Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 16 grudnia 2025 12:05
  • Data zakończenia: 16 grudnia 2025 12:16

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie działania należy podjąć po odłączeniu zasilania, aby zgodnie z PN-HD 60364-6:2008 Instalacje elektryczne niskiego napięcia, przeprowadzić pomiar rezystancji izolacji kabli?

A. Wyłączyć odbiorniki oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
B. Zasilić badaną instalację napięciem stałym oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
C. Odłączyć odbiorniki, zewrzeć łączniki oraz zapewnić skuteczną ochronę przed dotykiem bezpośrednim
D. Rozłączyć oprawy oświetleniowe, zewrzeć łączniki oświetlenia oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
Poprawna odpowiedź to odłączenie odbiorników oraz zapewnienie skutecznej ochrony przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego. Zgodnie z PN-HD 60364-6:2008, przed przystąpieniem do pomiaru rezystancji izolacji, należy bezwzględnie odłączyć wszelkie odbiorniki elektryczne od instalacji. Takie działanie ma na celu uniknięcie ryzyka porażenia prądem oraz uszkodzenia urządzeń podczas pomiaru. Kluczowym aspektem jest także zapewnienie skutecznej ochrony, co często realizuje się poprzez zastosowanie odpowiednich zabezpieczeń mechanicznych lub elektronicznych, które blokują możliwość przypadkowego włączenia zasilania. Przykładem może być użycie blokady na rozdzielnicy. W praktyce, pomiar rezystancji izolacji wykonuje się najczęściej przy użyciu megomierza, który generuje wysokie napięcie, co może być niebezpieczne dla osób i sprzętu, jeśli nie zostaną podjęte odpowiednie środki ochrony. Prawidłowe przygotowanie do pomiaru jest kluczowe, aby zapewnić bezpieczeństwo oraz dokładność wyników. Dobrą praktyką jest także dokumentacja stanu wyłączenia oraz przeprowadzonych działań, co jest przydatne w kontekście inspekcji i audytów.

Pytanie 2

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
B. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
C. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
D. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
Zainstalowanie odpowiedniej wstawki izolacyjnej między miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do budynku jest kluczowym działaniem w celu zapewnienia bezpieczeństwa instalacji gazowej. Wstawka izolacyjna działa jako bariera, która zapobiega przewodzeniu prądu elektrycznego między metalowymi rurami gazowymi a uziemioną instalacją budynku. Prawidłowe zastosowanie takich wstawek jest zgodne z normami PN-IEC 60364, które podkreślają znaczenie izolacji w kontekście ochrony przed porażeniem prądem elektrycznym. Przykładem zastosowania tej praktyki może być sytuacja, w której instalacja gazowa znajduje się w bliskim sąsiedztwie instalacji elektrycznych, co zwiększa ryzyko przepięć. Zastosowanie wstawki izolacyjnej minimalizuje ryzyko uszkodzenia rurociągów gazowych, a tym samym podnosi bezpieczeństwo użytkowania budynku. Dbanie o odpowiednie standardy w instalacjach gazowych jest niezbędne, aby uniknąć niebezpieczeństw, takich jak wycieki czy eksplozje, a wstawki izolacyjne stanowią ważny element tej ochrony.

Pytanie 3

Jaki wyłącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Silnikowy.
B. Różnicowoprądowy.
C. Nadprądowy.
D. Czasowy.
Wyłącznik różnicowoprądowy to naprawdę ważne urządzenie w każdej instalacji elektrycznej. Jego głównym zadaniem jest ochrona nas przed porażeniem prądem. Działa to tak, że jeśli wykryje różnicę między prądem, który wpływa a tym, który wypływa z obwodu, to szybko odłącza zasilanie. Kiedy prąd upływowy przekroczy ustaloną wartość, najczęściej 30 mA, to wyłącznik po prostu wyłącza prąd. Fajnie jest wiedzieć, że takie wyłączniki są stosowane zwłaszcza w łazienkach, czy wszędzie tam, gdzie elektryczność ma kontakt z wodą. Warto zaznaczyć, że według normy PN-EN 61008, powinny być w każdej nowoczesnej instalacji, co świadczy o ich roli w dbaniu o nasze bezpieczeństwo. Poza tym, nowoczesne budynki zwykle są w nie wyposażone, co dodatkowo zwiększa bezpieczeństwo. Oprócz ochrony, wyłączniki różnicowoprądowe też pomagają monitorować stan instalacji, co jest istotne, by była ona w dobrym stanie.

Pytanie 4

Który element stycznika elektromagnetycznego przedstawiono na ilustracji?

Ilustracja do pytania
A. Zworę.
B. Cewkę.
C. Komorę gaszeniową.
D. Sprężynę zwrotną.
Cewka jest kluczowym elementem stycznika elektromagnetycznego, który odgrywa fundamentalną rolę w jego działaniu. Gdy do cewki doprowadzony jest prąd, wytwarza ona pole magnetyczne, które przyciąga ruchomy rdzeń stycznika, powodując zamknięcie styków. Dzięki temu możliwy jest przepływ prądu przez obciążenie, co jest istotne w różnych aplikacjach elektrycznych, od automatyki przemysłowej po systemy oświetleniowe. Cewki stosowane w stycznikach są zazwyczaj projektowane zgodnie z normami IEC oraz DIN, co zapewnia ich niezawodność i efektywność. Przykładem zastosowania stycznika z cewką może być automatyczne włączenie pompy wody w systemach zarządzania budynkami, gdzie cewka aktywuje styki, kiedy poziom wody osiąga określoną wartość. Zrozumienie działania cewki oraz jej roli w stycznikach jest kluczowe dla profesjonalistów w dziedzinie elektrotechniki, co pozwala na poprawne zaprojektowanie oraz efektywne użytkowanie systemów elektrycznych.

Pytanie 5

Jakie rodzaje żył znajdują się w kablu oznaczonym symbolem SMYp?

A. Płaskie
B. Jednodrutowe
C. Wielodrutowe
D. Sektorowe
Odpowiedzi "Płaskie", "Sektorowe" i "Jednodrutowe" są nieco mylące. Przewody płaskie, chociaż mogą mieć swoje miejsce, to zazwyczaj są używane w sytuacjach, gdzie przestrzeń jest ograniczona, ale nie mają tej elastyczności co wielodrutowe. Przewody sektorowe są bardziej chyba do specyficznych zastosowań, ale nie mogą znieść dużych zgięć. No a te jednodrutowe... no cóż, mają ten problem, że są mniej elastyczne, przez co łatwiej je uszkodzić. Gdy chodzi o miejsce, gdzie trzeba coś często przenosić, to te jednodrutowe nie będą najlepsze, bo szybko się zużywają. Często w takich przypadkach nie myśli się o elastyczności i o tym, jak przewody będą pracować w ruchu. Dobór właściwych przewodów jest kluczowy, bo to wpływa na trwałość i niezawodność całej instalacji. Warto znać te normy i standardy w elektryce.

Pytanie 6

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. linii kablowej zasilającej budynek.
B. instalacji elektrycznej.
C. instalacji odgromowej budynku.
D. linii napowietrznej niskiego napięcia.
Analizując inne dostępne odpowiedzi, można zauważyć, że linii kablowej zasilającej budynek, instalacji odgromowej oraz linii napowietrznej niskiego napięcia dotyczące parametry techniczne nie są w pełni adekwatne do opisanych w tabeli. W przypadku linii kablowej, chociaż mogą występować pewne parametry techniczne, jak długość czy przekrój żyły, to jednak kluczowe informacje dotyczące mocy przyłączeniowej oraz liczby obwodów są typowe dla instalacji elektrycznych wewnętrznych. Podobnie, instalacja odgromowa nie wymaga określenia mocy przyłączeniowej ani liczby obwodów, ponieważ jej celem jest ochrona budynku przed wyładowaniami atmosferycznymi, a nie efektywne zarządzanie energią. Odnośnie linii napowietrznej niskiego napięcia, to również nie podaje się parametrów takich jak rodzaj uziomu, które są kluczowe do określenia w kontekście instalacji elektrycznej wewnętrznej. Często mylenie tych kategorii wynika z niewłaściwego zrozumienia funkcji poszczególnych systemów elektrycznych w obiektach budowlanych. Warto pamiętać, że poprawne zrozumienie różnicy między tymi instalacjami oraz ich zastosowaniem jest niezbędne dla projektantów oraz techników zajmujących się instalacjami elektrycznymi i ich bezpieczeństwem.

Pytanie 7

Do której czynności przeznaczone jest narzędzie przedstawione na ilustracji?

Ilustracja do pytania
A. Do zaciskania końcówek tulejkowych.
B. Do ściągania izolacji z żył przewodów.
C. Do zaciskania końcówek oczkowych.
D. Do docinania przewodów.
To, co widzisz na obrazku, to szczypce do ściągania izolacji. To naprawdę ważne narzędzie, jeśli pracujesz z kablami elektrycznymi. Mają one fajną budowę, bo mają regulowany ogranicznik, dzięki czemu możesz dokładnie ściągnąć izolację i nie uszkodzić samego przewodu. Jak już wiesz, do podłączania przewodów elektrycznych trzeba dobrze przygotować te kable, dlatego te szczypce są wręcz niezbędne. W elektryce bezpieczeństwo jest priorytetem, więc robienie tego z dużą uwagą zmniejsza ryzyko zwarć i innych problemów. Kiedy wszystko jest dobrze połączone, to znaczy, że instalacja będzie trwała i bezpieczna. No i nie można zapomnieć, że używając takich szczypiec, oszczędzasz czas, co na budowie albo przy modernizacji instalacji jest super ważne.

Pytanie 8

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym końcu kabla. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły c i a są przerwane.
B. Żyły c i a są zwarte ze sobą.
C. Żyły a i b są przerwane.
D. Żyły a i b są zwarte ze sobą.
Odpowiedź, że żyły a i b są zwarte, jest jak najbardziej trafna. Pomiary rezystancji jasno pokazują, że te żyły są ze sobą połączone. W obu seriach testów, gdy te żyły były zwarte, rezystancja wynosiła wartość skończoną. To sugeruje, że mamy do czynienia z bezpośrednim połączeniem. W praktyce, w elektryce i telekomunikacji, ważne jest, by pamiętać o przestrzeganiu norm i standardów bezpieczeństwa przy łączeniu kabli. Chodzi o to, żeby uniknąć problemów, które mogą zepsuć całe systemy. Gdy pojawią się uszkodzenia lub awarie, jak przerwy w obwodach, kluczowe jest, żeby przeprowadzić dokładne pomiary dla diagnostyki. Dlatego umiejętne czytanie wyników pomiarów rezystancji jest absolutnie istotne dla prawidłowego działania instalacji elektrycznych. Dobrze jest też dokumentować pomiary, co naprawdę pomaga w podejmowaniu decyzji o naprawach czy zmianach w systemach.

Pytanie 9

Największy prąd, który może pobierać długotrwale obwód oświetleniowy, zasilany z rozdzielnicy o przedstawionym na rysunku schemacie, wynosi

Ilustracja do pytania
A. 26 A
B. 6 A
C. 16 A
D. 20 A
Zrozumienie mocy oraz obciążenia w obwodach elektrycznych jest kluczowe dla prawidłowego działania instalacji. Wybór niewłaściwej wartości prądu, na przykład 6 A, 16 A lub 26 A, wynika z typowych błędów myślowych związanych z analizą schematu. Udzielając odpowiedzi 6 A lub 16 A, można sądzić, że prąd ograniczający jest możliwy do przyjęcia na podstawie zastosowanych komponentów. Jednakże, wyłącznik B20 oraz stycznik SM-320, które są kluczowe w tym obwodzie, mogą bezpiecznie obsłużyć znacznie wyższy prąd – aż do 20 A. Wybór 26 A jest również niewłaściwy, ponieważ przekracza maksymalną wartość obciążenia, co prowadziłoby do ryzyka uszkodzenia elementów instalacji. Warto również zauważyć, że w praktyce inżynierskiej wymagane jest przestrzeganie standardów znamionowych oraz zapewnienie odpowiednich marginesów bezpieczeństwa. Właściwy dobór elementów i obliczeń jest zatem kluczowy dla bezpieczeństwa i długowieczności instalacji elektrycznych, a każdy element w obwodzie powinien być dostosowany do jego przewidywanego obciążenia. Analizując powyższe, nie powinno się pomijać znaczenia norm i przepisów, które mają na celu ochronę zarówno osób, jak i mienia przed niebezpieczeństwami wynikającymi z niewłaściwego doboru lub eksploatacji instalacji elektrycznych.

Pytanie 10

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
B. Wiertarkę, punktak, zestaw wkrętaków
C. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
D. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
Wybór narzędzi zaproponowany w innych odpowiedziach, takich jak tylko taśma miernicza i młotek, bądź jedynie wiertarka i komplet wkrętaków, jest niewłaściwy dla tego konkretnego zadania. Taśma miernicza, mimo że jest przydatna do pomiarów, nie zastępuje potrzeby precyzyjnego wyznaczenia miejsc wiercenia, co może prowadzić do błędów w montażu. Młotek sam w sobie nie jest wystarczający do pracy z cegłą pełną, gdzie konieczne jest użycie punktaka do wstępnego oznaczenia otworów. Wiertarka bez odpowiedniego wiertła widiowego może nie sprostać twardości cegły, co skutkuje trudnościami w procesie wiercenia oraz możliwym uszkodzeniem narzędzia. Piła do metalu może być używana, lecz w kontekście montażu rurek PVC, kluczowe jest posiadanie narzędzi do obróbki i mocowania, a nie tylko cięcia. Ostatecznie, brak poziomnicy w zestawie narzędzi jest istotnym błędem, ponieważ precyzyjne wypoziomowanie rurek jest kluczowe dla prawidłowego funkcjonowania instalacji. Takie nieprzemyślane podejście do przygotowania narzędzi może prowadzić do poważnych błędów w instalacji, co w dłuższym czasie może generować dodatkowe koszty związane z poprawkami i ponownym montażem.

Pytanie 11

Jakiego narzędzia należy użyć, aby zweryfikować, czy nie ma napięcia w instalacji elektrycznej 230 V, przed przystąpieniem do prac konserwacyjnych?

A. Omomierza cyfrowego
B. Miernika parametrów instalacji
C. Czujnika zaniku fazy
D. Neonowego wskaźnika napięcia
Neonowy wskaźnik napięcia to urządzenie, które pozwala na szybkie i skuteczne sprawdzenie obecności napięcia w instalacjach elektrycznych. Działa na zasadzie świecenia diody neonowej, gdy napięcie przekracza określony próg. Jest to podstawowe narzędzie, które powinno być używane przed rozpoczęciem jakichkolwiek prac konserwacyjnych, aby zapewnić bezpieczeństwo techników. W praktyce, po podłączeniu wskaźnika do przewodów, jego świecenie sygnalizuje, że w instalacji występuje napięcie, co oznacza, że nie powinno się przystępować do prac. Zgodnie z ogólnymi zasadami BHP, każda osoba pracująca w branży elektrycznej powinna posiadać odpowiednie narzędzia do pomiaru, a neonowy wskaźnik jest jednym z najprostszych i najtańszych. Przykładem może być sytuacja, gdy elektryk musi wymienić gniazdko – przed rozpoczęciem wymiany, zawsze powinien skontrolować, czy w obwodzie nie ma napięcia, używając neonowego wskaźnika. Tego rodzaju praktyki są zgodne z normami PN-IEC 61010, które regulują kwestie bezpieczeństwa urządzeń elektrycznych.

Pytanie 12

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
B. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
C. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
D. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
Analizując niepoprawne odpowiedzi, można zauważyć szereg istotnych nieporozumień związanych z klasyfikacją kabli i ich zastosowaniami. W pierwszej z nich sugerowany kabel sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV nie pasuje do charakterystyki przedstawionego kabla. Kable sygnalizacyjne na ogół operują na niższych napięciach, a ich budowa z żyłami jednodrutowymi nie jest typowa dla aplikacji wymagających elastyczności i odporności na zakłócenia. Podobnie, drugi typ kabla, czyli kontrolny z żyłami wielodrutowymi na napięcie 300/500 V, z ekranowaniem, nie odpowiada wizualnym cechom przedstawionego kabla. Ekranowanie jest kluczowe w redukcji zakłóceń, jednak brak takiej ochrony w analizowanym przypadku wskazuje na inne przeznaczenie. Odpowiedź dotycząca kabla elektroenergetycznego również jest błędna, gdyż odnosi się do wyższych napięć, co nie zgadza się z widocznymi cechami izolacyjnymi i konstrukcją kabla. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków obejmują nadmierne generalizowanie właściwości kabli oraz ignorowanie specyfikacji technicznych. Niezrozumienie różnic między typami kabli oraz ich zastosowaniem w praktyce może prowadzić do niewłaściwych wyborów w projektowaniu instalacji elektrycznych i sygnalizacyjnych, co w konsekwencji może wpływać na niezawodność i bezpieczeństwo systemów.

Pytanie 13

Na rysunku pokazano pętlę zwarciową w układzie typu

Ilustracja do pytania
A. TT
B. TN-C-S
C. IT
D. TN-S
Wybór innych odpowiedzi, takich jak TN-S, IT oraz TT, nie jest poprawny, ponieważ każda z tych opcji odnosi się do innego układu zasilania, który nie odpowiada przedstawionemu na rysunku schematowi. W układzie TN-S przewody neutralne i ochronne są zawsze oddzielne i nie ma w nim przewodu PEN, który mógłby być rozdzielany. Tego rodzaju konstrukcja jest stosunkowo często używana w nowoczesnych instalacjach, jednak w kontekście omawianego rysunku nie może być uznana za właściwą. Z kolei układ IT charakteryzuje się izolacją od ziemi, co w przypadku rozdziału przewodu PEN jest wręcz niewłaściwe. W systemach IT nie ma możliwości, aby przewód ochronny był łączony z neutralnym w sposób opisany w pytaniu. Ostatnia z propozycji, TT, zakłada, że przewód ochronny jest uziemiony lokalnie, co również wyklucza obecność przewodu PEN w omawianym kontekście. Powszechnym błędem w wyborze odpowiedzi jest nieznajomość funkcji poszczególnych przewodów i ich roli w różnych systemach zasilania. Warto zwrócić uwagę, że niepoprawne rozumienie i stosowanie tych układów może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz sprzętu elektrycznego. Dlatego ważne jest, aby dokładnie zaznajomić się z różnicami między tymi układami oraz ich zastosowaniem w różnych sytuacjach.

Pytanie 14

Kabel typu YAKY przedstawiono na rysunku

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór odpowiedzi innej niż B może wynikać z nieporozumienia dotyczącego specyfikacji kabli elektroenergetycznych. Kable typu YAKY charakteryzują się szczególnymi właściwościami, które odróżniają je od innych typów kabli. Na przykład, kable oznaczone jako A, C lub D mogą mieć różne kształty przekroju, co wpływa na ich właściwości mechaniczne oraz zastosowanie. Kable o prostokątnym lub innym niż okrągły przekroju nie spełniają standardów dla kabli YAKY, co może prowadzić do błędnych wniosków przy ich wyborze. Często mylnie zakłada się, że wszystkie kable izolowane spełniają te same funkcje, jednak każdy typ kabla ma swoją specyfikę. Kable YAKY zastosowane w instalacjach zewnętrznych wymagają dodatkowych właściwości, takich jak odporność na działanie promieni UV oraz zmienne warunki atmosferyczne, co nie jest zapewnione w przypadku innych typów kabli. Często występuje także błąd myślowy polegający na myleniu kabli energetycznych z innymi rodzajami kabli, np. sygnalizacyjnymi, które mogą mieć zupełnie inną konstrukcję i przeznaczenie. Aby skutecznie projektować systemy elektroenergetyczne, ważne jest, aby zwracać uwagę na szczegółowe właściwości kabli zgodnie z obowiązującymi normami oraz standardami branżowymi.

Pytanie 15

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Podkładka dystansowa
B. Tuleja redukcyjna
C. Podkładka sprężysta
D. Tuleja kołnierzowa
Tuleja kołnierzowa, tuleja redukcyjna oraz podkładka dystansowa, mimo że każdy z tych elementów ma swoje zastosowanie, nie są odpowiednie do zabezpieczania nakrętki przed odkręceniem. Tuleja kołnierzowa jest elementem mocującym, który zazwyczaj wspiera konstrukcje lub elementy w danym miejscu, ale nie ma właściwości sprężystych, co oznacza, że nie zapobiega luzowaniu się nakrętek. Jej główną funkcją jest ułatwienie montażu i stabilizacja, co nie wpływa na trwałość połączenia w warunkach dynamicznych. Tuleja redukcyjna, z kolei, służy do zmiany średnicy otworu w elementach złącznych, co również nie wpływa na zapobieganie odkręcaniu się nakrętki. Nie ma ona żadnych właściwości, które mogłyby przeciwdziałać luzowaniu połączenia. Z kolei podkładka dystansowa jest używana do utrzymywania odpowiedniego odstępu pomiędzy elementami, ale również nie jest w stanie zabezpieczyć połączenia przed luzowaniem. Często prowadzi to do błędnych wniosków, że elementy te mogą pełnić funkcję zabezpieczającą, co nie jest ich przeznaczeniem. W kontekście standardów branżowych, ważne jest, aby właściwie dobierać elementy zabezpieczające w zależności od specyfiki zastosowania, aby zapewnić pełne bezpieczeństwo i niezawodność konstrukcji.

Pytanie 16

Przedstawiony na rysunku przyrząd umożliwia

Ilustracja do pytania
A. pomiar rezystancji żył przewodów ochronnych.
B. testowanie działania wyłączników różnicowoprądowych.
C. określenie parametrów pętli zwarciowej.
D. testowanie zabezpieczeń nadprądowych.
Testowanie działania wyłączników różnicowoprądowych, znane również jako RCD, jest kluczowym aspektem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Przyrząd Megger RCDT320, przedstawiony na rysunku, został zaprojektowany specjalnie do tego celu, co pozwala na dokładne sprawdzenie, czy wyłącznik reaguje na różnicę napięcia i skutecznie odłącza obwód w przypadku awarii. Przykładowo, zastosowanie tego narzędzia w praktyce pozwala na sprawdzenie, czy wyłącznik RCD działający w instalacji domowej reaguje na upływ prądu do ziemi, co może być spowodowane uszkodzeniem izolacji. Oprócz tego, regularne testowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które zalecają przeprowadzanie takich testów w określonych odstępach czasu dla zapewnienia niezawodności systemów elektrycznych. Użycie tego przyrządu jest nie tylko praktyką zalecaną, ale również wymaganą przez przepisy budowlane w wielu krajach, aby minimalizować ryzyko porażeń prądem i pożarów elektrycznych.

Pytanie 17

Jakim urządzeniem można przeprowadzić bezpośredni pomiar rezystancji obwodu?

A. woltomierzem
B. omomierzem
C. watomierzem
D. amperomierzem
Pomiar rezystancji obwodu za pomocą amperomierza, woltomierza czy watomierza jest koncepcyjnie błędny, ponieważ każdy z tych przyrządów ma inne przeznaczenie oraz zasady działania. Amperomierz służy do pomiaru natężenia prądu w obwodzie, co oznacza, że jego zastosowanie do pomiaru rezystancji wymagałoby znajomości wartości napięcia, a to prowadzi do pomiarów pośrednich, co jest mniej precyzyjne. Woltomierz z kolei mierzy napięcie, ale nie jest przystosowany do bezpośredniego pomiaru rezystancji, a jego użycie w tym kontekście również wymaga dodatkowych obliczeń, co wprowadza dodatkową niepewność. Watomierz, który mierzy moc, również nie posiada funkcji pomiaru rezystancji; jego zastosowanie w tym przypadku byłoby kompletnie nieadekwatne, ponieważ moc jest funkcją prądu i napięcia, a nie oporu. Typowe błędy myślowe, prowadzące do wyboru tych narzędzi, mogą wynikać z nieporozumienia dotyczącego ich funkcji; wielu użytkowników nie dostrzega różnicy pomiędzy pomiarami rezystancji a innymi podstawowymi parametrami elektrycznymi. Kluczowe jest zrozumienie, że każdy z tych przyrządów ma swoje specyficzne przeznaczenie, a ich używanie w niewłaściwy sposób prowadzi do błędnych wyników i potencjalnych zagrożeń w obwodach elektrycznych.

Pytanie 18

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
B. Silnik będzie zasilany prądem w kierunku przeciwnym
C. Podczas zasilania silnika jego wirnik będzie stał
D. Silnik będzie pracować na biegu jałowym
Silnik pozostający na biegu jałowym charakteryzuje się minimalnym poślizgiem, ponieważ nie jest obciążony zewnętrznie, co sprawia, że jego wirnik obraca się blisko prędkości synchronicznej. W praktyce oznacza to, że nie ma znacznego oporu mechanicznego, który mógłby wpłynąć na różnicę między prędkością wirnika a polem magnetycznym statora. W takich warunkach obroty wirnika są prawie zgodne z obrotami pola magnetycznego. W zastosowaniach przemysłowych, takich jak wentylatory czy pompy, silniki indukcyjne często pracują w trybie jałowym, co minimalizuje straty energii. Dobrą praktyką jest monitorowanie poślizgu silników w celu optymalizacji ich wydajności i zużycia energii. Zmniejszenie poślizgu wpływa na obniżenie kosztów eksploatacji, co jest kluczowe w kontekście zarządzania energią w zakładach produkcyjnych.

Pytanie 19

Który z przyrządów służy do bezpośredniego pomiaru współczynnika mocy?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Odpowiedź C jest prawidłowa, ponieważ watomierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy czynnej w obwodach elektrycznych. W kontekście współczynnika mocy, który jest kluczowym parametrem w systemach prądu przemiennego, watomierz pozwala na precyzyjne określenie wartości mocy czynnej, co jest niezbędne do obliczenia współczynnika mocy (cosφ). W praktyce, stosując wzór: cosφ = P/S, gdzie P to moc czynna, a S to moc pozorna, można z łatwością ustalić współczynnik mocy. Użycie watomierza jest nieocenione w zastosowaniach takich jak optymalizacja zużycia energii w instalacjach elektrycznych, co pozwala na identyfikację strat energii i poprawę efektywności energetycznej. Współczesne standardy, takie jak IEC 61557, podkreślają znaczenie pomiarów współczynnika mocy dla zapewnienia efektywności systemów zasilania oraz jakości energii elektrycznej.

Pytanie 20

W którym z wymienionych miejsc można zainstalować oprawę oświetleniową posiadającą w karcie katalogowej następujące oznaczenia?

Ilustracja do pytania
A. Na zewnątrz, do oświetlenia placu budowy.
B. W pomieszczeniu zagrożonym wybuchem.
C. W pomieszczeniach z łatwopalnymi oparami.
D. Na dnie basenu o głębokości 4 m.
Wybór lokalizacji dla oprawy oświetleniowej o oznaczeniu IP65 w nieodpowiednich miejscach, takich jak dno basenu o głębokości 4 m, pomieszczenia zagrożone wybuchem, czy w przestrzeniach z łatwopalnymi oparami, wskazuje na istotne nieporozumienia dotyczące zastosowania opraw oświetleniowych. Oprawa z oznaczeniem IP65 nie jest przystosowana do pracy pod wodą, co wynika z braku certyfikacji umożliwiającej jej działanie w takich warunkach. W przypadku instalacji na dnie basenu, konieczne są urządzenia przystosowane do pracy w wodzie, często posiadające oznaczenie IP68, które zapewnia pełną ochronę przed wodą na dużą głębokość. Instalacja w pomieszczeniu zagrożonym wybuchem wymaga stosowania opraw specjalistycznych, które są certyfikowane zgodnie z normą ATEX lub innymi odpowiednimi regulacjami. W takich środowiskach używane są oprawy, które minimalizują ryzyko zapłonu i są dostosowane do specyfikacji chemicznych obecnych w danym pomieszczeniu. Z kolei miejsca z łatwopalnymi oparami wymagają zastosowania dodatkowych zabezpieczeń, aby uniknąć ryzyka pożaru. Wybierając miejsce instalacji oprawy oświetleniowej, istotne jest, aby dokładnie zapoznać się ze specyfikacją techniczną urządzenia oraz z odpowiednimi normami, co pozwoli na zapewnienie bezpieczeństwa i prawidłowego funkcjonowania oświetlenia w każdych warunkach.

Pytanie 21

Elektronarzędzie przedstawione na rysunku jest stosowane przy wykonywaniu instalacji elektrycznej

Ilustracja do pytania
A. prowadzonej w tynku.
B. podtynkowej.
C. prefabrykowanej.
D. natynkowej.
Odpowiedź 'podtynkowej' jest poprawna, ponieważ elektronarzędzie przedstawione na rysunku to frezarka do rowków, która jest kluczowym narzędziem w instalacjach elektrycznych podtynkowych. Umożliwia ono precyzyjne wykonywanie bruzd w murach, gdzie następnie kable elektryczne są układane pod tynkiem. Taki sposób instalacji jest zgodny z najlepszymi praktykami budowlanymi, które zalecają ukrywanie przewodów dla zapewnienia estetyki i bezpieczeństwa. Instalacje podtynkowe chronią kable przed uszkodzeniami mechanicznymi oraz eliminują ryzyko zwarcia spowodowanego wystawieniem przewodów na działanie czynników zewnętrznych. W przypadku zastosowań w obiektach mieszkalnych, standardy budowlane, takie jak PN-IEC 60364, podkreślają znaczenie odpowiedniej izolacji oraz układania instalacji w sposób, który minimalizuje ryzyko uszkodzeń i ułatwia przyszłe prace konserwacyjne.

Pytanie 22

Na którym rysunku przedstawiono przewód kabelkowy do układania w tynku?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Na rysunkach B, C i D przedstawione są różne typy przewodów, które nie są przeznaczone do układania w tynku. Rysunek B może ilustrować przewód o okrągłym przekroju, który jest często używany w instalacjach, gdzie przewody są układane w rurkach osłonowych lub systemach kanalizacyjnych. Tego rodzaju przewody nie są przystosowane do osadzania w tynku, ponieważ ich konstrukcja i materiał izolacyjny mogą nie spełniać wymogów związanych z bezpośrednim kontaktem z materiałem budowlanym. Ponadto, przewody przedstawione na rysunkach C i D mogą być przeznaczone do zastosowań przemysłowych lub specjalistycznych, takich jak przewody odporne na wysoką temperaturę lub chemikalia, co również wyklucza ich użycie w standardowych instalacjach domowych. Typowe błędy myślowe, które prowadzą do wyboru tych odpowiedzi, mogą wynikać z braku wiedzy na temat specyfikacji technicznych przewodów elektrycznych oraz ich przeznaczenia. Osoby nieprzygotowane mogą również mylić konstrukcję fizyczną przewodów z ich funkcjonalnością, co jest kluczowe w praktycznych zastosowaniach instalacyjnych. Zrozumienie różnic między tymi typami przewodów jest istotne, aby uniknąć nieprawidłowych decyzji w projektowaniu i wykonawstwie instalacji elektrycznych.

Pytanie 23

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
B. Silnik będzie zasilany prądem przeciwnym
C. Silnik będzie pracował w stanie jałowym
D. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
W sytuacjach, gdy silnik zasilany jest przeciwprądem, wirnik nie może osiągnąć ujemnego poślizgu, ponieważ prąd zasilający działa w przeciwną stronę, co może prowadzić do uszkodzenia silnika. Silnik nie pracuje wtedy w sposób efektywny, a jego działanie może być szkodliwe dla całego układu. Podobnie, pozostawienie silnika na biegu jałowym również nie prowadzi do ujemnego poślizgu, ponieważ wirnik nie obraca się w stosunku do pola magnetycznego, co oznacza, że poślizg jest równy zeru. Z kolei, gdy wirnik jest nieruchomy podczas zasilania, silnik działa w warunkach maksymalnego poślizgu, co jest całkowicie odmienne od ujemnego poślizgu. Zrozumienie tych podstawowych zasad działania silników indukcyjnych jest kluczowe, aby uniknąć typowych błędów myślowych związanych z interpretacją i zastosowaniem teorii silników elektrycznych. W przemyśle i praktyce inżynieryjnej ważne jest, aby znajomość charakterystyk silników indukcyjnych była stosowana w odpowiednich kontekstach, aby zapewnić ich efektywność i bezpieczeństwo operacyjne.

Pytanie 24

Który środek ochrony przeciwporażeniowej przy uszkodzeniu zastosowano w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Użycie odbiorników II klasy ochronności.
B. Separację odbiornika.
C. Samoczynne wyłączenie zasilania.
D. Połączenie wyrównawcze.
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który zapewnia bezpieczeństwo użytkowników poprzez automatyczne przerwanie obwodu elektrycznego w przypadku wykrycia niebezpiecznych warunków. W przedstawionym układzie zastosowanie bezpieczników jako elementów ochrony pozwala na natychmiastową reakcję na awarie, takie jak uszkodzenie izolacji, co mogłoby prowadzić do porażenia prądem. Przykładem praktycznego zastosowania samoczynnego wyłączenia zasilania jest instalacja w budynkach mieszkalnych, gdzie bezpieczniki są używane, aby chronić użytkowników przed skutkami zwarcia lub przeciążenia. Zgodnie z normami IEC 60364, systemy samoczynnego wyłączania zasilania są rekomendowane jako podstawowy element ochrony, co podkreśla ich znaczenie w zapobieganiu wypadkom. Dodatkowo, takie rozwiązania przyczyniają się do poprawy niezawodności systemów elektrycznych, co czyni je zgodnymi z najlepszymi praktykami inżynieryjnymi w dziedzinie elektrotechniki.

Pytanie 25

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 0,2 sekundy
B. 5 sekund
C. 0,4 sekundy
D. 1 sekundę
Podawana maksymalna wartość czasu samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie do 32 A w sieci TN wynosząca 5 sekund, 1 sekundę czy 0,2 sekundy jest niezgodna z obowiązującymi standardami ochrony elektrycznej, co może prowadzić do niebezpiecznych sytuacji. Różne wartości czasowe dla samoczynnego wyłączenia mają swoje uzasadnienie w kontekście skuteczności ochrony przed dotykiem pośrednim, a czas 0,4 sekundy został ustalony jako maksymalny, po to aby zapewnić minimalizację ryzyka porażenia prądem w przypadku awarii. Czas 5 sekund jest zdecydowanie zbyt długi i nie zapewnia odpowiedniego poziomu ochrony, zwłaszcza w sytuacjach, gdy człowiek ma kontakt z uszkodzonym urządzeniem lub przewodem. Z kolei 1 sekunda, choć jest znacznie krótsza, również nie spełnia wymaganych norm w kontekście niektórych zastosowań, gdzie szybka reakcja jest kluczowa. Odpowiedzi 0,2 sekundy mogą wydawać się bardziej bezpieczne, jednak nie są zgodne z określoną normą, a ich zastosowanie w realnych warunkach użytkowania mogłoby prowadzić do fałszywych alarmów i niepotrzebnych wyłączeń, co w praktyce zakłócałoby funkcjonowanie urządzeń. Niezrozumienie zasad bezpieczeństwa elektrycznego, jak również wymagań normatywnych, prowadzi do nieprawidłowych decyzji i zagrożeń w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 26

Jakie urządzenie, oprócz lutownicy, jest kluczowe podczas naprawy przeciętego przewodu LY poprzez połączenie lutowane?

A. Szczypce boczne
B. Płaskoszczypce
C. Nóż monterski
D. Zagniatarka
Obcinaczki boczne, zagniatarka oraz płaskoszczypce to narzędzia, które mają swoje specyficzne zastosowania, ale nie są wystarczające do naprawy przeciętego przewodu poprzez lutowanie. Obcinaczki boczne służą głównie do cięcia przewodów, co jest przydatne w przypadku eliminowania uszkodzonych odcinków, jednak nie pomagają w przygotowaniu końców przewodów do lutowania. Przy lutowaniu konieczne jest, aby końcówki były gładkie i odpowiednio odizolowane, co wymaga użycia innego narzędzia. Z kolei zagniatarka jest narzędziem przeznaczonym do łączenia przewodów poprzez zaciśnięcie końcówek, co nie ma zastosowania w przypadku naprawy poprzez lutowanie. Płaskoszczypce mogą być użyte do trzymania lub formowania przewodów, ale nie są one wystarczające do ich właściwego przygotowania do lutowania. Typowym błędem myślowym jest założenie, że narzędzia wielofunkcyjne mogą zastąpić specjalistyczne narzędzia, takie jak nóż monterski. Każde narzędzie ma swoje ściśle określone zastosowanie i dla uzyskania optymalnych efektów w naprawach elektrycznych kluczowe jest korzystanie z odpowiedniego zestawu narzędzi. W branży, standardy bezpieczeństwa i jakości pracy wymagają, aby korzystać z narzędzi, które są przeznaczone do konkretnych zadań, a nie improwizować z narzędziami, które nie spełniają tej funkcji.

Pytanie 27

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
B. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
C. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
D. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 28

Na podstawie wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja w Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.2
N.1 – N.20
PE.1 – PE.20
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.10
N.1 – L2.1
N.1 – L3.1
Ilustracja do pytania
A. L1 i L2 są zwarte.
B. N i PE są zwarte oraz L3 jest przerwana.
C. N i L3 są zwarte oraz PE jest przerwana.
D. L1 i L2 są przerwane.
Analizując inne odpowiedzi, można zauważyć, że stwierdzenie, iż żyły N i L3 są zwarte, bazuje na błędnym rozumieniu pomiarów rezystancji. W przypadku, gdy L3 byłaby rzeczywiście zwarte, rezystancja między N a L3 musiałaby wynosić 0 Ω. Kolejne podejście, które sugeruje, że L1 i L2 są przerwane, pomija kluczową informację, że ich rezystancja również wynosi 0 Ω, co oznacza, że są sprawne. Warto zwrócić uwagę na to, że mylenie pojęć związanych z pomiarami rezystancji prowadzi do fałszywych wniosków. Rezystancja nieskończona, jak w przypadku L3, nie może być interpretowana jako stan zwarty. Ostatecznie, błędne odpowiedzi pokazują, że zrozumienie, jak powinny działać różne żyły w instalacji elektrycznej, jest niezbędne dla prawidłowego diagnozowania problemów. Kluczowym aspektem jest znajomość funkcji żył neutralnych, ochronnych oraz fazowych w instalacji, co jest fundamentem dla zapewnienia bezpieczeństwa oraz efektywności systemów elektrycznych.

Pytanie 29

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Uszkodzona izolacja przewodu fazowego
B. Zamieniony przewód ochronny z neutralnym
C. Odłączony przewód ochronny
D. Zamieniony przewód fazowy z neutralnym
Wybór odpowiedzi dotyczący "Odłączonego przewodu ochronnego" może wydawać się logiczny, jednak nie uwzględnia on całego kontekstu sytuacji. Gdyby przewód ochronny był odłączony, to odbiornik II klasy ochronności po podłączeniu do gniazda powinien zadziałać normalnie, ponieważ urządzenia tej klasy nie wymagają przewodu ochronnego do prawidłowego działania. W takim przypadku wyłącznik różnicowoprądowy nie zadziałałby, co wyklucza tę możliwość. Podobnie, odpowiedź sugerująca "Uszkodzoną izolację przewodu fazowego" jest również mylną interpretacją. Uszkodzona izolacja mogłaby prowadzić do upływu prądu i zadziałania wyłącznika różnicowoprądowego, a nie do jego zadziałania wyłącznie w przypadku konkretnego gniazda. Odpowiedź o "Zamienionych przewodach fazowym z neutralnym" również nie jest poprawna, ponieważ wymiana tych przewodów nie wywołałaby takiego efektu zadziałania zabezpieczenia tylko w jednym gniazdku, a nie w pozostałych. W przypadku zamiany przewodów fazowego i neutralnego, mogłoby dojść do poważnych problemów z bezpieczeństwem, ale nie zadziałałby wyłącznik różnicowoprądowy w opisany sposób. Te błędne koncepcje często wynikają z braku zrozumienia podstawowych zasady działania systemów elektrycznych oraz roli, jaką odgrywają różne przewody w zapewnieniu bezpieczeństwa instalacji.

Pytanie 30

Ile wynosi wartość impedancji pętli zwarcia wyznaczonej w układzie pomiarowym przedstawionym na rysunku, jeśli przy otwartym wyłączniku W woltomierz wskazywał napięcie 228 V, a przy zamkniętym wyłączniku W woltomierz wskazywał 218 V, a amperomierz wskazał prąd 4 A?

Ilustracja do pytania
A. 1,50 Ω
B. 2,50 Ω
C. 2,75 Ω
D. 1,25 Ω
Problemy związane z błędnymi odpowiedziami najczęściej wynikają z nieprawidłowego zrozumienia zasad działania obwodów elektrycznych oraz błędnych obliczeń związanych z prawem Ohma. Użytkownicy mogą mylić jednostki miary lub źle interpretować różnice napięć w obwodzie. Na przykład, jeśli ktoś obliczał impedancję, wykorzystując różne wartości napięcia bez uwzględnienia spadku napięcia, mógłby uzyskać błędne wyniki, takie jak 1,50 Ω czy 1,25 Ω. Takie odpowiedzi mogą wynikać z przeoczenia, że do obliczeń należy używać jedynie różnicy napięcia przy zamkniętym i otwartym wyłączniku, a nie pojedynczych pomiarów. Z kolei wybór 2,75 Ω jako wartości impedancji może oznaczać, że osoba ta nie zrozumiała, jak funkcjonują obwody prądu przemiennego lub nie doceniła wpływu prądu na pomiar. Błędy te mogą również wynikać z braku znajomości praktycznych zastosowań i norm dotyczących instalacji elektrycznych, takich jak PN-IEC 60364. Właściwe obliczenia i zrozumienie wpływu impedancji pętli zwarcia na bezpieczeństwo instalacji elektrycznych są kluczowe dla każdego inżyniera elektryka. Ignorując te zasady, można stworzyć potencjalnie niebezpieczne warunki w obwodach elektrycznych, dlatego dokładność obliczeń i znajomość podstawowej teorii jest niezbędna w tej dziedzinie.

Pytanie 31

Zgodnie z danymi przestawionymi w tabeli dobierz minimalny przekrój przewodu miedzianego jednożyłowego do wykonania jednofazowej natynkowej instalacji o napięciu 230 V, zasilającej piec rezystancyjny o mocy 5 000 W.

Ilustracja do pytania
A. 6 mm2
B. 2,5 mm2
C. 4 mm2
D. 1,5 mm2
Wybór przewodu miedzianego 2,5 mm2 do zasilania pieca rezystancyjnego o mocy 5000 W przy napięciu 230 V jest jak najbardziej na miejscu. Obliczenia wskazują, że prąd będzie wynosił około 21,74 A, a przewód 2,5 mm2 bez problemu to wytrzyma, bo wg normy PN-IEC 60364 może prowadzić do 25 A. Dzięki temu mamy fajny zapas, a to zawsze dobrze, bo unikamy ryzyka przegrzania się przewodów. Jak wiadomo, przegrzanie to nie żarty – może to prowadzić do ich uszkodzenia albo nawet pożaru. Warto też pamiętać, że przy instalacji natynkowej trzeba odpowiednio zabezpieczyć przewody przed uszkodzeniami mechanicznymi i wpływem czynnika zewnętrznego, co jest całkiem standardem w branży. Oczywiście, dobrym pomysłem jest też zainstalowanie odpowiednich bezpieczników, żeby ochraniały nas przed przeciążeniem. Ogólnie rzecz biorąc, dobrze dobrany przekrój przewodu to klucz do bezpieczeństwa i sprawności całej instalacji elektrycznej.

Pytanie 32

Na rysunku przedstawiono oprawę oświetlenia

Ilustracja do pytania
A. bezpośredniego - klasy I.
B. pośredniego - klasy V.
C. przeważnie pośredniego - klasy IV.
D. przeważnie bezpośredniego - klasy II.
Wybrane odpowiedzi, które nie wskazują na pośrednie emitowanie światła, mogą prowadzić do mylnych wniosków dotyczących realnych właściwości opraw oświetleniowych. Na przykład, odpowiedź sugerująca, że oprawa emituje światło przeważnie bezpośrednio, zakłada, że źródło światła jest skierowane bezpośrednio na oświetlaną powierzchnię, co jest sprzeczne z przedstawionym rysunkiem. Oprawy oświetleniowe klasy I najczęściej wiążą się z bezpośrednim oświetleniem, które może powodować intensywne cienie oraz oślepienie, co negatywnie wpływa na komfort użytkowników. Podobnie, klasy IV i V, które z reguły dotyczą więcej pośredniego lub rozproszonego światła, nie są odpowiednie dla opraw, które mają emitować światło w sposób przeważnie bezpośredni. Kluczowym błędem w analizie tego pytania jest niezrozumienie różnicy między tymi dwoma typami oświetlenia oraz ich wpływem na środowisko pracy. Na rysunku powinno być zauważone, że emisja światła poprzez mleczne szkło wskazuje na zamierzenie projektanta, aby zminimalizować oślepienie, co nie jest zgodne z oprawami klasy I. Zrozumienie zasad projektowania systemów oświetleniowych oraz ich klasyfikacji jest niezbędne dla prawidłowego doboru rozwiązań w dziedzinie architektury i ergonomii oświetleniowej.

Pytanie 33

Na której ilustracji przedstawiono rastrową oprawę oświetleniową?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 3.
C. Na ilustracji 1.
D. Na ilustracji 2.
Wybór niewłaściwej ilustracji może wynikać z niepełnego zrozumienia konstrukcji oraz funkcji różnych typów opraw oświetleniowych. Na przykład, ilustracja 4 mogła być wybrana przez mylne skojarzenie z nowoczesnym designem, jednak oprawy w niej przedstawione nie mają cech charakterystycznych dla rastrowych konstrukcji. W przypadku ilustracji 1, obecność klasycznego klosza może sugerować, że użytkownik kojarzy takie rozwiązania z ogólnym oświetleniem, co nie jest zgodne z definicją rastrowej oprawy, która jest dedykowana do efektywnego rozpraszania światła w sposób zorganizowany. Podobnie, ilustracja 3 może przedstawiać inny typ oprawy, np. przeszkloną, która nie spełnia wymagań dotyczących dyfuzji światła typowych dla rozwiązań rastrowych. Często błąd w ocenie wynika z przyzwyczajenia do tradycyjnych źródeł światła, co prowadzi do pominięcia nowoczesnych technologii, takich jak LED, które są teraz szeroko stosowane w oprawach rastrowych. Istotnym błędem jest również ignorowanie różnic w konstrukcji kloszy, które mają kluczowe znaczenie dla efektywności oświetlenia. Dlatego ważne jest zrozumienie, że wybór odpowiedniej oprawy oświetleniowej powinien opierać się na znajomości jej technologicznych właściwości oraz zastosowania w odpowiednich kontekstach. Aby uniknąć błędów, warto zapoznać się ze standardami branżowymi oraz zaleceniami dotyczącymi projektowania oświetlenia w przestrzeniach użytkowych.

Pytanie 34

Który pomiar można wykonać w instalacji elektrycznej przedstawionym na rysunku przyrządem pomiarowym typu MRU-20?

Ilustracja do pytania
A. Impedancji pętli zwarcia.
B. Rezystancji uziomu ochronnego.
C. Prądu różnicowego wyłącznika różnicowoprądowego.
D. Rezystancji izolacji przewodów fazowych.
Odpowiedź "rezystancji uziomu ochronnego" jest prawidłowa, ponieważ przyrząd pomiarowy MRU-20 jest specjalnie zaprojektowany do pomiaru rezystancji uziomu. Uziomy ochronne mają kluczowe znaczenie dla bezpieczeństwa instalacji elektrycznych, ponieważ zapewniają odprowadzenie prądów zwarciowych do ziemi, minimalizując ryzyko porażenia prądem elektrycznym oraz uszkodzenia urządzeń. Pomiar rezystancji uziomu ochronnego powinien odbywać się zgodnie z obowiązującymi normami, takimi jak PN-EN 61557-5, która określa metody pomiaru i dopuszczalne wartości rezystancji dla uziemienia. Zgodnie z tą normą, dla efektywnego zabezpieczenia zaleca się, aby rezystancja uziomu nie przekraczała 10 Ω, jednak w niektórych sytuacjach wartość ta może być niższa. W praktyce, przy pomocy MRU-20 można wykonać pomiary w różnych warunkach, zarówno w instalacjach nowo budowanych, jak i istniejących, co pozwala na bieżące kontrolowanie stanu ochrony przeciwporażeniowej.

Pytanie 35

Którego typu gniazda elektrycznego dotyczy symbol graficzny przedstawiony na ilustracji?

Ilustracja do pytania
A. Jednofazowego ze stykiem ochronnym.
B. Jednofazowego bez styku ochronnego.
C. Trójfazowego bez styku ochronnego.
D. Trójfazowego ze stykiem ochronnym.
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji gniazd elektrycznych. Gniazda jednofazowe bez styku ochronnego oraz gniazda trójfazowe, zarówno z jak i bez styku ochronnego, różnią się zasadniczo pod względem zastosowania i bezpieczeństwa. Gniazda jednofazowe bez styku ochronnego, mimo że są popularne w niektórych aplikacjach, nie zapewniają ochrony przed porażeniem, co czyni je mniej bezpiecznymi w zastosowaniach, gdzie ryzyko kontaktu z prądem jest wyższe. Gniazda trójfazowe, z kolei, są projektowane do zasilania większych urządzeń przemysłowych i wymagają zastosowania specjalistycznych wtyczek oraz kabli. W kontekście domowym lub w małych biurach, gniazda trójfazowe są zazwyczaj zbędne, a ich używanie bez odpowiedniego uzasadnienia może prowadzić do nieefektywności energetycznej. Często błędne wybory wynikają z mylnego założenia, że większa liczba faz przekłada się na lepsze parametry elektryczne w każdej sytuacji. Należy pamiętać, że dobór odpowiedniego gniazda elektrycznego powinien być oparty na specyfikacji urządzeń, które mają być podłączone, oraz na obowiązujących normach bezpieczeństwa. Zrozumienie tych podstawowych zasad jest kluczowe do uniknięcia potencjalnych zagrożeń i nieprawidłowości w instalacjach elektrycznych.

Pytanie 36

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa, aby chronić przewody przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gB 20 A
B. aM 20 A
C. aR 16 A
D. gG 16 A
Wybór wkładek topikowych do zabezpieczeń elektrycznych wymaga znajomości oznaczeń oraz ich zastosowania w różnych sytuacjach. W przypadku wkładek aR, aM oraz gB, ich właściwości nie odpowiadają wymaganiom ochrony obwodu jednofazowego bojlera elektrycznego. Wkładka aR, oznaczająca zabezpieczenia do obwodów, gdzie występują szczytowe prądy zwarciowe, nie jest przeznaczona do ochrony przed przeciążeniami. Oznaczenie aM jest dedykowane do obwodów, w których mogą występować silniki, co również nie jest adekwatne dla danego zastosowania. Wreszcie wkładka gB, stosująca się głównie w obwodach o przeznaczeniu oświetleniowym, nie jest odpowiednia dla obwodów z urządzeniami grzewczymi, jak bojler elektryczny. Kluczowe jest zrozumienie, że błędny wybór wkładki topikowej może prowadzić do niezabezpieczenia obwodu, co stwarza ryzyko uszkodzeń sprzętu lub nawet pożaru. W kontekście norm i standardów, dobór wkładki powinien być oparty na rzeczywistym obciążeniu prądowym urządzenia oraz jego specyfice, co pozwala uniknąć nieefektywności i niebezpieczeństw związanych z niewłaściwym zabezpieczeniem instalacji elektrycznej.

Pytanie 37

Jakie narzędzia, poza przymiaru kreskowego i młotka, należy wybrać do instalacji sztywnych rur elektroinstalacyjnych z PVC?

A. Wiertarka, piła do cięcia, poziomica, wkrętarka
B. Wiertarka, płaskoszczypce, pion, poziomica
C. Cęgi do izolacji, pion, piła do cięcia, obcinaczki
D. Cęgi do izolacji, obcinaczki, wkrętarka, płaskoszczypce
Wybór narzędzi w pozostałych odpowiedziach może wydawać się odpowiedni na pierwszy rzut oka, ale w rzeczywistości nie spełniają one kluczowych wymagań montażu rur sztywnych z PVC. Cęgi do izolacji, choć są przydatne w pracy z przewodami elektrycznymi, nie mają zastosowania przy montażu rur, które wymagają precyzyjnego cięcia i mocowania. Obcinaczki mogą być przydatne do pewnych rodzajów cięcia, ale nie zastąpią funkcji wiertarki i piły, które są kluczowe w obróbce PVC. Wiertarka, jako narzędzie do wiercenia, pozwala na tworzenie otworów na śruby mocujące lub w uchwytach, co jest niezbędne dla stabilności instalacji. Poziomica jest równie ważna, ponieważ nieprawidłowe ustawienie rur może prowadzić do problemów z odpływem lub niewłaściwym funkcjonowaniem instalacji. Przy montażu rur, precyzyjne cięcia są kluczowe, a piła do cięcia zapewnia, że krawędzie są gładkie i równe, co jest istotne dla uzyskania właściwej szczelności złączek. Zastosowanie wkrętarki ułatwia szybkie i efektywne mocowanie rur, co jest kluczowe zwłaszcza w obiektach, gdzie czas montażu ma znaczenie. Dlatego wybór narzędzi musi być przemyślany i dostosowany do specyfiki pracy, aby zapewnić wysoką jakość i trwałość instalacji.

Pytanie 38

Który z łączników instalacyjnych przedstawionych na rysunkach należy zastosować w układzie realizującym sterowanie oświetleniem z dwóch miejsc?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór innego łącznika niż łącznik schodowy prowadzi do nieporozumień związanych z jego funkcjonalnością. Na przykład łączniki krzyżowe czy pojedyncze nie mają zdolności do jednoczesnego sterowania oświetleniem z dwóch miejsc, co stanowi podstawowy wymóg w omawianej sytuacji. Typowe błędy myślowe, prowadzące do takich wyborów, często obejmują mylenie zastosowania różnych typów łączników, co może wynikać z braku zrozumienia ich funkcji. Łączniki jednobiegunowe, na przykład, są przeznaczone jedynie do sterowania oświetleniem z jednego miejsca, co w przypadku dwu- lub wielopunktowego sterowania, nie spełnia oczekiwań. Ponadto, niektóre rozwiązania mogą być uznawane za bardziej skomplikowane, przez co użytkownicy mogą wybierać nieodpowiednie komponenty, nie biorąc pod uwagę ich specyfikacji technicznych. Kluczowe jest zrozumienie, że w odpowiednich zastosowaniach konieczne jest stosowanie właściwych typów łączników, aby uniknąć problemów z instalacją i późniejszym użytkowaniem, co jest zgodne z zaleceniami branżowymi i standardami bezpieczeństwa.

Pytanie 39

W którym obwodzie sieci elektrycznej mierzona jest impedancja pętli zwarcia przez miernik parametrów instalacji włączony jak na rysunku?

Ilustracja do pytania
A. L-N
B. N-PE
C. L-L
D. L-PE
Wybór innych odpowiedzi, takich jak N-PE, L-N czy L-L, wskazuje na niepełne zrozumienie zagadnienia pomiaru impedancji pętli zwarcia oraz ich znaczenia w kontekście ochrony elektrycznej. Pomiar N-PE, choć może sugerować połączenie między przewodem neutralnym (N) a przewodem ochronnym (PE), nie dostarcza informacji o drogach zwarciowych, które mogą wystąpić w praktyce. W przypadku zwarcia doziemnego kluczowe jest zrozumienie, że prąd zwarciowy będzie płynął z przewodu fazowego (L), co pozwala na automatyczne odłączenie zasilania w momencie wykrycia anomalii. Z kolei pomiar L-N mógłby sugerować analizę między przewodem fazowym a neutralnym, co nie odnosi się do testowania efektywności systemu ochrony przed porażeniem prądem. Prąd może płynąć przez przewód neutralny, ale nie zapewnia to informacji o zabezpieczeniach uziemiających. Odpowiedź L-L, z drugiej strony, jest również nieprawidłowa, ponieważ nie uwzględnia kluczowego elementu systemów zabezpieczeń, jakim jest przewód ochronny. Wszystkie te odpowiedzi omijają fundamentalną rolę przewodu PE, który jest niezbędny do skutecznej ochrony przed porażeniem oraz ustalenia niezbędnych wartości impedancji pętli, które powinny być zgodne z normami ochrony przeciwporażeniowej. Zrozumienie tej problematyki jest kluczowe dla zapewnienia bezpieczeństwa w każdej instalacji elektrycznej, co podkreśla praktyczne zastosowanie standardów oraz dobrych praktyk w branży.

Pytanie 40

Który element stosowany w instalacjach sterowania oświetleniem przedstawiono na ilustracji?

Ilustracja do pytania
A. Czujnik ruchu.
B. Ściemniacz oświetlenia.
C. Automat zmierzchowy.
D. Przekaźnik bistabilny.
Automat zmierzchowy to urządzenie, które automatycznie zarządza oświetleniem, dostosowując je do zmieniających się warunków świetlnych w otoczeniu. Na ilustracji przedstawiono model AZH-S, który jest typowym przykładem automatu zmierzchowego. Działa on na zasadzie pomiaru natężenia światła, co pozwala na włączenie oświetlenia po zachodzie słońca, a wyłączenie go w ciągu dnia. To rozwiązanie jest szczególnie przydatne w miejscach, gdzie oświetlenie jest potrzebne tylko w nocy, takich jak ogrody, podjazdy czy parkingi. Dzięki zastosowaniu automatu zmierzchowego można znacząco zmniejszyć zużycie energii, co jest zgodne z zasadami zrównoważonego rozwoju i oszczędności energii. W praktyce, urządzenia te są łatwe do zainstalowania i oferują wiele możliwości konfiguracji, co pozwala na ich dostosowanie do indywidualnych potrzeb użytkowników. Warto również zaznaczyć, że automaty zmierzchowe są zgodne z normami EN 60598-2-1, które dotyczą bezpieczeństwa i wydajności oświetlenia.