Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 9 grudnia 2025 12:49
  • Data zakończenia: 9 grudnia 2025 13:07

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kiedy należy dokonać przeglądu instalacji elektrycznej w obiekcie przemysłowym?

A. Po każdej naprawie maszyn
B. Co pięć lat
C. Co najmniej raz na rok
D. Tylko przed uruchomieniem nowych maszyn
Warto zaznaczyć, że przegląd instalacji elektrycznej tylko przed uruchomieniem nowych maszyn nie jest wystarczający. Wprowadzenie nowego sprzętu do istniejącej instalacji wymaga sprawdzenia jej zgodności, ale nie zastępuje regularnych przeglądów. Nowe maszyny mogą wprowadzać dodatkowe obciążenie na system, co zwiększa ryzyko przeciążenia lub awarii. Ponadto, przegląd po każdej naprawie maszyn również nie jest wystarczający. Choć istotne jest, aby po naprawie sprawdzić poprawność działania, nie zapewnia to bieżącego monitorowania stanu całej instalacji. Regularne przeglądy są konieczne, aby identyfikować ukryte problemy, które mogą się pojawić podczas normalnej eksploatacji. Z kolei przeglądy co pięć lat są zdecydowanie zbyt rzadkie. Taka częstotliwość nie pozwala na wystarczająco szybkie wykrycie problemów, co może prowadzić do niebezpiecznych sytuacji i nieplanowanych przestojów w pracy zakładu. Dlatego też normy i przepisy branżowe zalecają częstsze przeglądy, aby zapewnić bezpieczeństwo i efektywność działania instalacji elektrycznych. Zignorowanie tych zasad może skutkować nie tylko przerwami w produkcji, ale także poważnymi zagrożeniami dla życia i zdrowia pracowników.

Pytanie 2

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Luminancję.
B. Natężenie oświetlenia.
C. Światłość.
D. Temperaturę barwową światła.
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 3

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
B. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
C. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
D. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
Odpowiedzi sugerujące, że prace remontowe należy zawsze wykonywać po wyłączeniu napięcia, że pod napięciem można wymieniać tylko bezpieczniki lub żarówki, czy że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, mogą prowadzić do nieporozumień i błędnych praktyk. Owszem, wyłączenie napięcia jest generalnie najbezpieczniejszym podejściem, jednak w niektórych sytuacjach, takich jak wymiana bezpieczników czy żarówek, przy zachowaniu odpowiednich środków ostrożności, można te prace wykonać pod napięciem. Istnieją normy i przepisy BHP, które określają, kiedy i jak można pracować w warunkach napięcia, a także jakie środki ochrony osobistej należy stosować. Ponadto, nie wszystkie prace wymagają obecności osoby asekurującej, co może spowodować niepotrzebne opóźnienia w realizacji zadań. Kluczowym błędem myślowym w takich podejściach jest założenie, że każda sytuacja jest równoznaczna z wysokim ryzykiem i wymaga nadzoru, co nie zawsze jest prawdą. Zrozumienie kontekstu, w jakim przeprowadzane są prace oraz umiejętność oceny ryzyka to umiejętności, które powinny być rozwijane przez osoby pracujące w branży elektrycznej. Należy również pamiętać, że interpretacja przepisów powinna być dostosowywana do specyficznych warunków pracy oraz typu realizowanej operacji.

Pytanie 4

Jaki rodzaj łącznika zastosowany jest w obwodzie przedstawionym na schemacie?

Ilustracja do pytania
A. Schodowy.
B. Dwubiegunowy.
C. Świecznikowy.
D. Żaluzjowy.
Wybór innych rodzajów łączników, takich jak świecznikowy, schodowy czy dwubiegunowy, jest błędny z kilku powodów. Łącznik świecznikowy jest używany do załączania i wyłączania obwodu oświetleniowego i nie ma zastosowania w sterowaniu silnikami. Jego funkcja ogranicza się do prostego włączania światła, co wyklucza jakiekolwiek złożone sterowanie ruchem, które jest kluczowe w przypadku żaluzji. Z kolei łącznik schodowy, stosowany w systemach oświetleniowych, pozwala na kontrolowanie jednego źródła światła z dwóch różnych miejsc, jednak również nie nadaje się do sterowania silnikami. Jego konstrukcja i zasada działania są zupełnie inne, co prowadzi do nieprawidłowego wnioskowania. Podobnie łącznik dwubiegunowy, który może być używany do załączania i wyłączania urządzeń napięciowych, nie jest przystosowany do sterowania ruchem w górę i w dół, co jest niezbędne w systemach żaluzjowych. Wybór odpowiedniego łącznika jest kluczowy dla prawidłowej funkcjonalności instalacji, a błędne myślenie o tych urządzeniach prowadzi do niewłaściwych instalacji i potencjalnych problemów w działaniu urządzeń. Dlatego istotne jest zrozumienie różnic między różnymi typami łączników oraz ich zastosowaniem, co pozwala na lepsze projektowanie i efektywne wykorzystanie technologii w automatyce budynkowej.

Pytanie 5

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Izolator przepustowy wysokiego napięcia.
B. Izolator wsporczy.
C. Bezpiecznik aparatowy.
D. Wkładkę topikową bezpiecznika mocy.
Wkładka topikowa bezpiecznika mocy to kluczowy element zabezpieczający w obwodach elektrycznych, który chroni przed przeciążeniami i zwarciami. Na ilustracji widać charakterystyczne cechy tego komponentu, takie jak metalowe końcówki, które zapewniają dobrą przewodność elektryczną, oraz oznaczenia techniczne, które wskazują na parametry znamionowe wkładki. Wkładki topikowe są stosowane głównie w instalacjach przemysłowych i komercyjnych, gdzie występuje duże ryzyko przeciążeń. Zgodnie z normą IEC 60269, wkładki te powinny być dobierane na podstawie maksymalnego prądu, który może przepływać przez dany obwód, co wymaga precyzyjnego obliczenia. Przykłady zastosowania wkładek topikowych to ochrona silników elektrycznych, transformatorów oraz innych urządzeń, które mogą być narażone na nagłe skoki prądu. Użycie odpowiednich wkładek topikowych jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.

Pytanie 6

Jakie czynności kontrolne nie są zaliczane do oględzin urządzeń napędowych podczas ich pracy?

A. Weryfikacja stanu przewodów ochronnych oraz ich połączeń
B. Kontrola zabezpieczeń i stanu osłon części wirujących
C. Sprawdzenie stanu łożysk i przeprowadzenie pomiarów elektrycznych
D. Ocena poziomu drgań oraz funkcjonowania układu chłodzenia
Czynności kontrolne takie jak sprawdzenie stanu przewodów ochronnych i ich połączeń, kontrola poziomu drgań oraz sprawdzenie zabezpieczeń i stanu osłon części wirujących są niezwykle istotne podczas eksploatacji urządzeń napędowych. Zabezpieczenia, takie jak osłony części wirujących, pełnią kluczową rolę w ochronie operatorów przed urazami oraz zabezpieczają mechanizm przed uszkodzeniami. Ich sprawność jest niezbędna dla zapewnienia bezpieczeństwa operacji. Kontrola stanu przewodów ochronnych również nie powinna być pomijana, ponieważ ich uszkodzenie może prowadzić do niebezpiecznych sytuacji związanych z wyciekiem prądu lub zwarciem. Z kolei monitorowanie poziomu drgań jest kluczowe dla diagnostyki stanu maszyny; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, uszkodzenia łożysk lub inne problemy mechaniczne. Ponadto, pomiary elektryczne, chociaż ważne, są zwykle częścią rutynowych przeglądów, a nie codziennych czynności kontrolnych w trakcie pracy. Warto pamiętać, że każde z tych działań służy do wczesnego wykrywania nieprawidłowości i zapobiegania poważniejszym awariom, co jest zgodne z najlepszymi praktykami w dziedzinie utrzymania ruchu i zarządzania bezpieczeństwem pracy. Ostatecznie, aby zapewnić długowieczność i niezawodność systemów napędowych, konieczne jest regularne przeprowadzanie kompleksowych analiz stanu technicznego w oparciu o odpowiednie normy i zalecenia branżowe.

Pytanie 7

Do czego służą przy montażu instalacji elektrycznej przedstawione na ilustracji kleszcze?

Ilustracja do pytania
A. Formowania oczek na końcach żył.
B. Zaprasowywania przewodów w połączeniach wsuwanych.
C. Montażu zacisków zakleszczających.
D. Zaciskania końcówek tulejkowych na żyłach przewodu.
Poprawna odpowiedź to formowanie oczek na końcach żył, co jest kluczowym zastosowaniem kleszczy w instalacjach elektrycznych. Narzędzie to, o charakterystycznym kształcie szczęk, pozwala na precyzyjne formowanie oczek, które są następnie używane do trwałego mocowania przewodów na zaciskach w rozdzielnicach elektrycznych. Przygotowanie końcówek przewodów w postaci oczek jest zgodne z najlepszymi praktykami branżowymi, ponieważ zapewnia ono zarówno bezpieczeństwo, jak i stabilność połączeń. Odpowiednio uformowane oczka minimalizują ryzyko wystąpienia luzów i zwarć, co jest kluczowe dla właściwego działania instalacji elektrycznej. Dobrze przygotowane połączenia wpływają również na estetykę instalacji, co jest istotne w kontekście zewnętrznych przeglądów oraz konserwacji. W praktyce, formowanie oczek przed podłączeniem do zacisków pozwala na łatwiejsze i szybsze wykonywanie prac instalacyjnych, a także na ich późniejsze modyfikacje.

Pytanie 8

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Samoczynne wyłączenie zasilania
B. Dodatkowe miejscowe wyrównawcze połączenia ochronne
C. Bardzo niskie napięcie ze źródła bezpiecznego
D. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
Uniedostępnianie, czyli umieszczenie urządzeń elektrycznych poza zasięgiem ręki, jest jedną z metod ochrony, jednak nie stanowi uzupełniającej ochrony przeciwporażeniowej. W rzeczywistości, polega ono na fizycznym oddzieleniu użytkownika od potencjalnych zagrożeń, co może w pewnych sytuacjach zwiększać bezpieczeństwo, ale nie eliminuje ryzyka całkowicie. Ponadto, taka metoda nie jest skuteczna w przypadku sytuacji awaryjnych, gdzie dostęp do urządzeń elektrycznych jest niezbędny do ich wyłączenia. Samoczynne wyłączenie zasilania to kolejna strategia, która ma na celu zminimalizowanie skutków porażenia prądem, ale jej skuteczność jest uzależniona od wykrycia awarii, co nie zawsze jest gwarantowane. Bardzo niskie napięcie ze źródła bezpiecznego również jest metodą ochrony, lecz nie jest to metoda uzupełniająca, a podstawowa koncepcja, która sama w sobie nie wystarcza do zapewnienia pełnej ochrony. Dobre praktyki w zakresie ochrony przeciwporażeniowej wymagają zastosowania złożonych systemów zabezpieczeń, w tym połączeń wyrównawczych, co pokazuje, że ignorowanie tych podstawowych zasad może prowadzić do błędnych wniosków i zwiększonego ryzyka w sytuacjach awaryjnych.

Pytanie 9

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Przekaźnik priorytetowy.
C. Automat zmierzchowy.
D. Przekaźnik czasowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 10

Jakie z podanych usterek mogą powodować nadmierne wibracje w silniku indukcyjnym?

A. Zbyt niskie napięcie, przerwa w jednej z faz, przeciążenie silnika
B. Zwarcie w uzwojeniu wirnika, zmieniona kolejność faz
C. Przerwa w uzwojeniu stojana, zatarcie łożysk, nadmierna rezystancja uzwojeń wirnika
D. Skrzywienie wału, niewłaściwe wyważenie wirnika, zbyt duży luz na łożyskach
Twoja odpowiedź jest jak najbardziej trafna! Skrzywienie wału, niewłaściwe wyważenie wirnika i luz na łożyskach to faktycznie te rzeczy, które mogą mocno wpływać na to, jak silnik pracuje. Jak wał jest krzywy, to masa się rozkłada nierówno, co przyczynia się do wzrostu wibracji – to trochę jak z siedzeniem na krzywej ławce, nie? Z kolei kiepskie wyważenie wirnika, które często bierze się z jego zużycia, też powoduje, że silnik się męczy, bo łożyska dostają w kość. No i ten luz – luźne łożyska też robią swoje, bo wirnik nie działa jak powinien. Ważne, żeby regularnie sprawdzać sprzęt i dbać o niego, tak jak produkuje się w instrukcji. Stosując metody monitorowania, jak analiza drgań, można wcześnie zauważyć problemy i coś z tym zrobić. To wszystko pomoże w wydłużeniu życia silnika i uniknięciu przestojów w pracy.

Pytanie 11

Na przyrządzie ustawionym na zakres 300 V zmierzono napięcie w sieci, które wynosi 230 V. Do wykonania pomiaru zastosowano miernik analogowy o dokładności w klasie 1,5. Jaki jest błąd bezwzględny uzyskanego pomiaru?

A. ± 4,40 V
B. ± 4,60 V
C. ± 4,30 V
D. ± 4,50 V
Poprawna odpowiedź to ± 4,50 V, co wynika z zastosowania wzoru do obliczania błędu bezwzględnego pomiaru. Klasa dokładności miernika analogowego oznacza, że maksymalny błąd pomiarowy wynosi 1,5% zakresu pomiarowego. W przypadku zakresu 300 V, maksymalny błąd obliczamy jako 1,5% z 300 V, co daje 4,5 V. To oznacza, że rzeczywisty wynik pomiaru napięcia sieciowego 230 V może różnić się od wartości rzeczywistej o maksymalnie ± 4,50 V. Praktyczne zastosowanie tego typu pomiarów związane jest z zapewnieniem bezpieczeństwa w instalacjach elektrycznych oraz monitorowaniem ich parametrów, co jest kluczowe dla efektywnego zarządzania energią. W branży elektrycznej stosuje się różne klasy dokładności w zależności od wymaganych precyzji pomiarów, dlatego zrozumienie tych standardów jest niezbędne dla inżynierów i techników zajmujących się systemami zasilania. Odpowiednia interpretacja wyników pomiarów, z uwzględnieniem błędów, ma fundamentalne znaczenie dla analizy i diagnozowania układów elektrycznych.

Pytanie 12

Które urządzenie przedstawiono na rysunku?

Ilustracja do pytania
A. Prostownik dwupołówkowy.
B. Przekaźnik bistabilny.
C. Ogranicznik przepięć.
D. Wyłącznik zmierzchowy.
Wybór odpowiedzi innej niż ogranicznik przepięć może wynikać z kilku błędów w analizie charakterystyki przedstawionego urządzenia. Na przykład, wyłącznik zmierzchowy jest urządzeniem, które reaguje na zmiany natężenia światła, co nie ma zastosowania w kontekście przedstawionym na rysunku. Przekaźnik bistabilny, z kolei, służy do utrzymania stanu obwodu elektrycznego w jednym z dwóch stanów, co również nie odpowiada funkcji ogranicznika przepięć. Ograniczniki przepięć i prostowniki dwupołówkowe różnią się znacznie w budowie i zastosowaniu – prostowniki są używane do konwersji prądu zmiennego na stały, co jest zupełnie inną funkcjonalnością. Typowe myślenie prowadzące do błędnych wyborów opiera się na nieznajomości zastosowania poszczególnych urządzeń w praktyce. W kontekście ochrony przed przepięciami, jednym z kluczowych aspektów jest dobra znajomość oznaczeń i specyfikacji technicznych, które wskazują na przeznaczenie urządzenia. Niezrozumienie podstawowych różnic pomiędzy tymi urządzeniami oraz ich właściwego zastosowania w systemach elektrycznych może prowadzić do nieodpowiednich decyzji, co w konsekwencji zwiększa ryzyko uszkodzeń sprzętu oraz naruszenia norm bezpieczeństwa. Warto zainwestować czas w zapoznanie się z dokumentacją techniczną i normami branżowymi, aby uniknąć takich sytuacji w przyszłości.

Pytanie 13

W układzie zasilania jakiej lampy oświetleniowej wykorzystuje się tyrystorowy system zapłonowy?

A. Rtęciowej
B. Sodowej
C. Halogenowej
D. Żarowej
Tyrystorowy układ zapłonowy znajduje zastosowanie głównie w obwodach zasilania lamp sodowych, ze względu na ich specyfikę działania oraz wymagania dotyczące zapłonu. Lampy sodowe, znane z wysokiej efektywności świetlnej oraz długu czasu życia, potrzebują odpowiedniego układu, który umożliwia ich szybkie i stabilne zapłonienie. Tyrystory, jako elementy półprzewodnikowe, pozwalają na kontrolowanie dużych prądów oraz napięć, co jest niezbędne w przypadku lamp sodowych, które charakteryzują się dużymi wartościami prądów startowych. Dodatkowo, tyrystory umożliwiają oszczędność energii poprzez precyzyjne zarządzanie cyklem pracy lampy, co jest zgodne z najlepszymi praktykami w projektowaniu systemów oświetleniowych, które dążą do minimalizacji strat energii oraz wydłużenia żywotności źródeł światła. Warto również zauważyć, że tyrystory, jako elementy zabezpieczające i sterujące, są często wykorzystywane w różnych zastosowaniach przemysłowych, co podkreśla ich wszechstronność i znaczenie w nowoczesnych systemach oświetleniowych.

Pytanie 14

Która z podanych metod realizacji instalacji elektrycznych jest przeznaczona do użycia w lokalach mieszkalnych?

A. Przewodami szynowymi
B. W kanałach podłogowych
C. Na drabinkach
D. W listwach przypodłogowych
Wybór prowadzenia instalacji elektrycznych w listwach przypodłogowych jest zgodny z normami i praktykami stosowanymi w pomieszczeniach mieszkalnych. Listwy przypodłogowe nie tylko maskują przewody, ale również umożliwiają estetyczne i funkcjonalne prowadzenie instalacji. Wykorzystanie listw przypodłogowych pozwala na łatwy dostęp do przewodów w przypadku ich konserwacji lub ewentualnych napraw. Warto wspomnieć, że instalacje prowadzone w listwach przypodłogowych są często stosowane w przypadku modernizacji istniejących budynków, gdzie nie ma możliwości prowadzenia przewodów w sposób tradycyjny. Listwy te są dostępne w różnych kolorach i wzorach, co pozwala na ich bezproblemowe wkomponowanie w wystrój wnętrza. Dodatkowo, zastosowanie listw przypodłogowych zwiększa bezpieczeństwo, ponieważ przewody są osłonięte przed uszkodzeniami mechanicznymi oraz dostępem dzieci. W kontekście norm, prowadzenie instalacji w listwach przypodłogowych powinno być zrealizowane zgodnie z obowiązującymi przepisami, takimi jak PN-IEC 60364, które regulują kwestie związane z bezpieczeństwem instalacji elektrycznych.

Pytanie 15

Wyznacz znamionowy współczynnik mocy dla silnika trójfazowego z następującymi danymi: PN = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,69
B. 0,82
C. 0,99
D. 0,57
Obliczenie znamionowego współczynnika mocy (cos φ) dla silnika trójfazowego to dość prosta sprawa, jeśli mamy wszystkie potrzebne dane. Mówiąc w skrócie, ten współczynnik to stosunek mocy czynnej (P) do mocy pozornej (S). Może być obliczony za pomocą wzoru: cos φ = P / (√3 * U * I), gdzie P to moc czynna, U to napięcie, a I to prąd znamionowy. Jak podstawimy wartości z pytania: P = 2,2 kW, U = 400 V, I = 4,6 A, to najpierw liczymy S = √3 * 400 V * 4,6 A, co daje nam 2,664 kVA. Potem obliczamy cos φ = 2,2 kW / 2,664 kVA, co wychodzi około 0,826. Jak zaokrąglimy, to dostaniemy 0,82. Wiesz, czemu to jest ważne? Bo dobrze obliczony współczynnik mocy pomaga w projektowaniu układów elektroenergetycznych, a to z kolei przekłada się na lepszą efektywność energetyczną i mniejsze straty energii. Silniki z wyższym współczynnikiem mocy są bardziej efektywne i można na nich zaoszczędzić, co jest korzystne zarówno dla nas, jak i dla sieci zasilającej.

Pytanie 16

Który z podanych odbiorników energii elektrycznej charakteryzuje się najkorzystniejszym współczynnikiem mocy w aspekcie ekonomicznym?

A. Wzbudnik indukcyjny
B. Piec oporowy
C. Silnik asynchroniczny
D. Silnik uniwersalny
Piec oporowy jest odbiornikiem energii elektrycznej, który charakteryzuje się bardzo wysokim współczynnikiem mocy wynoszącym blisko 1. Oznacza to, że prawie cała energia elektryczna jest przekształcana w ciepło, co czyni go bardzo efektywnym urządzeniem w zastosowaniach grzewczych. W praktyce, piece oporowe są powszechnie wykorzystywane w domach i przemysłu do ogrzewania pomieszczeń, wody oraz w procesach technologicznych wymagających precyzyjnego i kontrolowanego źródła ciepła. Dzięki ich wysokiej efektywności energetycznej, użytkownicy mogą znacząco obniżyć koszty eksploatacyjne. Ponadto, ich działanie jest zgodne z normami efektywności energetycznej, co wpływa na zmniejszenie negatywnego wpływu na środowisko. Warto zwrócić uwagę, że stosowanie pieców oporowych powinno być dostosowane do konkretnego zastosowania, co może wymagać analizy kosztów oraz rozwoju systemów automatyzacji, aby maksymalnie wykorzystać ich potencjał.

Pytanie 17

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,69
B. 0,57
C. 0,82
D. 0,99
Znamionowy współczynnik mocy silnika trójfazowego można obliczyć za pomocą wzoru: cos φ = Pn / (√3 * UN * IN), gdzie Pn to moc mechaniczna, UN to napięcie nominalne, a IN to prąd nominalny. Wstawiając nasze dane: Pn = 2,2 kW = 2200 W, UN = 400 V, IN = 4,6 A, otrzymujemy: cos φ = 2200 W / (√3 * 400 V * 4,6 A). Po obliczeniach uzyskujemy, że współczynnik mocy wynosi 0,82. Praktyczne znaczenie współczynnika mocy jest kluczowe w kontekście efektywności energetycznej. Wyższy współczynnik mocy oznacza, że silnik pracuje bardziej efektywnie, co przekłada się na niższe rachunki za energię oraz mniejsze straty w instalacji elektrycznej. Zgodnie z normami IEC, silniki trójfazowe powinny dążyć do współczynnika mocy powyżej 0,85, aby zminimalizować obciążenie systemu energetycznego. Obliczenie współczynnika mocy jest więc istotne przy projektowaniu systemów, aby zapewnić ich efektywność oraz spełnić wymagania dotyczące jakości energii elektrycznej.

Pytanie 18

Podczas inspekcji świeżo zrealizowanej instalacji elektrycznej nie ma potrzeby weryfikacji

A. wartości natężenia oświetlenia na stanowiskach pracy
B. wyboru i oznakowania przewodów
C. wyboru zabezpieczeń oraz urządzeń
D. rozmieszczenia tablic informacyjnych i ostrzegawczych
Wartość natężenia oświetlenia na stanowiskach pracy nie jest bezpośrednio związana z podstawowymi wymaganiami, jakimi są bezpieczeństwo i sprawność instalacji elektrycznej. W kontekście nadzoru nad nowo wykonanymi instalacjami, ważniejsze jest upewnienie się, że instalacja jest zgodna z normami oraz dobrze zorganizowana pod względem zabezpieczeń, oznaczeń i tablic informacyjnych. Obowiązki związane z badaniem natężenia oświetlenia są zazwyczaj związane z ergonomią pracy i komfortem użytkowników, co zalicza się do bardziej szczegółowych aspektów eksploatacji. W praktyce, standardy takie jak PN-EN 12464-1 oferują wytyczne dotyczące oświetlenia miejsc pracy, ale przed przystąpieniem do pomiarów natężenia, należy upewnić się, że sama instalacja elektryczna działa sprawnie i jest bezpieczna.

Pytanie 19

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 1000 V
B. 750V
C. 500V
D. 250V
Wymagane napięcie probiercze przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V wynosi 500 V. Taki poziom napięcia jest zgodny z normami określonymi w dokumentach takich jak PN-EN 61557-2, które regulują przeprowadzanie badań izolacji. Stosowanie napięcia 500 V jest efektywne w testowaniu izolacji, gdyż pozwala na uzyskanie rzetelnych wyników, przy jednoczesnym minimalizowaniu ryzyka uszkodzenia izolacji. Praktyczne zastosowanie tego napięcia jest szczególnie widoczne w instalacjach o napięciu roboczym 230/400 V, gdzie niskie napięcie mogłoby nie ujawnić potencjalnych problemów, a zbyt wysokie mogłoby prowadzić do uszkodzeń lub fałszywych odczytów. Regularne testy rezystancji izolacji przy użyciu odpowiednich napięć są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, co wynika z praktyk branżowych oraz przepisów BHP.

Pytanie 20

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. L1 i PE
B. L1 i L3
C. N i L3
D. N i PE
Odpowiedź N i PE jest poprawna, ponieważ analizując wyniki pomiarów rezystancji, stwierdzamy, że rezystancja wynosi 0 Ω, co jednoznacznie wskazuje na zwarcie między tymi przewodami. W standardach elektrycznych, takich jak PN-IEC 60364, ważne jest, aby prawidłowo identyfikować różne żyły, zwłaszcza w kontekście ochrony przed porażeniem elektrycznym. W przypadku przewodu neutralnego (N) i przewodu ochronnego (PE) ich zwarcie może wskazywać na nieprawidłowości w instalacji, które mogą prowadzić do niebezpiecznych sytuacji. Wiedza na temat pomiarów rezystancji jest kluczowa w utrzymaniu bezpieczeństwa systemów elektrycznych, a także w diagnostyce awarii. W praktyce, przed przystąpieniem do pracy przy instalacjach elektrycznych, zaleca się przeprowadzanie dokładnych pomiarów, aby upewnić się, że nie występuje żadne zwarcie, co jest zgodne z najlepszymi praktykami w branży, takimi jak regularne kontrole i inspekcje instalacji.

Pytanie 21

Według przedstawionego schematu instalacji elektrycznej ochronnik przeciwprzepięciowy powinien być włączony między uziemienie oraz

Ilustracja do pytania
A. wyłącznie przewód neutralny.
B. przewody fazowe i przewód neutralny.
C. przewód fazowy i przewód neutralny.
D. wyłącznie przewody fazowe.
Wybór opcji ograniczającej włączenie ochronnika przeciwprzepięciowego wyłącznie między uziemieniem a przewodem neutralnym jest niewłaściwy, ponieważ nie uwzględnia pełnego zakresu zagrożeń, jakie mogą wystąpić w instalacjach elektrycznych. Ochronniki przeciwprzepięciowe są projektowane w taki sposób, aby chronić zarówno przewody fazowe, jak i neutralne, które mogą być narażone na przepięcia. Włączenie ochronnika tylko w relacji do przewodu neutralnego powoduje, że nie zabezpieczamy efektywnie pozostałych przewodów fazowych przed nadmiernymi napięciami. Podobnie, sugerowanie wyłącznie przewodów fazowych nie uwzględnia roli przewodu neutralnego, który również może doświadczać przepięć. Taka konfiguracja może prowadzić do poważnych uszkodzeń urządzeń, ponieważ energia z przepięcia nie zostanie odprowadzona w sposób bezpieczny, a sprzęt będzie narażony na awarie, co jest sprzeczne z zasadami projektowania instalacji elektrycznych oraz normami bezpieczeństwa. Właściwe włączenie ochronnika w sposób opisany w poprawnej odpowiedzi pozwala na zminimalizowanie ryzyka uszkodzeń oraz zapewnia zgodność z dobrymi praktykami branżowymi, co jest kluczowe w każdej instalacji elektrycznej.

Pytanie 22

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 2,3 Ω
B. 8,0 Ω
C. 7,7 Ω
D. 4,6 Ω
Wartość impedancji pętli zwarcia wynosząca 4,6 Ω jest odpowiednia dla trójfazowego obwodu elektrycznego o napięciu 230/400 V, aby zapewnić skuteczną ochronę przeciwporażeniową. Przy takiej impedancji, w przypadku zwarcia, prąd zwarciowy osiągnie wartość wystarczającą do działania wyłącznika nadprądowego typu B10, który ma prąd znamionowy 10 A. Wartość impedancji pętli zwarcia oblicza się na podstawie napięcia zasilania oraz wymaganej wartości prądu, przy której następuje wyłączenie obwodu. W praktyce oznacza to, że w przypadku uszkodzenia izolacji, wyłącznik nadprądowy zadziała w odpowiednim czasie, minimalizując ryzyko porażenia prądem elektrycznym. Zgodnie z normami PN-IEC 60364-4-41 oraz PN-EN 60947-2, odpowiednia wartość impedancji pętli zwarcia jest kluczowa dla zabezpieczenia użytkowników przed skutkami awarii. Wartości te są również zgodne z wytycznymi dotyczącymi instalacji elektrycznych w budynkach, które zalecają, aby impedancja nie przekraczała 5 Ω dla ochrony przeciwporażeniowej. Dlatego 4,6 Ω to wartość, która spełnia te wymogi, a jej stosowanie w praktyce jest powszechną praktyką w branży elektrycznej.

Pytanie 23

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Ołówek traserski, poziomnica, przymiar taśmowy
B. Kątownik, młotek, punktak
C. Ołówek traserski, przymiar kreskowy, rysik
D. Kątownik, ołówek traserski, sznurek traserski
Jakbyś wybrał zestaw narzędzi bez ołówka traserskiego, poziomnicy i przymiaru taśmowego, to mógłbyś mieć sporo kłopotów z trasowaniem drogi przewodów natynkowych. Na przykład, kątownik, młotek i punktak to nie jest najlepszy pomysł, bo młotek i punktak bardziej nadają się do wbijania, a nie do precyzyjnego pomiaru. Kątownik jest ok, gdy potrzebujesz kąty proste, ale niestety nie pomoże ci w trasowaniu. Zestaw z ołówkiem traserskim, przymiaru kreskowego i rysika też nie jest najlepszy, żeby uzyskać precyzyjne wyniki w instalacjach elektrycznych. Przymiar kreskowy bardziej jest do rysowania linii prostej, a nie do pomiaru. Ołówek traserski i rysik są używane w różnych technikach rysunkowych, ale w instalacjach elektrycznych liczy się, żeby mieć narzędzia, które pozwalają na dokładne poziomowanie i pomiar. Bardzo ważne jest, żeby nie mylić funkcji narzędzi, bo to może prowadzić do błędów przy montażu, a w efekcie do różnych problemów technicznych.

Pytanie 24

Na którym rysunku przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Wybór innej odpowiedzi, mimo że na pierwszy rzut oka może wydawać się logiczny, często prowadzi do nieprawidłowych praktyk, które mogą zagrażać bezpieczeństwu instalacji. Niewłaściwe ułożenie drutu w zacisku lub jego zbyt słabe dokręcenie może skutkować niepełnym kontaktem, co prowadzi do zwiększonego oporu elektrycznego, a w konsekwencji do przegrzewania się połączenia. Należy także pamiętać, że niewłaściwe zagięcie drutu, które nie umożliwia jego pełnego przylegania do powierzchni styku, stwarza ryzyko wypadnięcia żyły z zacisku. Takie błędy są szczególnie niebezpieczne w kontekście urządzeń, które są narażone na wibracje lub ruch, gdzie może dochodzić do poluzowania złączki. Przykładowo, w zastosowaniach przemysłowych, takie jak montaż silników elektrycznych, poprawne połączenie jest kluczowe dla ich długowieczności i efektywności. Z tego powodu, każde połączenie powinno być wykonane zgodnie z zaleceniami producentów oraz obowiązującymi normami, co zapewnia nie tylko bezpieczeństwo, ale również funkcjonalność całej instalacji elektrycznej. Praktyczne umiejętności związane z prawidłowym wykonaniem połączeń są zatem niezbędne w każdej pracy związanej z elektrycznością.

Pytanie 25

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TT
B. IT
C. TN-S
D. TN-C
Układ TT, w przeciwieństwie do TN-C, charakteryzuje się oddzielnym przewodem neutralnym (N) oraz przewodem ochronnym (PE), co oznacza, że nie występuje w nim przewód PEN. W tym przypadku, przewód PE jest uziemiony w punkcie rozdziału, co zwiększa bezpieczeństwo, ponieważ w przypadku zwarcia prąd ochronny może natychmiast popłynąć do ziemi. W układzie IT natomiast brak jest bezpośredniego uziemienia neutralnego, co zwiększa odporność na zwarcia, ale wymaga zastosowania bardziej skomplikowanych systemów monitorowania. Z kolei w układzie TN-S przewody N i PE są oddzielne, co również eliminuje przewód PEN i pozwala na większą elastyczność w projektowaniu instalacji. Powszechnym błędem jest mylenie tych systemów, co wynika z niepełnego zrozumienia ich struktury i zastosowania. W praktyce, znajomość różnic między tymi układami jest kluczowa dla zapewnienia właściwego poziomu bezpieczeństwa oraz efektywności energetycznej instalacji elektrycznych. Zastosowanie niewłaściwego układu może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem lub uszkodzenia sprzętu elektrycznego. Dlatego tak ważne jest, aby projektanci i instalatorzy elektryczni rozumieli te różnice i wybierali odpowiednie systemy w zależności od specyficznych wymagań danego środowiska.

Pytanie 26

Na schematach instalacji elektrycznych symbol z rysunku oznacza

Ilustracja do pytania
A. cewkę przekaźnika z opóźnionym odpadaniem.
B. wyzwalanie cieplne.
C. wyzwalanie elektroniczne.
D. cewkę przekaźnika z opóźnionym działaniem.
Wyzwalanie cieplne, przedstawione na schemacie, jest kluczowym elementem w kontekście zabezpieczeń elektrycznych, które ma na celu ochronę przed przeciążeniem. Zgodnie z normą PN-EN 60617, symbol ten odnosi się do mechanizmu, który działa na zasadzie rozszerzalności cieplnej materiałów. Przykładem zastosowania wyzwalania cieplnego są wyłączniki nadprądowe, które automatycznie odłączają obwód, gdy prąd przekracza określony próg przez zbyt długi czas. Dzięki temu zapobiegają uszkodzeniu urządzeń oraz minimalizują ryzyko pożaru. Oprócz wyłączników nadprądowych, wyzwalanie cieplne stosowane jest również w przekaźnikach termicznych, które mogą być używane w silnikach elektrycznych do monitorowania temperatury i zapobiegania przegrzaniu. Zrozumienie działania tego mechanizmu jest fundamentem dla inżynierów pracujących nad projektowaniem systemów zabezpieczeń elektrycznych, co podkreśla znaczenie znajomości symboliki występującej w dokumentacji technicznej.

Pytanie 27

Który sposób podłączenia instalacji oświetleniowej jest poprawny?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Podłączenie instalacji oświetleniowej nie powinno być realizowane w sposób, który nie przestrzega zasad bezpieczeństwa i dobrych praktyk branżowych. Wiele błędnych podejść skupia się na niewłaściwym połączeniu przewodów elektrycznych. Na przykład, gdy przewód fazowy jest podłączony bezpośrednio do żarówki, a przewód neutralny jest odłączony, żarówka może pozostawać pod napięciem, co zwiększa ryzyko porażenia prądem w przypadku, gdy osoba zdecyduje się na wymianę żarówki. Tego rodzaju błędy wynikają z braku zrozumienia roli przewodów w obwodzie elektrycznym oraz podstawowych zasad działania włączników. Ponadto, niewłaściwe podłączenie przewodu ochronnego PE może prowadzić do niebezpiecznych sytuacji, w których brak odpowiedniego uziemienia stwarza ryzyko wystąpienia przepięć. Kluczowe jest, aby każdy instalator elektryczny stosował się do norm i standardów, takich jak normy IEC czy krajowe przepisy dotyczące instalacji elektrycznych, które określają, jak prawidłowo podłączać instalacje oświetleniowe, aby zapewnić maksymalne bezpieczeństwo użytkowników. Zrozumienie tych zasad jest niezbędne, aby uniknąć niebezpiecznych sytuacji, które mogą prowadzić do uszkodzeń lub nawet tragicznych w skutkach wypadków.

Pytanie 28

Jaki rodzaj uziomu zastosowano w instalacji piorunochronnej przedstawionej na rysunku?

Ilustracja do pytania
A. Pionowy.
B. Fundamentowy.
C. Promieniowy.
D. Otokowy.
Uziom otokowy w instalacji piorunochronnej to naprawdę ważny element, który zapewnia ochronę budynków przed wyładowaniami. Widzisz, na rysunku dokładnie widać czerwoną linię, która pokazuje uziom wokół budynku, co jest zupełnie normalne w takiej ochronie. Tworzy się go z przewodów zakopanych wokół, które mają za zadanie odprowadzać energię elektryczną w razie uderzenia pioruna. Dzięki temu szansa na uszkodzenie budynku lub sprzętu elektronicznego jest znacznie mniejsza. Jak wiadomo, normy mówią, że uziomy otokowe są najlepszym rozwiązaniem, zwłaszcza w wysokich obiektach, bo lepiej rozkładają prąd piorunowy. Korzystanie z tego typu uziomu nie tylko jest zgodne z inżynieryjnymi standardami, ale także chroni życie i mienie, co jest przecież najważniejsze.

Pytanie 29

Bruzdownicę wykorzystuje się podczas realizacji instalacji

A. prefabrykowanej.
B. podtynkowej.
C. wiązanej.
D. natynkowej.
Bruzdownica, znana również jako przecinarka do betonu lub stali, jest narzędziem wykorzystywanym w instalacjach podtynkowych w celu wykonywania rowków w ścianach i stropach. Takie rowki są niezbędne do osadzenia przewodów elektrycznych czy rur hydraulicznych, co pozwala na estetyczne i funkcjonalne wykończenie wnętrz. Wykonywanie instalacji podtynkowej, która jest schowana w ścianach, wymaga precyzyjnego cięcia, a bruzdownica umożliwia to z dużą dokładnością oraz w stosunkowo krótkim czasie. Ponadto, przy użyciu bruzdownicy można dostosować szerokość i głębokość rowków do specyfiki używanych materiałów oraz przewodów, co jest istotne z punktu widzenia bezpieczeństwa i norm budowlanych. W praktyce, aby uzyskać najlepsze rezultaty, operator bruzdownicy powinien przestrzegać zaleceń producenta oraz standardów BHP, co przyczynia się do zwiększenia efektywności pracy oraz zmniejszenia ryzyka wypadków. Prawidłowe stosowanie bruzdownicy ma także wpływ na późniejsze etapy wykończenia, takie jak tynkowanie czy malowanie, które powinny być przeprowadzane na równych i gładkich powierzchniach, stworzonych przez profesjonalnie wykonane rowki.

Pytanie 30

Dokonując oględzin powykonawczych zabezpieczeń w instalacji elektrycznej przedstawionej na schemacie można stwierdzić, że zamieniono miejscami bezpieczniki

Ilustracja do pytania
A. B1 z B2
B. B1 z B4
C. B3 z B2
D. B2 z B4
Odpowiedź B1 z B2 jest prawidłowa, ponieważ analiza schematu instalacji elektrycznej wyraźnie wskazuje na zamianę miejscami tych dwóch bezpieczników. Bezpiecznik B1, który ma wartość nominalną 10A, powinien być umieszczony na początku instalacji, gdzie jego zadaniem jest ochrona całego obwodu przed przeciążeniem. Z kolei bezpiecznik B2, o wartości 25A, jest przeznaczony do zabezpieczania obwodów o większym poborze mocy. Przełożenie tych miejsc prowadzi do nieodpowiedniego zabezpieczenia, co jest sprzeczne z normami bezpieczeństwa, takimi jak PN-IEC 60364, które wymagają, aby zabezpieczenia były dobierane na podstawie charakterystyki obwodów oraz urządzeń, które mają chronić. Właściwe umiejscowienie bezpieczników jest kluczowe dla zachowania bezpieczeństwa użytkowników oraz ochrony instalacji. W praktyce, niewłaściwe dobranie wartości bezpieczników może prowadzić do ich nadmiernego przepalania lub wręcz do uszkodzenia urządzeń podłączonych do instalacji, co generuje dodatkowe koszty napraw i obniża komfort użytkowania.

Pytanie 31

Jakie zadania związane z utrzymaniem instalacji elektrycznych zgodnie z przepisami BHP powinny być realizowane przez co najmniej dwuosobowy zespół?

A. Wykonywane na wysokości przekraczającej 2 m w sytuacjach, gdy konieczne jest zastosowanie środków ochrony indywidualnej przed upadkiem z wysokości
B. Wykonywane w pobliżu urządzeń elektroenergetycznych wyłączonych z napięcia oraz uziemionych w widoczny sposób
C. Przeprowadzane regularnie przez upoważnione osoby w określonych lokalizacjach w czasie testów i pomiarów urządzeń znajdujących się pod napięciem
D. Przeprowadzane w wykopach o głębokości do 2 m podczas modernizacji lub konserwacji kabli
Wybrana odpowiedź o pracach przy urządzeniach, które są wyłączone spod napięcia oraz pracach w wykopach do 2 metrów nie do końca uwzględnia ważne zasady BHP. Nawet jeśli urządzenia są wyłączone, to mogą pojawić się inne zagrożenia, jak urazy mechaniczne czy kontuzje przy obsłudze ciężkiego sprzętu. W przypadku wykopów, prace do 2 metrów nie muszą zwykle być wykonywane przez dwuosobowy zespół, ale i tak lepiej mieć kogoś obok, żeby móc pomóc w nagłej sytuacji. Muszę też dodać, że prace prowadzone przez upoważnione osoby w ustalonych miejscach mogą wydawać się bezpieczne, ale zawsze jest jakieś ryzyko, które warto zminimalizować odpowiednimi procedurami. Ignorowanie tych zasad może prowadzić do niebezpiecznych sytuacji, a co gorsza, może dać fałszywe poczucie bezpieczeństwa. Dlatego przestrzeganie standardów BHP, w tym norm PN-EN, jest naprawdę ważne dla ochrony wszystkich pracowników.

Pytanie 32

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP20
B. IP33
C. IP55
D. IP44
Podczas instalacji elektrycznej w pomieszczeniach wilgotnych niezwykle istotne jest zapewnienie odpowiedniego poziomu ochrony przed wilgocią i kurzem, co jest kluczowe dla bezpieczeństwa użytkowników. Stopień ochrony IP44 wskazuje, że urządzenie jest zabezpieczone przed ciałami obcymi większymi niż 1 mm oraz przed wodą bryzgającą z dowolnego kierunku. Dlatego właśnie IP44 jest minimalnym wymogiem w wilgotnych pomieszczeniach, takich jak łazienki czy kuchnie. W praktyce oznacza to, że gniazda i wtyczki muszą być odpowiednio uszczelnione, aby zapobiec wnikaniu wilgoci, co mogłoby prowadzić do zwarcia i awarii systemu elektrycznego. Zastosowanie IP44 to standard branżowy, który zapewnia bezpieczeństwo użytkowników oraz długotrwałe działanie instalacji elektrycznej. Moim zdaniem, znajomość tych norm to absolutna podstawa dla każdego elektryka, który chce wykonywać swoją pracę zgodnie z obowiązującymi przepisami i zapewnić komfort oraz bezpieczeństwo użytkownikom.

Pytanie 33

Na podstawie tabeli 2 dobierz dławik indukcyjny do oprawy oświetleniowej, w której znajdują się dwie świetlówki o długości 60 cm, wybrane z tabeli 1.

Ilustracja do pytania
A. L 32W
B. L 36W
C. L 18W
D. L 22W
Wybieranie dławika, który nie ma odpowiedniej mocy do świetlówek, to dość powszechny błąd. Dławiki L 22W, L 18W czy L 32W po prostu nie dadzą rady zasilać dwóch świetlówek T8, które każda mają 18W. Zbyt słaby dławik może prowadzić do różnych problemów - świetlówki mogą migotać lub nawet w ogóle nie działać. Dodatkowo, może to zwiększyć zużycie energii oraz skrócić żywotność zarówno dławika, jak i świetlówek. Bezpieczeństwo też nie jest bez znaczenia, bo dławiki niewłaściwie dobrane do obciążenia mogą się przegrzewać, co jest niebezpieczne. W elektryce naprawdę warto trzymać się zasad doboru komponentów i zalecań producentów. Dlatego dobrze jest przeanalizować wymagania obciążeniowe i stosować odpowiednie dławiki, bo to może uchronić przed typowymi błędami przy montażu oświetlenia.

Pytanie 34

Na którym rysunku przedstawiono żarówkę halogenową?

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Żarówka halogenowa, przedstawiona na rysunku B, jest jedną z najczęściej stosowanych źródeł światła w zastosowaniach, gdzie istotna jest jakość oświetlenia oraz jego efektywność. Charakteryzuje się specyficznym kształtem, gdzie szklana bańka jest często kulista, a w jej wnętrzu znajduje się mały żarnik. Dzięki zastosowaniu halogenów, żarówki te są w stanie osiągnąć wyższą temperaturę, co z kolei przekłada się na lepszą jakość emitowanego światła oraz dłuższą żywotność. Przykładem zastosowania żarówek halogenowych są reflektory w domach oraz w oświetleniu samochodowym, gdzie ważne jest uzyskanie intensywnego, a zarazem przyjemnego dla oka światła. Warto również zauważyć, że żarówki te spełniają wiele standardów wydajności energetycznej, co czyni je dobrym wyborem w kontekście zrównoważonego rozwoju i oszczędności energii.

Pytanie 35

Którym narzędziem należy wkręcać śrubę przedstawioną na rysunku?

Ilustracja do pytania
A. Kluczem imbusowym.
B. Wkrętakiem z nacięciem Phillips.
C. Wkrętakiem z nacięciem Torx.
D. Kluczem nasadowym.
Klucz imbusowy, nazywany również kluczem sześciokątnym, jest idealnym narzędziem do wkręcania śrub z sześciokątnym wewnętrznym nacięciem, co można zauważyć na przedstawionym na rysunku elemencie. Użycie klucza imbusowego pozwala na efektywne przeniesienie momentu obrotowego, co jest istotne w wielu aplikacjach, zarówno w mechanice, jak i w elektronice. Klucze imbusowe są dostępne w różnych rozmiarach, co umożliwia dopasowanie ich do różnych średnic śrub. Ważne jest również, aby stosować klucz imbusowy w odpowiednim rozmiarze, ponieważ nieodpowiedni klucz może uszkodzić nacięcie śruby, co utrudnia jej dalsze wkręcanie lub wykręcanie. W standardach branżowych klucz imbusowy jest często stosowany w konstrukcjach meblowych oraz w przemyśle motoryzacyjnym, gdzie wymagana jest wysoka precyzja i niezawodność. Dobrze dobrany klucz imbusowy ułatwia konserwację i montaż, a także zmniejsza ryzyko uszkodzenia śrub i komponentów.

Pytanie 36

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Watomierza
B. Waromierza
C. Woltomierza
D. Reflektometru
Pomiar mocy w układach elektrycznych można przeprowadzać za pomocą różnych mierników, jednak nie wszystkie z nich są odpowiednie do pomiaru mocy biernej. Reflektometr jest urządzeniem, które służy do analizy odbicia sygnału w liniach transmisyjnych, a jego zastosowanie ogranicza się do problematyki związanej z impedancją i stratami sygnału, co nie ma związku z pomiarem mocy biernej. Watomierz, z drugiej strony, mierzy moc czynną, a jego działanie opiera się na pomiarze napięcia i prądu, a następnie obliczaniu mocy czynnej, co oznacza, że nie jest w stanie dostarczyć informacji na temat mocy biernej, która jest miarą energii niezużywanej. Woltomierz jest urządzeniem do pomiaru napięcia, a jedynie mierząc napięcie nie można określić mocy biernej, gdyż nie uwzględnia on parametrów prądu oraz fazy między nimi. Typowym błędem myślowym jest zatem utożsamianie różnych rodzajów mocy i mylenie ich pomiaru, co prowadzi do nieprawidłowych wniosków i decyzji w zakresie projektowania oraz eksploatacji systemów elektrycznych. Zrozumienie różnic pomiędzy mocą czynną, bierną i pozorną oraz umiejętność zastosowania odpowiednich narzędzi pomiarowych jest kluczowe dla efektywności energetycznej.

Pytanie 37

Jaką wartość ma prąd obciążenia przewodów fazowych, które zasilają odbiornik trójfazowy, jeśli pobiera on moc 2,2 kW przy napięciu 400 V oraz współczynniku mocy równym 0,82?

A. 6,7 A
B. 3,2 A
C. 3,9 A
D. 2,2 A
Aby obliczyć prąd obciążenia przewodów fazowych zasilających odbiornik trójfazowy, możemy skorzystać z wzoru na moc czynna w układzie trójfazowym: P = √3 * U * I * cos(φ), gdzie P to moc w watach, U to napięcie międzyfazowe w woltach, I to prąd w amperach, a cos(φ) to współczynnik mocy. W naszym przypadku moc wynosi 2,2 kW (czyli 2200 W), napięcie to 400 V, a współczynnik mocy wynosi 0,82. Przekształcamy wzór: I = P / (√3 * U * cos(φ)). Podstawiając wartości, mamy: I = 2200 / (√3 * 400 * 0,82). Po obliczeniach otrzymujemy I ≈ 3,9 A. Wiedza o obliczaniu prądu w obwodach trójfazowych jest niezbędna w praktyce, szczególnie w kontekście projektowania instalacji elektrycznych oraz ich późniejszej eksploatacji. Zrozumienie, jak różne czynniki wpływają na prąd, jest kluczowe dla bezpieczeństwa i efektywności energetycznej. Przykładem praktycznego zastosowania tej wiedzy może być dobór odpowiednich przewodów oraz zabezpieczeń w instalacjach elektrycznych.

Pytanie 38

Jaki minimalny przekrój, ze względu na obciążalność długotrwałą, powinny mieć przewody DY ułożone w rurze izolacyjnej, zasilające odbiornik trójfazowy o mocy 10 kW z sieci trójfazowej o napięciu 400 V?

Ilustracja do pytania
A. 1,5 mm2
B. 2,5 mm2
C. 6 mm2
D. 4 mm2
Wybór przekroju przewodu w instalacjach elektrycznych jest kluczowym elementem projektowania układów zasilających. Odpowiedzi, które wskazują na większe przekroje, jak 6 mm2, 4 mm2 oraz 2,5 mm2, mogą sugerować nadmierne zabezpieczenie, jednak nie uwzględniają one rzeczywistych potrzeb obciążeniowych. Przykładowo, wybór 6 mm2 dla obciążenia 14,5 A jest nie tylko nieekonomiczny, ale i zbędny, ponieważ istnieją bardziej odpowiednie przekroje, które spełniają wymagania. Z kolei odpowiedź 2,5 mm2, choć jest bardziej zbliżona do właściwego przekroju, również nie jest zgodna z normami, ponieważ przy takiej obciążalności przewody 1,5 mm2 są wystarczające. Warto przypomnieć, że dobór przekroju przewodu powinien być oparty na rzeczywistym obciążeniu oraz warunkach ułożenia. W praktyce, przed podjęciem decyzji, należy przeanalizować obciążenie prądowe w kontekście całej instalacji oraz zastosować odpowiednie współczynniki korekcyjne. Niezastosowanie się do tych zasad może prowadzić do nieprawidłowości w funkcjonowaniu instalacji, co w dłuższym czasie może skutkować awariami lub niebezpiecznymi sytuacjami, takimi jak przegrzewanie się przewodów. Ostatecznie, kluczowe jest, aby decyzje o doborze przekroju przewodów były zgodne z obowiązującymi normami, co nie tylko zapewnia bezpieczeństwo, ale także przyczynia się do efektywności energetycznej systemów elektrycznych.

Pytanie 39

Jakie uszkodzenie nastąpiło w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1 – L2L2 – L3L1 – L3L1 – PENL2 – PENL3 – PEN
2,101,051,101,401,300,991,00
A. Pogorszenie izolacji jednej z faz.
B. Zwarcie międzyfazowe.
C. Przeciążenie jednej z faz.
D. Jednofazowe bezimpedancyjne zwarcie doziemne.
Odpowiedzi nieprawidłowe odzwierciedlają szereg nieporozumień dotyczących analizy wyników pomiarów rezystancji izolacji. Jednofazowe bezimpedancyjne zwarcie doziemne nie może być rozpatrywane w kontekście przedstawionej sytuacji, ponieważ wyniki pomiarów nie wskazują na bezpośrednie połączenie z ziemią, lecz na specyfikę wartości rezystancji w układzie fazowym. Przeciążenie jednej z faz również nie jest adekwatne, gdyż przeciążenie dotyczy sytuacji, w której prąd przekracza dopuszczalne wartości dla danego przewodu, co nie ma związku z rezystancją izolacji. Natomiast zwarcie międzyfazowe to zjawisko, które występuje w przypadku, gdy dwa przewody fazowe stykają się ze sobą, co prowadzi do znacznego spadku rezystancji, co również nie znajduje odzwierciedlenia w podanych wynikach. Prawidłowa interpretacja danych pomiarowych wymaga zrozumienia, że rezystancja izolacji jest kluczowym wskaźnikiem stanu technicznego instalacji. W sytuacji, gdy izolacja jest pogorszona, istnieje ryzyko wystąpienia awarii lub zagrożenia dla użytkowników. Dlatego też, kluczowe jest stosowanie odpowiednich metod pomiarowych i interpretacja wyników zgodnie z normami, co pozwala na uniknięcie błędnych wniosków i działań w przypadku rozwiązywania problemów związanych z instalacjami elektrycznymi.

Pytanie 40

W instalacji elektrycznej, której schemat przedstawiono na rysunku błędnie podłączono

Ilustracja do pytania
A. łącznik.
B. przewód ochronny.
C. przewody zasilające.
D. żyrandol.
Wybór żyrandola, przewodów zasilających lub przewodu ochronnego jako błędnie podłączonych elementów w instalacji elektrycznej nie jest uzasadniony z technicznego punktu widzenia. Żyrandol, będący źródłem światła, powinien być podłączony zgodnie z instrukcjami producenta i normami bezpieczeństwa, które zalecają podłączenie go do obwodu elektrycznego poprzez odpowiednie złącza. Niepoprawne jest postrzeganie żyrandola jako elementu, który może być źródłem poważnych problemów w instalacji, jeżeli zostanie właściwie zamontowany i użytkowany. Przewody zasilające, jako kluczowy element każdej instalacji, nie powinny być uznawane za źródło błędów, o ile są zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące ich instalacji oraz ochrony. Przewód ochronny natomiast ma na celu zabezpieczenie przed porażeniem prądem i jego poprawne podłączenie jest kluczowe dla bezpieczeństwa instalacji. Typowe błędy myślowe, które mogą prowadzić do nieprawidłowych wniosków, obejmują nieznajomość podstawowych zasad instalacji elektrycznych oraz nieuwzględnianie zasadności ich działania w codziennym użytkowaniu. Zrozumienie funkcji i zastosowania każdego z tych elementów instalacji elektrycznej jest niezbędne dla zapewnienia ich prawidłowego działania oraz bezpieczeństwa użytkowników.