Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 31 stycznia 2026 08:09
  • Data zakończenia: 31 stycznia 2026 08:09

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Między którymi z podanych kombinacji przewodów należy wymusić prąd różnicowy, aby sprawdzić poprawność działania trójfazowego wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. L1 i N
B. L1 i L3
C. L1 i PE
D. L1 i L2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby sprawdzić poprawność działania trójfazowego wyłącznika różnicowoprądowego, kluczowe jest wymuszenie prądu różnicowego między przewodem fazowym (L1) a przewodem ochronnym (PE). Taki test pozwala na sprawdzenie, czy wyłącznik reaguje na potencjalne wycieki prądu, co jest kluczowe dla bezpieczeństwa użytkowników. W praktyce, podczas testowania instalacji elektrycznych, konieczne jest zapewnienie, że wyłącznik różnicowoprądowy działa zgodnie z normami, takimi jak PN-EN 61008. W sytuacjach, gdy obwód wykazuje różnicę prądów między fazą a przewodem ochronnym, wyłącznik powinien natychmiast odłączyć zasilanie, co zmniejsza ryzyko porażenia prądem elektrycznym. Stosowanie tej metody w testach okresowych instalacji elektrycznych jest rekomendowane przez branżowe standardy i praktyki, co potwierdza jej skuteczność w zapewnieniu bezpieczeństwa użytkowników. Przykładem zastosowania jest przeprowadzenie takiego testu podczas rutynowej konserwacji instalacji w obiektach przemysłowych, co pozwala na wczesne wykrycie nieprawidłowości i potencjalnych zagrożeń.

Pytanie 2

Przyrząd pokazany na zdjęciu przygotowano do bezpośredniego pomiaru

Ilustracja do pytania
A. mocy elektrycznej prądu stałego.
B. energii elektrycznej obwodów wielkoprądowych.
C. natężenia prądu elektrycznego jednokierunkowego.
D. natężenia prądu elektrycznego stałego i przemiennego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że przyrząd pokazany na zdjęciu jest przeznaczony do pomiaru natężenia prądu elektrycznego jednokierunkowego, jest prawidłowa. Przyrządy te, znane jako amperomery, są kluczowymi narzędziami w elektronice i elektrotechnice, umożliwiającymi precyzyjny pomiar natężenia prądu w obwodach stałoprądowych. Używanie amperomierzy w praktyce pozwala na monitorowanie i kontrolowanie obciążeń elektrycznych, co jest istotne w wielu zastosowaniach, od domowych po przemysłowe. W obwodach stałoprądowych, takich jak te zasilające urządzenia elektroniczne, pomiar natężenia prądu jest kluczowy dla zapewnienia ich właściwego działania oraz zapobiegania uszkodzeniom spowodowanym nadmiernym prądem. Dobrą praktyką jest regularne kalibrowanie przyrządów pomiarowych, aby zapewnić ich dokładność oraz zgodność z obowiązującymi normami, takimi jak IEC 61010.

Pytanie 3

Kontrolę instalacji elektrycznej, znajdującej się w miejscach o podwyższonej wilgotności (75-100%), pod kątem efektywności zabezpieczeń przeciwporażeniowych należy przeprowadzać nie rzadziej niż co

A. 1 rok
B. 4 lata
C. 2 lata
D. 3 lata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgodnie z polskimi normami oraz przepisami związanymi z instalacjami elektrycznymi w pomieszczeniach wilgotnych, inspekcje i kontrole instalacji powinny być przeprowadzane nie rzadziej niż co 1 rok. Wilgoć w takich pomieszczeniach może znacząco wpływać na bezpieczeństwo użytkowników, prowadząc do zwiększonego ryzyka porażenia prądem. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek oraz degradacji materiałów izolacyjnych, co jest kluczowe dla zapewnienia skutecznej ochrony przeciwporażeniowej. Przykładowo, w łazienkach, które są klasyfikowane jako pomieszczenia wilgotne, należy regularnie sprawdzać stan gniazdek, włączników oraz przewodów elektrycznych. Warto pamiętać, że nieprzestrzeganie tych zasad może prowadzić do poważnych wypadków, dlatego organizacje i osoby odpowiedzialne za instalacje muszą stosować się do takich wytycznych, aby zapewnić bezpieczeństwo użytkowników.

Pytanie 4

Jaki przekrój przewodu należy dobrać do zasilania odbiornika jednofazowego o danych Sn = 4,6 kVA i Un = 230 V, stosując kryterium obciążalności prądowej na podstawie danych przedstawionych w tabeli?

Obciążalność
mm21,01,52,54,06,0
A1519243242
A. 6,0 mm2
B. 2,5 mm2
C. 4,0 mm2
D. 1,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przekroju przewodu 2,5 mm2 jest uzasadniony, ponieważ przekrój ten zapewnia odpowiednią obciążalność prądową dla odbiornika jednofazowego o mocy 4,6 kVA i napięciu 230 V. Obliczony prąd obciążenia wynosi około 20 A, co mieści się w granicach obciążalności prądowej przewodu 2,5 mm2, wynoszącej 24 A. Zastosowanie przewodu o właściwej średnicy jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej i minimalizowania strat energetycznych. W praktyce, dobór odpowiedniego przekroju przewodu powinien być zawsze oparty na rzeczywistych warunkach eksploatacji, takich jak długość przewodu, temperatura otoczenia oraz sposób układania (np. w rurach, na otwartej przestrzeni). Przy projektowaniu instalacji elektrycznych warto również uwzględnić normy PN-IEC, które określają wymagania dotyczące obciążalności przewodów oraz ich zastosowania w różnych warunkach. Prawidłowy dobór przekroju przewodu jest kluczowym elementem zapobiegania przegrzewaniu się instalacji, co może prowadzić do uszkodzeń oraz zwiększonego ryzyka pożaru.

Pytanie 5

Które warunki powinny być spełnione przy wykonywaniu pomiaru rezystancji izolacji w instalacji elektrycznej po wcześniejszym wyłączeniu napięcia zasilającego?

A. Wyłączone odbiorniki z gniazd wtyczkowych, włączone łączniki oświetleniowe, wymontowane źródła światła.
B. Wyłączone odbiorniki z gniazd wtyczkowych, włączone łączniki oświetleniowe, zamontowane źródła światła.
C. Włączone odbiorniki do gniazd wtyczkowych, włączone łączniki oświetleniowe, wymontowane źródła światła.
D. Włączone odbiorniki do gniazd wtyczkowych, włączone łączniki oświetleniowe, zamontowane źródła światła.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź dobrze oddaje to, jak w praktyce powinno się przygotować instalację do pomiaru rezystancji izolacji po wyłączeniu napięcia. Kluczowe są trzy elementy: wszystkie odbiorniki muszą być odłączone od gniazd wtyczkowych, łączniki oświetleniowe powinny być w pozycji „załączone”, a źródła światła – wymontowane. Dlaczego tak? Podczas pomiaru podajesz na obwód napięcie probiercze z miernika (zwykle 250 V, 500 V albo 1000 V DC, zgodnie z PN‑HD 60364‑6). To napięcie nie może „przechodzić” przez żadne urządzenia, żadne żarówki, zasilacze LED, zasilacze impulsowe czy elektronikę w gniazdkach. Miernik ma badać wyłącznie stan izolacji przewodów i osprzętu instalacyjnego, a nie stan odbiorników. Moim zdaniem najważniejsza rzecz, o której się często zapomina, to właśnie konieczność włączenia łączników oświetleniowych. Jeżeli łącznik jest wyłączony, odcinasz część obwodu i mierzysz tylko fragment instalacji – wynik będzie zawyżony i kompletnie niemiarodajny. Dlatego dobra praktyka pomiarowa mówi: wszystkie łączniki w danym obwodzie ustawiamy w pozycji załączonej, a źródła światła wyjmujemy, żeby nie uszkodzić ich wysokim napięciem pomiarowym i żeby ich rezystancja nie fałszowała wyniku. Wyjęcie wszystkich wtyczek z gniazd też jest absolutnym standardem. Odbiorniki mają własne obwody, kondensatory, filtry EMC, zasilacze impulsowe – to wszystko może powodować zaniżenie wyniku rezystancji izolacji, a w skrajnym przypadku nawet uszkodzenie urządzenia. Z mojego doświadczenia na pomiarach okresowych w budynkach mieszkalnych i biurowych zawsze stosuje się zasadę: najpierw odłącz wszystko z gniazd, poinformuj użytkowników, dopiero potem mierz. Tego wymagają i normy, i zdrowy rozsądek. Warto też pamiętać, że pomiar rezystancji izolacji wykonuje się między żyłami fazowymi a przewodem ochronnym PE (lub PEN), a w niektórych przypadkach również między żyłami roboczymi. Dobrą praktyką jest rozłączenie wrażliwych urządzeń elektronicznych i modułów, np. sterowników automatyki. Prawidłowe przygotowanie obwodu – dokładnie tak, jak w zaznaczonej odpowiedzi – gwarantuje, że wynik rzeczywiście odzwierciedla stan izolacji przewodów, a nie przypadkowe właściwości podłączonych urządzeń.

Pytanie 6

Oceń oraz uzasadnij stan techniczny transformatora jednofazowego UN = 230/115 V, który pracuje z prądem znamionowym, gdy podłączenie dodatkowego odbiornika doprowadziło do podwyższenia napięcia po stronie wtórnej o 5%, przy jednoczesnym obniżeniu prądu pobieranego z sieci o 3%?

A. Transformator jest uszkodzony, a przyczyną uszkodzenia jest zwarcie międzyzwojowe po stronie wtórnej
B. Transformator jest uszkodzony, a przyczyną uszkodzenia jest przerwa po stronie wtórnej
C. Transformator działa poprawnie, a powodem zmian prądu i napięcia jest pojemnościowy charakter dołączonego odbiornika
D. Transformator działa prawidłowo, a przyczyną zmian prądu i napięcia odbiornika jest obniżenie napięcia zasilającego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transformator jednofazowy, który podałeś, wykazuje charakterystykę sprawności operacyjnej wskazującą na pojemnościowy charakter dołączonego odbiornika. Wzrost napięcia po stronie wtórnej o 5% oraz zmniejszenie prądu pobieranego z sieci o 3% mogą być efektem obecności elementów pojemnościowych w obciążeniu, takich jak kondensatory, które mogą powodować zwiększenie napięcia w warunkach małego obciążenia. W praktyce, takie zjawisko może występować, gdy do obwodu dołączane są urządzenia o dużej pojemności, co prowadzi do przesunięcia fazowego pomiędzy napięciem a prądem. Warto również zaznaczyć, że zgodnie z normami IEC oraz dokumentami technicznymi dotyczącymi transformatorów, takie zmiany w napięciach i prądach powinny być regularnie monitorowane, aby zapewnić prawidłowe działanie systemu zasilania. Zrozumienie tych zjawisk jest kluczowe dla inżynierów odpowiedzialnych za analizę i diagnostykę systemów elektroenergetycznych, co pozwala na wcześniejsze wykrywanie ewentualnych problemów oraz ich skuteczne eliminowanie.

Pytanie 7

Jak często powinny być przeprowadzane okresowe kontrole użytkowe instalacji elektrycznej w budynku jednorodzinnym, minimalnie raz w czasie?

A. 6 lat
B. 8 lat
C. 5 lat
D. 4 lata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych są kluczowym elementem zapewnienia ich bezpieczeństwa i sprawności. Zgodnie z obowiązującymi normami, szczególnie z rozporządzeniem Ministra Infrastruktury oraz normami PN-IEC 60364 i PN-EN 61010, przeglądy te powinny być przeprowadzane co 5 lat. W praktyce, regularne kontrole umożliwiają wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe połączenia czy degradacja elementów systemu elektrycznego. Na przykład, w przypadku starych instalacji, działanie na granicy normy może prowadzić do przegrzewania się przewodów, co stwarza ryzyko pożaru. Dlatego ważne jest, aby użytkownicy domów jednorodzinnych byli świadomi tego obowiązku i zapewniali odpowiednie przeglądy w ustalonych interwałach. Dodatkowo, w miarę starzejących się instalacji, może być konieczne zwiększenie częstotliwości badań, co podkreśla znaczenie odpowiedzialnego zarządzania systemem elektrycznym w domu.

Pytanie 8

W obwodzie gniazd w przedpokoju zainstalowano przewód YDYt 3×2,5 mm2. Podczas wiercenia w ścianie pracownik przypadkowo uszkodził przewód, przecinając dwie jego żyły. Jak należy prawidłowo naprawić powstałą usterkę?

A. Zdemontować tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą i zatynkować ścianę.
B. Przeciągnąć wyłącznie uszkodzone żyły, zastępując każdą przewodem jednodrutowym.
C. Zdemontować tynk w miejscu uszkodzenia, zainstalować dodatkową puszkę i w niej połączyć żyły.
D. Przeciągnąć nowy przewód pomiędzy najbliższymi puszkami, używając pilota.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje na konieczność rozebrania tynku w miejscu uszkodzenia, co pozwala na dostęp do przewodów. Instalacja dodatkowej puszki jest zgodna z normami bezpieczeństwa, ponieważ umożliwia bezpieczne połączenie uszkodzonych żył oraz ewentualne wprowadzenie dodatkowych elementów zabezpieczających. Połączenie żył powinno być wykonane za pomocą odpowiednich złączek, które zapewniają ich trwałość i bezpieczeństwo. Takie rozwiązanie jest zgodne z praktykami branżowymi, które zalecają unikanie izolowania przewodów taśmą w miejscu uszkodzenia, co może prowadzić do ryzyka przepięć lub zwarć. Przykładem zastosowania tej metody może być sytuacja, gdy w ramach modernizacji instalacji elektrycznej, pracownik stwierdza, że przewody zostały uszkodzone, a jednocześnie potrzebuje zainstalować nowe gniazda. Wówczas montaż puszki zapewnia łatwy dostęp do przewodów w przyszłości, co ułatwia konserwację i ewentualne naprawy. Działanie to jest zgodne z zasadami BHP oraz ochroną przed pożarami, co czyni je najlepszym wyborem w tej sytuacji.

Pytanie 9

Ile wynosi napięcie zwarcia transformatora, którego dane z tabliczki znamionowej przedstawiono w tabeli?

Transformator 3-FAZ wg PN-EN 60726:2003 + DNV
Typ ET3SM-150Nr/Rok 00565/2015
Moc150 kVAGrupa połączeńDy5
I3×440 VD198 A
II3×230 Vy377 A
Częstotliwość60 HzKlasa izolacjiT45H
Straty jałowe445 WRodzaj pracyS1
Straty zwarcia2 824 WChłodzenieAN
Temp. otoczenia45 °CStopień ochronyIP23
uz3,30 %Masa całkowita579 kg
A. 15,25 V
B. 14,52 V
C. 7,59 V
D. 8,25 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Napięcie zwarcia transformatora odczytuje się z tabliczki jako parametr uz podany w procentach napięcia znamionowego. W danych masz napisane uz = 3,30%. Dla strony pierwotnej transformatora mamy napięcie znamionowe 3×440 V. Żeby policzyć napięcie zwarcia w woltach, mnożymy wartość procentową przez napięcie znamionowe i dzielimy przez 100: Uz = 3,30% · 440 V = 0,033 · 440 V ≈ 14,52 V. Stąd poprawna odpowiedź to właśnie 14,52 V. W praktyce oznacza to, że przy zwarciu na zaciskach wtórnych wystarczy około 14,5 V na uzwojeniu pierwotnym, żeby w transformatorze popłynął prąd znamionowy. Ten parametr jest bardzo ważny przy doborze zabezpieczeń zwarciowych, koordynacji zadziałania wyłączników oraz przy obliczaniu prądów zwarciowych w sieci niskiego napięcia. Im większe napięcie zwarcia, tym większa impedancja transformatora i tym mniejszy prąd zwarciowy, ale jednocześnie większe spadki napięcia przy dużych obciążeniach. Dlatego normy, m.in. PN-EN 60076 i wcześniej PN-EN 60726 dla transformatorów suchych, podają typowe zakresy uz dla danej mocy. W transformatorach około 150 kVA wartości rzędu 3–4% są zupełnie standardowe i dobrze sprawdzają się w instalacjach budynkowych oraz w przemysłowych rozdzielniach nN, bo zapewniają rozsądny kompromis między poziomem zwarć a stabilnością napięcia przy rozruchach silników.

Pytanie 10

Które z przedstawionych na rysunkach oznaczeń powinno się znajdować na wyłączniku różnicowoprądowym przeznaczonym do ochrony przeciwporażeniowej w sieci prądu stałego?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie na rysunku "C." jest prawidłowe, ponieważ reprezentuje symbol wyłącznika różnicowoprądowego (RCD) przeznaczonego do stosowania w obwodach prądu stałego (DC). Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach ochrony przed porażeniem elektrycznym, ponieważ monitorują różnicę prądu między przewodem fazowym a przewodem neutralnym. W przypadku wykrycia nieprawidłowości, na przykład podczas kontaktu z przewodami prądowymi, wyłącznik natychmiast odłącza zasilanie, co znacząco zmniejsza ryzyko porażenia. Zastosowanie wyłącznika różnicowoprądowego w instalacjach DC jest szczególnie ważne w kontekście odnawialnych źródeł energii, takich jak instalacje fotowoltaiczne, gdzie prąd stały jest powszechnie stosowany. Normy IEC 61008 i IEC 62423 regulują kwestie dotyczące wyłączników różnicowoprądowych, w tym ich oznaczeń i zastosowań, co podkreśla ich kluczową rolę w zapewnieniu bezpieczeństwa elektrycznego. Prawidłowe oznaczenie RCD w obwodach stałych jest kluczowe dla ich identyfikacji i zapewnienia odpowiedniego poziomu ochrony użytkowników.

Pytanie 11

Jakie przyrządy należy zastosować do określenia rezystancji uzwojeń w transformatorze średniej mocy metodą techniczną?

A. Woltomierz oraz omomierz
B. Amperomierz oraz watomierz
C. Amperomierz oraz woltomierz
D. Woltomierz oraz watomierz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby wyznaczyć rezystancję uzwojeń transformatora średniej mocy, kluczowe jest zastosowanie amperomierza i woltomierza. Amperomierz służy do pomiaru prądu płynącego przez uzwojenie, natomiast woltomierz mierzy napięcie na tym uzwojeniu. Zgodnie z prawem Ohma, rezystancję można obliczyć, dzieląc zmierzone napięcie przez zmierzony prąd (R = U/I). Takie podejście jest nie tylko zgodne z dobrymi praktykami inżynieryjnymi, ale również spełnia standardy zawarte w normach IEC dotyczących testowania transformatorów. W praktyce, w trakcie pomiarów, należy upewnić się, że wszystkie urządzenia są odpowiednio skalibrowane i przystosowane do zakresu mocy transformatora, co zapewni dokładność wyników. Ponadto, pomiary powinny być przeprowadzane w warunkach stabilnych, aby uniknąć zakłóceń mogących wpływać na dokładność odczytów. Takie procedury mogą być kluczowe dla oceny stanu technicznego transformatora oraz jego efektywności energetycznej.

Pytanie 12

Podczas eksploatacji trójfazowego silnika indukcyjnego, który był obciążony momentem znamionowym, doszło do nagłego spadku prędkości obrotowej silnika, a jednocześnie zwiększyła się głośność jego pracy. Najbardziej prawdopodobną przyczyną tego zjawiska jest

A. zanik napięcia w jednej fazie
B. zadziałanie zabezpieczenia termicznego
C. wzrost częstotliwości napięcia sieci
D. zadziałanie wyłącznika różnicowoprądowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zanik napięcia w jednej fazie jest najczęstszą przyczyną nagłego zmniejszenia prędkości obrotowej trójfazowego silnika indukcyjnego. W przypadku, gdy jedna z faz silnika przestaje dostarczać energię, silnik działa w trybie dwu-fazowym. W takiej sytuacji moment obrotowy silnika znacząco spada, co prowadzi do zmniejszenia prędkości obrotowej. Dodatkowo, silnik może emitować zwiększony hałas, ponieważ nieprawidłowa praca silnika może generować wibracje i dodatkowe obciążenia. W praktyce, w celu zabezpieczenia silnika przed takimi sytuacjami, stosuje się różne systemy monitorowania i zabezpieczeń, takie jak automatyczne wyłączniki, które detekują zanik napięcia i odłączają silnik od zasilania, co zapewnia jego bezpieczeństwo. Zgodnie z normami IEC dotyczących silników elektrycznych, regularne sprawdzanie układów zasilających oraz instalacja odpowiednich zabezpieczeń jest kluczowe dla zapobiegania uszkodzeniom silnika i jego awariom. Ponadto, należy prowadzić systematyczną konserwację oraz inspekcje, aby zapewnić niezawodność i efektywność pracy urządzeń elektrycznych.

Pytanie 13

Jaką czynność należy wykonać podczas inspekcji instalacji elektrycznej w budynku mieszkalnym przed jego oddaniem do użytku?

A. Przeprowadź próbę ciągłości połączeń wyrównawczych
B. Zweryfikuj poprawność doboru przekroju przewodów
C. Zbadaj rezystancję izolacji instalacji elektrycznej
D. Zmierz czas samoczynnego wyłączenia zasilania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie poprawności doboru przekroju przewodów jest kluczowym krokiem przed oddaniem do użytku instalacji elektrycznej w budynkach mieszkalnych. Przekroje przewodów muszą być odpowiednio dobrane, aby zapewnić bezpieczeństwo użytkowania oraz efektywność energetyczną. Zbyt mały przekrój przewodu może prowadzić do przegrzewania się, co z kolei zwiększa ryzyko pożaru. Podczas tego sprawdzenia należy uwzględnić obciążenie prądowe, długość przewodów oraz rodzaj instalacji. Przykładowo, w przypadku instalacji oświetleniowej w domach jednorodzinnych zazwyczaj stosuje się przewody o przekroju 1,5 mm², natomiast w instalacjach zasilających urządzenia o większej mocy stosuje się przewody o przekroju 2,5 mm² lub nawet większym, w zależności od specyfiki obciążenia. Standardy takie jak PN-IEC 60364-5-52 wyraźnie określają zasady doboru przekrojów przewodów w zależności od zastosowania oraz warunków środowiskowych, co podkreśla znaczenie tego etapu w procesie inspekcji instalacji elektrycznej.

Pytanie 14

Którą z wymienionych czynności pracownik może wykonywać bez polecenia osób dozorujących pracę?

A. Gaszenie pożaru urządzenia elektrycznego.
B. Remont rozdzielnicy po ugaszeniu pożaru.
C. Wymianę izolatora na linii napowietrznej nn.
D. Lokalizowanie uszkodzeń w linii kablowej nn.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W tym pytaniu chodzi o rozróżnienie czynności eksploatacyjnych od działań ratowniczych i prac podlegających ścisłemu nadzorowi. Gaszenie pożaru urządzenia elektrycznego jest traktowane jako działanie ratownicze, związane z bezpieczeństwem ludzi i mienia, a nie jako typowa praca przy urządzeniu. Zgodnie z zasadami BHP i przepisami eksploatacji urządzeń elektroenergetycznych pracownik ma obowiązek podjąć działania w sytuacji zagrożenia pożarowego, oczywiście przy zachowaniu odpowiednich środków bezpieczeństwa. W praktyce oznacza to użycie właściwego sprzętu gaśniczego, np. gaśnicy proszkowej lub śniegowej, zachowanie bezpiecznej odległości, jeśli to możliwe odłączenie zasilania przed rozpoczęciem gaszenia oraz ocenę, czy pożar da się ugasić bez narażania własnego życia. W normach i instrukcjach stanowiskowych zwykle podkreśla się, że pracownik nie może samowolnie wykonywać prac remontowych, przełączeń czy czynności łączeniowych bez polecenia i nadzoru osób uprawnionych, ale reagowanie na pożar, ewakuację ludzi i wzywanie służb ratunkowych jest jego obowiązkiem. Moim zdaniem to jedno z ważniejszych rozróżnień: co jest pracą eksploatacyjną, a co jest interwencją w sytuacji awaryjnej. W realnych warunkach zakładowych właśnie szybka, samodzielna reakcja na pożar urządzenia elektrycznego, wykonana zgodnie z instrukcją przeciwpożarową, często decyduje o skali zniszczeń i bezpieczeństwie współpracowników.

Pytanie 15

Podczas oględzin silników elektrycznych, w czasie ich postoju, należy sprawdzić

A. poziom drgań.
B. stopień nagrzewania się obudowy i łożysk.
C. szczotki i szczotkotrzymacze.
D. wskazania aparatury pomiarowej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W czasie postoju silnika elektrycznego mamy idealny moment, żeby spokojnie obejrzeć elementy, do których podczas pracy nie wolno się zbliżać. Do takich części należą właśnie szczotki i szczotkotrzymacze. W maszynach komutatorowych (np. silniki prądu stałego, niektóre silniki pierścieniowe) stan szczotek ma bezpośredni wpływ na iskrzenie, nagrzewanie komutatora, spadki napięcia i ogólnie na niezawodność pracy napędu. Z mojego doświadczenia, jeśli zaniedba się kontrolę szczotek, to potem kończy się na przegrzanym komutatorze, przypalonych lamelkach i drogim remoncie. Podczas postoju można bezpiecznie sprawdzić długość szczotek (czy nie są poniżej dopuszczalnego minimum z instrukcji producenta), równomierność docisku do komutatora lub pierścieni ślizgowych, stan sprężyn w szczotkotrzymaczach, czystość gniazd i brak zanieczyszczeń pyłem węglowym. Sprawdza się też, czy szczotki nie zakleszczają się w szczotkotrzymaczu i czy swobodnie się przesuwają. Dobrą praktyką jest porównanie zużycia wszystkich szczotek – jeśli jedna zużywa się dużo szybciej, to może świadczyć o niewłaściwym docisku, złej geometrii komutatora albo luzach łożysk. W wielu zakładach, zgodnie z instrukcjami eksploatacji i normami dotyczącymi obsługi maszyn elektrycznych, kontrola szczotek i szczotkotrzymaczy jest wpisana w harmonogram przeglądów okresowych właśnie na czas postoju urządzenia. W ruchu ciągłym, szczególnie przy napędach krytycznych technologicznie, takie oględziny w czasie postoju są jednym z kluczowych elementów profilaktyki, bo pozwalają uniknąć nagłej awarii w trakcie produkcji. Moim zdaniem to jeden z tych prostych, ale bardzo „opłacalnych” punktów obsługi bieżącej silników komutatorowych.

Pytanie 16

Korzystając z przedstawionej tabeli obciążalności długotrwałej dobierz minimalny przekrój przewodów dla instalacji trójfazowej ułożonej przewodami YDY w rurze instalacyjnej na ścianie drewnianej (sposób B2).
Wartość przewidywanego prądu obciążenia instalacji wynosi 36 A.

Obciążalność prądowa długotrwała przewodów miedzianych, w amperach
Izolacja PVC, trzy żyły obciążone
Temperatura żyły: 70°C. Temperatura otoczenia: 30°C w powietrzu, 20°C w ziemi
ułożenieA1A2B1B2CD
Przekrój
żyły
4 mm2242328273231
6 mm2312936344139
10 mm2423950465752
16 mm2565268627667
A. 4 mm2
B. 6 mm2
C. 10 mm2
D. 16 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dla instalacji trójfazowej z przewodami YDY umieszczonymi w rurze instalacyjnej na ścianie drewnianej (metoda B2), minimalny przekrój przewodów wynoszący 10 mm2 jest odpowiedni dla przewidywanego prądu obciążenia wynoszącego 36 A. Ten przekrój przewodów zapewnia, że obciążalność wynosząca 50 A jest znacznie wyższa niż wymagana, co gwarantuje bezpieczeństwo i niezawodność instalacji. Zastosowanie odpowiednich przekrojów przewodów jest kluczowe, aby uniknąć przegrzania oraz potencjalnych zagrożeń pożarowych. W praktyce, wybór przekroju przewodów powinien również uwzględniać długość trasy przewodów oraz rodzaj izolacji. W standardach instalacji elektrycznych, takich jak PN-IEC 60364, podkreśla się znaczenie odpowiedniego doboru przekrojów w zależności od warunków instalacyjnych, co minimalizuje ryzyko awarii. Dla instalacji o wyższych obciążeniach, warto również rozważyć zastosowanie przewodów o większej obciążalności, aby mieć większy margines bezpieczeństwa w przypadku przyszłych zmian w obciążeniu.

Pytanie 17

Jakie części zamienne są najczęściej wymagane do serwisowania odkurzacza z jednofazowym silnikiem komutatorowym?

A. Przekładnie i skrzynki przekładniowe
B. Termostaty i czujniki temperatury
C. Szczotkotrzymacze oraz szczotki węglowe
D. Grzałki oraz spirale grzejne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szczotkotrzymacze i szczotki węglowe są kluczowymi elementami w jednofazowych silnikach komutatorowych, które znajdują zastosowanie w większości odkurzaczy. Te części zamienne odpowiedzialne są za przewodzenie prądu do wirnika silnika, co umożliwia jego prawidłowe działanie. W miarę eksploatacji, szczotki węglowe ulegają naturalnemu zużyciu, co jest zjawiskiem oczekiwanym i wynika z tarcia mechanicznego. Regularna kontrola stanu szczotek i ich wymiana jest zatem istotna dla utrzymania efektywności działania odkurzacza. W praktyce, wymiana szczotkotrzymaczy oraz szczotek węglowych jest jednym z najczęściej wykonywanych czynności serwisowych, co potwierdzają zarówno technicy serwisowi, jak i producenci sprzętu. Dobrą praktyką jest stosowanie oryginalnych części zamiennych, co gwarantuje odpowiednią jakość i trwałość. Warto również pamiętać, że niewłaściwe działanie silnika może prowadzić do nadmiernego przegrzewania się, co z kolei może powodować dalsze uszkodzenia, dlatego wymiana tych elementów powinna być stałym punktem serwisowym.

Pytanie 18

W celu oceny stanu technicznego silnika indukcyjnego trójfazowego zasilanego napięciem 230/400 V, który nie był uruchamiany od dłuższego czasu, dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
U1-U2V1-V2W1-W2U1-PEV1-PEW1-PE
5,1 Ω4,9 Ω4,7 Ω8,0 MΩ9,5 MΩ7,6 MΩ
A. Zbyt duża asymetria rezystancji uzwojeń.
B. Zbyt duża rezystancja uzwojenia U.
C. Uszkodzona izolacja uzwojenia W.
D. Wyniki pomiarów pozytywne.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyniki pomiarów są pozytywne, co oznacza, że silnik indukcyjny trójfazowy jest w dobrym stanie technicznym. Podczas oceny stanu technicznego silnika, kluczowe jest sprawdzenie rezystancji uzwojeń oraz izolacji. Rezystancje uzwojeń powinny być zbliżone do siebie, co świadczy o prawidłowym funkcjonowaniu silnika. W tym przypadku wartości rezystancji uzwojeń wynoszą 5,1 Ω, 4,9 Ω oraz 4,7 Ω, co wskazuje na ich równowagę i prawidłowość. Dodatkowo, rezystancja izolacji jest również bardzo wysoka, co jest niezwykle istotne, ponieważ niska rezystancja może prowadzić do zwarć i uszkodzeń silnika. Wartości izolacji wynoszą 8,0 MΩ, 9,5 MΩ oraz 7,6 MΩ, co wskazuje na dobrą kondycję izolacji i brak potencjalnych uszkodzeń. Przykładem dobrych praktyk w przemyśle jest regularne monitorowanie stanu technicznego maszyn, co pozwala na wczesne wykrywanie problemów i ich naprawę przed wystąpieniem poważniejszych awarii. Warto również przestrzegać standardów, takich jak PN-EN 60034-1, które definiują wymagania dotyczące silników elektrycznych.

Pytanie 19

Jaką wartość ma maksymalna dopuszczalna rezystancja uziomu RA przewodu ochronnego łączącego uziom z dostępnością przewodzącą dla znamionowego prądu różnicowego IN = 30 mA oraz napięcia dotykowego 50 V AC wyłącznika różnicowoprądowego?

A. Około 830 Ω
B. Około 1 660 Ω
C. 4 000 Ω
D. 2 000 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Największa dopuszczalna rezystancja uziomu <i>R<sub>A</sub></i> przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną dla prądu różnicowego <i>I<sub>N</sub> = 30 mA</i> i napięcia dotykowego 50 V AC wynosi około 1 660 Ω. W praktyce oznacza to, że gdy osoba dotknie elementu przewodzącego, prąd różnicowy powinien być w stanie przepływać przez przewód uziemiający, a jego wartość powinna być na tyle niska, aby zminimalizować ryzyko porażenia prądem. Dopuszczalna rezystancja uziomu jest regulowana przez normy, takie jak PN-IEC 60364-4-41, które określają maksymalne wartości dla różnych kategorii instalacji elektrycznych. Używanie tych norm w projektowaniu i budowie instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, wartość rezystancji powinna być mierzona podczas odbioru instalacji, a także okresowo sprawdzana w celu zapewnienia ciągłej ochrony. Przykładem jest instalacja w budynkach mieszkalnych, gdzie właściwie dobrana rezystancja uziomu zapobiega poważnym skutkom awarii elektrycznych.

Pytanie 20

Podczas oględzin instalacji elektrycznej w budynku jednorodzinnym stwierdzono obluzowanie się zacisku Z na głównej szynie uziemiającej budynku. Nieusunięcie tej usterki może być przyczyną

Ilustracja do pytania
A. wzrostu rezystancji przewodu uziemiającego.
B. zmniejszenia się rezystancji uziomu.
C. zmniejszenia się rezystancji uziemienia ochronnego.
D. wzrostu rezystancji uziemienia ochronnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obluzowanie zacisku Z na głównej szynie uziemiającej jest problemem, który może prowadzić do zwiększenia rezystancji uziemienia ochronnego. W kontekście bezpieczeństwa instalacji elektrycznych, rezystancja uziemienia ochronnego powinna być jak najniższa, aby skutecznie odprowadzać prądy zwarciowe do ziemi. Poza tym, zgodnie z normami PN-IEC 60364-5-54, dobrze uziemiona instalacja jest kluczowa dla zapobiegania porażeniom elektrycznym. Gdy zacisk jest luźny, kontakt elektryczny jest gorszy, co prowadzi do zwiększenia oporu elektrycznego, a tym samym do wzrostu rezystancji uziemienia. To zjawisko może być szczególnie niebezpieczne w sytuacji wystąpienia awarii, kiedy prąd zwarciowy nie przepłynie efektywnie do ziemi, co może skutkować uszkodzeniem urządzeń oraz zagrożeniem dla zdrowia użytkowników. W praktyce, regularne przeglądy i konserwacja instalacji elektrycznych są niezbędne, aby zapewnić ich prawidłowe działanie oraz bezpieczeństwo użytkowników.

Pytanie 21

Czym charakteryzują się urządzenia oznaczone znakiem pokazanym na rysunku?

Ilustracja do pytania
A. Muszą być zasilane bardzo niskim napięciem bezpiecznym.
B. Muszą być umieszczane poza zasięgiem ręki.
C. Wymagają ogrodzeń, jako ochrony przeciwporażeniowej.
D. Mają podwójną lub wzmocnioną izolację.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że "Mają być zasilane bardzo niskim napięciem bezpiecznym" jest jak najbardziej trafna. Urządzenia z symbolem klasy III, który widnieje na rysunku, powinny być zasilane niskim napięciem, nieprzekraczającym 50V w prądzie przemiennym i 120V w prądzie stałym. Nazywamy to SELV, czyli ewentualnie niskim napięciem bezpiecznym. Dzięki temu ryzyko porażenia prądem jest znacznie mniejsze. W praktyce znajdziemy takie urządzenia wszędzie tam, gdzie ludzie często mają z nimi do czynienia, jak na przykład w sprzęcie medycznym czy lampach. Kluczowe jest, żeby przy projektowaniu instalacji elektrycznych z użyciem tych urządzeń przestrzegać norm bezpieczeństwa, jak PN-EN 61140. Co więcej, fakt, że nie trzeba ich uziemiać, bardzo ułatwia ich montaż i sprawia, że są super uniwersalne w różnych zastosowaniach przemysłowych i komercyjnych.

Pytanie 22

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 5 lat
B. 3 lata
C. 2 lata
D. 4 lata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz, przeglądy instalacji elektrycznej w budynkach publicznych powinny być robione co 5 lat. To ważne, bo chodzi o bezpieczeństwo ludzi i to, by wszystko działało jak należy. Jak robisz to regularnie, to można szybciej zauważyć różne usterki, takie jak uszkodzone kable czy korozja. Na przykład, w teatrach czy halach sportowych jest mnóstwo ludzi, więc tam warto być szczególnie czujnym, żeby nie było awarii, które mogą być niebezpieczne. Fajnie też mieć dokumentację tych przeglądów, bo widać, co się działo z instalacją przez lata. Ważne, żeby przeglądami zajmowali się fachowcy, którzy potrafią ocenić, co jest do zrobienia. W Polsce można znaleźć przepisy na ten temat w Kodeksie Pracy i normach PN-IEC.

Pytanie 23

Do pomiaru całkowitego natężenia prądu w pełni obciążonej instalacji, której schemat przedstawiono na rysunku, należy użyć

Ilustracja do pytania
A. amperomierza o zakresie 20 A
B. amperomierza o zakresie 5 A i przekładnika prądowego o przekładni 20/5
C. amperomierza o zakresie 5 A i przekładnika prądowego o przekładni 50/5
D. amperomierza o zakresie 10 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór amperomierza o zakresie 5 A i przekładnika prądowego o przekładni 50/5 jest prawidłowym rozwiązaniem w sytuacji, gdy przewidujemy, że całkowite natężenie prądu w instalacji może być znacznie większe niż 5 A, ale nie przekracza 50 A. Przekładnik prądowy pozwala na pomiar wyższych prądów przy użyciu amperomierza o niższym zakresie, co zwiększa bezpieczeństwo oraz dokładność pomiarów. Dzięki zastosowaniu przekładnika, można monitorować działanie instalacji w różnych warunkach obciążeniowych, co jest kluczowe w kontekście zarządzania energią. Dodatkowo, stosowanie przekładników prądowych jest zgodne z najlepszymi praktykami w branży elektroenergetycznej, co zapewnia zgodność z normami bezpieczeństwa oraz efektywności energetycznej. Przykładowo, w sytuacjach, gdzie instalacje są narażone na zmienne obciążenia, zastosowanie tego typu rozwiązania umożliwia precyzyjne szkolenie oraz identyfikację potencjalnych problemów w działaniu systemu. Poprawne pomiary są niezbędne w diagnostyce oraz serwisie, co w efekcie przekłada się na dłuższą żywotność urządzeń i systemów.

Pytanie 24

Jaka jest podstawowa funkcja wyłącznika różnicowoprądowego?

A. Ochrona przed przeciążeniem obwodu
B. Regulacja napięcia wyjściowego
C. Przekształcenie prądu przemiennego na stały
D. Ochrona przed porażeniem poprzez wykrycie różnicy prądów w przewodach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy jest kluczowym elementem systemów ochrony elektrycznej, którego głównym zadaniem jest zapobieganie porażeniom prądem elektrycznym. Działa on na zasadzie wykrywania różnicy pomiędzy prądem wpływającym a wypływającym z urządzenia lub instalacji. Jeśli taka różnica zostanie wykryta, oznacza to, że część prądu gdzieś 'ucieka', co może sugerować uszkodzenie izolacji lub kontakt prądu z osobą. W praktyce wyłącznik różnicowoprądowy automatycznie odłącza zasilanie w momencie wykrycia tego typu anomalii, minimalizując ryzyko porażenia. To urządzenie jest szeroko stosowane w instalacjach domowych i przemysłowych, zapewniając dodatkową warstwę ochrony w miejscach, gdzie mogą występować uszkodzenia izolacji lub wilgoć. Warto pamiętać, że nie zastępuje on standardowych zabezpieczeń nadprądowych, ale uzupełnia je, oferując ochronę przed skutkami niekontrolowanego przepływu prądu do ziemi. W kontekście bezpieczeństwa użytkownika wyłącznik różnicowoprądowy jest nieocenionym narzędziem, które powinno być standardem w każdej nowoczesnej instalacji elektrycznej.

Pytanie 25

Którą z wymienionych wielkości można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Barwę światła.
B. Poziom olśnienia.
C. Strumień świetlny.
D. Natężenie oświetlenia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Natężenie oświetlenia jest wielkością, którą możemy zmierzyć przy pomocy luksomierza, który jest przedstawiony na powyższym zdjęciu. Przyrząd ten jest zaprojektowany do określania ilości światła docierającego do danej powierzchni, co jest kluczowe w wielu zastosowaniach, od projektowania wnętrz po inżynierię oświetleniową. Luksomierze są powszechnie wykorzystywane w branży budowlanej i architektonicznej, gdzie odpowiedni poziom oświetlenia jest istotny dla komfortu użytkowników oraz efektywności pracy. Zgodnie z normami ISO, natężenie oświetlenia powinno być dostosowane do specyficznych warunków użytkowych, co czyni pomiar luksomierzem niezbędnym narzędziem dla architektów i projektantów. Na przykład, w biurach wymagane jest natężenie oświetlenia wynoszące od 300 do 500 luksów w zależności od typu wykonywanych zadań. To pokazuje, jak ważne jest precyzyjne określenie natężenia oświetlenia, aby zapewnić odpowiednie warunki pracy.

Pytanie 26

Który z przedstawionych znaków należy zastosować, aby ostrzec użytkownika urządzenia elektrycznego przed niebezpieczeństwem porażenia prądem elektrycznym?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C. jest poprawna, ponieważ symbol ostrzegawczy, który przedstawia, jest uznawany za międzynarodowy standard w zakresie bezpieczeństwa urządzeń elektrycznych. Trójkąt z piorunem informuje użytkowników o potencjalnym niebezpieczeństwie porażenia prądem elektrycznym. Stosowanie tego znaku jest zgodne z normami IEC 60417, które regulują oznakowanie bezpieczeństwa w obszarze elektryczności. Przykładowo, w miejscach takich jak stacje elektroenergetyczne, rozdzielnie elektryczne czy w instalacjach przemysłowych, obecność tego znaku jest kluczowa dla zapewnienia bezpieczeństwa pracowników i osób przebywających w pobliżu. Oprócz tego, znak ten powinien być umieszczany w widocznych miejscach, aby każdy mógł go łatwo zauważyć. W przypadku pracy w warunkach wysokiego napięcia, stosowanie odpowiednich oznaczeń jest nie tylko praktyką, ale i wymogiem prawnym, co podkreśla znaczenie edukacji i świadomości w zakresie bezpieczeństwa elektrycznego.

Pytanie 27

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby obniżyć prędkość obrotową
B. Aby poprawić przeciążalność
C. Aby zwiększyć moment rozruchowy
D. Aby zredukować prąd rozruchowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przełącznik gwiazda-trójkąt jest powszechnie stosowany w układach zasilania silników trójfazowych w celu ograniczenia prądu rozruchowego. Kiedy silnik jest uruchamiany w układzie gwiazdy, napięcie na każdej fazie wynosi tylko 1/√3 (około 58%) napięcia międzyfazowego, co powoduje znaczące zmniejszenie prądu rozruchowego, który jest proporcjonalny do napięcia. Dzięki temu unika się przeciążenia sieci zasilającej oraz zmniejsza ryzyko uszkodzenia silnika. Po osiągnięciu odpowiednich obrotów, przełącznik zmienia połączenie na układ trójkąta, co pozwala na uzyskanie pełnej mocy silnika. Stosowanie przełącznika gwiazda-trójkąt jest zgodne z normami, takimi jak IEC 60034, które regulują zasady stosowania silników elektrycznych. W praktyce, ten system jest niezwykle przydatny w aplikacjach, w których wymagany jest wysoki moment rozruchowy, np. w młynach, dźwigach czy kompresorach, gdzie kontrola prądu podczas rozruchu jest kluczowa dla zapewnienia bezpiecznej i efektywnej pracy.

Pytanie 28

Instalację elektryczną wykonaną przewodami ADY 4×6 mm2 zmodernizowano stosując przewody YDY 4×10 mm2 oraz LgYżo 10 mm2 ułożone w korytku kablowym w podłodze. Korzystając z tabel, określ wartość obciążalności prądowej nowych przewodów.

Ilustracja do pytania
A. 53,00 A
B. 44,59 A
C. 49,00 A
D. 48,23 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 44,59 A, co zostało obliczone na podstawie tabeli obciążalności prądowej dla przewodów YDY o przekroju 10 mm². Wartość obciążalności dla tego typu przewodów, układanych w korytku kablowym, wynosi 49 A. Następnie zastosowano współczynnik poprawkowy równy 0,91, który uwzględnia fakt, że przewody są ułożone w grupie czterech żył roboczych. Przemnażając 49 A przez 0,91, otrzymujemy 44,59 A, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej. W praktyce, znajomość tych wartości jest niezwykle istotna podczas projektowania oraz modernizacji instalacji, ponieważ pozwala na uniknięcie przeciążenia przewodów, co mogłoby prowadzić do awarii instalacji czy nawet pożaru. Dobrą praktyką jest również regularne sprawdzanie oraz aktualizacja wiedzy na temat norm i przepisów, które mogą się zmieniać, a także dostosowywanie projektów do zmieniających się warunków eksploatacyjnych.

Pytanie 29

Który z jednofazowych wyłączników nadprądowych zapewnia odpowiednią ochronę przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. B10
B. C10
C. C16
D. B16

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy typu B charakteryzuje się zdolnością do wykrywania przeciążeń oraz zwarć w instalacjach elektrycznych. Przy impedancji pętli zwarcia Z = 4,2 Ω, wyłącznik B10 zapewnia odpowiednią ochronę przeciwporażeniową, gdyż jego prąd znamionowy wynosi 10 A. W sytuacji zwarcia, czas reakcji wyłącznika jest kluczowy dla bezpieczeństwa, a wyłącznik typu B zadziała przy prądzie zwarciowym w granicach 3 do 5 krotności prądu znamionowego. Przykładowo, dla prądu zwarciowego rzędu 30 A, wyłącznik ten zadziała w czasie wystarczającym, by zminimalizować ryzyko uszkodzenia instalacji oraz zapobiec porażeniom. Zgodnie z normami, takimi jak PN-EN 60898, dobór wyłącznika powinien być dostosowany do warunków pracy oraz charakterystyki obciążenia, co potwierdza wybór B10 jako właściwy. Dodatkowo, stosowanie wyłączników nadprądowych zgodnych z obowiązującymi regulacjami sprzyja utrzymaniu wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 30

Jakie styczniki z podanych kategorii powinny być użyte podczas modernizacji szafy sterowniczej z szyną TH 35, zasilającej urządzenie napędzane silnikami indukcyjnymi klatkowym?

A. AC-1
B. DC-4
C. DC-2
D. AC-3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór stycznika AC-3 do sterowania silnikami indukcyjnymi klatkowym jest uzasadniony jego specyfiką oraz przeznaczeniem. Klasyfikacja AC-3 jest dedykowana do zastosowań związanych z silnikami asynchronicznymi, w szczególności w momentach ich rozruchu, co wiąże się z dużymi prądami rozruchowymi. Styki AC-3 są zaprojektowane do pracy z prądami roboczymi, a ich konstrukcja pozwala na skuteczne rozłączanie i załączanie obwodów z silnikami, co jest kluczowe w kontekście wydajności energetycznej i bezpieczeństwa systemu. Przykładem zastosowania AC-3 może być szafa sterownicza w zakładzie przemysłowym, gdzie stycznik ten obsługuje silnik napędzający taśmociąg. Zgodnie z normami IEC 60947-4-1, styczniki klasy AC-3 są także przystosowane do pracy z dużymi cyklami załączania, co czyni je odpowiednimi w aplikacjach o dużym obciążeniu. Wybór ten jest zgodny z najlepszymi praktykami branżowymi, zapewniając nie tylko efektywność, ale i długowieczność komponentów w zautomatyzowanych systemach.

Pytanie 31

Jak, w przybliżeniu, zmieni się moc wydobywana przez grzejnik elektryczny, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilania pozostanie niezmienione?

A. Zmniejszy się czterokrotnie
B. Zwiększy się czterokrotnie
C. Zmniejszy się dwukrotnie
D. Zwiększy się dwukrotnie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ moc wydzielana przez grzejnik elektryczny jest proporcjonalna do kwadratu napięcia zasilania i odwrotnie proporcjonalna do długości spirali grzejnej. Kiedy skracamy spiralę grzejną o połowę, jej rezystancja maleje, co powoduje, że prąd płynący przez nią wzrasta, przy niezmienionym napięciu. Zgodnie z prawem Ohma, moc P można wyrazić jako P = U²/R, gdzie U to napięcie, a R to rezystancja. Skrócenie spirali grzejnika o połowę wpływa na zmniejszenie rezystancji o połowę, co z kolei powoduje, że moc wydzielana przez grzejnik wzrasta dwukrotnie. Przykładowo, w zastosowaniach przemysłowych, gdy grzejniki są wykorzystywane do podgrzewania cieczy, zwiększenie mocy o 100% może znacząco wpłynąć na efektywność procesu grzewczego, co jest zgodne z zasadami optymalizacji energetycznej.

Pytanie 32

Jakiego rodzaju zabezpieczenie powinno być zastosowane, gdy rozruch silnika indukcyjnego pierścieniowego bez urządzeń rozruchowych jest niedopuszczalny?

A. Zabezpieczenia zwarciowego
B. Zabezpieczenia przeciążeniowego
C. Zabezpieczenia nadnapięciowego
D. Zabezpieczenia podnapięciowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zabezpieczenie podnapięciowe w systemach rozruchu silników indukcyjnych pierścieniowych jest naprawdę istotne, jak dla ich bezpieczeństwa, tak i dla samego działania urządzenia. Działa to tak, że jak napięcie spada poniżej pewnego poziomu, to układ nie pozwala na uruchomienie silnika. Bo wiesz, w przypadku silników pierścieniowych, które często używa się tam, gdzie potrzebny jest duży moment obrotowy, jeśli nie zastosujesz dobrego zabezpieczenia, możesz doprowadzić do przeciążenia i w efekcie uszkodzenia silnika. Takie zabezpieczenie ma na celu to, żeby silnik nie wystartował, gdy napięcie jest za niskie, bo to może prowadzić do przegrzania uzwojeń i innych poważnych problemów. W przemyśle takie zabezpieczenia są standardem, bo niewłaściwa praca silnika może wywołać dodatkowe koszty i przestoje. Często też normy, jak IEC 60947-4-1, mówią, że warto mieć takie zabezpieczenia, żeby chronić silniki przed złymi warunkami zasilania, co jest zgodne z tym, jak to się robi w branży.

Pytanie 33

W tabeli zamieszczono wyniki kontrolnych pomiarów rezystancji uzwojeń stojana silnika trójfazowego połączonego w gwiazdę. Przedstawione wyniki świadczą o

Rezystancja uzwojeń stojana między zaciskamiWartość, Ω
U1 – V115
V1 – W1
W1 – U1
Ilustracja do pytania
A. zwarciu międzyzwojowym w uzwojeniu Ul - U2
B. przerwie w uzwojeniu Wl - W2
C. zwarciu międzyzwojowym w uzwójeniu V1 - V2
D. przerwie w uzwojeniu VI - V2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje na przerwę w uzwojeniu W1-W2, co można zdiagnozować na podstawie pomiarów rezystancji. W przypadku silników trójfazowych połączonych w gwiazdę, każdy z trzech uzwojeń (U, V, W) powinien mieć zbliżoną rezystancję. W analizowanym przypadku, jeśli rezystancja między zaciskami V1-W1 oraz W1-U1 wynosi nieskończoność, oznacza to, że w obwodzie występuje przerwa. Tego rodzaju awarie mają poważne konsekwencje operacyjne, ponieważ przerywają ciągłość elektryczną, co prowadzi do nieprawidłowego działania silnika. Przerwa w uzwojeniu skutkuje brakiem obciążenia dla pozostałych uzwojeń, co może prowadzić do ich przegrzewania się i w konsekwencji do uszkodzenia. W praktyce ważne jest, aby regularnie przeprowadzać pomiary rezystancji uzwojeń, co jest zgodne z normami branżowymi, takimi jak IEC 60034, które podkreślają znaczenie monitorowania stanu technicznego maszyn elektrycznych.

Pytanie 34

Który z podanych sposobów ochrony przed porażeniem elektrycznym pełni rolę zabezpieczenia dodatkowego w przypadku uszkodzenia instalacji elektrycznych niskonapięciowych?

A. Podwójna lub wzmocniona izolacja elektryczna
B. Ochronne miejscowe połączenia wyrównawcze
C. Separacja elektryczna odbiornika
D. Umieszczenie części czynnych poza zasięgiem ręki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ochronne miejscowe połączenia wyrównawcze stanowią kluczowy element systemów ochrony przeciwporażeniowej, zwłaszcza w instalacjach elektrycznych niskich napięć. Działają one w celu minimalizacji różnic potencjałów między różnymi metalowymi elementami instalacji, co zmniejsza ryzyko porażenia prądem elektrycznym. W sytuacji awaryjnej, gdy dojdzie do uszkodzenia izolacji lub innej awarii, połączenia wyrównawcze zapewniają alternatywną drogę dla prądu, co przyczynia się do szybszego działania zabezpieczeń. Przykładowo, w obiektach użyteczności publicznej, takich jak szkoły czy szpitale, implementacja miejscowych połączeń wyrównawczych jest zgodna z normami PN-EN 61140, które podkreślają znaczenie zachowania niskiego poziomu ryzyka w zakresie bezpieczeństwa elektrycznego. Dobrą praktyką jest również regularne sprawdzanie stanu technicznego tych połączeń, aby zapewnić ich pełną funkcjonalność w razie potrzeby.

Pytanie 35

Jaki prąd znamionowy powinien mieć bezpiecznik zainstalowany w piecu elektrycznym z możliwością przełączania mocy grzejnej za pomocą łączników P1 i P2, zasilanym z sieci 230 V i grzałkami o oporze 60 Ω każda, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 6 A
B. 10 A
C. 16 A
D. 20 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bezpiecznik o prądzie znamionowym 16 A jest odpowiedni dla pieca elektrycznego z grzałkami o oporze 60 Ω zasilanego napięciem 230 V. Obliczenia wskazują, że maksymalny prąd wynosi 11,5 A, co oznacza, że bezpiecznik musi być dobrany w taki sposób, aby jego wartość była wyższa od tego prądu. W przypadku zastosowania bezpiecznika o niższej wartości, np. 10 A, istnieje ryzyko zadziałania zabezpieczenia podczas normalnej pracy urządzenia, co prowadziłoby do częstych przerw w zasilaniu i zakłóceń w użytkowaniu pieca. Przy wyborze bezpieczników kluczowe jest stosowanie standardów, takich jak normy IEC 60269, które określają, jak dobierać zabezpieczenia w zależności od obciążenia. W praktyce, zastosowanie bezpiecznika 16 A dla obwodów o takich parametrach grzewczych zapewnia nie tylko bezpieczeństwo, ale także optymalne działanie pieca bez niepotrzebnych przerw. Dodatkowo, uwzględniając kwestie eksploatacyjne, dobór bezpiecznika powinien być zgodny z wytycznymi producenta urządzenia oraz lokalnymi przepisami elektrycznymi.

Pytanie 36

Jaką minimalną liczbę osób należy zaangażować do pracy w warunkach szczególnego zagrożenia?

A. Cztery osoby
B. Jedna osoba
C. Trzy osoby
D. Dwie osoby

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Minimalna liczba osób wykonujących prace w warunkach szczególnego zagrożenia powinna wynosić dwie osoby, co jest zgodne z zasadami bezpieczeństwa pracy oraz regulacjami prawnymi. W praktyce, obecność co najmniej dwóch pracowników zapewnia wzajemne wsparcie i możliwość szybkiej reakcji w sytuacjach awaryjnych. Na przykład, w przypadku prac w zamkniętych przestrzeniach, takich jak zbiorniki czy kanały, jeden pracownik może pełnić rolę osoby asekurującej, co jest niezbędne w przypadku wystąpienia zagrożenia zdrowia lub życia. Istotne jest, by w ramach tych prac, każdy z pracowników miał przypisane konkretne zadania oraz mógł efektywnie komunikować się z partnerem. Zgodnie z normami, takimi jak PN-N-18002 dotycząca zarządzania bezpieczeństwem i higieną pracy, pracodawcy są zobowiązani do zapewnienia odpowiednich warunków, które minimalizują ryzyko wypadków. W praktyce, w przypadku awarii sprzętu lub nagłych problemów zdrowotnych, obecność drugiej osoby może być kluczowa w zapewnieniu szybkiej pomocy oraz wezwania służb ratunkowych.

Pytanie 37

Podstawowa ochrona przed porażeniem prądem za pomocą przegród lub obudów jest realizowana dzięki

A. umieszczeniu elementów aktywnych poza zasięgiem ręki
B. całkowitemu i trwałemu pokryciu części czynnych materiałem izolacyjnym
C. wprowadzeniu barier chroniących przed przypadkowym kontaktem
D. zastosowaniu osłon chroniących przed zamierzonym dotykiem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca zastosowania osłon chroniących przed celowym dotykiem jest poprawna, ponieważ wskazuje na kluczowy aspekt ochrony przeciwporażeniowej. Osłony te mają za zadanie zabezpieczyć dostęp do części czynnych urządzeń elektrycznych, które mogłyby być narażone na nieautoryzowany kontakt. Przykładami takich osłon są obudowy ochronne, które stosuje się w instalacjach elektrycznych na zewnątrz budynków, a także osłony w rozdzielnicach, które zapobiegają przypadkowemu dotykowi osób postronnych. Zgodnie z normami IEC 61439 oraz PN-EN 60529, które definiują stopnie ochrony obudów, ważne jest, aby urządzenia były projektowane z myślą o bezpieczeństwie użytkowników. Takie podejście nie tylko zabezpiecza przed przypadkowym porażeniem prądem, ale także minimalizuje ryzyko świadomego kontaktu z urządzeniami, co jest szczególnie istotne w miejscach publicznych. Prawidłowe zastosowanie osłon przyczynia się do zwiększenia bezpieczeństwa w środowisku pracy oraz w przestrzeni publicznej, co jest zgodne z dobrymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 38

Które elementy na zamieszczonym schemacie układu prostownikowego stanowią zabezpieczenie przed przepięciami komutacyjnymi?

A. Obwody R1C1
B. Obwody R2C2
C. Bezpieczniki F2
D. Bezpieczniki F3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowo wskazane zostały obwody R2C2 – to właśnie one na schemacie pełnią rolę zabezpieczenia przed przepięciami komutacyjnymi w układzie prostownikowym. Są to tzw. obwody tłumiące, gasikowe (snubbery), zbudowane z rezystora i kondensatora połączonych w odpowiedni sposób równolegle do elementu narażonego na przepięcia, najczęściej do uzwojeń transformatora, diod prostowniczych lub tyrystorów. Ich zadaniem jest „wygładzenie” gwałtownych zmian napięcia w chwili przełączania prądu, czyli właśnie przy komutacji. W momencie szybkiego wyłączania prądu, indukcyjność obciążenia lub transformatora powoduje powstawanie wysokich, krótkotrwałych przepięć. Kondensator w obwodzie R2C2 przejmuje część energii i ogranicza stromość narastania napięcia (dv/dt), a rezystor rozprasza tę energię w postaci ciepła, dzięki czemu przepięcia są znacznie mniejsze i mniej groźne dla diod, tyrystorów czy izolacji uzwojeń. W praktyce, w zasilaczach prostownikowych, napędach tyrystorowych, spawarkach czy prostownikach rozruchowych takie obwody są standardem – projektanci praktycznie zawsze przewidują gasiki RC w okolicach elementów komutujących. Moim zdaniem to jeden z typowych elementów, który laik często pomija, a w serwisie widać, że brak poprawnie dobranego snubbera kończy się częstym uszkadzaniem diod albo tyrystorów, czasem także przebiciem izolacji transformatora. Dobre praktyki mówią, żeby dobór R i C w takich obwodach robić na podstawie parametrów katalogowych elementów półprzewodnikowych (dopuszczalne dv/dt, maksymalne napięcie wsteczne) oraz charakteru obciążenia. W literaturze i normach dotyczących przekształtników energoelektronicznych podkreśla się, że układ prostownikowy bez odpowiedniego tłumienia przepięć komutacyjnych ma dużo mniejszą niezawodność i krótszą żywotność elementów. Dlatego rozpoznanie, że to właśnie R2C2 pełni rolę ochrony przed przepięciami, jest bardzo istotne z punktu widzenia praktyki zawodowej.

Pytanie 39

Jak wymiana uzwojenia pierwotnego na inne, wykonane z drutów nawojowych o podwójnym przekroju i tej samej liczbie zwojów, wpłynie na działanie transformatora, przy zachowanym uzwojeniu wtórnym?

A. Zwiększy się efektywność transformatora
B. Zmaleje napięcie na końcówkach uzwojenia wtórnego
C. Wzrasta napięcie na końcówkach uzwojenia wtórnego
D. Zredukuje się moc pobierana z transformatora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uzwojenia pierwotnego na druty o większym przekroju, przy tej samej liczbie zwojów, wpływa korzystnie na sprawność transformatora. Zwiększenie przekroju drutów prowadzi do obniżenia oporu elektrycznego uzwojenia, co w efekcie zmniejsza straty mocy na skutek efektu Joule'a (straty I²R). To oznacza, że przy tej samej wartości prądu, straty ciepła w uzwojeniu pierwotnym będą mniejsze, co przekłada się na wyższą sprawność całego urządzenia. W praktyce, zastosowanie drutów o większym przekroju jest zgodne z zasadami inżynierii, gdzie dąży się do minimalizacji strat energii oraz poprawy efektywności energetycznej urządzeń. W przemyśle energetycznym, efektywność transformatorów jest kluczowa, ponieważ ma bezpośredni wpływ na zużycie energii i koszty operacyjne. Na przykład, w elektrowniach i stacjach transformacyjnych stosuje się takie rozwiązania, aby zminimalizować straty energii i poprawić parametry pracy urządzeń.

Pytanie 40

Jaki będzie skutek zwiększenia rezystancji regulatora Rfr w obwodzie wzbudzenia silnika bocznikowego prądu stałego pracującego przy stałym momencie obciążającym, którego schemat układu połączeń zamieszczono na rysunku?

Ilustracja do pytania
A. Zmniejszy się prędkość obrotowa i prąd pobierany z sieci.
B. Zmniejszy się prędkość obrotowa, a prąd pobierany z sieci nie ulegnie zmianie.
C. Zwiększy się prędkość obrotowa, a prąd pobierany z sieci nie ulegnie zmianie.
D. Zwiększy się prędkość obrotowa i prąd pobierany z sieci.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie rezystancji regulatora Rfr w obwodzie wzbudzenia silnika bocznikowego prądu stałego prowadzi do zmniejszenia prądu wzbudzenia (If). W rezultacie zmniejsza się strumień magnetyczny (Φ), co zgodnie z zasadą indukcji elektromagnetycznej, skutkuje wzrostem prędkości obrotowej (n) silnika. W przypadku, gdy moment obciążający pozostaje stały, wyższa prędkość obrotowa oznacza, że silnik będzie pobierał większy prąd (Ia) z sieci, aby dostarczyć wymaganą moc. Taki mechanizm jest kluczowy w zastosowaniach przemysłowych, gdzie regulacja prędkości i momentu obrotowego jest istotna dla wydajności procesów. W praktyce, inżynierowie często stosują podobne mechanizmy w systemach automatyki i sterowania silnikami, aby optymalizować pracę maszyn i urządzeń, dbając o ich efektywność energetyczną oraz minimalizując straty związane z nieprawidłowym doborem parametrów. Wzrost prędkości obrotowej ma również znaczenie w kontekście wydajności energetycznej, co jest szczególnie istotne w kontekście dzisiejszych norm i standardów zrównoważonego rozwoju.