Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 21 października 2025 19:13
  • Data zakończenia: 21 października 2025 19:30

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Zamieniony przewód fazowy z neutralnym
B. Uszkodzona izolacja przewodu fazowego
C. Odłączony przewód ochronny
D. Zamieniony przewód ochronny z neutralnym
Wybór odpowiedzi dotyczący "Odłączonego przewodu ochronnego" może wydawać się logiczny, jednak nie uwzględnia on całego kontekstu sytuacji. Gdyby przewód ochronny był odłączony, to odbiornik II klasy ochronności po podłączeniu do gniazda powinien zadziałać normalnie, ponieważ urządzenia tej klasy nie wymagają przewodu ochronnego do prawidłowego działania. W takim przypadku wyłącznik różnicowoprądowy nie zadziałałby, co wyklucza tę możliwość. Podobnie, odpowiedź sugerująca "Uszkodzoną izolację przewodu fazowego" jest również mylną interpretacją. Uszkodzona izolacja mogłaby prowadzić do upływu prądu i zadziałania wyłącznika różnicowoprądowego, a nie do jego zadziałania wyłącznie w przypadku konkretnego gniazda. Odpowiedź o "Zamienionych przewodach fazowym z neutralnym" również nie jest poprawna, ponieważ wymiana tych przewodów nie wywołałaby takiego efektu zadziałania zabezpieczenia tylko w jednym gniazdku, a nie w pozostałych. W przypadku zamiany przewodów fazowego i neutralnego, mogłoby dojść do poważnych problemów z bezpieczeństwem, ale nie zadziałałby wyłącznik różnicowoprądowy w opisany sposób. Te błędne koncepcje często wynikają z braku zrozumienia podstawowych zasady działania systemów elektrycznych oraz roli, jaką odgrywają różne przewody w zapewnieniu bezpieczeństwa instalacji.

Pytanie 2

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. wyłączenie zasilania z instalacji
B. pisemne polecenie do wykonania prac
C. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione
D. oznaczenie i zabezpieczenie obszaru roboczego
Pisemne polecenie wykonania prac jest wymagane w wielu kontekstach, ale nie jest to czynność, która musi być zrealizowana przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej. W praktyce, istotne jest, aby przed rozpoczęciem jakichkolwiek prac związanych z instalacjami elektrycznymi, zadbać o bezpieczeństwo, co oznacza, że kluczowe jest wyłączenie zasilania i zabezpieczenie miejsca pracy. Pisemne polecenie, choć może być częścią procedury zarządzania bezpieczeństwem w niektórych organizacjach, nie jest ogólnym wymogiem w każdej sytuacji. Zgodnie z normami bezpieczeństwa, najważniejsze jest zminimalizowanie ryzyka poprzez odpowiednie izolowanie obszaru roboczego. Przykładowo, w przypadku awarii oświetlenia w biurze, pracownik powinien najpierw wyłączyć zasilanie, a następnie oznakować i zabezpieczyć miejsce pracy, aby uniknąć niebezpieczeństw związanych z porażeniem prądem. Te działania są kluczowe w celu zapewnienia bezpieczeństwa własnego oraz innych osób przebywających w pobliżu.

Pytanie 3

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. raz na rok
B. co najmniej raz na 10 lat
C. raz na pół roku
D. co najmniej raz na 5 lat
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 4

Prace przeprowadzane pod napięciem w instalacji domowej wymagają użycia narzędzi izolowanych o minimalnym poziomie napięcia izolacji

A. 500 V
B. 1000 V
C. 120 V
D. 250 V
Wybór wartości poniżej 500 V jako minimalnego napięcia izolacji narzędzi przy pracach pod napięciem w instalacjach elektrycznych jest nieodpowiedni i może prowadzić do poważnych zagrożeń. Odpowiedzi takie jak 120 V, 250 V czy 1000 V nie uwzględniają kluczowych aspektów bezpieczeństwa. Narzędzia izolowane muszą oferować odpowiednią ochronę, a zbyt niska wartość napięcia izolacji, taka jak 120 V czy 250 V, może nie zapewnić wystarczającej ochrony przy standardowych napięciach w domowych instalacjach elektrycznych, które często sięgają 230 V. Z kolei przyjęcie 1000 V jako minimalnej wartości wydaje się przesadzone w kontekście standardowych prac w instalacjach mieszkaniowych, co może prowadzić do niepotrzebnego obciążenia techników i zwiększenia kosztów narzędzi. Kluczową zasadą jest stosowanie narzędzi, które są odpowiednio dopasowane do warunków pracy i napięcia, w jakim będą używane. Zastosowanie narzędzi o odpowiedniej izolacji, zgodnych z normami, jest niezbędne dla zapewnienia bezpieczeństwa i ochrony przed porażeniem prądem elektrycznym. Ignorowanie tych zasad naraża pracowników na ryzyko i może prowadzić do wypadków, co podkreśla znaczenie wiedzy na temat specyfikacji sprzętu w kontekście bezpieczeństwa elektrycznego.

Pytanie 5

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
B. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
C. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
D. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
Zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od budynku jest podejściem, które nie uwzględnia specyfiki instalacji gazowych i ich interakcji z innymi systemami budowlanymi. Przede wszystkim, odległość 10 m nie ma uzasadnienia w kontekście ochrony przed porażeniem prądem elektrycznym, ponieważ izolacja powinna być stosowana bezpośrednio w miejscu, gdzie istnieje ryzyko pojawienia się napięcia na rurach gazowych. Instalowanie wstawki izolacyjnej zbyt daleko od punktu przyłączenia może prowadzić do niekontrolowanego przewodzenia prądu do systemu gazowego, co stwarza poważne zagrożenie. Przyłączenie bezpośrednio rur gazowych do systemu połączeń wyrównawczych jest również błędnym podejściem, ponieważ metalowe rury gazowe są przewodnikami prądu i ich bezpośrednie połączenie z systemem mogą prowadzić do niebezpiecznych sytuacji, takich jak korozja elektrochemiczna, co osłabia integralność strukturalną rur. Podobnie, zakładanie otuliny izolacyjnej na rurę gazową bez odpowiedniej wstawki izolacyjnej również nie zapewnia koniecznej ochrony, ponieważ sama otulina nie jest wystarczająca do eliminacji ryzyka przewodzenia prądu. W kontekście bezpieczeństwa instalacji gazowych, kluczowe jest przestrzeganie aktualnych norm i standardów, które podkreślają znaczenie właściwych praktyk w zakresie podłączeń i izolacji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakie zadania związane z utrzymaniem instalacji elektrycznych zgodnie z przepisami BHP powinny być realizowane przez co najmniej dwuosobowy zespół?

A. Wykonywane w pobliżu urządzeń elektroenergetycznych wyłączonych z napięcia oraz uziemionych w widoczny sposób
B. Wykonywane na wysokości przekraczającej 2 m w sytuacjach, gdy konieczne jest zastosowanie środków ochrony indywidualnej przed upadkiem z wysokości
C. Przeprowadzane w wykopach o głębokości do 2 m podczas modernizacji lub konserwacji kabli
D. Przeprowadzane regularnie przez upoważnione osoby w określonych lokalizacjach w czasie testów i pomiarów urządzeń znajdujących się pod napięciem
Odpowiedź w sprawie prac na wysokości powyżej 2 metrów jest jak najbardziej trafiona. Przepisy BHP jasno mówią, że takie zadania powinny być wykonywane przez co najmniej dwie osoby. Dlaczego? Bo ryzyko upadku jest po prostu za duże. Nie wyobrażam sobie, żeby jedna osoba mogła w pełni zareagować, jeśli na przykład straci równowagę, zwłaszcza przy czymś takim jak montaż lamp na wysokich budynkach. Gdy jedna osoba zajmuje się np. sprzętem, to druga powinna mieć oko na bezpieczeństwo. Również zgodnie z normą PN-EN 50110-1 trzeba dobrze zaplanować takie prace i wyposażyć się w odpowiednie zabezpieczenia, jak uprzęże czy liny. Gdy obie osoby pracują razem, to zwiększa to bezpieczeństwo i sprawia, że wszystko idzie sprawniej. Bez tego można narazić się na niebezpieczeństwo, a zdrowie i życie zawsze powinno być na pierwszym miejscu.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Modernizacja rozdzielnicy instalacji elektrycznej
B. Zmiana rodzaju zastosowanych przewodów
C. Wymiana uszkodzonych źródeł światła
D. Instalacja dodatkowego gniazda elektrycznego
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.

Pytanie 14

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt duże wzbudzenie silnika
B. Zbyt mała powierzchnia styku szczotek z komutatorem
C. Zbyt małe wzbudzenie silnika
D. Zbyt duży nacisk szczotek na komutator
Odpowiedź dotycząca za małej powierzchni styku szczotek z komutatorem jest poprawna, ponieważ kontakt między szczotkami a komutatorem jest kluczowy dla prawidłowego działania silnika prądu stałego. Niewłaściwa powierzchnia styku może prowadzić do zwiększonego oporu elektrycznego, co skutkuje większym iskrzeniem i nadmiernym zużyciem szczotek. W praktyce, odpowiedni dobór szczotek, które powinny być dobrze dopasowane do średnicy komutatora, jest istotny dla optymalizacji ich kontaktu. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie jakości materiałów używanych do produkcji szczotek i ich geometrii, aby zapewnić skuteczny transfer prądu. Wymiana szczotek na modele o większej powierzchni styku lub z lepszymi właściwościami przewodzącymi może znacząco poprawić wydajność silnika i zmniejszyć iskrzenie, co zwiększa jego trwałość oraz bezpieczeństwo eksploatacji. Poprawny dobór szczotek i regularne ich kontrolowanie to praktyki, które powinny być stosowane w każdej aplikacji wykorzystującej silniki prądu stałego.

Pytanie 15

W lokalu, który jest zasilany napięciem 400 V (3/N/PE 50Hz), zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody (12 kW) - obwód trójfazowy
2. zmywarka do naczyń (3,5 kW) - obwód jednofazowy
3. kuchenka elektryczna (9,5 kW) - obwód trójfazowy
4. pralka automatyczna (4,5 kW) - obwód jednofazowy

Odbiorniki jednofazowe i trójfazowe są zasilane z dwóch różnych obwodów. W celu zabezpieczenia wykorzystano wyłączniki instalacyjne. Jakie wartości prądu znamionowego powinny być zastosowane dla zabezpieczeń obwodu jedno- i trójfazowego?

A. 25 A, 25 A
B. 40 A, 25 A
C. 40 A, 40 A
D. 25 A, 40 A
Odpowiedź 40 A, 40 A jest prawidłowa, ponieważ wymaga ona zastosowania zabezpieczeń dla obwodów zasilających odbiorniki w zależności od ich mocy. W przypadku obwodu trójfazowego, przepływowy podgrzewacz wody o mocy 12 kW można obliczyć używając wzoru na moc trójfazową: P = √3 * U * I, gdzie U to napięcie międzyfazowe (400 V). Przekształcając wzór, otrzymujemy I = P / (√3 * U), co dla 12 kW prowadzi do wartości prądu wynoszącej około 17,32 A. Dodając margines bezpieczeństwa oraz biorąc pod uwagę normy instalacyjne, które przewidują zastosowanie wyłączników o wartości nominalnej nieprzekraczającej 40 A, uzyskujemy właściwą wartość zabezpieczenia. Dla obwodu jednofazowego zmywarki o mocy 3,5 kW stosując wzór P = U * I, obliczamy prąd jako I = P / U, co w tym przypadku daje nam wartość około 15 A. Wybierając zabezpieczenie 40 A, również dla obwodu jednofazowego, zapewniamy zgodność z normami oraz odpowiedni zapas mocy na wypadek nagłych wzrostów poboru energii. Takie podejście jest zgodne z zasadami projektowania instalacji elektrycznych, które zakładają stosowanie zabezpieczeń z marginesem bezpieczeństwa, co ma na celu ochronę zarówno urządzeń, jak i samej instalacji.

Pytanie 16

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. linii kablowej zasilającej budynek.
B. instalacji odgromowej budynku.
C. linii napowietrznej niskiego napięcia.
D. instalacji elektrycznej.
Analizując inne dostępne odpowiedzi, można zauważyć, że linii kablowej zasilającej budynek, instalacji odgromowej oraz linii napowietrznej niskiego napięcia dotyczące parametry techniczne nie są w pełni adekwatne do opisanych w tabeli. W przypadku linii kablowej, chociaż mogą występować pewne parametry techniczne, jak długość czy przekrój żyły, to jednak kluczowe informacje dotyczące mocy przyłączeniowej oraz liczby obwodów są typowe dla instalacji elektrycznych wewnętrznych. Podobnie, instalacja odgromowa nie wymaga określenia mocy przyłączeniowej ani liczby obwodów, ponieważ jej celem jest ochrona budynku przed wyładowaniami atmosferycznymi, a nie efektywne zarządzanie energią. Odnośnie linii napowietrznej niskiego napięcia, to również nie podaje się parametrów takich jak rodzaj uziomu, które są kluczowe do określenia w kontekście instalacji elektrycznej wewnętrznej. Często mylenie tych kategorii wynika z niewłaściwego zrozumienia funkcji poszczególnych systemów elektrycznych w obiektach budowlanych. Warto pamiętać, że poprawne zrozumienie różnicy między tymi instalacjami oraz ich zastosowaniem jest niezbędne dla projektantów oraz techników zajmujących się instalacjami elektrycznymi i ich bezpieczeństwem.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
B. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
C. Silnik będzie funkcjonować w trybie jałowym
D. Silnik będzie zasilany prądem w przeciwnym kierunku
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 20

Który element stosowany w instalacjach sterowania oświetleniem przedstawiono na ilustracji?

Ilustracja do pytania
A. Ściemniacz oświetlenia.
B. Czujnik ruchu.
C. Przekaźnik bistabilny.
D. Automat zmierzchowy.
Automat zmierzchowy to urządzenie, które automatycznie zarządza oświetleniem, dostosowując je do zmieniających się warunków świetlnych w otoczeniu. Na ilustracji przedstawiono model AZH-S, który jest typowym przykładem automatu zmierzchowego. Działa on na zasadzie pomiaru natężenia światła, co pozwala na włączenie oświetlenia po zachodzie słońca, a wyłączenie go w ciągu dnia. To rozwiązanie jest szczególnie przydatne w miejscach, gdzie oświetlenie jest potrzebne tylko w nocy, takich jak ogrody, podjazdy czy parkingi. Dzięki zastosowaniu automatu zmierzchowego można znacząco zmniejszyć zużycie energii, co jest zgodne z zasadami zrównoważonego rozwoju i oszczędności energii. W praktyce, urządzenia te są łatwe do zainstalowania i oferują wiele możliwości konfiguracji, co pozwala na ich dostosowanie do indywidualnych potrzeb użytkowników. Warto również zaznaczyć, że automaty zmierzchowe są zgodne z normami EN 60598-2-1, które dotyczą bezpieczeństwa i wydajności oświetlenia.

Pytanie 21

Aby zmierzyć częstotliwość, należy użyć

A. waromierza
B. watomierza
C. częstościomierza
D. fazomierza
Częstościomierz jest urządzeniem służącym do pomiaru częstotliwości sygnałów elektrycznych, co czyni go najodpowiedniejszym narzędziem do tego celu. Jego działanie polega na zliczaniu liczby cykli sygnału w jednostce czasu, co pozwala na precyzyjne określenie częstotliwości, wyrażonej w hercach (Hz). Częstościomierze są powszechnie wykorzystywane w elektronice, telekomunikacji oraz w badaniach laboratoryjnych. Na przykład, przy pomiarze częstotliwości oscylatorów w układach radiowych, częstościomierz umożliwia dokładne dostrajanie urządzeń do pożądanej częstotliwości pracy. W kontekście standardów branżowych, częstościomierze powinny spełniać normy kalibracji, co zapewnia ich wiarygodność i dokładność w pomiarach. Warto również zauważyć, że nowoczesne częstościomierze oferują dodatkowe funkcje, takie jak analiza harmonik czy pomiar fazy, co zwiększa ich użyteczność w zaawansowanych aplikacjach.

Pytanie 22

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Zastosowanie podwójnej warstwy izolacji
B. Zasilanie z transformatora izolacyjnego
C. Użycie napięcia zasilania o zmniejszonej wartości
D. Połączenie obudowy z przewodem ochronnym sieci
Zastosowanie podwójnej warstwy izolacji jest kluczowym elementem ochrony przeciwporażeniowej w oprawach oświetleniowych klasy II, które nie wymagają przewodu ochronnego. W tego typu rozwiązaniach, sprzęt jest projektowany w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, poprzez wprowadzenie dodatkowej warstwy izolacyjnej, która skutecznie odseparowuje części przewodzące od części, które mogą być dotykane przez użytkowników. Przykładem może być wykorzystanie materiałów izolacyjnych o wysokiej wytrzymałości, które są odporne na działanie wysokiej temperatury oraz wilgoci, co jest istotne w kontekście opraw oświetleniowych stosowanych w różnych warunkach atmosferycznych. W praktyce, urządzenia spełniające normy IEC 61140 oraz IEC 60598-1, których celem jest zapewnienie bezpieczeństwa użytkowników, korzystają z tej technologii, a jej zastosowanie jest powszechnie zalecane w branży elektrycznej, co przekłada się na redukcję ryzyka wypadków związanych z porażeniem prądem.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. II
B. I
C. III
D. 0
Oprawa oświetleniowa oznaczona symbolem graficznym, przedstawiającym dwa kwadraty, jeden wewnątrz drugiego, wskazuje na klasę ochronności II. Oznaczenie to jest kluczowe w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych, ponieważ klasa ta zapewnia podwójną izolację, co znacznie zwiększa ochronę przed porażeniem prądem elektrycznym. W praktyce oznacza to, że urządzenie nie wymaga uziemienia, co ułatwia jego instalację w miejscach, gdzie zainstalowanie przewodu uziemiającego jest trudne lub niemożliwe. Zastosowanie opraw oświetleniowych klasy II jest powszechne w pomieszczeniach mieszkalnych, biurach oraz w miejscach o podwyższonej wilgotności, jak łazienki, gdzie ryzyko kontaktu z wodą jest wyższe. Warto pamiętać, że stosowanie urządzeń z odpowiednim oznaczeniem klas ochronności jest zgodne z normami bezpieczeństwa, takimi jak IEC 60598, co świadczy o odpowiedzialnym podejściu do instalacji elektrycznych.

Pytanie 26

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik krokowy
B. Silnik indukcyjny jednofazowy
C. Silnik synchroniczny trójfazowy
D. Silnik liniowy
Silniki indukcyjne jednofazowe są najczęściej stosowane w urządzeniach gospodarstwa domowego ze względu na ich prostotę konstrukcji, niezawodność oraz stosunkowo niskie koszty produkcji. Jednofazowe silniki indukcyjne działają w oparciu o zasadę indukcji elektromagnetycznej, gdzie prąd zmienny przepływający przez uzwojenie stojana wytwarza pole magnetyczne, które indukuje prąd w wirniku. To z kolei generuje siłę napędową, która wprawia wirnik w ruch obrotowy. Tego typu silniki są powszechnie stosowane w urządzeniach takich jak pralki, lodówki, wentylatory czy miksery. Ich zaletą jest brak szczotek komutatora, co eliminuje problem iskrzenia i konieczność częstej konserwacji. Dzięki swojej prostocie, silniki te charakteryzują się długą żywotnością i są odporne na przeciążenia. Ponadto są stosunkowo ciche i energooszczędne, co czyni je idealnym wyborem do zastosowań domowych. Standardy przemysłowe i dobre praktyki również preferują użycie jednofazowych silników indukcyjnych w kontekście urządzeń gospodarstwa domowego, podkreślając ich efektywność i trwałość.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Zniszczenie przewodu ochronnego PE
B. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
C. Uszkodzenie izolacji przewodu zasilającego urządzenie
D. Zwarcie bezpiecznika wewnętrznego urządzenia
Uszkodzenie izolacji przewodu zasilającego urządzenie stanowi poważne zagrożenie porażenia prądem elektrycznym, ponieważ w przypadku uszkodzenia izolacji, napięcie z sieci elektrycznej może dostać się na zewnętrzne elementy urządzenia, co stwarza ryzyko kontaktu z prądem przez użytkownika. Przykładem zastosowania tej wiedzy w praktyce jest konieczność regularnej inspekcji przewodów zasilających i ich izolacji, co jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60204-1, które nakładają obowiązek zapewnienia odpowiednich środków ochrony przed porażeniem prądem. W przypadku stwierdzenia jakichkolwiek uszkodzeń, należy niezwłocznie wymienić uszkodzony przewód. Dodatkowo, stosowanie odpowiednich systemów zabezpieczeń, takich jak wyłączniki różnicowoprądowe, może znacząco obniżyć ryzyko porażenia prądem w przypadku awarii izolacji. Wiedza na temat potencjalnych zagrożeń związanych z uszkodzoną izolacją jest kluczowa dla zapewnienia bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Na izolatorach wsporczych instaluje się przewody

A. szynowe
B. kabelkowe
C. rdzeniowe
D. uzbrojone
Przewody rdzeniowe zazwyczaj odnoszą się do kabli, które mają jeden lub więcej rdzeni przewodzących, jednak nie są stosowane w kontekście izolatorów wsporczych. Ich głównym zastosowaniem są instalacje, gdzie wymagana jest większa elastyczność i mniejsze obciążenia mechaniczne, co nie jest typowe dla izolatorów wsporczych. Przewody uzbrojone z kolei są to przewody, które mają dodatkowe wzmocnienia mechaniczne, często stosowane w trudniejszych warunkach, ale również nie znajdują zastosowania w izolatorach wsporczych, które wymagają specyficznych rozwiązań. Wreszcie, przewody kabelkowe, które są wykorzystywane w instalacjach kablowych, posiadają różne osłony i są wbudowane w ziemię lub inne struktury, co również nie jest odpowiednie dla izolatorów wsporczych, które zasadniczo podtrzymują przewody w przestrzeni powietrznej. Błędem jest zatem mylenie terminologii i funkcji różnych typów przewodów, co może prowadzić do nieefektywnego projektowania oraz stosowania niewłaściwych elementów w systemach elektroenergetycznych. Właściwe zastosowanie technologii jest kluczowe dla zapewnienia nieprzerwanej i bezpiecznej dostawy energii elektrycznej.

Pytanie 31

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 20 mA
B. IΔ = 30 mA
C. IΔ = 10 mA
D. IΔ = 40 mA
Zrozumienie, dlaczego odpowiedzi takie jak IΔ = 20 mA, IΔ = 30 mA oraz IΔ = 40 mA są błędne, wymaga analizy zasad funkcjonowania wyłączników różnicowoprądowych. Wyłącznik różnicowoprądowy o prądzie nominalnym 30 mA ma być zaprojektowany tak, aby działał w przypadku wykrycia różnicy prądów na poziomie 30 mA lub wyższym. Odpowiedzi wskazujące wartości 20 mA, 30 mA i 40 mA przedstawiają różne błędne koncepcje. W szczególności, prąd IΔ = 20 mA jest nadal w obrębie zakresu, w którym wyłącznik może zadziałać, ponieważ jest on niższy niż 30 mA, co oznacza, że w sytuacji, gdy wystąpi prąd różnicowy na tym poziomie, wyłącznik zareaguje, aby chronić użytkowników. Odpowiedź 30 mA jest marnotrawstwem, ponieważ wyłącznik zadziała w momencie osiągnięcia tego poziomu prądu, co nie jest zgodne z pytaniem, które dotyczy wartości, przy której nie powinien zadziałać. Natomiast prąd 40 mA przekracza wartość nominalną wyłącznika, co wskazuje, że w takim przypadku powinien on zadziałać, aby zapobiec niebezpieczeństwu. Takie błędne rozumowanie wynika często z nieprawidłowego zrozumienia funkcji wyłączników różnicowoprądowych oraz ich działania w kontekście ochrony elektrycznej, co potwierdzają standardy takie jak IEC 60364, które podkreślają konieczność stosowania odpowiednich wartości progowych dla zabezpieczeń.

Pytanie 32

Które z podanych źródeł światła elektrycznego charakteryzują się najniższą efektywnością świetlną?

A. Żarówki
B. Lampy fluorescencyjne
C. Lampy indukcyjne
D. Lampy ze rtęcią
Żarówki tradycyjne, znane również jako żarówki wolframowe, charakteryzują się najniższą skutecznością świetlną spośród wymienionych źródeł światła. Ich efektywność świetlna, wynosząca zazwyczaj od 10 do 17 lumenów na wat, jest znacznie niższa w porównaniu do innych technologii oświetleniowych. To oznacza, że generują one mniej światła w stosunku do zużywanej energii, co czyni je mniej efektywnymi z punktu widzenia oszczędności energii. Przykładowo, w sytuacjach, gdzie długotrwałe oświetlenie jest potrzebne, takie jak w biurach czy na parkingach, wybór bardziej efektywnych źródeł światła, takich jak świetlówki czy lampy LED, może znacząco obniżyć koszty energii. W kontekście standardów branżowych, prowadzi to do przemyślenia wyboru technologii oświetleniowej, w szczególności w kontekście norm dotyczących efektywności energetycznej, takich jak dyrektywa unijna dotycząca ekoprojektu, która promuje rozwiązania optymalizujące zużycie energii.

Pytanie 33

Jakiego koloru jest wskaźnik wkładki topikowej o nominalnym natężeniu prądu wynoszącym 6 A?

A. szary
B. zielony
C. niebieski
D. żółty
Wkładki topikowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, a ich kolorystyka jest ściśle zdefiniowana normami, co pozwala na łatwe identyfikowanie wartości prądowych. W przypadku wkładek o wartości prądu znamionowego 6 A, kolor zielony jest odpowiedni według międzynarodowych standardów, takich jak IEC 60127. Ta norma definiuje kolory wkładek w zależności od ich wartości prądowej, co skutkuje uniknięciem błędów podczas wyboru odpowiednich komponentów. Przykładem zastosowania wkładek topikowych o wartości 6 A z zielonym oznaczeniem jest ich wykorzystanie w układach zasilających urządzenia o niskim poborze mocy, gdzie istotne jest zabezpieczenie przed przeciążeniem. Wiedza na temat właściwego doboru wkładek jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, dlatego warto regularnie konsultować się z dokumentacją techniczną oraz stosować się do obowiązujących norm.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jaka jest maksymalna wartość napięcia dotykowego bezpiecznego dla człowieka przy normalnych warunkach eksploatacji?

A. 100 V
B. 230 V
C. 12 V
D. 50 V
Napięcie dotykowe bezpieczne dla człowieka przy normalnych warunkach eksploatacji wynosi 50 V. To stwierdzenie opiera się na normach elektrycznych, takich jak PN-EN 61140, które definiują granice bezpieczeństwa w kontekście ochrony przed porażeniem prądem elektrycznym. Powyżej tej wartości istnieje znaczne ryzyko wystąpienia niebezpiecznych sytuacji zdrowotnych, w tym migotania komór serca. W praktyce, przestrzeganie tego limitu jest kluczowe w projektowaniu i eksploatacji instalacji elektrycznych, aby zapewnić ochronę użytkowników. Przykładem mogą być instalacje niskonapięciowe, które są szeroko stosowane w budynkach mieszkalnych oraz przemysłowych, gdzie zachowanie tego limitu jest absolutnie konieczne. Dodatkowo, stosowanie odpowiednich środków ochrony, takich jak izolacja i uziemienie, pomaga w utrzymaniu bezpieczeństwa elektrycznego. Z mojego doświadczenia, wiedza o tych wartościach jest podstawą dla każdego fachowca zajmującego się instalacjami elektrycznymi i warto ją mieć na uwadze, szczególnie podczas inspekcji i konserwacji.

Pytanie 37

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
B. niskonapięciowych liniach elektroenergetycznych.
C. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
D. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jaką cechę materiału izolacyjnego wskazuje ostatnia litera w oznaczeniu kabla LYc?

A. Odporność na ciepło
B. Odporność na olej
C. Niepalność
D. Zwiększenie wytrzymałości mechanicznej
Oznaczenie przewodu LYc wskazuje, że materiał izolacyjny jest odporny na wysoką temperaturę. To jest mega ważne, szczególnie w zastosowaniach, gdzie przewody pracują w trudnych warunkach, jak w przemyśle czy podczas budowy. Przykładowo, przewody w piecach przemysłowych muszą wytrzymać naprawdę duże temperatury, bo inaczej izolacja może się uszkodzić. Dlatego dobrze jest wybierać przewody, które mają dużą odporność na ciepło, zgodne z normami, jak IEC czy EN. Z mojego doświadczenia, zwracanie uwagi na klasyfikację materiałów izolacyjnych jest kluczowe. Muszą one spełniać normy dotyczące temperatury pracy i bezpieczeństwa pożarowego, to ważne dla ochrony budynków i sprzętu.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.