Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 21:00
  • Data zakończenia: 17 grudnia 2025 21:12

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Grzałka jednofazowa o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm2. W jaki sposób zmienią się straty mocy w przewodzie zasilającym, jeśli jego przekrój zostanie zwiększony do 2,5 mm2?

A. Wzrosną o 40%
B. Wzrosną o 100%
C. Spadną o 40%
D. Spadną o 100%
Odpowiedź, że straty mocy w przewodzie zmniejszą się o 40%, jest prawidłowa z kilku powodów związanych z zasadami działania prądów elektrycznych i strat energii. Straty mocy w przewodach elektrycznych są związane z oporem przewodnika, który można obliczyć z wykorzystaniem wzoru: P = I²R, gdzie P to moc strat, I to natężenie prądu, a R to opór przewodu. Przy zwiększeniu przekroju przewodu z 1,5 mm2 do 2,5 mm2, opór przewodu maleje, co prowadzi do zmniejszenia strat mocy. W praktyce, stosowanie przewodów o większym przekroju jest zalecane w celu minimalizacji strat energii, co jest zgodne z normami i zasadami efektywności energetycznej. Na przykład, w instalacjach przemysłowych oraz budowlanych, dobór odpowiednich przewodów elektrycznych wpływa na bezpieczeństwo, efektywność operacyjną oraz oszczędności w kosztach energii. To podejście jest zgodne z dobrymi praktykami branżowymi, które promują zwiększenie efektywności energetycznej, a tym samym ograniczenie emisji CO2. Zmniejszenie strat mocy o 40% przy zastosowaniu przewodu o większym przekroju jest wymiernym zyskiem, który powinien być brany pod uwagę na etapie projektowania instalacji. Warto pamiętać, że zastosowanie odpowiednich przekrojów przewodów ma również wpływ na ich temperaturę roboczą, co poprawia bezpieczeństwo całego systemu.

Pytanie 2

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. PKZM01 – 0,63
B. MMS-32S – 4A
C. PKZM01 – 1
D. MMS-32S – 1,6A
Wybór wyłącznika silnikowego PKZM01 – 1 jest poprawny, ponieważ jego znamionowy prąd 1 A jest zgodny z wymaganiami silnika o mocy 0,25 kW i prądzie znamionowym 0,69 A. Wyłączniki silnikowe powinny być dobierane na podstawie prądu znamionowego silnika, co w tym przypadku oznacza, że wymagany prąd roboczy wyłącznika powinien być nieco wyższy niż prąd znamionowy silnika, aby zapewnić odpowiednią ochronę. PKZM01 – 1, przy prądzie 1 A, zapewnia odpowiedni margines bezpieczeństwa, co jest zgodne z dobrymi praktykami w branży. Dodatkowo, wyłączniki serii PKZ są wyposażone w funkcję zabezpieczenia przeciążeniowego i zwarciowego, co czyni je odpowiednim wyborem do ochrony silników. W przypadku awarii, wyłącznik ten zadziała szybko, chroniąc zarówno silnik, jak i podłączone instalacje. Wykorzystując wyłączniki zgodne z normami IEC 60947-4-1, można być pewnym ich niezawodności i efektywności działania.

Pytanie 3

Który z przewodów należy zastosować w instalacji elektrycznej budynku mieszkalnego podczas modernizacji z układu TN-C na układ TN-S?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź C jest prawidłowa, ponieważ w układzie TN-S przewód neutralny (kolor niebieski) i przewód ochronny (kolor zielono-żółty) są oddzielone na całej długości instalacji elektrycznej. Taki układ zapewnia wyższy poziom bezpieczeństwa, minimalizując ryzyko prądów upływowych i zwiększając niezawodność systemu. W praktyce, zastosowanie przewodu z oddzielnym przewodem ochronnym i neutralnym jest zgodne z obowiązującymi normami, takimi jak PN-IEC 60364, które definiują wymogi dla instalacji elektrycznych w budynkach mieszkalnych. W przypadku modernizacji instalacji, zmiana z układu TN-C na TN-S jest często zalecana, aby poprawić efektywność ochrony przeciwporażeniowej. Przykład zastosowania układu TN-S znajdziemy w nowoczesnych budynkach wielorodzinnych, gdzie bezpieczeństwo mieszkańców jest kluczowe. Warto również zauważyć, że oddzielne przewody pozwalają na lepszą diagnostykę i detekcję uszkodzeń w instalacji, co jest istotne w kontekście utrzymania i eksploatacji systemów elektrycznych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Ogrodzenie obszaru pracy
B. Uziemienie odłączonej linii
C. Używanie sprzętu izolacyjnego
D. Zarządzanie pracą w grupie
Prace przy linii napowietrznej wyłączonej spod napięcia wymagają przestrzegania określonych zasad bezpieczeństwa, które zapewniają ochronę pracowników i minimalizują ryzyko wystąpienia niebezpiecznych sytuacji. Wykonywanie pracy zespołowo jest kluczowym elementem, ponieważ zespół wzajemnie się wspiera, co pozwala na szybsze reagowanie w przypadku niespodziewanych okoliczności. Pracownicy powinni być świadomi otoczenia i potencjalnych zagrożeń, co skutkuje zwiększoną ochroną. Uziemienie wyłączonej linii jest kolejnym kluczowym środkiem ostrożności. Uziemienie nie tylko chroni przed przypadkowym porażeniem, ale także zapewnia, że w przypadku jakiejkolwiek nieprzewidzianej sytuacji, nie wystąpi niebezpieczne napięcie. Ogrodzenie miejsca wykonywania pracy również odgrywa ważną rolę; zabezpiecza obszar przed dostępem osób nieuprawnionych, co jest zgodne z zasadami BHP. Błędne jest przekonanie, że te środki są zbędne, ponieważ każdy moment pracy przy instalacjach elektrycznych wiąże się z potencjalnym niebezpieczeństwem, nawet jeśli linia jest wyłączona. Standardy BHP oraz normy krajowe wyraźnie wskazują, że zabezpieczenie miejsca pracy i stosowanie odpowiednich procedur są nie tylko zalecane, ale wręcz wymagane, aby zapewnić maksymalne bezpieczeństwo w miejscu pracy.

Pytanie 6

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów instalacji?

A. Pogorszenie stanu mechanicznego złącz przewodów
B. Zbyt wysoka rezystancja przewodu uziemiającego
C. Brak ciągłości przewodu ochronnego
D. Brak ciągłości przewodu neutralnego
Prawidłowa odpowiedź to pogorszenie się stanu mechanicznego połączeń przewodów, ponieważ jest to problem, który można łatwo zauważyć podczas oględzin instalacji. Oględziny polegają na wizualnej inspekcji elementów instalacji, co pozwala na identyfikację widocznych uszkodzeń, takich jak korozja, luzne złącza czy pęknięcia. Te defekty mogą prowadzić do zwiększonego oporu elektrycznego, co z kolei wpływa na wydajność i bezpieczeństwo całego systemu. Zgodnie z normą PN-IEC 60364, regularne przeglądy instalacji elektrycznych są kluczowe dla zapewnienia ich bezpieczeństwa i sprawności. Przykładem praktycznym może być inspekcja połączeń w rozdzielnicach, gdzie luźne przewody mogą powodować przegrzewanie się i ryzyko pożaru. Dlatego identyfikacja pogorszenia stanu mechanicznego połączeń jest niezbędna w celu zapobiegania awariom i zapewnienia ciągłości działania instalacji.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Który z wymienionych aparatów łączeniowych niskiego napięcia przedstawiono na rysunku?

Ilustracja do pytania
A. Łącznik silnikowy bez zabezpieczeń termicznych.
B. Rozłącznik izolacyjny z widoczną przerwą.
C. Wyłącznik małej mocy.
D. Odłącznik instalacyjny.
Poprawna odpowiedź to rozłącznik izolacyjny z widoczną przerwą. Urządzenie to charakteryzuje się możliwością wizualnej kontroli stanu przerwy izolacyjnej, co jest istotne w kontekście prac konserwacyjnych oraz serwisowych. Rozłączniki izolacyjne są kluczowe w systemach elektrycznych, ponieważ zapewniają bezpieczne odłączenie obwodów, co umożliwia bezpieczną pracę personelu przy konserwacji instalacji. Dzięki przezroczystej obudowie użytkownik może szybko ocenić, czy przerwa jest widoczna, co stanowi istotny element w procedurach oceny ryzyka. Stosowanie rozłączników izolacyjnych z widoczną przerwą jest zgodne z normami bezpieczeństwa, takimi jak normy IEC 60947, które regulują wymagania dotyczące aparatury łączeniowej. W praktyce, rozłączniki te są szeroko stosowane w obiektach przemysłowych oraz w instalacjach budowlanych, gdzie niezbędne jest zapewnienie maksymalnego bezpieczeństwa w przypadku pracy z instalacjami elektrycznymi.

Pytanie 9

Korzystając z tabeli oceń, który wynik badania pozwala wyciągnąć pozytywny wniosek o stanie izolacji jednofazowej instalacji elektrycznej 230 V, 50 Hz.

Napięcie nominalne obwoduNapięcie pomiarowe prądu stałego d.c.Wymagana rezystancja izolacji
V
SELV i PELV250≥ 0,5
do 500 V włącznie, w tym FELV500≥ 1,0
powyżej 500 V1000≥ 1,0

Wynik badaniaNapięcie pomiarowe prądu stałego, kVRezystancja izolacji, kΩ
A.2301050
B.250500
C.4001100
D.5001000
A. B.
B. C.
C. D.
D. A.
Wybór innej odpowiedzi niż D wskazuje na pewne nieporozumienia dotyczące wymagań normatywnych związanych z izolacją instalacji elektrycznych. W przypadku instalacji jednofazowej o napięciu 230 V, standardy ustanawiają minimalne wymagania dotyczące rezystancji izolacji na poziomie 1,0 MΩ. Odpowiedzi inne niż D mogą sugerować, że użytkownik nie dostrzega znaczenia tych norm. Przykładowo, wybór odpowiedzi A lub B może być wynikiem błędnego założenia, że niższe wartości rezystancji są akceptowalne. Często w praktyce można spotkać się z sytuacjami, gdzie niewłaściwy pomiar lub interpretacja wyników prowadzi do błędnych wniosków, co z kolei może doprowadzić do decyzji o kontynuacji eksploatacji instalacji, która w rzeczywistości jest zagrożona. Warto zwrócić uwagę, że tylko odpowiednia rezystancja izolacji może zapewnić bezpieczeństwo użytkowników oraz sprawność urządzeń elektrycznych. W związku z tym, nieprzestrzeganie tych norm może prowadzić do poważnych konsekwencji, takich jak ryzyko porażenia prądem lub pożaru. Kluczową kwestią jest zrozumienie, że odpowiednie wartości rezystancji izolacji są podstawą do oceny stanu każdego systemu elektrycznego. Dlatego tak ważne jest, aby przy podejmowaniu decyzji korzystać z dokładnych danych i sprawdzać je zgodnie z obowiązującymi standardami.

Pytanie 10

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Izolowania części czynnych
B. Umieszczenia elementów z napięciem poza zasięgiem ręki
C. Samoczynnego szybkiego wyłączenia napięcia
D. Instalowania osłon i barier
Odpowiedź "Samoczynnego szybkiego wyłączenia napięcia" jest prawidłowa, ponieważ stanowi kluczowy element zabezpieczeń w instalacjach elektrycznych, mający na celu ochronę przed dotykiem pośrednim. Dotyk pośredni występuje, gdy osoba styka się z przewodzącymi elementami, które nie są bezpośrednio pod napięciem, ale stają się naładowane wskutek awarii izolacji. Samoczynne szybkie wyłączenie napięcia zapewnia, że w momencie wykrycia nieprawidłowości, np. zwarcia z przewodem ziemnym, nastąpi automatyczne odcięcie zasilania w sposób najszybszy możliwy, minimalizując ryzyko porażenia. Praktyczne zastosowanie tej metody można zauważyć w systemach ochrony, takich jak wyłączniki różnicowoprądowe (RCD), które są zgodne z normami PN-EN 61008 i PN-EN 61009. Ich działanie opiera się na ciągłej kontroli prądu różnicowego i błyskawicznej reakcji na jego wzrost, co skutecznie chroni użytkowników przed skutkami porażenia prądem. Dodatkowo, szybkie wyłączenie napięcia należy do najlepszych praktyk w projektowaniu instalacji elektrycznych, co podkreślają różne wytyczne oraz normy ochrony przeciwporażeniowej.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie zadania przy aktywnych urządzeniach elektrycznych można zrealizować bez zlecenia?

A. Dotyczące konserwacji bądź napraw urządzeń, które są całkowicie lub częściowo pod napięciem
B. Realizowane w sytuacjach stwarzających szczególne niebezpieczeństwo dla życia lub zdrowia osób
C. Dotyczące ratowania życia lub zdrowia osób
D. Przeprowadzane przy użyciu spawania oraz wymagające pracy z otwartym źródłem ognia
Odpowiedź związana z ratowaniem zdrowia lub życia ludzkiego jest poprawna, ponieważ w sytuacjach nagłych, takich jak wypadki czy inne niebezpieczeństwa, działania podejmowane w celu ochrony życia i zdrowia osób są priorytetowe. Zgodnie z przepisami prawa pracy oraz normami BHP, w przypadkach zagrożenia zdrowia lub życia ludzkiego, pracownicy mają prawo i obowiązek podejmować natychmiastowe działania ratunkowe, nawet jeśli wiąże się to z pracami przy czynnych urządzeniach elektrycznych. Na przykład, gdy osoba zostaje porażona prądem, każdy świadek zdarzenia powinien jak najszybciej odciąć zasilanie i udzielić pierwszej pomocy. Takie podejście jest zgodne z wytycznymi dotyczącymi bezpieczeństwa pracy, które nakładają na pracowników obowiązek reagowania na sytuacje kryzysowe bez czekania na formalne instrukcje. W praktyce, to może oznaczać konieczność szybkiego działania, co jest kluczowe dla zapobiegania poważnym obrażeniom lub śmierci.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jaka jest podstawowa funkcja wyłącznika różnicowoprądowego?

A. Ochrona przed porażeniem poprzez wykrycie różnicy prądów w przewodach
B. Regulacja napięcia wyjściowego
C. Przekształcenie prądu przemiennego na stały
D. Ochrona przed przeciążeniem obwodu
Wyłącznik różnicowoprądowy jest kluczowym elementem systemów ochrony elektrycznej, którego głównym zadaniem jest zapobieganie porażeniom prądem elektrycznym. Działa on na zasadzie wykrywania różnicy pomiędzy prądem wpływającym a wypływającym z urządzenia lub instalacji. Jeśli taka różnica zostanie wykryta, oznacza to, że część prądu gdzieś 'ucieka', co może sugerować uszkodzenie izolacji lub kontakt prądu z osobą. W praktyce wyłącznik różnicowoprądowy automatycznie odłącza zasilanie w momencie wykrycia tego typu anomalii, minimalizując ryzyko porażenia. To urządzenie jest szeroko stosowane w instalacjach domowych i przemysłowych, zapewniając dodatkową warstwę ochrony w miejscach, gdzie mogą występować uszkodzenia izolacji lub wilgoć. Warto pamiętać, że nie zastępuje on standardowych zabezpieczeń nadprądowych, ale uzupełnia je, oferując ochronę przed skutkami niekontrolowanego przepływu prądu do ziemi. W kontekście bezpieczeństwa użytkownika wyłącznik różnicowoprądowy jest nieocenionym narzędziem, które powinno być standardem w każdej nowoczesnej instalacji elektrycznej.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Podczas pracy z urządzeniami elektrycznymi na wysokościach, jakiego środka ochrony indywidualnej należy użyć?

A. Buty robocze
B. Rękawice ochronne
C. Uprząż ochronna
D. Kask ochronny
Uprząż ochronna jest kluczowym elementem zabezpieczenia podczas pracy na wysokościach, szczególnie w przypadku pracy z urządzeniami elektrycznymi. Główne zadanie uprzęży to zapewnienie bezpieczeństwa użytkownikowi przez zapobieganie upadkom z wysokości. Praca na wysokościach wiąże się z ryzykiem, które może prowadzić do poważnych obrażeń lub nawet śmierci. Dlatego przestrzeganie norm BHP i stosowanie odpowiednich środków ochrony indywidualnej jest absolutnie niezbędne. Standardy w branży elektrycznej, takie jak normy EN 361, dokładnie określają wymagania dotyczące uprzęży, w tym ich wytrzymałość oraz sposób użycia. Ważne jest, aby uprzęże były prawidłowo dopasowane i regularnie kontrolowane pod kątem uszkodzeń. Dodatkowo, w kontekście pracy z elektryką, warto zwrócić uwagę na to, aby uprząż nie zawierała metalowych elementów, które mogłyby przewodzić prąd. Moim zdaniem, stosowanie uprzęży ochronnych to nie tylko wymóg prawny, ale przede wszystkim kwestia odpowiedzialności za własne życie i zdrowie.

Pytanie 18

Podczas użytkowania standardowej instalacji z żarowym źródłem światła zaobserwowano po kilku minutach działania częste wahania natężenia oświetlenia (migotanie światła). Najrzadziej występującą przyczyną usterki może być

A. zwarcie między przewodem ochronnym a neutralnym
B. wilgotna izolacja przewodów zasilających
C. zwarcie między przewodem fazowym a neutralnym
D. wypalenie styków w łączniku
Wypalenie styków w łączniku jest najczęstszą przyczyną migania światła w instalacjach oświetleniowych. W trakcie pracy instalacji, styk łącznika może podlegać znacznym obciążeniom elektrycznym, co prowadzi do przegrzewania i wypalania się materiału styku. W takich przypadkach pojawiają się przerwy w przewodzeniu prądu, co skutkuje wahań natężenia oświetlenia. Zastosowanie wysokiej jakości łączników oraz regularna ich konserwacja mogą znacząco wpłynąć na niezawodność instalacji. Dobrze zaprojektowane instalacje elektryczne powinny uwzględniać dobór odpowiednich komponentów, które są zgodne z normami PN-EN 60669-1. Przykładowo, w instalacjach o wysokim natężeniu prądu warto stosować łączniki o zwiększonej odporności na wypalanie. Warto również regularnie kontrolować stan łączników, aby uniknąć sytuacji, które mogą prowadzić do awarii, co z kolei wpływa na bezpieczeństwo użytkowania i komfort oświetlenia.

Pytanie 19

Który z podanych przewodów elektrycznych powinno się zastosować do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z napowietrzną linią 230/400 V?

A. AFL 6 120
B. YAKY 4×10
C. AAFLwsXSn 50
D. AsXS 4×70
Przewody AsXS 4×70, AAFLwsXSn 50 oraz AFL 6 120, mimo że są to przewody o dużych przekrojach i różnych zastosowaniach, nie spełniają wymagań dla wykonania przyłącza elektrycznego ziemnego dla budynku jednorodzinnego z linią napowietrzną 230/400 V. Przewód AsXS 4×70, mimo że ma wyższy przekrój, jest typowym przewodem stosowanym w instalacjach przemysłowych, co czyni go zbyt dużym i niepraktycznym w kontekście przyłącza do jednorodzinnego budynku. Wybór przewodu o tak dużym przekroju może prowadzić do nieefektywnie wysokich kosztów oraz problemów z montażem. Przewód AAFLwsXSn 50, z kolei, jest przewodem aluminiowym, ale jego przekrój i specyfika zastosowania nie są zgodne z wymaganiami dla bezpiecznego przyłącza ziemnego. Użycie przewodu o takiej budowie mogłoby prowadzić do problemów z uziemieniem oraz zwiększoną podatnością na uszkodzenia mechaniczne. Natomiast AFL 6 120, choć jest przewodem dostosowanym do dużych obciążeń, to jego konstrukcja i przeznaczenie w szczególności w instalacjach energetycznych sprawiają, że nie jest on zalecany do przyłącza dla budynku jednorodzinnego. Wybór niewłaściwego przewodu może prowadzić nie tylko do problemów technicznych, ale również do naruszenia przepisów prawa budowlanego oraz norm bezpieczeństwa, co jest szczególnie istotne w kontekście zapewnienia bezpieczeństwa użytkowników budynku.

Pytanie 20

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Sprawdzenie stanu ochrony przeciwporażeniowej
B. Rozruch próbny urządzenia
C. Pomiar rezystancji uzwojeń stojana
D. Pomiar napięcia zasilania
W kontekście badań eksploatacyjnych silnika elektrycznego, każda z wymienionych czynności ma swoje znaczenie, ale nie wszystkie są klasyfikowane jako badania samych silników. Pomiar rezystancji uzwojeń stojana jest jednym z najważniejszych badań, które pozwala na ocenę stanu izolacji. Uszkodzenie izolacji może prowadzić do zwarć, co z kolei zagraża nie tylko funkcjonowaniu silnika, ale także bezpieczeństwu użytkowników. Rozruch próbny urządzenia jest kluczowy dla sprawdzenia, czy silnik działa zgodnie z jego specyfikacją i czy nie występują nieprawidłowości w jego pracy. Z kolei sprawdzenie stanu ochrony przeciwporażeniowej jest fundamentalne dla zapewnienia bezpieczeństwa elektrycznego, a jego pominięcie może prowadzić do poważnych wypadków. Wydaje się więc, że pomiar napięcia zasilania powinien być również postrzegany jako istotny, jednak poprzez skoncentrowanie się na nim, można przeoczyć istotne detale związane z samym stanem silnika. W rzeczywistości, badania eksploatacyjne skupiają się głównie na diagnostyce i analizie wewnętrznej stanu silnika, co oznacza, że pomiar napięcia, mimo że ważny w kontekście zasilania, nie dostarcza informacji o zdrowiu silnika. Właściwe podejście do badań eksploatacyjnych wymaga zrozumienia, które czynności mają kluczowe znaczenie dla oceny wewnętrznych komponentów silnika, a które są związane z jego zasilaniem i eksploatacją w kontekście zewnętrznym.

Pytanie 21

Jakiego typu zakłócenie zabezpieczają samodzielnie wkładki topikowe typu aM w przypadku przewodów zasilających urządzenia odbiorcze?

A. Wyłącznie przed przeciążeniem
B. Przed zwarciem i przeciążeniem
C. Przed przepięciem i przeciążeniem
D. Wyłącznie przed zwarciem
Wkładki topikowe typu aM są zaprojektowane z myślą o ochronie przed zwarciem, co oznacza, że ich głównym zadaniem jest przerwanie obwodu w momencie, gdy prąd przekracza ustalone wartości, co może prowadzić do niebezpiecznych sytuacji. W przypadku zwarcia, prąd może gwałtownie wzrosnąć, co skutkuje dużym ryzykiem uszkodzenia instalacji oraz odbiorników. Zastosowanie wkładek topikowych aM jest zgodne z normami PN-EN 60269, które określają wymagania dla zabezpieczeń w obwodach elektrycznych. Warto pamiętać, że wkładki te nie chronią bezpośrednio przed przeciążeniem, które jest spowodowane długotrwałym przepływem prądu przekraczającym nominalne wartości, lecz jest regulowane przez inne mechanizmy zabezpieczające. Przykładem zastosowania wkładek aM jest ich użycie w obwodach zasilających silniki elektryczne, gdzie ochrona przed zwarciami jest kluczowa dla uniknięcia poważnych uszkodzeń.

Pytanie 22

Który z silników może pracować przy obciążeniu długotrwałym w układzie połączeń pokazanym na rysunku?

A.5,5 kW400/690 V
Δ/Y
IP55S22920 obr/min
B.1,5 kW400/690 V
Δ/Y
IP45S11430 obr/min
C.5,5 kW230/400 V
Δ/Y
IP55S12920 obr/min
D.1,5 kW230/400 V
Δ/Y
IP45S21430 obr/min
Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Odpowiedź B jest poprawna, ponieważ przedstawiony silnik jest przystosowany do pracy w układzie "gwiazda" przy napięciu 400 V, co jest typowe dla sieci trójfazowej. Silnik o napięciu 400/690 V, jak oznaczone w odpowiedzi B, można z powodzeniem podłączyć w konfiguracji gwiazdy, co umożliwia mu pracę przy obciążeniu długotrwałym. Taki rodzaj połączenia jest powszechnie stosowany w przemyśle, ponieważ pozwala na efektywne wykorzystanie mocy oraz minimalizuje ryzyko przegrzewania się silnika. W praktyce, silniki przystosowane do pracy w układzie gwiazda są często wykorzystywane w aplikacjach wymagających stabilnej i długotrwałej pracy, takich jak pompy, wentylatory czy kompresory. Wybór silnika odpowiedniego do warunków pracy, zgodnego z normami IEC, jest kluczowy dla zapewnienia niezawodności i efektywności operacyjnej. Warto również pamiętać, że silniki muszą być dobrane zgodnie z wymaganiami aplikacji, które mogą obejmować różne parametry, takie jak moment obrotowy, prędkość czy klasa izolacji.

Pytanie 23

Jednofazowa grzałka o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm². W jaki sposób zmienią się straty mocy w przewodzie zasilającym, gdy jego przekrój wyniesie 2,5 mm²?

A. Zwiększą się o 40%
B. Zmniejszą się o 100%
C. Zwiększą się o 100%
D. Zmniejszą się o 40%
Odpowiedzi, które sugerują zwiększenie strat mocy w przewodzie, nie uwzględniają podstawowych zasad dotyczących oporu elektrycznego oraz jego zależności od przekroju i długości przewodu. Zwiększenie przekroju przewodu skutkuje zmniejszeniem jego oporu, co prowadzi do obniżenia strat mocy. W przypadku odpowiedzi, które mówią o zwiększeniu strat o 40% lub 100%, można zauważyć typowy błąd myślowy polegający na braku zrozumienia związku między oporem a mocą. Niektórzy mogą mylnie zakładać, że większy przekrój przewodu oznacza większe straty, co jest całkowicie odwrotne do rzeczywistości. Rozumienie tego zjawiska jest kluczowe w kontekście projektowania systemów elektroenergetycznych, gdzie niewłaściwy dobór przekroju przewodów prowadzi do wyższych kosztów eksploatacji i potencjalnych zagrożeń. W kontekście praktycznym, w wielu instalacjach, gdzie ważne jest minimalizowanie strat energii, stosowanie przewodów o odpowiednich przekrojach zgodnych z normami jest kluczowe dla efektywności energetycznej oraz bezpieczeństwa użytkowania. Warto również pamiętać, że przy projektowaniu instalacji elektrycznych zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co z kolei może prowadzić do uszkodzeń izolacji i potencjalnych pożarów.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Po włączeniu oświetlenia na klatce schodowej przez automat schodowy, żarówka na pierwszym piętrze nie zaświeciła, podczas gdy pozostałe żarówki na innych piętrach działały bez zarzutów. Jakie może być źródło tej awarii?

A. Niedokręcony przewód do łącznika na pierwszym piętrze
B. Uszkodzony automat schodowy
C. Niedokręcony przewód do oprawy na pierwszym piętrze
D. Uszkodzony łącznik na pierwszym piętrze
Niedokręcony przewód do oprawy na pierwszym piętrze może być przyczyną braku działania żarówki w tym miejscu. Ta sytuacja często występuje w instalacjach elektrycznych, gdy podczas montażu lub konserwacji, przewody nie są odpowiednio dokręcone. W przypadku oświetlenia na klatkach schodowych, gdzie automaty schodowe kontrolują oświetlenie, każdy element musi być prawidłowo podłączony, aby zapewnić szczelność obwodu. Przykładem może być sytuacja, gdy podczas wymiany żarówki osoba nie zwraca uwagi na stan połączeń, co może prowadzić do ich luzowania. W praktyce, regularne kontrole i konserwacja instalacji elektrycznych, zgodne z normami PN-IEC 60364, są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności działania systemów oświetleniowych. Zawsze warto sprawdzić połączenia przed uznaniem, że część jest uszkodzona, co może zaoszczędzić czas i koszty związane z naprawą.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

W budynkach wielorodzinnych liczniki energii elektrycznej powinny być umieszczone

A. w lokalach mieszkalnych tylko w zamkniętych szafkach
B. na strychu w otwartych skrzynkach
C. poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach
D. w piwnicach w otwartych skrzynkach
Odpowiedź, że liczniki zużycia energii elektrycznej powinny znajdować się poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach, jest zgodna z obowiązującymi normami i praktykami w zakresie instalacji elektrycznych w budynkach wielorodzinnych. Taka lokalizacja liczników ma na celu zapewnienie bezpieczeństwa użytkowników oraz ułatwienie prac konserwacyjnych i pomiarowych. Liczniki umieszczone w zamkniętych szafkach ograniczają ryzyko przypadkowego dostępu do urządzeń, co jest istotne w kontekście ochrony przed nieautoryzowanym manipulowaniem oraz potencjalnymi uszkodzeniami. Ponadto, zgodnie z Polskimi Normami PN-IEC 61010, miejsca instalacji liczników powinny być dobrze oznakowane i dostępne tylko dla uprawnionego personelu. Praktycznym przykładem może być zastosowanie szafek z zamkiem, co dodatkowo zwiększa bezpieczeństwo oraz porządek w przestrzeni wspólnej budynku. Takie podejście jest również zgodne z zasadami zarządzania wspólnotami mieszkaniowymi, które dążą do minimalizacji ryzyka związanego z eksploatacją urządzeń elektrycznych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Poniżej przedstawiono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych oraz napięciowych watomierzy powinny być dobrane, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i pracujący z obciążeniem znamionowym przy połączeniu w gwiazdę?

Silnik 3~ Typ IE2-90S-4 S1
1,1 kW 3,2/1,8 A Izol. F
IP 55 1420 obr/min cosφ 0,75
230/400 V 50 Hz

A. In = 1 A, Un = 400 V
B. In = 2 A, Un = 400 V
C. In = 1 A, Un = 200 V
D. In = 2 A, Un = 200 V
Odpowiedź In = 2 A, Un = 400 V jest poprawna, ponieważ silnik zasilany jest napięciem 3×400 V i ma znamionowy prąd 3,2 A. Przy połączeniu w gwiazdę prąd w każdej fazie silnika wynosi Iz = 3,2 A, co oznacza, że wybierając zakres prądowy, wartość 2 A jest najbardziej odpowiednia, gdyż w praktyce przy pomiarach można zastosować urządzenia o wyższych zakresach. W przypadku napięcia, wybór 400 V jest również adekwatny, ponieważ to napięcie odpowiada zasilaniu silnika. Warto zwrócić uwagę, że stosowanie watomierzy z zakresami dostosowanymi do rzeczywistych parametrów pracy urządzeń jest kluczowe dla uzyskania dokładnych wyników pomiarów. Przykładem zastosowania takiej konfiguracji może być monitorowanie efektywności energetycznej silników w przemyśle, co pozwala na optymalizację zużycia energii oraz minimalizację strat. Dobrą praktyką w takich zastosowaniach jest również regularne kalibrowanie sprzętu pomiarowego oraz stosowanie urządzeń zgodnych z normami IEC 61010, co zapewnia bezpieczeństwo oraz dokładność pomiarów.

Pytanie 30

Zgodnie z obowiązującymi przepisami, minimalna rezystancja izolacji uzwojeń silnika asynchronicznego o mocy 5 kW w temperaturze 20˚C powinna wynosić

A. 3 MΩ
B. 10 MΩ
C. 1 MΩ
D. 5 MΩ
Wybór niższej wartości minimalnej rezystancji izolacji, takiej jak 1 MΩ, 3 MΩ czy 10 MΩ, jest wynikiem niepełnego zrozumienia norm dotyczących bezpieczeństwa oraz wydajności silników elektrycznych. Przede wszystkim, zbyt niska wartość rezystancji izolacji, jak 1 MΩ, nie spełnia standardów, co może prowadzić do niebezpieczeństwa porażenia prądem, a także zwiększa ryzyko wystąpienia zwarć wewnętrznych. Silniki asynchroniczne są zaprojektowane tak, aby ich izolacja wytrzymywała znacznie wyższe napięcia i obciążenia, dlatego wartość 5 MΩ jest uważana za minimalną. Wybór 10 MΩ, choć teoretycznie wydaje się lepszą opcją, może być mylny, ponieważ zbyt wysoka rezystancja również może wskazywać na problemy z izolacją, takie jak nadmierne osuszenie materiału izolacyjnego, co prowadzi do jego kruchości i pęknięć. W praktyce, odpowiednie pomiary powinny być wykonywane z użyciem odpowiednich narzędzi, takich jak megger, aby dokładnie ocenić stan izolacji i zapewnić, że nie spadnie ona poniżej wspomnianych norm. Regularne monitorowanie rezystancji izolacji jest kluczowe w utrzymaniu silników w dobrym stanie, co przekłada się na ich długowieczność i optymalną wydajność. Ignorowanie tych zasad może prowadzić nie tylko do awarii silnika, ale również do poważnych wypadków w miejscu pracy.

Pytanie 31

Jaki rodzaj wyłącznika nadprądowego powinno się użyć do ochrony kuchenki elektrycznej z trzema jednofazowymi grzałkami, których łączna moc wynosi 8,4 kW, zasilanych w fazach L1, L2, L3 w systemie trójfazowym o napięciu 230/400 V?

A. C10
B. C6
C. B10
D. B16
Odpowiedź B16 jest poprawna, ponieważ przy obliczaniu wymaganego wyłącznika nadprądowego dla kuchenki elektrycznej należy uwzględnić ogólną moc grzałek oraz charakterystykę używanego wyłącznika. Kuchenka ma moc 8,4 kW, co przy napięciu 400 V daje maksymalny prąd wynoszący około 12 A. Jednakże, przy wyborze wyłącznika nadprądowego warto uwzględnić dodatkowy margines bezpieczeństwa oraz obciążenie rozruchowe, które może być wyższe. Wyłącznik B16, który ma prąd znamionowy 16 A, będzie w stanie zabezpieczyć urządzenie przed przeciążeniem i zwarciem, jednocześnie nie wyzwalając się w przypadku chwilowych wzrostów prądu. Zgodnie z normą PN-IEC 60947-2, dla tego typu aplikacji zaleca się dobór wyłączników zabezpieczających z odpowiednim marginesem, co czyni B16 odpowiednim rozwiązaniem. Przykładem praktycznym zastosowania wyłącznika B16 mogą być instalacje w kuchniach przemysłowych, gdzie urządzenia o dużej mocy są powszechne i wymagają odpowiedniego zabezpieczenia.

Pytanie 32

Podczas serwisowania urządzenia wymieniono uszkodzony silnik bocznikowy prądu stałego. W trakcie próbnego uruchamiania silnika zauważono, że jego prędkość obrotowa jest wyższa od wartości nominalnej. Co może być przyczyną tego zjawiska?

A. Uszkodzenie w połączeniu uzwojenia bocznikowego z zasilaczem
B. Brak obciążenia na silniku
C. Zwarcie w obwodzie wzbudzenia silnika
D. Uszkodzenie w połączeniu uzwojenia twornika z zasilaczem
Myślenie, że przerwa w połączeniu uzwojenia twornika z zasilaniem może prowadzić do wzrostu prędkości obrotowej jest błędne. Tak naprawdę silnik po prostu stanie, bo nie dostaje zasilania. Wydaje się, że uszkodzenie twornika wpływa na prędkość, ale to nie tak. Brak prądu oznacza, że silnik nie ma szans pracować. Co do zwarcia w obwodzie wzbudzenia, to można by pomyśleć, że to zwiększy prędkość, ale w praktyce zazwyczaj kończy się to uszkodzeniem silnika. Być może myślisz, że przerwa w uzwojeniu bocznikowym nie wpłynie na pracę silnika, ale to naprawdę kluczowa rzecz, jeśli chodzi o stabilność i regulację prędkości. A ta koncepcja o braku obciążenia silnika, chociaż brzmi sensownie, nie wyjaśnia wzrostu prędkości, który może się zdarzyć, gdy nie ma wzbudzenia; obciążenie na pewno ma znaczenie, ale w sytuacjach takich jak problemy z wzbudzeniem, to brak wzbudzenia może prowadzić do niekontrolowanego przyspieszania. Ogólnie rzecz biorąc, zarządzanie prędkością silników prądu stałego wymaga dobrego zrozumienia, jak różne elementy współdziałają, żeby wszystko działało jak trzeba.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie rozwiązania powinny być wdrożone w celu kompensacji mocy biernej w zakładzie przemysłowym, w którym znajdują się liczne silniki indukcyjne?

A. Podłączyć dławiki indukcyjne szeregowo do silników
B. Podłączyć kondensatory równolegle do silników
C. Podłączyć dławiki indukcyjne równolegle do silników
D. Podłączyć kondensatory szeregowo do silników
Włączenie dławików indukcyjnych równolegle do silników nie jest skuteczną metodą kompensacji mocy biernej, ponieważ dławiki wytwarzają moc bierną indukcyjną. Ich zastosowanie w tej konfiguracji zwiększałoby zapotrzebowanie na moc bierną, co prowadziłoby do dalszego obciążenia sieci zasilającej i zwiększenia kosztów energii. Wprowadzenie kondensatorów szeregowo do silników również jest niewłaściwe, ponieważ tak skonfigurowane kondensatory nie mogą efektywnie kompensować mocy biernej silników indukcyjnych, gdyż ich działanie jest ograniczone do specyficznych warunków prądowych, co zmniejsza efektywność kompensacji. Działanie dławików indukcyjnych szeregowo z silnikami wprowadza dodatkowe straty mocy i może prowadzić do niestabilnych warunków pracy. Typowym błędem myślowym jest przyjmowanie, że urządzenia indukcyjne mogą być wspomagane przez inne urządzenia indukcyjne lub na zasadzie szeregowego połączenia. W praktyce, do efektywnej kompensacji mocy biernej w systemach z silnikami indukcyjnymi, niezbędne jest zastosowanie kondensatorów w konfiguracji równoległej, co pozwala na stabilizację mocy biernej i poprawę współczynnika mocy w instalacjach przemysłowych.

Pytanie 36

Aby zapobiec przegrzewaniu uzwojeń silnika indukcyjnego, nie powinno się długotrwale

A. zmniejszać współczynnika mocy
B. przekraczać prądu znamionowego
C. obniżać poślizgu
D. zwiększać oporu wirnika
Przekraczanie prądu znamionowego silnika indukcyjnego prowadzi do jego przegrzewania, co może skutkować uszkodzeniem izolacji uzwojeń oraz skróceniem żywotności urządzenia. Prąd znamionowy to maksymalny prąd, który silnik może pobierać w normalnych warunkach pracy, zgodnie z jego specyfikacją. Przekroczenie tej wartości, na przykład podczas przeciążenia lub przy zbyt małym napięciu zasilającym, powoduje wzrost temperatury uzwojeń, co z kolei prowadzi do zwiększenia strat cieplnych i ryzyka awarii. W praktyce, zastosowanie odpowiednich zabezpieczeń, takich jak wyłączniki silnikowe lub przekaźniki termiczne, jest kluczowe dla ochrony silników przed skutkami przeciążeń. Dodatkowo, regularne monitorowanie stanu technicznego silnika oraz jego parametrów pracy, zgodnie z normą PN-EN 60034, pozwala na wczesne wykrywanie problemów i podejmowanie działań zapobiegawczych. Z tego względu, przy projektowaniu systemów zasilania należy uwzględnić odpowiednie marginesy dla prądu znamionowego, aby zapewnić długotrwałą i bezawaryjną pracę silników indukcyjnych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Która z poniższych opcji najprawdopodobniej prowadzi do obniżenia prędkości obrotowej silnika indukcyjnego pod obciążeniem?

A. Wyższa częstotliwość napięcia zasilającego
B. Przerwa w jednym z fazowych przewodów zasilających
C. Niewłaściwe wyważenie wirnika silnika
D. Nierównomierna szczelina powietrzna w silniku
Przerwa w jednym z fazowych przewodów zasilających jest najczęstszą przyczyną zmniejszenia prędkości obrotowej obciążonego silnika indukcyjnego. Taki stan rzeczy prowadzi do nierównomiernego zasilania silnika, co skutkuje nieodpowiednim momentem obrotowym oraz destabilizacją pracy maszyny. W przypadku silników trójfazowych, przerwa w jednej z faz powoduje, że silnik nie może osiągnąć pełnej prędkości obrotowej, co prowadzi do nadmiernego nagrzewania oraz potencjalnego uszkodzenia wirnika. Praktycznie, operatorzy maszyn powinni regularnie kontrolować linie zasilające oraz stosować odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zapobiec awariom w wyniku przerwy w zasilaniu. Ważne jest również, aby przeprowadzać okresowe inspekcje stanu kabli oraz złączek, co jest zgodne z normami branżowymi, takimi jak IEC 60204-1 dotycząca bezpieczeństwa urządzeń elektrycznych.