. Dlatego ważne jest, by projektując instalację, trzymać się norm i zasad, które wskazują, że złącze elektryczne to kluczowe miejsce dla zabezpieczeń.

Pytanie 20

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±1,5% + 3 cyfry
B. ±2,0% + 2 cyfry
C. ±1,0% + 4 cyfry
D. ±2,5% + 1 cyfra
Odpowiedź ±1,0% + 4 cyfry jest prawidłowa, ponieważ oferuje najwyższą precyzję pomiaru wśród dostępnych opcji. Przy natężeniu prądu wynoszącym 30 mA błąd pomiaru obliczamy na podstawie wzoru: błąd = (wartość pomiaru × procent dokładności) + liczba cyfr. Dla podanej odpowiedzi, maksymalny błąd wynosi: 30 mA × 1,0% + 4 cyfry, co daje 0,3 mA + 0,04 mA, czyli 0,34 mA. Taki poziom dokładności jest szczególnie istotny w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, np. w laboratoriach badawczych, w elektronice czy przy kalibracji urządzeń. Wybór miernika z lepszą dokładnością pozwala także na uniknięcie błędów w dalszych obliczeniach oraz wpływa na wiarygodność wyników. Stąd, zgodnie z dobrymi praktykami w inżynierii, zawsze warto wybierać urządzenia o jak najwyższej dokładności, aby zapewnić rzetelność pomiarów i ich zgodność z obowiązującymi normami.

Pytanie 21

Do jakiej kategorii zaliczają się kable współosiowe?

A. Oponowych
B. Grzewczych
C. Telekomunikacyjnych
D. Kabelkowych
Przewody współosiowe, znane również jako kable koncentryczne, są kluczowym elementem w systemach telekomunikacyjnych. Ich budowa składa się z centralnego przewodu, który jest otoczony dielektrykiem, a następnie metalową osłoną. Taka konstrukcja pozwala na przesyłanie sygnałów radiowych i telewizyjnych z minimalnymi zakłóceniami, co jest szczególnie ważne w telekomunikacji. Przewody współosiowe są powszechnie wykorzystywane w instalacjach telewizyjnych, sieciach komputerowych oraz w systemach audio, gdzie istotna jest jakość przesyłanych danych. Zgodnie z normami branżowymi, takie jak ANSI/TIA-568, przewody te muszą spełniać określone standardy dotyczące tłumienia sygnału i zakłóceń elektromagnetycznych, co gwarantuje ich niezawodność. Stosowanie przewodów współosiowych w telekomunikacji jest także uzasadnione ich łatwością w instalacji oraz dużą odpornością na uszkodzenia mechaniczne, co czyni je preferowanym rozwiązaniem w wielu aplikacjach.

Pytanie 22

Którą czynność przedstawiono na rysunku?

Ilustracja do pytania
A. Zaciskanie opaski kablowej.
B. Klejenie na gorąco przewodu kabelkowego.
C. Zaciskanie końcówki tulejkowej.
D. Ściąganie izolacji z przewodu.
Odpowiedź "Zaciskanie opaski kablowej" jest prawidłowa, ponieważ na zdjęciu przedstawiono narzędzie służące do zaciskania opasek kablowych. Opaski kablowe są powszechnie stosowane w instalacjach elektrycznych oraz w organizacji kabli w różnych aplikacjach, takich jak urządzenia komputerowe, automatyka przemysłowa czy instalacje domowe. Zaciskanie opaski kablowej pozwala na skuteczne zabezpieczenie wiązek przewodów, co zwiększa bezpieczeństwo instalacji oraz zapobiega przypadkowemu uszkodzeniu kabli. Stosując opaski kablowe, należy zwrócić uwagę na ich odpowiednią szerokość oraz materiał, z którego są wykonane, aby były zgodne z obowiązującymi standardami. Dobrą praktyką jest również stosowanie narzędzi mechanicznych, co pozwala uniknąć nadmiernego nacisku na przewody i ich uszkodzenia. Właściwe użycie opasek kablowych wpływa nie tylko na estetykę instalacji, ale także na jej funkcjonalność i trwałość.

Pytanie 23

Symbol graficzny przedstawiony na rysunku oznacza w instalacjach elektrycznych

Ilustracja do pytania
A. przewód ochronny nieuziemiony.
B. skrzyżowanie przewodów bez połączenia elektrycznego.
C. przewód ochronny uziemiony.
D. połączenie elektryczne z korpusem, obudową (masą).
Ten symbol na rysunku to naprawdę ważna rzecz, jeśli chodzi o instalacje elektryczne. Oznacza on połączenie elektryczne z korpusem, czyli masą. Takie połączenia są niezbędne dla bezpieczeństwa, bo dobrze uziemione urządzenia chronią nas przed porażeniem prądem, zwłaszcza jak coś pójdzie nie tak. W Polsce mamy konkretne normy, które mówią, że takie połączenia trzeba stosować, a zwłaszcza w urządzeniach, które mogą być niebezpieczne. Przykład? Urządzenia przemysłowe! Każde z nich musi być uziemione, żeby było bezpiecznie w trakcie pracy. Jak coś jest źle podłączone, to mogą się zdarzyć naprawdę groźne sytuacje, jak przepięcia czy porażenia prądem. Dlatego tak ważne jest, żeby wiedzieć, co oznaczają te symbole i stosować je w każdym projekcie elektrycznym. To nie tylko dobrze, to wręcz konieczność w tej branży.

Pytanie 24

Warunkiem automatycznego odłączenia zasilania w systemach typu TN jest relacja (UO - napięcie nominalne w V; Ia - wartość prądu w A, zapewniająca natychmiastowe, automatyczne zadziałanie urządzenia ochronnego; Zs - impedancja pętli zwarciowej w Ω)

A. UO > Zs ∙ Ia
B. UO < Zs ∙ 2Ia
C. UO < Zs ∙ Ia
D. UO > Zs ∙ 2Ia
Odpowiedź UO > Zs ∙ Ia jest poprawna, ponieważ zgodnie z zasadami ochrony urządzeń elektrycznych, napięcie znamionowe (UO) powinno być większe od iloczynu impedancji pętli zwarciowej (Zs) i wartości prądu, który zapewnia bezzwłoczne zadziałanie urządzenia ochronnego (Ia). To oznacza, że w przypadku zwarcia, napięcie musi być wystarczające, aby zainicjować odpowiednią reakcję urządzenia ochronnego, co zapewnia bezpieczeństwo użytkowników oraz integralność systemu. Zgodnie z normami takimi jak PN-EN 60947-2, które określają wymagania dotyczące zabezpieczeń elektrycznych, ta zasada jest kluczowa w projektowaniu i eksploatacji instalacji elektrycznych. Przykładem zastosowania tej zasady może być proces doboru wyłączników nadprądowych, które muszą odpowiednio reagować na zwarcia, aby zminimalizować ryzyko pożaru lub uszkodzeń urządzeń. Odpowiednie obliczenia impedancji pętli zwarciowej oraz prądu zadziałania są niezbędne w analizie ochrony instalacji, co podkreśla praktyczny aspekt tej wiedzy w codziennej pracy inżynierów elektryków.

Pytanie 25

Jakie jest minimalne napięcie znamionowe izolacji, jakie powinien posiadać przewód przeznaczony do instalacji trójfazowej 230/400 V, umieszczonej w rurkach stalowych?

A. 600/1000 V
B. 300/500 V
C. 450/750 V
D. 300/300 V
Odpowiedź 450/750 V jest poprawna, ponieważ wynika z norm dotyczących instalacji elektrycznych, które wskazują, że przewody stosowane w instalacjach trójfazowych muszą charakteryzować się odpowiednim napięciem znamionowym izolacji. W przypadku instalacji o napięciu nominalnym 230/400 V, zgodnie z normą PN-EN 60228, przewody powinny mieć minimum napięcie znamionowe izolacji 450/750 V. Praktyczne zastosowanie tej wartości zapewnia odpowiednią ochronę przed uszkodzeniami elektrycznymi oraz minimalizuje ryzyko porażenia prądem w przypadku zwarcia. Stosowanie przewodów o wyższej wartości znamionowej izolacji również spowalnia proces degradacji materiału w trudnych warunkach, takich jak wysokie temperatury czy obecność wilgoci. Przykładem mogą być instalacje w przemyśle, gdzie przewody często narażane są na działanie agresywnych substancji chemicznych. Dodatkowo, zastosowanie przewodów z wyższą wartością napięcia znamionowego jest zgodne z zasadami dobrych praktyk w projektowaniu i wykonawstwie instalacji elektrycznych, co przekłada się na bezpieczeństwo i niezawodność systemu energetycznego.

Pytanie 26

Które źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Lampę neonową.
B. Żarówkę wolframową.
C. Świetlówkę kompaktową.
D. Żarówkę halogenową.
Odpowiedzi, które wskazują na inne źródła światła, mogą wydawać się na pierwszy rzut oka logiczne, jednak każda z nich posiada cechy, które różnią się od świetlówki kompaktowej. Żarówka halogenowa jest ulepszoną wersją żarówki tradycyjnej, która działa na zasadzie podgrzewania włókna tungstenowego. Choć ma wyższą wydajność niż standardowe żarówki żarowe, jej kształt i działanie nie są zgodne z tym, co przedstawiono na zdjęciu. Żarówka wolframowa, tak jak halogenowa, również wykorzystuje włókno, emitując ciepłe światło, ale jej kształt jest znacznie bardziej okrągły i nie przyjmuje postaci spiralnej. Lampa neonowa, z drugiej strony, jest zupełnie innym typem źródła światła; wykorzystuje gaz neonowy do emisji charakterystycznych kolorów, jednak nie posiada cech świetlówki kompaktowej. Typowe błędy myślowe w tym kontekście obejmują myślenie, że ponieważ źródła światła różnią się jedynie w kilku aspektach, można je utożsamiać. Ważne jest, aby zrozumieć podstawowe różnice w budowie i działaniu różnych typów źródeł światła, co pozwala na świadome ich dobieranie w zależności od potrzeb oświetleniowych i energetycznych. W kontekście nowoczesnych rozwiązań oświetleniowych, znajomość tych różnic jest kluczowa dla efektywnego projektowania systemów oświetleniowych oraz optymalizacji kosztów energii.

Pytanie 27

Na podstawie charakterystyki przedstawionej na rysunku określ przedział czasu, w którym może, lecz nie musi nastąpić zadziałanie wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA, przy przepływie przez niego prądu o wartości 25 A.

Ilustracja do pytania
A. 0 s ÷ 0,06 s
B. 60 s ÷ 10 000 s
C. 0,06 s ÷ 0,017 s
D. 10 s ÷ 60 s
Wybór niewłaściwego przedziału czasu zadziałania wyzwalacza termobimetalowego świadczy o nieporozumieniu w zakresie zasad działania tych urządzeń. Czas reakcji wyłącznika powinien być dostosowany do warunków pracy i wartości prądów, a niektóre z podanych odpowiedzi świadczą o braku zrozumienia tych parametrów. Na przykład, odpowiedź sugerująca 0,06 s ÷ 0,017 s odnosi się do wartości, które są zbyt krótkie dla wyzwalacza termobimetalowego, który działa na zasadzie nagrzewania wkładu bimetalowego. Tego typu wyzwalacze mają charakterystykę czasową, która jest zdefiniowana przez ich konstrukcję i zastosowanie, co oznacza, że czas zadziałania będzie na ogół znacznie dłuższy. Z kolei przedział od 60 s do 10 000 s implikuje, jakoby wyzwalacz miał działać w sytuacjach, które są niezgodne z jego przeznaczeniem — są to wartości, które mogą prowadzić do szkodliwych skutków dla instalacji. Typowe błędy myślowe, które prowadzą do takich wniosków, obejmują mylenie charakterystyki czasowej z innymi parametrami oraz brak zrozumienia zasady działania termobimetalu. W praktyce, dla bezpieczeństwa i niezawodności systemów elektrycznych, kluczowe jest, aby użytkownicy i projektanci mieli pełną świadomość działania wyłączników, ich charakterystyk oraz norm, które regulują ich użycie.

Pytanie 28

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Wyładowcze wysokoprężne.
B. Żarowe.
C. Wyładowcze niskoprężne.
D. Półprzewodnikowe.
Wybór innych typów źródeł światła, takich jak wyładowcze niskoprężne, półprzewodnikowe czy wyładowcze wysokoprężne, jest nieprawidłowy z kilku powodów. Wyładowcze niskoprężne, takie jak lampy fluorescencyjne, działają na zasadzie wyładowania elektrycznego w gazie, co skutkuje zupełnie inną charakterystyką świetlną. Te lampy emitują miękkie, rozproszone światło o niższej temperaturze barwowej w porównaniu do lamp halogenowych, co sprawia, że są mniej odpowiednie do zastosowań wymagających intensywności oraz jakości światła. Półprzewodnikowe źródła światła, jak diody LED, charakteryzują się wysoką efektywnością energetyczną oraz długą żywotnością, ale również różnią się od żarówek halogenowych pod względem jakości emitowanego światła. W kontekście oświetlenia akcentującego, lampy LED mogą nie osiągać takiej samej temperatury barwowej, co lampy halogenowe. Wyładowcze wysokoprężne, z kolei, to lampy stosowane w oświetleniu ulicznym czy przemysłowym, które generują bardzo silne światło, ale mają ograniczone zastosowanie w kontekście domowym. Wybór niewłaściwego źródła światła może prowadzić do niezadowolenia z jakości oświetlenia oraz wyższych kosztów eksploatacji. Dlatego zrozumienie różnic pomiędzy tymi technologiami jest kluczowe w doborze odpowiednich źródeł światła do konkretnych zastosowań.

Pytanie 29

W układzie przedstawionym na rysunku łącznik nie powoduje wyłączenia żarówki. W celu zdiagnozowania usterki wykonano pomiary, których wyniki zapisano w tabeli.

Lp.Pomiar rezystancji między punktamiWartość
Ω
12 – 30
23 – 50
35 – 6 (łącznik w pozycji otwarty)0
45 – 6 (łącznik w pozycji zamknięty)0
54 – 70
Ilustracja do pytania
A. uszkodzenie przewodu między punktami 2 – 3.
B. niepewne zamocowanie puszki rozgałęźnej do podłoża.
C. zwarcie międzyprzewodowe między punktami 5 – 6.
D. przerwa w przewodzie neutralnym.
Wybór odpowiedzi dotyczącej uszkodzenia przewodu między punktami 2 – 3 jest często wynikiem błędnego rozumienia pojęcia obwodu elektrycznego oraz sposobu działania łączników. Użytkownicy mogą myśleć, że każde uszkodzenie przewodu prowadzi do braku działania urządzenia, jednak w przypadku otwartego obwodu żarówka nie świeci. Z drugiej strony, niepewne zamocowanie puszki rozgałęźnej do podłoża nie ma wpływu na działanie obwodu elektrycznego, gdyż fizyczne położenie nie wpływa na przewodnictwo elektryczne, o ile połączenia są właściwie wykonane. Podobnie, przerwa w przewodzie neutralnym może wydawać się problematyczna, jednak w przypadku obwodu z żarówką i wyłącznikiem nie spowoduje stałego świecenia. Kluczowym błędem myślowym jest przypisywanie problemów z oświetleniem do uszkodzeń przewodów, gdy w rzeczywistości może to być efekt zwarcia, jak wskazuje analiza pomiarów. Takie myślenie wprowadza w błąd i może prowadzić do nieprawidłowych diagnoz oraz nieefektywnego usuwania usterek w instalacji elektrycznej. W celu uniknięcia takich pomyłek, ważne jest zrozumienie działania obwodów oraz umiejętność analizy wyników pomiarów, co powinno być częścią każdych badań nad układami elektrycznymi.

Pytanie 30

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. II
B. I
C. IV
D. III
Wybór opraw klasy II, III lub IV wskazuje na nieporozumienie dotyczące standardów bezpieczeństwa i funkcji oświetlenia miejscowego. Klasa II opisuje oprawy, które są podwójnie izolowane, co sprawia, że nie wymagają uziemienia, ale nie są one rekomendowane do zastosowań, gdzie istnieje ryzyko kontaktu z wodą lub innymi cieczyami, co często ma miejsce w miejscach pracy. Wybierając te oprawy na stanowiska robocze, narażamy użytkowników na potencjalne zagrożenia elektryczne. Klasa III z kolei odnosi się do urządzeń zasilanych z niskonapięciowych źródeł, co może być stosowane w niektórych aplikacjach, ale nie jest odpowiednie do typowego oświetlenia miejscowego, które wymaga wyższego napięcia dla efektywnego działania. Klasa IV dotyczy produktów przeznaczonych do zastosowań specjalnych, które są często chronione przed czynnikami zewnętrznymi, ale nie mają zastosowania w standardowych warunkach biurowych czy przemysłowych. Wybór niewłaściwej klasy oprawy może prowadzić do poważnych konsekwencji zdrowotnych i bezpieczeństwa, dlatego zrozumienie tych różnic jest kluczowe w procesie projektowania efektywnego oświetlenia miejscowego. Podstawowym błędem myślowym jest zakładanie, że wszystkie oprawy mogą być stosowane zamiennie, co ignoruje różnice w wymaganiach bezpieczeństwa i funkcjonalności. W kontekście standardów branżowych, stosowanie opraw klasy I jest najlepszą praktyką, ponieważ minimalizuje ryzyko porażenia prądem i zapewnia bezpieczeństwo pracy.

Pytanie 31

Układ oznaczany na schematach blokowych przedstawionym symbolem graficznym zalicza się do

Ilustracja do pytania
A. filtrów.
B. sterowników.
C. falowników.
D. prostowników.
Poprawnie – symbol na rysunku jednoznacznie oznacza prostownik. Strzałka z lewej strony, napis „AC” po stronie wejścia i „DC” po stronie wyjścia pokazują, że układ zamienia prąd przemienny na prąd stały. W technice zasilania jest to klasyczna funkcja prostownika: konwersja AC→DC. W praktyce prostownik jest pierwszym etapem większości zasilaczy impulsowych i liniowych – np. w zasilaczu do laptopa, ładowarce telefonu, zasilaczu PLC, zasilaczach do sterowników bram, systemów alarmowych, CCTV, itp. Najczęściej stosuje się mostek Graetza zbudowany z czterech diod prostowniczych, a dalej kondensator filtrujący i ewentualnie układ stabilizacji. W schematach blokowych norma przyjęła właśnie takie proste oznaczenie: prostokąt z opisem AC po jednej stronie i DC po drugiej, czasem z ukośną linią, tak jak na rysunku. Moim zdaniem warto od razu kojarzyć, że jeżeli widzisz AC po wejściu i DC po wyjściu, to nie jest ani falownik, ani filtr, ani sterownik, tylko klasyczny prostownik. W układach automatyki i instalacjach niskonapięciowych dobór prostownika musi uwzględniać prąd znamionowy, dopuszczalne tętnienia napięcia stałego, klasę izolacji i zgodność z normami PN-EN dotyczących zasilaczy i urządzeń niskonapięciowych. W eksploatacji ważne jest też chłodzenie elementów prostowniczych (diody, mostki), poprawne zabezpieczenie po stronie AC i DC oraz właściwe prowadzenie przewodów masy i uziemienia, żeby uniknąć zakłóceń i przegrzewania się elementów.

Pytanie 32

Zamiast starego bezpiecznika trójfazowego 25A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. D.
B. A.
C. C.
D. B.
Wybór odpowiedzi A, czyli BPC 425/030 4P AC, jest zgodny z wymogami dotyczącymi zabezpieczeń elektrycznych w instalacjach trójfazowych. Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem ochrony przed porażeniem elektrycznym, który wykrywa różnice w prądzie między przewodami fazowymi a neutralnym. Wymagana charakterystyka AC oznacza, że wyłącznik jest przystosowany do ochrony przed prądami przemiennymi, co jest typowe w instalacjach domowych i przemysłowych. Prąd znamionowy 25A oraz wartość różnicowoprądowa 30mA (oznaczona jako 030) są standardowymi wartościami stosowanymi w takich instalacjach. Wartość 30mA jest powszechnie uznawana za bezpieczną dla ochrony ludzi przed porażeniem. W praktyce, zastosowanie takiego wyłącznika w instalacji trójfazowej nie tylko zwiększa bezpieczeństwo, ale również spełnia wymagania norm IEC 61008, które definiują wymagania dotyczące wyłączników różnicowoprądowych. Dzięki odpowiedniemu doborowi wyłącznika różnicowoprądowego zapewniasz bezpieczeństwo użytkowników oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć i zwarć doziemnych.

Pytanie 33

Który łącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Podwójny schodowy.
B. Świecznikowy.
C. Dwubiegunowy.
D. Podwójny krzyżowy.
Odpowiedź jest prawidłowa, ponieważ na zdjęciu przedstawiono łącznik elektryczny typu podwójnego schodowego. Tego rodzaju łącznik posiada dwa niezależne przyciski, z których każdy służy do sterowania oddzielnym obwodem oświetleniowym. Jest to niezwykle przydatne rozwiązanie w przypadku schodów, gdzie możliwe jest włączanie i wyłączanie oświetlenia zarówno z dołu, jak i z góry. Przykładowo, instalacja takiego łącznika w domu jednorodzinnym pozwala na komfortowe korzystanie z oświetlenia nawet po zmroku. Dodatkowo, zgodnie z normami i najlepszymi praktykami w dziedzinie instalacji elektrycznych, stosowanie łączników schodowych zwiększa bezpieczeństwo w ruchu oraz komfort użytkowników, minimalizując ryzyko poślizgnięć i upadków. Warto również zauważyć, że często łącznik podwójny schodowy jest wykorzystywany w systemach automatyki budowlanej, co pozwala na integrację z różnymi źródłami światła i systemami sterowania. Dzięki temu możliwe jest dostosowanie oświetlenia do indywidualnych potrzeb użytkowników.

Pytanie 34

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 4 listwy zaciskowej X1
B. Z zaciskiem 3 listwy zaciskowej X1
C. Z zaciskiem A2 stycznika K1
D. Z zaciskiem 22 stycznika K1
Analizując wybrane odpowiedzi, zauważamy, że wiele z nich opiera się na błędnym zrozumieniu schematu montażowego. Po pierwsze, połączenie zacisku A2 stycznika K1 z zaciskiem 41 stycznika K2 jest nieprawidłowe, ponieważ A2 jest zazwyczaj zarezerwowane dla innego obwodu zasilającego, a nie do bezpośredniego połączenia z K2. W kontekście elektryki, każdy zacisk ma określone funkcje, a pomylenie ich może prowadzić do nieprawidłowego działania urządzenia oraz potencjalnych zagrożeń dla bezpieczeństwa. W przypadku zacisku 22 stycznika K1, który jest połączony z zaciskiem 13 K1, zrozumienie, jakie funkcje pełni każdy z tych zacisków i jak są one zorganizowane w obwodzie, jest kluczowe. Zacisk 4 listwy zaciskowej X1 również nie jest poprawnym połączeniem, ponieważ zgodnie ze schematem, powinien być zarezerwowany dla innych zadań w obwodzie stycznika K2. W praktyce błędy te często wynikają z nieuważnego czytania schematów oraz braku wiedzy na temat podstawowych zasad okablowania. Kluczowe jest, aby przed przystąpieniem do pracy zapoznać się z pełnym kontekstem i funkcjonalnością obwodów, co jest fundamentalne dla zapewnienia skuteczności i bezpieczeństwa w instalacjach elektrycznych.

Pytanie 35

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Automat zmierzchowy.
B. Przekaźnik czasowy.
C. Przekaźnik priorytetowy.
D. Regulator temperatury.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 36

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Za pomocą kombinerek w braku napięcia
B. Uchwytem izolacyjnym pod obciążeniem
C. Uchwytem izolacyjnym bez obciążenia
D. Przy użyciu kombinerek, pod napięciem
Wymiana nożowych wkładek topikowych bezpieczników przemysłowych powinna być przeprowadzana w sposób bezpieczny, najlepiej przy użyciu uchwytu izolacyjnego i tylko wtedy, gdy nie ma obciążenia na obwodzie. Taki sposób działania minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. Uchwyt izolacyjny, wykonany z materiałów odpornych na działanie wysokich napięć, zapewnia, że osoba dokonująca wymiany nie ma kontaktu z przewodami pod napięciem. Przykładem zastosowania tej metody są procedury serwisowe w zakładach przemysłowych, gdzie kluczowe jest przestrzeganie zasad BHP oraz normy IEC 60947-3 dotyczącej bezpieczników. Dodatkowo, przed przystąpieniem do wymiany, ważne jest upewnienie się, że wyłączono zasilanie, co można zweryfikować przy pomocy wskaźników napięcia, a także zastosowanie blokad, aby zapobiec przypadkowemu włączeniu obwodu. Przestrzeganie tych zasad nie tylko chroni technika, ale również zapewnia, że prace serwisowe są wykonane w sposób efektywny i zgodny z normami branżowymi.

Pytanie 37

Jakie urządzenie AGD oznaczamy w dokumentacji elektrycznej przedstawionym na rysunku symbolem?

Ilustracja do pytania
A. Zmywarkę do naczyń.
B. Grzejnik elektryczny
C. Kuchenkę elektryczną.
D. Pralkę elektryczną.
Kuchenki elektryczne, pralki i grzejniki, wszystkie mają swoje symbole w dokumentach elektrycznych według normy PN-EN 60617. Ale zmywarki do naczyń często są mylone z innymi urządzeniami. Na przykład kuchenki mają inny symbol, bo mówią o gotowaniu, a nie myciu naczyń. Pralki też mają swoje symbole, które odnoszą się do prania, więc to w ogóle nie to samo. Grzejniki za to są związane z ogrzewaniem, co nie ma nic wspólnego z myciem. Chyba to trochę wynika z tego, że nie każdy zna się na różnicach w symbolach lub po prostu nie zwraca na to uwagi. Ważne jest, by umieć rozpoznać te symbole, bo błędy w dokumentacji mogą prowadzić do naprawdę poważnych problemów, a tego nikt nie chce. Dlatego lepiej zrozumieć te symbole i wiedzieć, jak ich używać.

Pytanie 38

Które czynności powinien wykonać elektryk, posiadający uprawnienia do eksploatacji urządzeń i instalacji do 1 kV, przed wymianą uszkodzonego wyłącznika nadprądowego B16 w obwodzie gniazd wtyczkowych, aby nie pozbawić zasilania płyty grzewczej i piekarnika?

Ilustracja do pytania
A. Wyłączyć wszystkie wyłączniki różnicowoprądowe.
B. Wyłączyć rozłącznik izolacyjny FR 304 32 A i wyłącznik nadprądowy S304 B16.
C. Wyłączyć wyłącznik różnicowoprądowy P312 B25A.
D. Wyłączyć wszystkie wyłączniki nadprądowe.
Wyłączenie wszystkich wyłączników różnicowoprądowych lub nadprądowych przed wymianą uszkodzonego wyłącznika nadprądowego B16 może prowadzić do niezamierzonych konsekwencji. Wybierając tę opcję, wprowadza się ryzyko, że zasilanie w całym obwodzie zostanie przerwane, co może być nieodpowiednie w sytuacji, gdy inne urządzenia, takie jak płyta grzewcza czy piekarnik, również są zasilane z tej samej instalacji. Wyłączając wszystkie wyłączniki, nie tylko ryzykuje się utratę zasilania w lokalach, ale także narusza się zasady efektywności energetycznej i dobrych praktyk przy pracy z instalacjami elektrycznymi. Ponadto, wyłączanie wszystkich wyłączników jest nieefektywne i czasochłonne, co w praktyce staje się uciążliwe, zwłaszcza w obiektach komercyjnych, gdzie ciągłość zasilania jest kluczowa. W kontekście ochrony przeciwporażeniowej, wyłącznik różnicowoprądowy powinien być regularnie testowany, a jego wyłączenie powinno być uzasadnione potrzebą konserwacji lub naprawy tylko w określonych obwodach. Z tego powodu, nieprzemyślane wyłączenie wszystkich zabezpieczeń narusza zasady bezpieczeństwa i efektywności w zarządzaniu instalacjami elektrycznymi.

Pytanie 39

Według którego schematu należy podłączyć miernik parametrów RCD w celu pomiaru prądu wyzwolenia i czasu zadziałania wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Podłączenie miernika parametrów RCD według innych schematów niż C może prowadzić do błędnych wyników pomiarów lub całkowitego braku zadziałania urządzenia. W przypadkach, gdy miernik nie jest prawidłowo podłączony do przewodów L, N oraz PE, nie jest w stanie zarejestrować wartości prądu upływu, co jest kluczowe dla oceny działania wyłącznika różnicowoprądowego. Na przykład, podłączenie miernika tylko do przewodu L lub N może spowodować, że pomiary będą niekompletne, a tym samym nieodpowiednie dla oceny bezpieczeństwa instalacji. Wiele osób błędnie zakłada, że wystarczy podłączyć miernik w sposób nieprzemyślany, co prowadzi do subiektywnej oceny jego możliwości. Jest to niezgodne z zasadami pomiarów elektrycznych i stanowi poważne naruszenie ogólnych zasad bezpieczeństwa. W praktyce, nieprawidłowe podłączenie może skutkować brakiem odpowiedzi RCD na prąd upływu, co jest bezpośrednim zagrożeniem dla użytkowników. Zrozumienie, jak poprawnie podłączyć miernik, jest kluczowe dla właściwej oceny oraz wyeliminowania potencjalnych zagrożeń związanych z użytkowaniem instalacji elektrycznych. Kluczowe jest również zapoznanie się z odpowiednimi normami oraz wytycznymi, które regulują procedury pomiarowe, aby uniknąć typowych błędów w analizach parametrów elektrycznych.

Pytanie 40

Którą z funkcji umożliwia układ zasilania silnika elektrycznego przedstawiony na schemacie?

Ilustracja do pytania
A. Pracę ze zmiennym kierunkiem obrotów.
B. Rozruch za pomocą rozrusznika rezystorowego.
C. Przełączanie uzwojeń z gwiazdy na trójkąt.
D. Hamowanie dynamiczne.
Rozruch silnika elektrycznego z użyciem rozrusznika rezystorowego to jedna z popularnych metod w przemyśle. Jak to wygląda w praktyce? No, na schemacie widzimy styczniki K1M, K2M, K3M oraz rezystory R1 i R2, które współpracują, żeby stopniowo podnosić napięcie do silnika M1. Na początku rozruchu te rezystory ograniczają prąd, co zmniejsza ryzyko przeciążenia i udaru. Dzięki temu silnik osiąga pełną prędkość w kontrolowany sposób. Z mojego doświadczenia wiem, że to ważne dla trwałości maszyn. Rozruszniki rezystorowe są zgodne z normami IEC i są dobrym rozwiązaniem, bo ograniczają zakłócenia w sieci energetycznej i zwiększają bezpieczeństwo. Przy dużych mocach, taki układ to wręcz konieczność, by utrzymać integralność elektryczną i mechaniczną urządzenia.