Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 5 lutego 2026 14:31
  • Data zakończenia: 5 lutego 2026 14:58

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie działania oraz w jakiej sekwencji powinny zostać przeprowadzone przy wymianie uszkodzonego fragmentu przewodu w instalacji umieszczonej w rurach peszla?

A. Odłączenie napięcia, rozkuwanie tynku, poprowadzenie nowej rury peszla z przewodami, uzupełnienie tynku, włączenie napięcia
B. Odłączenie zasilania, otwarcie puszek instalacyjnych, odkręcenie końców uszkodzonego przewodu, wymiana uszkodzonego odcinka przewodu, połączenie wymienionego przewodu w puszkach, zamknięcie puszek, włączenie zasilania, sprawdzenie poprawności działania instalacji
C. Odłączenie zasilania, rozkuwanie tynku w miejscu uszkodzenia, wymiana rury peszla z przewodami, włączenie napięcia, sprawdzenie funkcjonowania instalacji
D. Pomiar rezystancji przewodu, odłączenie napięcia, wymiana uszkodzonego przewodu, włączenie zasilania, sprawdzenie działania instalacji
Wymiana uszkodzonego odcinka przewodu w instalacji elektrycznej to poważna sprawa, więc trzeba to robić według ustalonej procedury, żeby wszystko działało jak należy i było bezpiecznie. Na początek odłączamy napięcie, bo to kluczowe, żeby nie dostać porażenia. Potem otwieramy puszki instalacyjne, żeby dostać się do przewodów. Kolejno odkręcamy końcówki uszkodzonego przewodu, a następnie zakładamy nowy. Ważne, żeby dobrze połączyć ten nowy przewód z innymi, które są w puszkach, żeby obwód działał bez problemu. Na koniec zamykamy puszki, żeby chronić przewody przed uszkodzeniami. Po wszystkim, włączamy napięcie i robimy test, żeby sprawdzić, czy wszystko działa. Taka procedura to co najmniej standard w branży, a jak wiadomo, bezpieczeństwo i efektywność to podstawa.

Pytanie 2

Którego miernika należy użyć do pomiaru natężenia oświetlenia w pomieszczeniu biurowym?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Luksomierz to specjalistyczne urządzenie zaprojektowane do pomiaru natężenia oświetlenia, co czyni go idealnym narzędziem do oceny warunków oświetleniowych w pomieszczeniach biurowych. Pomiar natężenia oświetlenia jest kluczowy, aby zagwarantować odpowiednią ergonomię i komfort pracy. Standardy, takie jak PN-EN 12464-1, zalecają minimalne poziomy oświetlenia w różnych typach pomieszczeń, co podkreśla znaczenie tego pomiaru w kontekście zdrowia i wydajności pracowników. Używając luksomierza, można z łatwością określić, czy oświetlenie spełnia wymagania norm dotyczących natężenia oświetlenia, umożliwiając wprowadzenie odpowiednich korekt w celu poprawy warunków pracy. Praktyczne zastosowania luksomierza obejmują także monitorowanie zmian w oświetleniu w ciągu dnia czy ocenę efektywności różnych źródeł światła, co jest nieocenione w projektowaniu przestrzeni biurowych i utrzymaniu zgodności z regulacjami budowlanymi.

Pytanie 3

Aby zweryfikować ciągłość przewodów w kablu YDY 4x2,5 mm2, jaki sprzęt należy zastosować?

A. wskaźnika kolejności faz
B. omomierza
C. mostka LC
D. miernika izolacji
Użycie omomierza do sprawdzenia ciągłości żył w przewodzie YDY 4x2,5 mm2 jest właściwym wyborem, ponieważ omomierz jest urządzeniem pomiarowym, które pozwala na dokładne zmierzenie oporu elektrycznego. W przypadku sprawdzania ciągłości żył, omomierz umożliwia wykrycie ewentualnych przerw w obwodzie, co jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznej. Przykładowo, podczas montażu instalacji elektrycznych w budynkach, konieczne jest potwierdzenie, że wszystkie przewody są prawidłowo podłączone i nie wykazują zbyt wysokiego oporu, co mogłoby wskazywać na problemy z połączeniami lub uszkodzenia. Zgodnie z normą PN-EN 60364, sprawdzenie ciągłości przewodów ochronnych jest obowiązkowe przed oddaniem instalacji do użytku. Dobre praktyki zalecają wykonywanie pomiarów w warunkach, gdy przewody są odłączone od źródła zasilania, co zwiększa bezpieczeństwo oraz dokładność pomiarów. Omomierz jest więc narzędziem nie tylko funkcjonalnym, ale i niezbędnym w codziennej pracy elektryka.

Pytanie 4

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K1, K5, K4, K6, K3, K7, K2
B. K1, K5, K4, K6, K3, K2, K7
C. K7, K2, K3, K6, K4, K5, K1
D. K1, K2, K3, K4, K5, K6, K7
Odpowiedź K1, K5, K4, K6, K3, K7, K2 jest poprawna, ponieważ kolejność załączania styczników odzwierciedla logiczny przepływ energii w układzie rozruchowym silnika pierścieniowego. Po załączeniu wyłączników Q i Q1 oraz przycisku S1, stycznik K1, jako pierwszy w obwodzie, zostaje aktywowany, co jest zgodne z zasadami działania obwodów elektrycznych. Zamykanie styków K1 (13-14) uruchamia stycznik K5, który jest kluczowy w kolejnych etapach rozruchu. Następnie, przez zamknięcie styków K5, do akcji wchodzi K4, a następnie K6, które są połączone szeregowo, co jest typowe dla układów rozruchowych silników. Ważne jest, aby zrozumieć znaczenie takiej kolejności: każdy stycznik aktywuje kolejne elementy układu, co pozwala na kontrolowany i bezpieczny rozruch silnika. Zasady te są zgodne z normami IEC 60947 dotyczącymi aparatury łączycej. W praktyce, taka sekwencja działania jest nie tylko efektywna, ale także minimalizuje ryzyko przeciążenia, co jest kluczowe w projektowaniu systemów automatyki przemysłowej.

Pytanie 5

Który osprzęt przedstawiono na zdjęciu?

Ilustracja do pytania
A. Dławnice.
B. Mufy przelotowe.
C. Złączki skrętne.
D. Kapturki termokurczliwe.
Dławnice kablowe to naprawdę ważne elementy w instalacjach elektrycznych. Jak widać na zdjęciu, mają za zadanie chronić miejsce, gdzie przewód wchodzi do obudowy urządzenia. Dzięki nim przewody są mniej narażone na różne uszkodzenia mechaniczne czy na wpływ wilgoci i brudu. Wiele razy spotykam się z tym, że w trudnych warunkach, jak na przykład w przemyśle, bez dławnic byłoby ciężko zapewnić bezpieczeństwo. Dławnice są często wykorzystywane w silnikach elektrycznych i skrzynkach przyłączeniowych, żeby wszystko dobrze uszczelniało się i działało jak należy. Dobrze też wiedzieć, że są zgodne z normami IEC 62262 oraz IEC 60529, które mówią, jak powinno wyglądać zabezpieczenie przed ciałami obcymi i wilgocią. Także odpowiedni dobór tych elementów ma ogromne znaczenie, bo źle dobrana dławnica może nie spełniać swojego zadania. Warto o tym pamiętać, bo brak dławnic w kluczowych miejscach w instalacji może prowadzić do sporych problemów, a więc zawsze lepiej stosować je tam, gdzie to konieczne.

Pytanie 6

W którym przedziale można regulować napięcie wyjściowe UWY w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. UWY = (5 ÷ 10) V
B. UWY = (10 ÷ 15) V
C. UWY = (15 ÷ 25) V
D. UWY = (5 ÷ 15) V
W analizie takiego układu bardzo łatwo pogubić się w liczbach i proporcjach, mimo że schemat jest prosty. Mamy trzy rezystory połączone szeregowo i zasilane napięciem 30 V. Kluczowe jest zrozumienie, że napięcie na poszczególnych odcinkach nie dobiera się „na oko”, tylko wynika z proporcji rezystancji. Całkowita rezystancja to 30 kΩ, więc prąd w obwodzie jest stały i równy I = 30 V / 30 kΩ = 1 mA. Potem wystarczy policzyć spadek napięcia na każdym odcinku: na 5 kΩ będzie 5 V, na 10 kΩ będzie 10 V, na 15 kΩ – 15 V. Sumarycznie daje to 30 V, czyli tyle, ile podaje źródło zasilania. Typowym błędem jest założenie, że skoro na górze jest 30 V, a na dole 0 V, to wyjście można regulować w całym zakresie od 0 do 30 V albo od 10 do 15 V, bo ktoś intuicyjnie „widzi” tylko środkowy rezystor. Jednak wyprowadzenie UWY nie jest dowolne, tylko ściśle związane z położeniem suwaka na rezystorze 10 kΩ. W najniższym położeniu suwak styka się z węzłem pomiędzy 5 kΩ i 10 kΩ, więc napięcie wyjściowe równa się spadkowi na dolnym rezystorze 5 kΩ, czyli 5 V. W najwyższym położeniu suwak jest przy węźle między 10 kΩ i 15 kΩ, a wtedy UWY jest sumą spadku na 5 kΩ i 10 kΩ, czyli 15 V. Nie ma fizycznej możliwości, aby w tym układzie uzyskać na wyjściu napięcie niższe niż 5 V (bo zawsze będzie obecny spadek na 5 kΩ) ani wyższe niż 15 V (bo powyżej tego punktu jest już rezystor 15 kΩ, do którego suwak nie sięga). Przedziały typu 10 ÷ 15 V albo 15 ÷ 25 V wynikają zwykle z niezrozumienia, że napięcie odniesienia liczymy od dołu dzielnika (od masy), a nie tylko na „kawałku” rezystora. Z mojego doświadczenia w serwisie elektroniki wynika, że wielu uczniów myli spadek napięcia na jednym rezystorze ze wzrostem napięcia względem masy w danym węźle. Dobra praktyka to zawsze narysować sobie prosty „profil” napięć wzdłuż dzielnika: od 0 V na dole, przez 5 V, 15 V, aż do 30 V na górze. Wtedy od razu widać, w jakim zakresie faktycznie może się poruszać napięcie na wyjściu takiego prostego regulatora.

Pytanie 7

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,0% + 2 cyfry
B. ±1,0% + 4 cyfry
C. ±2,5% + 1 cyfra
D. ±1,5% + 3 cyfry
Odpowiedź ±1,0% + 4 cyfry jest prawidłowa, ponieważ oferuje najwyższą precyzję pomiaru wśród dostępnych opcji. Przy natężeniu prądu wynoszącym 30 mA błąd pomiaru obliczamy na podstawie wzoru: błąd = (wartość pomiaru × procent dokładności) + liczba cyfr. Dla podanej odpowiedzi, maksymalny błąd wynosi: 30 mA × 1,0% + 4 cyfry, co daje 0,3 mA + 0,04 mA, czyli 0,34 mA. Taki poziom dokładności jest szczególnie istotny w zastosowaniach, gdzie precyzyjne pomiary są kluczowe, np. w laboratoriach badawczych, w elektronice czy przy kalibracji urządzeń. Wybór miernika z lepszą dokładnością pozwala także na uniknięcie błędów w dalszych obliczeniach oraz wpływa na wiarygodność wyników. Stąd, zgodnie z dobrymi praktykami w inżynierii, zawsze warto wybierać urządzenia o jak najwyższej dokładności, aby zapewnić rzetelność pomiarów i ich zgodność z obowiązującymi normami.

Pytanie 8

Jakie oznaczenia oraz jaka wartość minimalnego prądu znamionowego powinna mieć wkładka topikowa, służąca do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o danych znamionowych: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. gB 20 A
C. gG 16 A
D. aR 16 A
Wybór wkładki topikowej gG 16 A jest poprawny, ponieważ wkładki te są przeznaczone do ochrony obwodów przed przeciążeniem oraz zwarciem. W przypadku bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V, obliczamy maksymalny prąd znamionowy przy użyciu wzoru I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A zapewnia odpowiednią ochronę, gdyż jej wartość prądu znamionowego jest większa niż obliczona wartość prądu roboczego, co oznacza, że nie będzie zbyt szybko przerywała pracy urządzenia podczas normalnego użytkowania. Dodatkowo, wkładki gG charakteryzują się dobrą zdolnością do łapania zwarć, co jest kluczowe w przypadku bojlerów, które mogą doświadczać nagłych skoków prądu. Zastosowanie odpowiedniej wkładki topikowej jest ważne dla zapewnienia bezpieczeństwa instalacji oraz długowieczności urządzeń. W normach IEC 60269 podano, że wkładki gG są odpowiednie do ochrony przed przeciążeniami oraz zwarciami w obwodach instalacji elektrycznych, co czyni je dobrym wyborem w tym przypadku.

Pytanie 9

Korzystając z zamieszczonego fragmentu instrukcji obsługi multimetru, wyznacz względny błąd pomiaru napięcia, jeżeli woltomierz wskazał 120 V.

Instrukcja obsługi multimetru (fragment)

Uchyb pomiaru:

0,1% w.m. ±0,05% w.z. (podzakresy 100 mV, 1 V)

0,2% w.m. ±0,05% w.z. (podzakresy 10 V, 100 V, 1000 V)

gdzie w.m. oznacza wartość zmierzoną, a w.z. wartość zakresu.
A. 0,62%
B. 0,07%
C. 6,10%
D. 0,74%
Istnieje kilka kluczowych aspektów, które mogą prowadzić do błędnych wniosków przy obliczaniu względnego błędu pomiarowego. Przede wszystkim, jedna z powszechnych pułapek polega na nieprawidłowym dodaniu błędu stałego do błędu procentowego. Różne odpowiedzi wskazujące na niewłaściwe wartości mogą wynikać z nieuwzględnienia rzeczywistej wartości zmierzonej przy obliczeniach. Na przykład, korzystając z nieprawidłowego wzoru lub błędnych wartości, można dojść do mylnej konkluzji, że błąd wynosi 0,07% lub 0,74%, co jest dalekie od rzeczywistości. Kolejnym typowym błędem jest pomijanie kontekstu pomiarów, takich jak tolerancje urządzenia czy jego kalibracja, co prowadzi do nieprawidłowego oszacowania dokładności. Należy również pamiętać, że różne urządzenia pomiarowe mają swoje specyfikacje dotyczące błędów. Na przykład, jeśli nie uwzględnimy pełnych danych dotyczących błędu procentowego, nasza ocena pomiaru może być znacząco zaniżona lub zawyżona. Zrozumienie tych aspektów jest niezwykle istotne w kontekście uzyskiwania rzetelnych wyników pomiarowych i podejmowania właściwych decyzji inżynieryjnych. Bez tych umiejętności, można w łatwy sposób wprowadzić się w błąd, co może mieć poważne konsekwencje w praktycznych zastosowaniach elektrotechnicznych.

Pytanie 10

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 200 V DC
B. 500 V AC
C. 500 V DC
D. 200 V AC
Odpowiedź 500 V AC jest prawidłowa, ponieważ w budynkach mieszkalnych napięcie zasilające gniazdka wtyczkowe wynosi zazwyczaj 230 V w systemie prądu przemiennego (AC). Ustawienie woltomierza na zakres 500 V AC umożliwia pomiar napięcia z dużym marginesem bezpieczeństwa, co jest zgodne z dobrymi praktykami pomiarowymi. Użycie takiego zakresu zapewnia dokładne i bezpieczne pomiary bez ryzyka uszkodzenia urządzenia. Warto zauważyć, że pomiar napięcia AC jest istotny, gdyż instalacje elektryczne w budynkach mieszkalnych są projektowane na prąd przemienny, a nie stały (DC). W praktyce, przed rozpoczęciem pomiarów, zawsze należy upewnić się, że woltomierz jest odpowiednio skalibrowany i spełnia normy bezpieczeństwa, takie jak IEC 61010, które dotyczą sprzętu pomiarowego w obszarze niskiego napięcia.

Pytanie 11

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji uzwojeń silników
R₂₀ = K₂₀·Rₜ
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K₂₀0,670,730,810,901,001,101,211,341,48
A. 6,57 MΩ
B. 8,20 MΩ
C. 6,40 MΩ
D. 8,11 MΩ
W tego typu zadaniach kluczowe jest właściwe zastosowanie przelicznika temperatury do rezystancji izolacji, bo izolacja silników elektrycznych silnie reaguje na zmiany temperatury. W praktyce często zdarza się, że ktoś popełnia błąd, wybierając nie ten współczynnik K₂₀ z tabeli, co trzeba albo myli etapy przeliczania. Przykładowo, jeśli ktoś wybierze współczynnik odpowiadający nie tej temperaturze, w której był wykonany pomiar – np. zamiast 0,90 (dla 17 °C) wybierze 1,00 (dla 20 °C) czy inny, cały wynik się rozjedzie. Równie często spotykam się z zamianą mnożenia na dzielenie, a przy tym wzorze trzeba pamiętać, że to R₂₀ = Rₜ/K₂₀, czyli dzielimy wartość zmierzoną przez współczynnik. To nie jest oczywiste, bo niektóre osoby automatycznie mnożą przez K₂₀, traktując go jak typowy przelicznik korekcyjny – a tu jest odwrotnie, bo współczynnik mówi, jak bardzo pomierzona rezystancja w danej temperaturze odbiega od tej w 20 °C. Jeśli ktoś tego nie zrozumie, uzyska wynik zbyt wysoki lub zbyt niski. Dodatkowo, niektórzy mogą zaokrąglać współczynnik albo wynik bez dokładności, co przy tak precyzyjnych pomiarach prowadzi do błędnych interpretacji technicznych. Takie niedopatrzenia w praktyce serwisowej mogą spowodować, że uznamy sprawny silnik za uszkodzony, lub odwrotnie – przeoczymy pogorszenie stanu izolacji. To pokazuje, jak ważne jest rzetelne stosowanie wzoru i korzystanie z aktualnych tabel przeliczeniowych zgodnych z normami branżowymi, jak PN-EN 60034-1. Moim zdaniem, zanim przeliczymy cokolwiek, zawsze warto dwa razy sprawdzić, czy na pewno korzystamy z właściwych danych i dobrze rozumiemy cel przeliczenia – bo w praktyce to procentuje bezpieczeństwem i niezawodnością pracy urządzeń.

Pytanie 12

Który z wymienionych parametrów można zmierzyć przedstawionym przyrządem?

Ilustracja do pytania
A. Rezystancję uziemienia.
B. Impedancję pętli zwarcia.
C. Czas wyłączenia wyłącznika nadprądowego.
D. Rezystancję izolacji.
Pomiar impedancji pętli zwarcia jest kluczowym zadaniem w zapewnieniu bezpieczeństwa instalacji elektrycznych. Miernik wielofunkcyjny, jak ten przedstawiony na zdjęciu, jest zaprojektowany do wykonywania tych pomiarów zgodnie z normą PN-EN 61557-3, która dotyczy pomiarów w instalacjach elektrycznych. Pomiar ten ma na celu ocenę skuteczności zabezpieczeń przeciwporażeniowych, co jest niezbędne do oceny ryzyka wystąpienia awarii. W praktyce, impedancja pętli zwarcia pozwala na określenie, jak szybko zabezpieczenie (np. wyłącznik nadprądowy) zareaguje na zwarcie. Niskie wartości impedancji świadczą o sprawności zabezpieczeń, a także minimalizują ryzyko uszkodzenia instalacji oraz zapewniają bezpieczeństwo użytkowników. Wartości tej impedancji można mierzyć w różnych punktach instalacji, co pozwala na identyfikację słabych miejsc w systemie ochrony. Dlatego umiejętność używania mierników do pomiaru impedancji pętli zwarcia jest niezbędna dla elektryków oraz specjalistów zajmujących się instalacjami elektrycznymi.

Pytanie 13

Jaką wartość ma prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego przy danych: fN = 50 Hz; p = 4?

A. 720 obr./min
B. 1 450 obr./min
C. 750 obr./min
D. 1 500 obr./min
W analizie błędnych odpowiedzi, kluczowym zagadnieniem jest zrozumienie, jak prawidłowo obliczyć prędkość obrotową pola magnetycznego stojana silnika indukcyjnego. Wśród propozycji odpowiedzi pojawiają się prędkości, które są mylące dla osób nieznających podstaw teorii obwodów elektrycznych. Na przykład, odpowiedź 720 obr./min może wydawać się atrakcyjna, ale wynika z niepoprawnego zastosowania wzorów lub nieprawidłowego zrozumienia poślizgu silnika. W rzeczywistości, prędkość obrotowa pola magnetycznego jest ściśle związana z częstotliwością zasilania i liczbą par biegunów. W przypadku silników indukcyjnych pracujących na częstotliwości 50 Hz z 4 parami biegunów, prędkość teoretyczna wynosi 1500 obr./min. Zboczenie od tej wartości bez uwzględnienia poślizgu jest najczęstszym błędem. Odpowiedzi 1450 obr./min oraz 1500 obr./min również nie są właściwe, ponieważ nie uwzględniają realiów pracy silników, gdzie poślizg powoduje, że rzeczywista prędkość obrotowa w warunkach roboczych jest niższa. Kluczowym błędem jest niewłaściwe zrozumienie mechanizmu działania silnika indukcyjnego oraz roli, jaką odgrywa poślizg w jego pracy. Warto zatem zwrócić uwagę na standardy, które ukierunkowują projektowanie i eksploatację silników, takie jak IEC 60034-1, które jasno definiują właściwości i parametry dotyczące wydajności tych urządzeń.

Pytanie 14

Który pomiar można wykonać w instalacji elektrycznej przedstawionym na rysunku przyrządem pomiarowym typu MRU-20?

Ilustracja do pytania
A. Rezystancji uziomu ochronnego.
B. Prądu różnicowego wyłącznika różnicowoprądowego.
C. Impedancji pętli zwarcia.
D. Rezystancji izolacji przewodów fazowych.
Odpowiedź "rezystancji uziomu ochronnego" jest prawidłowa, ponieważ przyrząd pomiarowy MRU-20 jest specjalnie zaprojektowany do pomiaru rezystancji uziomu. Uziomy ochronne mają kluczowe znaczenie dla bezpieczeństwa instalacji elektrycznych, ponieważ zapewniają odprowadzenie prądów zwarciowych do ziemi, minimalizując ryzyko porażenia prądem elektrycznym oraz uszkodzenia urządzeń. Pomiar rezystancji uziomu ochronnego powinien odbywać się zgodnie z obowiązującymi normami, takimi jak PN-EN 61557-5, która określa metody pomiaru i dopuszczalne wartości rezystancji dla uziemienia. Zgodnie z tą normą, dla efektywnego zabezpieczenia zaleca się, aby rezystancja uziomu nie przekraczała 10 Ω, jednak w niektórych sytuacjach wartość ta może być niższa. W praktyce, przy pomocy MRU-20 można wykonać pomiary w różnych warunkach, zarówno w instalacjach nowo budowanych, jak i istniejących, co pozwala na bieżące kontrolowanie stanu ochrony przeciwporażeniowej.

Pytanie 15

Zgodnie z PN-IEC 60364-4-41:2000, maksymalny dozwolony czas wyłączenia w systemach typu TN przy napięciu zasilania 230 V wynosi

A. 0,2 s
B. 0,4 s
C. 0,1 s
D. 0,8 s
Wielu specjalistów może mieć trudności z ustaleniem prawidłowego maksymalnego czasu wyłączenia w układach sieci typu TN, co prowadzi do wyboru nieodpowiednich odpowiedzi. Na przykład, wybór 0,1 s jako maksymalnego czasu wyłączenia może wynikać z nieporozumienia dotyczącego typowych wartości stosowanych w różnych instalacjach elektrycznych. W rzeczywistości, czas ten jest zbyt krótki, by mógł być stosowany w standardowych warunkach użytkowych. Zbyt szybkie wyłączenie może nie pozwolić na prawidłowe działanie urządzeń zabezpieczających, co z kolei naraża na ryzyko zarówno użytkowników, jak i same instalacje. Z kolei 0,2 s oraz 0,8 s również są błędnymi wartościami, ponieważ nie odpowiadają wymaganiom normy, która została opracowana na podstawie analiz ryzyka i doświadczeń w zakresie ochrony przed porażeniem prądem elektrycznym. Czas 0,2 s może prowadzić do sytuacji, w których niebezpieczne napięcie utrzymuje się zbyt długo, a 0,8 s nie zapewnia wystarczającej ochrony. W praktyce, wartością 0,4 s uznano kompromis pomiędzy efektywnością działania zabezpieczeń a bezpieczeństwem użytkowników, co czyni tę wiedzę kluczową dla osób zajmujących się projektowaniem i nadzorem nad instalacjami elektrycznymi.

Pytanie 16

Jakie z podanych powodów może wywołać nagłe rozłączenie pracującego silnika szeregowego prądu stałego?

A. Zwarcie międzyzwojowe w uzwojeniu twornika
B. Uszkodzenie łożysk silnika
C. Zerwanie połączenia wału silnika z maszyną napędzającą
D. Przerwa w obwodzie wzbudzenia
Przerwa w obwodzie wzbudzenia, zwarcie międzyzwojowe w uzwojeniu twornika oraz uszkodzenie łożysk silnika to sytuacje, które mogą powodować różne problemy w pracy silnika, jednak nie prowadzą one bezpośrednio do rozbiegu silnika szeregowego prądu stałego w taki sposób, jak zerwanie połączenia wału z maszyną napędzaną. Przerwa w obwodzie wzbudzenia powoduje, że silnik traci pole magnetyczne, co skutkuje znacznym spadkiem momentu obrotowego. W efekcie, silnik może zatrzymać się, ale nie będzie miał tendencji do rozbiegu. Zwarcie międzyzwojowe w uzwojeniu twornika również prowadzi do nieprawidłowego działania silnika. To zjawisko wpływa na rozkład prądów w uzwojeniu oraz może generować nadmierne ciepło, co w skrajnych przypadkach prowadzi do uszkodzeń, ale nie wywołuje rozbiegu. Uszkodzenie łożysk silnika, chociaż może powodować zwiększenie oporu obrotowego, również nie prowadzi do rozbiegu. Typowym błędem myślowym jest uznanie, że każdy problem z silnikiem natychmiast prowadzi do niebezpiecznych zjawisk, takich jak rozbieg. Kluczowe jest zrozumienie interakcji pomiędzy różnymi elementami systemu oraz znajomość specyfiki działania silników szeregowych, co pozwala na właściwe diagnozowanie problemów oraz podejmowanie adekwatnych działań naprawczych.

Pytanie 17

Które z poniższych parametrów technicznych odnoszą się do przekaźnika bistabilnego?

A. Typ modułu, zakres zliczania, rodzaj wyjścia, parametry wyjścia, napięcie zasilania, tryby pracy licznika
B. Napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania, sygnalizacja załączenia
C. Liczba biegunów, rodzaj charakterystyki, prąd znamionowy, szerokość w modułach
D. Napięcie znamionowe, znamionowy prąd różnicowy zadziałania, prąd znamionowy ciągły, obciążalność zwarciowa, częstotliwość znamionowa, liczba biegunów
Przekaźnik bistabilny to element automatyki, który po zadziałaniu przechodzi w stan, w którym pozostaje do momentu ponownego zadziałania. Parametry techniczne, takie jak napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania oraz sygnalizacja załączenia, są kluczowe dla jego prawidłowego funkcjonowania. Napięcie zasilania określa, jakie napięcie musi być dostarczone do przekaźnika, aby mógł on prawidłowo działać. Prąd obciążenia to maksymalny prąd, który może przechodzić przez styk przekaźnika, co jest istotne przy doborze urządzenia do konkretnych aplikacji. Wartość prądu impulsu sterującego wskazuje, jaki prąd jest potrzebny do zmiany stanu przekaźnika i jest kluczowa dla jego efektywności. Opóźnienie zadziałania pozwala na określenie czasu reakcji, co jest istotne w aplikacjach wymagających precyzyjnego sterowania. Sygnalizacja załączenia informuje użytkownika o stanie przekaźnika, co ma znaczenie w kontekście bezpieczeństwa i diagnostyki. Przykładowo, w systemach automatyki budynkowej, przekaźniki bistabilne mogą być używane do kontroli oświetlenia oraz zarządzania innymi urządzeniami, co czyni je niezbędnymi w inteligentnych instalacjach. Zrozumienie tych parametrów jest kluczowe dla projektowania i wdrażania systemów automatyki zgodnych z obowiązującymi standardami branżowymi.

Pytanie 18

W jaki sposób można zweryfikować funkcjonowanie wyłącznika różnicowoprądowego?

A. Naciskając przycisk "TEST"
B. Zmieniając ustawienie dźwigni "ON-OFF"
C. Sprawdzając napięcie oraz prąd wyłącznika
D. Tworząc zwarcie w obwodzie zabezpieczonym
Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem systemów zabezpieczeń elektrycznych, który chroni przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi prądami upływowymi. Aby sprawdzić jego działanie, należy wcisnąć przycisk 'TEST', co symuluje warunki, w których RCD powinien zareagować na różnicę między prądem wpływającym a wypływającym. Działanie tego przycisku uruchamia mechanizm w RCD, który odłącza zasilanie, jeżeli wykryje jakiekolwiek nieprawidłowości. Zgodnie z normą PN-EN 61008-1, regularne testowanie RCD jest zalecane, co najmniej raz na miesiąc, aby zapewnić ich prawidłowe funkcjonowanie. Przykładem zastosowania takiego testowania może być mieszkanie, w którym w przypadku uszkodzenia izolacji w przewodzie, RCD powinien wyłączyć obwód, zanim doprowadzi to do porażenia prądem. Regularne testowanie RCD, poprzez naciśnięcie przycisku 'TEST', upewnia użytkowników, że ich systemy zabezpieczeń są w pełni sprawne i gotowe do ochrony przed zagrożeniami.

Pytanie 19

Z oznaczenia kabla YDYp 3x1 mm2 300/500 V wynika, że maksymalne wartości skuteczne napięć pomiędzy żyłą przewodu a ziemią oraz pomiędzy poszczególnymi żyłami wynoszą odpowiednio

A. 300 V i 500 V
B. 200 V i 300 V
C. 200 V i 500 V
D. 500 V i 300 V
Wybór 300 V i 500 V jest jak najbardziej trafny. Przewód YDYp 3x1 mm2 300/500 V ma dwa ważne parametry. Pierwszy, 300 V, to maksymalne napięcie między żyłą a ziemią, a drugi, 500 V, dotyczy napięcia między żyłami. Te oznaczenia są zgodne z normami bezpieczeństwa, co jest istotne, gdy instalujemy elektrykę w domach czy biurach. W praktyce używa się takich przewodów do zasilania różnych rzeczy, jak oświetlenie czy gniazdka. Dzięki tym wartościom nie tylko efektywnie działamy, ale przede wszystkim dbamy o bezpieczeństwo, zmniejszając ryzyko porażenia prądem. Pamiętaj, że wybór odpowiednich przewodów jest kluczowy, by spełniały one polskie normy PN-IEC dotyczące instalacji elektrycznych.

Pytanie 20

Na rysunku przedstawiono schemat układu sterowania oświetleniem oraz diagram działania zastosowanego przekaźnika. Który opis działania układu jest prawidłowy?

A.B.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Zgaszone są obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świeci tylko żarówka R13Świeci tylko żarówka R1
4Zgaszone są obie żarówki4Świecą obie żarówki
C.D.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Świecą obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świecą obie żarówki3Zgaszone są obie żarówki
4Zgaszone są obie żarówki4Świecą obie żarówki
Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Odpowiedź C. jest prawidłowa, ponieważ dokładnie odzwierciedla działanie układu sterowania oświetleniem przedstawionego na rysunku oraz diagramu działania przekaźnika. W sekwencji 0, gdy żadne z styków nie są aktywne, obie żarówki pozostają zgaszone. Następnie w sekwencji 1, aktywacja styku 1-2 powoduje świecenie żarówki R1, co pokazuje zastosowanie przekaźników w prostych układach sterujących. W sekwencji 2, aktywacja styku 3-4 skutkuje załączeniem żarówki R2, co ilustruje możliwość niezależnego sterowania różnymi źródłami światła. W sekwencji 3, w której oba styki są aktywne, zarówno R1, jak i R2 świecą, co pokazuje, jak można zintegrować różne obwody w jednym układzie. Na koniec, w sekwencji 4, układ wraca do stanu początkowego, co jest typowym zachowaniem w układach sterujących, gdzie ważna jest możliwość cyklicznego powracania do stanu zerowego. Takie podejście jest zgodne z najlepszymi praktykami w automatyzacji i sterowaniu, umożliwiając efektywne zarządzanie oświetleniem w różnych aplikacjach.

Pytanie 21

Do zacisku odbiornika podłączonego na stałe w instalacji TN-S oznaczonego symbolem graficznym przedstawionym na rysunku należy podłączyć przewód

Ilustracja do pytania
A. ochronny.
B. neutralny.
C. wyrównawczy.
D. odgromowy.
Wybór odpowiedzi "ochronny" jest trafiony! W instalacji TN-S przewód, który widzisz na rysunku, to rzeczywiście przewód ochronny (PE). Jego głównym zadaniem jest ochrona użytkowników przed porażeniem prądem. Dzięki temu przewód odprowadza niebezpieczne napięcia do ziemi, co zmniejsza ryzyko wypadków. W systemach TN-S przewód ochronny jest oddzielony od neutralnego (N), co jest zgodne z zasadami bezpieczeństwa. Ważne, żeby ten przewód był dobrze podłączony, bo wtedy ochronne urządzenia, jak wyłącznik różnicowoprądowy, będą działać tak jak powinny. Dobrze jest też regularnie sprawdzać, czy przewody ochronne są w dobrym stanie, żeby mieć pewność, że ich działanie jest skuteczne. Jeśli chcesz bardziej zgłębić temat, popatrz na normy PN-IEC 60364 i PN-HD 60364 – tam znajdziesz konkretne wytyczne dotyczące instalacji elektrycznych.

Pytanie 22

Na rysunku pokazano pętlę zwarciową w układzie typu

Ilustracja do pytania
A. TN-S
B. IT
C. TT
D. TN-C-S
Odpowiedź TN-C-S jest poprawna, ponieważ odnosi się do systemu zasilania, w którym przewód PEN, pełniący funkcję zarówno przewodu ochronnego (PE), jak i neutralnego (N), jest rozdzielany na te dwa oddzielne przewody w określonym punkcie instalacji. Taki sposób realizacji systemu jest zgodny z normami bezpieczeństwa, co zapewnia nie tylko właściwe zabezpieczenie przed porażeniem prądem, ale także minimalizuje ryzyko zakłóceń w pracy urządzeń elektrycznych. W praktyce, układ TN-C-S jest często stosowany w budynkach mieszkalnych oraz przemysłowych, gdzie istotne jest zachowanie wysokiego poziomu bezpieczeństwa. Rozdzielenie przewodu PEN na PE i N zmniejsza ryzyko wystąpienia prądów wyrównawczych oraz potencjalnych problemów związanych z niewłaściwym uziemieniem. Ponadto, w kontekście regulacji, taki układ jest zgodny z normami IEC 60364, które nakładają obowiązek stosowania rozwiązań minimalizujących ryzyko wystąpienia niebezpiecznych sytuacji związanych z elektrycznością. Warto również zauważyć, że przy projektowaniu instalacji elektrycznych, inżynierowie muszą zwracać uwagę na lokalne przepisy i normy, które mogą wpłynąć na wybór konkretnego systemu zasilania.

Pytanie 23

W którym z wymienionych miejsc można zainstalować oprawę oświetleniową posiadającą w karcie katalogowej następujące oznaczenia?

Ilustracja do pytania
A. Na zewnątrz, do oświetlenia placu budowy.
B. W pomieszczeniu zagrożonym wybuchem.
C. W pomieszczeniach z łatwopalnymi oparami.
D. Na dnie basenu o głębokości 4 m.
Oprawa oświetleniowa z oznaczeniem IP65 jest odpowiednia do instalacji na zewnątrz, w tym na placu budowy, ze względu na jej odporność na kurz oraz strumienie wody. Oznaczenie IP65 wskazuje, że urządzenie jest całkowicie chronione przed dostępem kurzu (klasa 6) oraz że wytrzymuje strumienie wody z dowolnego kierunku (klasa 5). Takie właściwości są kluczowe w warunkach budowlanych, gdzie sprzęt narażony jest na trudne warunki atmosferyczne i konieczność zapewnienia odpowiedniego oświetlenia dla bezpieczeństwa pracowników i jakości wykonywanych robót. W praktyce oprawy oświetleniowe IP65 są często stosowane w przestrzeniach zewnętrznych, takich jak place budowy, parkingi, czy obiekty sportowe. Dobrą praktyką jest również zapewnienie, aby instalacja odbywała się zgodnie z przepisami lokalnymi i normami, takimi jak PN-EN 60598 dotycząca oświetlenia. Warto również zwrócić uwagę na odpowiednie akcesoria montażowe oraz dodatkowe zabezpieczenia, aby zapewnić długotrwałe i bezpieczne użytkowanie oświetlenia w trudnych warunkach.

Pytanie 24

Które źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Świetlówkę kompaktową.
B. Lampę neonową.
C. Żarówkę wolframową.
D. Żarówkę halogenową.
Świetlówka kompaktowa, znana również jako energooszczędna, to źródło światła, które wyróżnia się charakterystycznym spiralnym lub zwiniętym kształtem. W przeciwieństwie do tradycyjnych żarówek, które emitują światło dzięki podgrzewaniu włókna, świetlówki kompaktowe wykorzystują zjawisko fluorescencji, co przekłada się na ich wysoką efektywność energetyczną. Ponadto, świetlówki kompaktowe charakteryzują się długą żywotnością, sięgającą nawet 10 000 godzin. Są one powszechnie stosowane w domach i biurach, gdzie pozwalają na znaczne oszczędności energii, co jest zgodne z aktualnymi standardami efektywności energetycznej. Warto również zauważyć, że emitują one mniej ciepła niż tradycyjne źródła światła, co czyni je bardziej ekologicznymi. Zastosowanie świetlówek kompaktowych jest zgodne z zasadami zrównoważonego rozwoju, które promują ograniczenie zużycia energii i redukcję emisji dwutlenku węgla.

Pytanie 25

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. rok
B. pięć lat
C. trzy lata
D. dwa lata
Wybór odpowiedzi, która sugeruje dłuższy okres między przeglądami, jest błędny i może prowadzić do poważnych konsekwencji. W kontekście przeglądów przeciwpożarowych wyłączników prądu, istotne jest, aby każde urządzenie było regularnie monitorowane pod kątem sprawności. Wiele osób mylnie uważa, że rzadkie przeglądy, takie jak co dwa lub trzy lata, są wystarczające, co w rzeczywistości może prowadzić do niedopuszczalnego ryzyka. Wyłączniki prądu są kluczowymi elementami systemów zabezpieczeń elektrycznych, a ich awaria w momencie, gdy są najbardziej potrzebne, może prowadzić do katastrofalnych skutków. Użytkownicy często zapominają, że komponenty elektryczne mogą ulegać zużyciu oraz że czynniki zewnętrzne, takie jak wilgoć czy zanieczyszczenia, mogą wpływać na ich działanie. Dlatego przegląd roczny jest nie tylko zalecany, ale wręcz obligatoryjny, aby zapewnić ich prawidłowe funkcjonowanie. Ponadto, regulacje prawne w wielu krajach określają, że organizacje powinny mieć opracowane procedury konserwacji urządzeń elektrycznych, w tym wyłączników, co dodatkowo podkreśla znaczenie regularnych przeglądów. Ignorowanie tego aspektu jest niezgodne z dobrą praktyką inżynierską oraz wymogami normatywnymi, co może prowadzić do konieczności ponoszenia kosztów naprawy uszkodzeń lub nawet strat materialnych i osobowych w wyniku awarii.

Pytanie 26

Schemat którego silnika przedstawiono na ilustracji?

Ilustracja do pytania
A. Obcowzbudnego prądu stałego.
B. Synchronicznego z obcym wzbudzeniem.
C. Indukcyjnego pierścieniowego.
D. Indukcyjnego klatkowego.
Analizując dostępne odpowiedzi, można zauważyć kilka powszechnych nieporozumień związanych z różnymi typami silników elektrycznych. Silnik obcowzbudny prądu stałego jest konstrukcją, która charakteryzuje się oddzielnym źródłem zasilania dla pola magnetycznego, co nie znajduje odzwierciedlenia w schemacie i jego budowie. Silniki tego typu mają zupełnie inną architekturę i przeznaczenie, często używane w aplikacjach wymagających dużej kontroli nad prędkością obrotową, ale nie są w stanie dostarczyć tej samej elastyczności co silniki pierścieniowe. Z kolei silnik indukcyjny klatkowy, który posiada wirnik wykonany w formie klatki, jest prostszy w budowie i nie pozwala na taką regulację momentu obrotowego jak silnik pierścieniowy. Ta konstrukcja jest bardziej powszechna w zastosowaniach przemysłowych, jednak nie ma możliwości tak szczegółowego dostosowania parametrów pracy. Natomiast silnik synchroniczny z obcym wzbudzeniem, który również został wymieniony w odpowiedziach, opiera się na stałym polu magnetycznym i charakteryzuje się innym sposobem działania. W odróżnieniu od silników indukcyjnych, synchroniczne wykorzystują stałe źródło pola, co sprawia, że ich zastosowanie jest inne i wymagające. Zrozumienie różnic między tymi typami silników jest kluczowe, aby podejmować właściwe decyzje w kontekście wyboru odpowiedniej technologii do konkretnych zastosowań przemysłowych. Kluczowe jest, aby pamiętać o specyfikach konstrukcyjnych i ich wpływie na właściwości użytkowe, co może prowadzić do znacznych nieporozumień w praktyce inżynieryjnej.

Pytanie 27

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00
A. Jednofazowe zwarcie doziemne.
B. Przeciążenie jednej z faz.
C. Zawilgocenie izolacji jednej z faz.
D. Zwarcie międzyfazowe.
Przeciążenie jednej z faz, mimo że jest to problem, który może wystąpić w instalacjach elektrycznych, nie jest odpowiedzią w tym przypadku. Przeciążenie związane jest z nadmiernym przepływem prądu przez przewody, co prowadzi do ich nagrzewania się. W tej sytuacji jednak, wyniki pomiarów rezystancji izolacji wykazują, że wszystkie fazy mają wartości powyżej 1 MΩ, co wyklucza obecność przeciążenia. Przeciążenie fazy charakteryzuje się innymi objawami, takimi jak wzrost temperatury przewodów czy wyłączanie się zabezpieczeń, co nie jest zgodne z danymi z tabeli. Z kolei zwarcie międzyfazowe również nie znajduje potwierdzenia w wynikach pomiarów, ponieważ wymagałoby niskich rezystancji międzyfazowych, co w tym przypadku nie ma miejsca. Warto pamiętać, że zwarcie międzyfazowe najczęściej prowadzi do natychmiastowego wyłączenia zabezpieczeń, a nieprawidłowe wartości rezystancji nie są jedynym objawem tego zjawiska. Jednofazowe zwarcie doziemne, mimo że może wpływać na rezystancję L3 do PEN, nie byłoby jedynym czynnikiem mającym wpływ na pozostałe fazy, które w tym przypadku wykazywały poprawne wartości. Kluczowe jest, aby podczas analizy wyników pomiarów izolacji brać pod uwagę wszystkie aspekty, a nie jedynie pojedyncze parametry, co pozwala na trafną diagnozę stanu instalacji elektrycznej.

Pytanie 28

Którą puszkę należy zastosować podczas wymiany instalacji, wykonanej na tynku w pomieszczeniu suchym?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Odpowiedź B jest poprawna, ponieważ w pomieszczeniach suchych, zgodnie z obowiązującymi normami instalacyjnymi, należy stosować puszki instalacyjne podtynkowe, które są przeznaczone do montażu w takich warunkach. Puszka wskazana jako B spełnia te wymagania, ponieważ jest zaprojektowana do pracy w suchych pomieszczeniach, co minimalizuje ryzyko uszkodzenia instalacji elektrycznej oraz zapewnia optymalne warunki dla podłączeń elektrycznych. W praktyce, puszki podtynkowe pozwalają na estetyczne i bezpieczne ukrycie przewodów oraz dostosowanie ich do wykończenia ścian. Ważne jest, aby podczas montażu stosować się do zasad prawidłowego podłączenia oraz instrukcji producenta, aby uniknąć problemów z dostępem do instalacji w przyszłości, a także zapewnić zgodność z normami bezpieczeństwa elektrycznego. Do puszek tej klasy często przynależą również akcesoria, które ułatwiają ich montaż i zapewniają dodatkową ochronę przed uszkodzeniami mechanicznymi.

Pytanie 29

Uszkodzenie poprawnie działającej instalacji elektrycznej budynku przedstawione na rysunku jest skutkiem

Ilustracja do pytania
A. zwarcia doziemnego.
B. wpływu prądu piorunowego do instalacji.
C. przeciążenia instalacji.
D. zwarcia międzyfazowego w instalacji.
Podczas analizy błędnych odpowiedzi na to pytanie, można zauważyć pewne nieporozumienia dotyczące przyczyn uszkodzeń instalacji elektrycznej. Przeciążenie instalacji, będące jedną z odpowiedzi, prowadzi do wzrostu temperatury przewodów, co w efekcie może powodować ich uszkodzenie. Jednakże, objawy przeciążenia najczęściej manifestują się w postaci stopniowego osłabienia wydajności energetycznej oraz braku natychmiastowych, dramatycznych uszkodzeń, jak to ma miejsce w przypadku wpływu prądu piorunowego. Kolejną nieprawidłową koncepcją jest zwarcie międzyfazowe, które powoduje zwarcie między przewodami fazowymi. Choć jest to poważny problem, nie prowadzi ono do uszkodzeń strukturalnych budynku, jak te widoczne na rysunku. Z kolei zwarcie doziemne, które występuje gdy przewód fazowy styka się z ziemią, również nie generuje skutków wizualnych, jakie możemy zobaczyć w tym przypadku. Często mylenie tych zjawisk wynika z braku zrozumienia właściwości elektrycznych oraz skutków różnych rodzajów uszkodzeń. Kluczowe jest, aby podejść do analizy uszkodzeń instalacji z uwagą na kontekst oraz charakterystykę wyładowań atmosferycznych, co może pomóc w uniknięciu błędnych wniosków w przyszłości.

Pytanie 30

W instalacjach elektrycznych w budynkach mieszkalnych o napięciu 230 V nie wolno używać opraw oświetleniowych zrealizowanych w klasie ochrony

A. II
B. I
C. 0
D. III
Odpowiedź 0 jest prawidłowa, ponieważ oprawy oświetleniowe w klasie ochronności 0 nie mają żadnego zabezpieczenia przed porażeniem elektrycznym. W instalacjach elektrycznych o napięciu 230 V, które są powszechnie stosowane w mieszkaniach, użycie opraw klasy 0 stwarza poważne ryzyko dla użytkowników. Oprawy te nie są wyposażone w żadne izolacje ani mechanizmy, które mogłyby zapobiec kontaktowi z częściami naładowanymi prądem. Przykładem zastosowania standardów bezpieczeństwa jest norma PN-HD 60364, która określa wymagania dotyczące ochrony przed porażeniem elektrycznym oraz klasyfikację urządzeń. W codziennym użytkowaniu, stosowanie opraw oświetleniowych klasy II, które posiadają dodatkowe źródła izolacji, jest kluczowe, aby zapewnić bezpieczeństwo w przypadku awarii. Właściwe dobieranie opraw oświetleniowych zgodnie z ich klasą ochronności ma na celu minimalizację ryzyka porażenia elektrycznego oraz poprawę ogólnego bezpieczeństwa instalacji elektrycznej w budynkach mieszkalnych.

Pytanie 31

Błędne podłączenie przewodu PE zamiast N na wejściu i wyjściu wyłącznika różnicowoprądowego spowoduje

A. brak możliwości zadziałania załączonego wyłącznika
B. niemożność załączenia wyłącznika pod obciążeniem
C. prawidłowe działanie wyłącznika
D. działanie wyłącznika przy znacznie mniejszych prądach upływu niż znamionowy
W przypadku niewłaściwego podłączenia przewodu PE zamiast N, pojawiają się różne nieporozumienia dotyczące funkcji i działania wyłącznika różnicowoprądowego. Wiele osób może błędnie sądzić, że takie podłączenie nie wpłynie na działanie urządzenia, jednak jest to dalekie od prawdy. Wyłącznik różnicowoprądowy działa na zasadzie porównywania prądów w przewodach fazowym i neutralnym, a jego funkcją jest zabezpieczenie użytkowników przed porażeniem prądem oraz uszkodzeniem urządzeń. Podłączenie PE zamiast N spowoduje, że wyłącznik nie będzie w stanie prawidłowo monitorować różnic prądowych, co jest niezbędne do jego działania. W związku z tym, pojawi się sytuacja, w której wyłącznik nie zadziała w przypadku wystąpienia prądu upływu, co zwiększa ryzyko porażenia prądem. Ponadto, istnieje przekonanie, że wyłącznik będzie działał przy mniejszych prądach upływu, ale to również jest błędne, ponieważ z powodu braku właściwego podłączenia, nie będzie on mógł zareagować w żadnej sytuacji. Takie nieprawidłowe założenia mogą prowadzić do niebezpiecznych konsekwencji, które mogą zagrażać zdrowiu i życiu użytkowników. Ostatecznie, kluczowe jest, aby stosować się do standardów dotyczących instalacji elektrycznych oraz przestrzegać zasad bezpieczeństwa, aby uniknąć tego typu pomyłek.

Pytanie 32

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
B. izolacji pomiędzy zaciskami uzwojeń silnika.
C. pętli zwarciowej.
D. uzwojenia fazowego.
Poprawna odpowiedź odnosi się do pomiaru rezystancji izolacji pomiędzy zaciskami uzwojeń silnika, co jest kluczowym elementem zapewnienia bezpieczeństwa i funkcjonalności urządzeń elektrycznych. Schemat przedstawia połączenie miernika, co wskazuje na jego użycie do oceny stanu izolacji. W praktyce, regularne pomiary izolacji są niezbędne w procesach konserwacyjnych oraz w diagnostyce awarii silników elektrycznych. Zgodnie z normą IEC 60364, należy dążyć do utrzymania odpowiednich wartości rezystancji izolacji, które powinny być znacznie wyższe niż 1 MΩ, aby zapewnić bezpieczeństwo użytkowania oraz minimalizować ryzyko porażenia prądem. W przypadku stwierdzenia niskiej rezystancji, co może wskazywać na uszkodzenie izolacji, konieczne jest natychmiastowe podjęcie działań naprawczych, aby zapobiec dalszym problemom. Dobre praktyki inżynieryjne zalecają również dokumentowanie wyników pomiarów, co może być pomocne w opracowywaniu programów konserwacyjnych oraz w audytach bezpieczeństwa.

Pytanie 33

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy D
B. Klasy A
C. Klasy C
D. Klasy B
Odpowiedzi wskazujące na klasy B, D oraz A jako odpowiednie dla rozdzielnic mieszkalnych są niepoprawne głównie z powodu różnic w charakterystyce i zastosowaniach tych ograniczników. Klasa B, według normy IEC 61643-11, jest zaprojektowana do ochrony przed bardzo wysokimi przepięciami, które mogą występować w sieciach zasilających, co czyni je bardziej odpowiednimi do zastosowań w instalacjach przemysłowych, gdzie ryzyko wystąpienia takich zdarzeń jest znacznie wyższe. Ograniczniki klasy A z kolei są przeznaczone do ochrony przed bardzo niskimi, ale szybko zmieniającymi się przepięciami, co również nie odpowiada typowym wymaganiom dla mieszkań. Klasa D, zdefiniowana jako ogranicznik przeznaczony do instalacji w obiektach specjalistycznych, takich jak centra danych, również nie jest zalecana do użytku domowego. Sugerowanie tych klas ograniczników dla zastosowań w rozdzielnicach mieszkaniowych może prowadzić do niewłaściwej ochrony i potencjalnych uszkodzeń sprzętu, co jest wynikiem niepełnego zrozumienia standardów ochrony przeciwprzepięciowej oraz różnorodności warunków, w jakich te urządzenia są używane. Kluczowe jest, aby przy wyborze odpowiedniego ogranicznika kierować się wymaganiami specyfikacji technicznych oraz dobrą praktyką inżynieryjną, co pomoże uniknąć kosztownych błędów i zapewni skuteczną ochronę instalacji elektrycznych.

Pytanie 34

Elementy którego silnika elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjnego pierścieniowego.
B. Jednofazowego z kondensatorem pracy.
C. Komutatorowego prądu stałego.
D. Indukcyjnego klatkowego.
Wybór nieprawidłowych odpowiedzi wskazuje na pewne nieporozumienia dotyczące różnych typów silników elektrycznych i ich konstrukcji. Silnik indukcyjny pierścieniowy to konstrukcja, która wykorzystuje wirnik z pierścieniami, co jest charakterystyczne dla silników o mocy dużej, używanych głównie w aplikacjach przemysłowych, gdzie wymagana jest wysoka moc startowa. Typowe zastosowanie to napędy dużych maszyn, gdzie istotne są parametry takie jak moment obrotowy. Z kolei silnik komutatorowy prądu stałego charakteryzuje się innym sposobem przekształcania energii - wykorzystuje komutatory do zmiany kierunku prądu w uzwojeniach wirnika, co sprawia, że jest bardziej skomplikowany konstrukcyjnie i wymaga więcej konserwacji. Silniki jednofazowe z kondensatorem pracy używane są głównie w domowych zastosowaniach, takich jak małe pompy czy wentylatory, ale ich budowa i zasada działania znacząco różnią się od silników indukcyjnych klatkowych. Typowe błędy myślowe to mylenie zastosowania tych silników oraz nieodpowiednie przypisywanie ich cech do danej konstrukcji. Wiedza o różnicach między tymi typami silników jest kluczowa dla efektywnego doboru odpowiedniego silnika do konkretnej aplikacji w przemyśle czy gospodarstwie domowym.

Pytanie 35

Jaką maksymalną wartość impedancji pętli zwarcia należy przyjąć w trójfazowym układzie elektrycznym o napięciu 230/400 V, aby zabezpieczenie przeciwporażeniowe działało prawidłowo w przypadku uszkodzenia izolacji, zakładając, że zasilanie tego obwodu ma być odłączone przez instalacyjny wyłącznik nadprądowy B20?

A. 3,83 Ω
B. 1,15 Ω
C. 2,30 Ω
D. 0,56 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, przy zastosowaniu instalacyjnego wyłącznika nadprądowego B20, wynosi 2,30 Ω. Zrozumienie tej wartości jest kluczowe dla zapewnienia skutecznej ochrony przeciwporażeniowej, ponieważ wyłącznik nadprądowy B20 ma charakterystykę, która wymaga odpowiedniej impedancji, aby w przypadku zwarcia mógł zadziałać w odpowiednim czasie. Przy wartościach impedancji powyżej 2,30 Ω czas wyłączenia może być zbyt długi, co zwiększa ryzyko porażenia prądem. Przykładowo, w praktyce, przy pomiarach używa się specjalistycznych instrumentów do określenia impedancji pętli zwarcia, co pozwala na weryfikację zgodności instalacji z normami, takimi jak PN-IEC 60364. Ponadto, dla zapewnienia bezpieczeństwa, projektowanie instalacji elektrycznych powinno obejmować dokładne obliczenia oraz pomiary impedancji, co wpisuje się w dobre praktyki inżynierskie.

Pytanie 36

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 2 do 3
B. 10 do 20
C. 3 do 5
D. 5 do 10
Złudzenia związane z innymi wartościami krotności prądu znamionowego wynikają często z niepełnego zrozumienia działania wyłączników nadprądowych oraz ich zastosowania w ochronie instalacji elektrycznych. Odpowiedzi sugerujące krotności od 3 do 5, 5 do 10, czy 10 do 20 są błędne, ponieważ wyzwalacze w wyłącznikach typu Z są zaprojektowane do zadziałania w niższym zakresie krotności, co pozwala na skuteczną ochronę delikatniejszych układów przed zbyt dużym prądem. Wyzwalacze w kategoriach 5 do 10 i 10 do 20 zazwyczaj znajdziemy w wyłącznikach typu C lub D, które są przeznaczone do obwodów o wyższej tolerancji na prądy rozruchowe, takich jak obwody z silnikami dużej mocy. Nieprawidłowe podejście do wyboru odpowiednich wyłączników może prowadzić do poważnych problemów, takich jak uszkodzenia sprzętu, które mogłyby być uniknięte dzięki zastosowaniu wyłączników typu Z w odpowiednich aplikacjach. Kluczowym błędem myślowym jest zakładanie, że wyższa krotność zawsze oznacza lepszą ochronę, co jest mylące. Odpowiedni wybór wyłącznika powinien być oparty na charakterystyce obciążenia oraz wymaganiach instalacji, co jest zgodne z normami i dobrymi praktykami w projektowaniu systemów elektroenergetycznych.

Pytanie 37

Który z urządzeń umożliwia bezpośredni pomiar cos 9?

A. Omomierz
B. Waromierz
C. Watomierz
D. Fazomierz
Fazomierz to przyrząd, który służy do pomiaru kątów fazowych prądu i napięcia w obwodach elektrycznych. W kontekście pomiaru cosinus kąta (cos φ), fazomierz jest nieocenionym narzędziem, ponieważ pozwala na bezpośrednie określenie tego parametru, który jest kluczowy w ocenie charakterystyki obciążenia elektrycznego. W praktyce, pomiar cos φ ma istotne znaczenie w zarządzaniu energią oraz w poprawie efektywności energetycznej systemów elektrycznych. Umożliwia on monitorowanie współczynnika mocy, co jest istotne dla zapobiegania stratom energii oraz redukcji kosztów operacyjnych. Właściwe zarządzanie współczynnikiem mocy jest także zgodne z normami jakości energii, takimi jak PN-EN 50160, które definiują wymagania dotyczące jakości energii w sieciach elektroenergetycznych. Przykładem zastosowania fazomierza może być analiza obciążeń w zakładach przemysłowych, gdzie poprawne dopasowanie obciążeń do parametrów zasilania przekłada się na niższe koszty i większą trwałość urządzeń.

Pytanie 38

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji ukrytej prowadzonej w rurkach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na kilku centymetrach straciła elastyczność oraz zmieniła kolor. Jak należy zrealizować naprawę uszkodzenia?

A. Wymienić uszkodzony przewód na nowy o takim samym przekroju
B. Wymienić wszystkie przewody na nowe o większym przekroju
C. Założyć gumowy wężyk na uszkodzoną izolację przewodu
D. Pomalować uszkodzoną izolację przewodu
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest kluczowym działaniem w zapewnieniu bezpieczeństwa i funkcjonalności instalacji elektrycznej. Uszkodzenie izolacji przewodu, które prowadzi do utraty elastyczności i zmiany koloru, wskazuje na problem, który może prowadzić do porażenia prądem lub zwarcia. Zgodnie z normami IEC oraz Polskimi Normami (PN), przewody elektryczne powinny być zawsze w dobrym stanie technicznym. W praktyce, wymiana uszkodzonego przewodu na nowy o takim samym przekroju zapewnia, że instalacja elektryczna będzie w pełni sprawna i zgodna z wymaganiami dotyczącymi obciążalności prądowej oraz ochrony przed przeciążeniem. Przykładem może być wymiana przewodu w domowej instalacji, gdzie zgodność z przekrojem przewodu zabezpiecza przed zjawiskiem przegrzewania się instalacji oraz potencjalnym uszkodzeniem urządzeń elektrycznych. Stanowisko to jest zgodne z dobrą praktyką inżynieryjną i zapewnia trwałość oraz bezpieczeństwo eksploatacji systemów elektrycznych.

Pytanie 39

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. zamiana miejscami dwóch faz
B. brak podłączenia jednej fazy
C. zamiana jednej fazy z przewodem neutralnym
D. brak podłączenia dwóch faz
Zamiana dwóch faz między sobą jest prawidłową odpowiedzią, ponieważ w trójfazowych systemach zasilania kierunek obrotów silnika elektrycznego zależy od kolejności faz. Silniki asynchroniczne, do jakich należy hydrofor, są zaprojektowane tak, aby ich wirnik obracał się w określonym kierunku. W przypadku zamiany faz, na przykład przy podłączeniu L1 do przewodu L2 i L2 do L1, dochodzi do odwrócenia kierunku pola magnetycznego, co z kolei skutkuje zmianą kierunku obrotów silnika. W praktyce, aby upewnić się, że silnik działa prawidłowo, należy zwrócić uwagę na prawidłowe podłączenie faz zgodnie z dokumentacją techniczną producenta. W przypadku silników wielofazowych, zwłaszcza w aplikacjach przemysłowych, przestrzeganie tych zasad jest kluczowe dla efektywności i bezpieczeństwa pracy. Dlatego w instalacjach elektrycznych należy stosować odpowiednie oznaczenia kolorystyczne oraz zabezpieczenia, aby zminimalizować ryzyko błędów w podłączeniu.

Pytanie 40

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. elektrodynamicznym
B. magnetoelektrycznym
C. ferrodynamicznym
D. elektromagnetycznym
Pomiar wielkości elektrycznych o przebiegu stałym wymaga zastosowania odpowiednich technologii pomiarowych, a wybór niewłaściwego ustroju może prowadzić do błędnych wyników. Ustrój ferrodynamiczny, choć użyteczny w pomiarach prądu zmiennego, opiera się na zasadzie siły elektromotorycznej wywołanej przez zmienne pole magnetyczne. W przypadku prądu stałego brak zmienności pola sprawia, że wynik pomiaru byłby nieprecyzyjny. Ustrój elektromagnetyczny również nie jest właściwy, ponieważ jego działanie bazuje na indukcji elektromagnetycznej, a więc również najlepiej sprawdza się w pomiarach prądu zmiennego. Z kolei ustrój elektrodynamiczny, który wykorzystuje zasadę działania siły działającej na przewodnik w polu magnetycznym, także nie jest dostosowany do pomiarów prądu stałego, co może prowadzić do nieprawidłowych odczytów. Wybór niewłaściwego ustroju pomiarowego może być wynikiem błędnego zrozumienia zasad działania różnych technologii pomiarowych, co jest typowym błędem wśród osób, które nie mają wystarczającej wiedzy na temat specyfiki pomiarów elektrycznych. Dlatego kluczowe jest zrozumienie różnic w konstrukcji i zasadzie działania różnych ustrojów pomiarowych oraz ich właściwego zastosowania w praktyce inżynierskiej.