Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 17 grudnia 2025 20:35
  • Data zakończenia: 17 grudnia 2025 20:42

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Sieć komputerowa obejmująca obszar miasta to sieć

A. MAN
B. PAN
C. LAN
D. WAN
Odpowiedź 'MAN' (Metropolitan Area Network) jest poprawna, ponieważ odnosi się do sieci komputerowej o zasięgu miejskim, która łączy różne lokalizacje w obrębie jednego miasta lub aglomeracji. Sieci MAN są zazwyczaj używane do połączeń między biurami, uczelniami, a także dostawcami usług internetowych w danym regionie, co pozwala na efektywną wymianę danych. W praktyce, sieci te mogą wykorzystywać różnorodne technologie, takie jak Ethernet, Wi-Fi czy światłowody. Przykładem zastosowania sieci MAN może być system komunikacji miejskiej, który łączy różne punkty obsługi pasażerów oraz sieci zarządzania ruchem. W branży telekomunikacyjnej, MAN stanowi istotny element architektury sieci, umożliwiając zbudowanie infrastruktury, która wspiera usługi szerokopasmowe i wideo, zapewniając jednocześnie odpowiednią przepustowość i niskie opóźnienia. Zgodnie z dobrymi praktykami, projektowanie sieci MAN powinno uwzględniać aspekty skalowalności i niezawodności, co jest kluczowe dla zapewnienia ciągłości usług.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jakie rodzaje pamięci tracą zawartość po ustaniu zasilania?

A. PROM
B. RAM
C. EPROM
D. EEPROM
Wybór pamięci PROM (Programmable Read-Only Memory) sugeruje nieporozumienie dotyczące jej właściwości. PROM jest pamięcią stałą, co oznacza, że dane zapisane w niej są trwałe i nie znikają po wyłączeniu zasilania. Ta pamięć jest programowalna raz, co sprawia, że jest wykorzystywana głównie do przechowywania oprogramowania, które po zapisaniu nie wymaga modyfikacji. W przypadku EEPROM (Electrically Erasable Programmable Read-Only Memory), dane również pozostają zachowane, nawet po zaniku napięcia, a pamięć ta umożliwia wielokrotne kasowanie i zapisywanie danych przy użyciu prądu elektrycznego. Wreszcie, EPROM (Erasable Programmable Read-Only Memory) jest pamięcią, którą można kasować poprzez naświetlanie jej ultrafioletem, co również potwierdza jej charakter jako pamięci trwałej. Pamięć RAM jest kluczowym elementem nowoczesnych systemów komputerowych, a jej ulotność jest cechą, która odróżnia ją od innych typów pamięci, takich jak PROM, EEPROM i EPROM. Zrozumienie tych różnic jest kluczowe dla poprawnego doboru pamięci w zależności od zastosowania oraz wymagań projektowych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

W dokumentacji urządzenia podano, że zakres napięcia zasilania wynosi od 10,8 V do 14,4 V. Wskaż odpowiednie ustawienie zasilacza w momencie uruchamiania tego układu.

A. 10,1 V
B. 15,4 V
C. 13,8 V
D. 18,7 V
Wybór napięcia zasilania 13,8 V jest właściwy, ponieważ mieści się w określonym zakresie napięcia zasilania urządzenia, wynoszącym od 10,8 V do 14,4 V. Ustalając napięcie na poziomie 13,8 V, zapewniamy stabilne zasilanie, które jest optymalne dla wielu urządzeń elektronicznych, w tym systemów telekomunikacyjnych i innych aplikacji wymagających precyzyjnego zasilania. Utrzymanie napięcia w tym zakresie nie tylko zapewnia prawidłową pracę układu, ale także minimalizuje ryzyko uszkodzenia komponentów. W praktyce, wiele zasilaczy ma możliwość precyzyjnego ustawienia napięcia, co pozwala na dostosowanie do specyficznych wymagań urządzenia. Zgodnie ze standardami branżowymi, takich jak IEC 60950, ważne jest, aby unikać zasilania urządzeń napięciem powyżej ich maksymalnych specyfikacji, co może prowadzić do uszkodzeń termicznych lub innych awarii. Dlatego też, wybór 13,8 V jako napięcia zasilania jest nie tylko poprawny, ale również praktycznie zalecany dla zapewnienia długotrwałej i niezawodnej pracy układu.

Pytanie 6

Jaką wartość prądu z akumulatora o napięciu 6 V zużywa przetwornica napięcia 6 VDC / 12 VDC przy założonym teoretycznie 100% współczynniku sprawności energetycznej, podczas zasilania czterech zewnętrznych kamer systemu monitoringu napięciem 12 V, z których każda wymaga prądu rzędu około 50 mA?

A. 0,2 A
B. 0,1 A
C. 0,4 A
D. 0,3 A
Odpowiedź 0,4 A jest poprawna, ponieważ możemy to obliczyć na podstawie całkowitego prądu pobieranego przez cztery kamery, z których każda pobiera 50 mA. Łączny prąd wynosi więc 4 kamery x 50 mA = 200 mA, co odpowiada 0,2 A. Ze względu na założoną 100% sprawność przetwornicy, musimy również uwzględnić, że przetwornica musi pobrać więcej prądu z akumulatora, aby zasilić kamery z wyższym napięciem. Przetwornice napięcia, w tym przypadku przetwornica DC-DC, działają na zasadzie konwersji energii, a ich sprawność nie może być niższa niż prąd wyjściowy. Dlatego, aby uzyskać 0,2 A na wyjściu 12 V, z akumulatora 6 V musimy pobrać 0,4 A. W praktyce w systemach monitoringu często korzysta się z takich przetwornic, aby zwiększyć napięcie dla urządzeń wymagających wyższego napięcia zasilania, jednocześnie musimy dbać o efektywność energetyczną systemu, co jest zgodne z najlepszymi praktykami w projektowaniu systemów elektronicznych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Rodzaj metody pomiarowej, w której wartość mierzonej wielkości uzyskuje się na podstawie pomiarów innych, powiązanych z nią wielkości, zgodnie z zależnością funkcyjną teoretyczną lub doświadczalną, to metoda

A. bezwzględna
B. względna
C. bezpośrednia
D. pośrednia
Metoda pomiarowa, która polega na określaniu wartości wielkości mierzonej na podstawie pomiarów innych, powiązanych z nią wielkości, nosi nazwę metody pośredniej. W tej metodzie stosuje się zależności funkcyjne, które mogą być teoretycznie wyprowadzone na podstawie praw naukowych lub oparte na danych doświadczalnych. Przykładem zastosowania metody pośredniej może być pomiar objętości cieczy za pomocą pomiaru wysokości słupa cieczy w naczyniu o znanej powierzchni podstawy. Obliczając objętość, wykorzystuje się zależność między wysokością a objętością (V = A * h, gdzie V to objętość, A to pole podstawy, a h to wysokość). W praktyce, metody pośrednie są często wykorzystywane w inżynierii, gdzie bezpośrednie pomiary mogą być trudne do realizacji. Dobre praktyki w zakresie pomiarów zalecają stosowanie metod pośrednich, gdyż pozwalają one na uzyskanie wysokiej precyzji i dokładności pomiaru, jednocześnie minimalizując ryzyko błędów wynikających z pomiarów bezpośrednich. Warto również wspomnieć, że w inżynierii metody pośrednie są często stosowane w systemach automatyki, gdzie sensory zbierają dane o różnych parametrach i na ich podstawie określają pożądane wartości wyjściowe.

Pytanie 9

Jakie są komponenty sprzętowe sieci komputerowych?

A. sterowniki urządzeń
B. protokoły
C. urządzenia dostępu
D. oprogramowanie komunikacyjne
Urządzenia dostępu stanowią kluczowy element infrastruktury sieci komputerowych, ponieważ umożliwiają użytkownikom oraz urządzeniom podłączenie się do sieci. Do najpopularniejszych urządzeń dostępu należą modemy, routery oraz punkty dostępu (access points). Modem łączy sieć domową z Internetem, router rozdziela połączenie internetowe na wiele urządzeń, a punkty dostępu rozszerzają zasięg sieci bezprzewodowej. W kontekście standardów, przykładami mogą być urządzenia zgodne z protokołami IEEE 802.11, które definiują normy dla sieci WLAN, oraz urządzenia obsługujące IPv4 i IPv6, które są niezbędne do komunikacji w Internecie. W praktyce, wybór odpowiednich urządzeń dostępu wpływa na efektywność i bezpieczeństwo sieci, co czyni je fundamentem każdej infrastruktury komputerowej.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jakie urządzenie elektroniczne jest niezbędne do bezpośredniego łączenia układów CMOS z układami TTL?

A. Stabilizator impulsowy
B. Generator fali prostokątnej
C. Konwerter poziomów logicznych
D. Wzmacniacz napięciowy
Konwerter poziomów logicznych jest niezbędnym układem elektronicznym, gdy chcemy połączyć układy CMOS (Complementary Metal-Oxide-Semiconductor) z układami TTL (Transistor-Transistor Logic). Różnice w poziomach napięć logicznych między tymi dwoma technologiami mogą prowadzić do uszkodzenia układów, dlatego konwerter zapewnia bezpieczne i prawidłowe przejście sygnałów. Na przykład, standardowe napięcie logiczne dla układów TTL wynosi 5V, podczas gdy dla wielu układów CMOS poziom logiczny „1” może wynosić od 3V do 15V, w zależności od konkretnego układu. Konwertery poziomów logicznych są projektowane tak, aby dostosować te napięcia, co pozwala na prawidłowe i niezawodne działanie systemu. W praktyce konwertery te są szeroko stosowane w systemach, gdzie różne technologie są integrowane, np. w mikrokontrolerach, które współpracują z różnymi typami czujników lub modułów komunikacyjnych. Dzięki konwerterom poziomów logicznych można również uniknąć problemów związanych z kompatybilnością sygnałów w projektach elektronicznych, co jest kluczowe dla zapewnienia stabilności i niezawodności działania całego układu.

Pytanie 14

Jaką rezystancję Rb powinien mieć bocznik, aby można było podłączyć go równolegle do amperomierza o oporności wewnętrznej RA=300 mΩ, aby czterokrotnie zwiększyć jego zakres pomiarowy?

A. 150 mΩ
B. 100 mΩ
C. 300 mΩ
D. 75 mΩ
Rozważając błędne odpowiedzi, ważne jest zrozumienie podstawowych zasad dotyczących pomiarów prądu oraz rezystancji w układach elektrycznych. Odpowiedzi takie jak 150 mΩ, 75 mΩ oraz 300 mΩ mogą wynikać z niepoprawnego zrozumienia zasady równoległego połączenia rezystancji. Przy połączeniach równoległych rezystancje zmniejszają ogólną rezystancję układu, co jest kluczowe w kontekście amperomierza. Wartości 150 mΩ i 300 mΩ są zbyt wysokie, aby uzyskać pożądaną całkowitą rezystancję wynoszącą 75 mΩ, co prowadziłoby do nieprawidłowych odczytów. Odpowiedź 75 mΩ, mimo że zbliżona, pozostaje błędna, ponieważ w tym przypadku całkowita rezystancja nie osiągnie pożądanego celu czterokrotnego zwiększenia zakresu. Typowym błędem myślowym jest zakładanie, że większa wartość bocznika wspomoże pomiar, co w rzeczywistości prowadzi do spadku dokładności. Kluczowe jest, aby pamiętać, że dobór rezystancji bocznika musi być starannie przemyślany, aby zachować balans między bezpieczeństwem a dokładnością pomiaru. W przypadku nieprawidłowych wyborów rezystancji, wyniki pomiarowe mogą być zafałszowane, co w kontekście profesjonalnych pomiarów elektrycznych może prowadzić do poważnych błędów i nieprawidłowych analiz.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Urządzenie, które automatycznie przerywa zasilanie, gdy prąd elektryczny wypływający z obwodu różni się od prądu wpływającego, to

A. ochronnik przeciwprzepięciowy
B. bezpiecznik wymienny
C. wyłącznik różnicowoprądowy
D. wyłącznik nadmiarowoprądowy
Wyłącznik różnicowoprądowy (RCD) to urządzenie, które monitoruje różnice między prądem wpływającym a wypływającym z obwodu elektrycznego. Gdy ta różnica przekracza ustalony próg, wyłącznik automatycznie odcina zasilanie, co ma na celu ochronę przed porażeniem prądem oraz pożarami spowodowanymi uszkodzeniem izolacji. Przykłady zastosowania obejmują instalacje w łazienkach, kuchniach oraz w miejscach, gdzie występuje zwiększone ryzyko kontaktu z wodą. Zgodnie z normami IEC 61008, RCD powinny być stosowane w obwodach o napięciu do 400 V, szczególnie w miejscach publicznych i mieszkalnych. Stosowanie wyłączników różnicowoprądowych jest standardem w nowoczesnych instalacjach elektrycznych, a ich regularne testowanie jest zalecane przez przepisy budowlane oraz normy bezpieczeństwa.

Pytanie 17

Obniżenie stałej czasowej Ti w regulatorze PI spowoduje

A. redukcję przeregulowania oraz skrócenie czasu regulacji
B. wzrost przeregulowania oraz skrócenie czasu regulacji
C. wzrost przeregulowania oraz wydłużenie czasu regulacji
D. redukcję przeregulowania oraz wydłużenie czasu regulacji
Zmniejszenie stałej czasowej T<sub>i</sub> w regulatorze PI prowadzi do zwiększenia przeregulowania oraz zmniejszenia czasu regulacji, co jest wynikiem szybszej reakcji układu na zmiany sygnału wejściowego. W praktyce, niższa wartość T<sub>i</sub> oznacza, że regulator PI będzie bardziej responsywny i reagować na błędy regulacji szybciej, co z kolei może prowadzić do overshoot'u, czyli przeregulowania. Przykładem zastosowania tej zasady może być regulacja temperatury w piecu przemysłowym. Szybsza reakcja na zmiany temperatury może jednoznacznie przyspieszyć proces grzania, ale jednocześnie może spowodować, że temperatura przekroczy pożądany poziom, co jest niepożądane. W inżynierii automatyzacji i przemysłowej, dobrym podejściem jest przeprowadzenie analizy systemu oraz dostosowanie T<sub>i</sub> w kontekście całego układu, aby zminimalizować przeregulowanie, podczas gdy czas regulacji pozostaje na akceptowalnym poziomie. Takie praktyki są zgodne z metodyką PID tuning oraz standardami dotyczącymi regulacji procesów przemysłowych.

Pytanie 18

Wykonano pomiary rezystancji Rab czujki ruchu typu NC połączonej w konfiguracji 2EOL/NC z rezystorami R1 = R2 = 1,1 kΩ zgodnie ze schematem. Na podstawie zamieszczonych w tabeli wyników pomiarów oraz schematu połączeń można stwierdzić, że

Stan
styków
naruszeniesabotażnaruszenie
i sabotaż
brak naruszenia
i sabotażu
Rab [kΩ]2,21,1
Ilustracja do pytania
A. uszkodzone są styki NC i TMP.
B. czujka ruchu działa poprawnie.
C. uszkodzony jest wyłącznie styk NC.
D. uszkodzony jest wyłącznie styk TMP.
Czujka ruchu działa poprawnie, co zostało potwierdzone pomiarami rezystancji R_ab wynoszącymi 1,1 kΩ w stanie braku naruszenia i sabotażu. Taka wartość odpowiada oczekiwanym wartościom dla sprawnych czujek tego typu, które powinny wykazywać stabilną rezystancję w czasie normalnej pracy. Dobrą praktyką w systemach zabezpieczeń jest regularne sprawdzanie rezystancji obwodów czujników, co pozwala na wczesne wykrywanie ewentualnych usterek. Na przykład, w instalacjach alarmowych, regularna konserwacja i testowanie czujników pozwala na zapewnienie ich niezawodności. Oprócz pomiarów rezystancji, warto również zwracać uwagę na inne parametry, takie jak czas reakcji czujnika czy jego zasięg działania. W przypadku czujek ruchu, zgodność z wartościami określonymi przez producenta jest kluczowa, ponieważ niewielkie odchylenia mogą wskazywać na problemy, które mogą zagrażać bezpieczeństwu. Dlatego też, w kontekście wymagań branżowych, zaleca się stosowanie odpowiednich protokołów testowania oraz dokumentowanie wyników, co przyczynia się do ogólnej poprawy efektywności systemów zabezpieczeń.

Pytanie 19

Który komponent systemu alarmowego może być użyty do konfiguracji centrali?

A. Ekspander wejść
B. Manipulator LED
C. Sygnalizator optyczny
D. Czujnik ruchu
Manipulator LED, często nazywany również manipulatorem lub panelem sterującym, jest kluczowym elementem w instalacji alarmowej, który umożliwia użytkownikowi programowanie centrali oraz zarządzanie jej funkcjami. Dzięki manipulatorowi możliwe jest wprowadzanie kodów dostępu, zmian ustawień systemu, a także monitorowanie statusu alarmu. Przykładowo, w systemach alarmowych, takich jak te stosowane w zabezpieczeniach domów czy biur, manipulator LED pozwala na łatwe włączenie i wyłączenie alarmu, a także na konfigurację stref bezpieczeństwa. Dobrą praktyką jest korzystanie z manipulatorów z wyświetlaczem LED, które informują użytkownika o stanie systemu w sposób czytelny i zrozumiały. Warto również zaznaczyć, że w nowoczesnych systemach alarmowych manipulator może integrować dodatkowe funkcje, takie jak komunikacja z aplikacjami mobilnymi, co zwiększa wygodę użytkowania. W związku z tym, inwestowanie w wysokiej jakości manipulator LED jest kluczowym krokiem w budowie skutecznego systemu alarmowego.

Pytanie 20

Którą klasę warunków środowiskowych powinno spełniać urządzenie przeznaczone do pracy na zewnątrz w miejscu nienarażonym na oddziaływanie warunków atmosferycznych w temperaturze od -25°C do 50°C?

Obowiązujące klasy środowiskowe:
  • Klasa środowiskowa I (wewnętrzna): stabilna praca w temperaturze z zakresu od 5 do 40 °C i maksymalnej wilgotności powietrza do 75%. Urządzenia do zastosowania wewnętrznego.
  • Klasa środowiskowa II (zewnętrzna, ogólna): dopuszczalna temperatura otoczenia w zakresie od -10 do +40 °C, przy wilgotności powietrza do 75%. Urządzenia instalowane w pomieszczeniach, w których występują wahania temperatury.
  • Klasa środowiskowa III (zewnętrzna osłonięta): dopuszczalna temperatura pracy od -25 do +50 °C, przy wilgotności powietrza z zakresu od 85% do 95%. Urządzenia instalowane w warunkach zewnętrznych, w miejscach nie narażonych na bezpośrednie oddziaływanie warunków atmosferycznych (np. deszczu, wiatru, śniegu, słońca).
  • Klasa środowiskowa IV (zewnętrzna, ogólna): dedykowana dla urządzeń przeznaczonych do pracy w ekstremalnych warunkach pogodowych. Bezawaryjna i stabilna praca przy temperaturach z zakresu od -25 do +60 °C i maksymalnej wilgotności do 95%.
A. I
B. II
C. III
D. IV
Odpowiedź III jest poprawna, ponieważ klasa środowiskowa III obejmuje urządzenia zaprojektowane do pracy w warunkach zewnętrznych, które są osłonięte przed bezpośrednim działaniem warunków atmosferycznych. Urządzenia tej klasy mogą funkcjonować w temperaturach od -25°C do +50°C oraz w warunkach wysokiej wilgotności powietrza wynoszącej od 85% do 95%. W praktyce oznacza to, że urządzenia te mogą być wykorzystywane w różnych zastosowaniach, takich jak stacje meteorologiczne, czujniki monitorujące środowisko czy różnorodne systemy automatyki budynkowej. Ważne jest, aby w takich urządzeniach uwzględniać nie tylko zakres temperatury, ale także odporność na działanie wilgoci, co jest kluczowe dla ich długotrwałej pracy i niezawodności w zmieniających się warunkach atmosferycznych. Standardy dotyczące klas środowiskowych, takie jak IEC 60721-3-4, precyzują te wymagania, co pozwala na tworzenie bardziej odpornych i efektywnych technologii, które mogą być wykorzystywane na zewnątrz w różnorodnych aplikacjach.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jaką wartość ma impedancja wejściowa gniazda antenowego w odbiorniku telewizyjnym?

A. 75 Ω
B. 300 Ω
C. 150 Ω
D. 50 Ω
Odpowiedź 75 Ω jest poprawna, ponieważ gniazdo antenowe odbiornika telewizyjnego standardowo projektowane jest z impedancją 75 Ω. Taki wybór impedancji wynika z optymalizacji transmisji sygnałów telewizyjnych, które są przesyłane w większości systemów kablowych oraz satelitarnych. W przypadku zastosowania impedancji 75 Ω, mamy do czynienia z minimalizacją strat sygnałowych oraz refleksji, co jest kluczowe dla zachowania jakości odbioru. W praktyce, urządzenia, takie jak dekodery czy telewizory, powinny być podłączane do anten o tej samej impedancji, aby zapewnić maksymalną efektywność. Ponadto, w branży telekomunikacyjnej powszechnie stosowane są standardy, takie jak IEC 60169-2, które definiują parametry techniczne gniazd oraz przewodów antenowych. Zastosowanie impedancji 75 Ω przyczynia się także do lepszego dopasowania z systemami przesyłowymi, co jest istotne w kontekście nowoczesnej telewizji wysokiej rozdzielczości i transmisji cyfrowej.

Pytanie 26

W specyfikacji katalogowej rezystora SMD podano wartość rezystancji wynoszącą 100 Ω oraz moc 0,25 W. Jakie jest maksymalne natężenie prądu, które może przepływać przez ten rezystor?

A. 250 mA
B. 4 mA
C. 50 mA
D. 200 mA
Odpowiedź 50 mA jest prawidłowa, ponieważ zgodnie z prawem Ohma oraz wzorem na moc, możemy obliczyć maksymalne natężenie prądu dla danego rezystora. Moc (P) rezystora wyrażana jest wzorem P = I²R, gdzie I to natężenie prądu, a R to rezystancja. Podstawiając wartości: 0,25 W = I² * 100 Ω, przekształcamy wzór do postaci I² = 0,25 W / 100 Ω, co daje I² = 0,0025 A². Zatem I = √0,0025 A² = 0,05 A, co odpowiada 50 mA. Jest to zgodne z praktykami inżynieryjnymi, które zalecają obliczanie maksymalnych prądów dla komponentów, aby uniknąć ich uszkodzenia. W praktyce, taki rezystor o wartości 100 Ω i mocy 0,25 W jest często stosowany w układach filtrów, dzielnikach napięcia czy w obwodach sygnałowych, gdzie utrzymanie właściwego natężenia prądu jest kluczowe dla stabilności działania całego systemu.

Pytanie 27

Z uwagi na efektywność połączenia wzmacniacza z głośnikiem, konieczne jest, aby impedancja wyjściowa wzmacniacza była

A. jak najniższa
B. niższa od impedancji głośnika
C. wyższa od impedancji głośnika
D. zgodna z impedancją głośnika
Odpowiedź, którą wskazałeś, jest całkowicie na miejscu. W audio ważne jest, żeby impedancja wyjściowa wzmacniacza była taka sama jak impedancja głośnika. Dzięki temu energia jest przesyłana efektywnie, a dźwięk jest lepszej jakości. Gdy impedancje są zgodne, wzmacniacz i głośnik dobrze ze sobą współpracują, co minimalizuje straty energii. W praktyce, tak zwane dopasowanie impedancyjne ma ogromne znaczenie, zwłaszcza w systemach nagłośnieniowych, jak na koncertach czy w różnych instalacjach audio. Dobrze dobrany sprzęt pozwala uniknąć problemów z przesterowaniem, co może prowadzić do uszkodzeń. Dlatego warto zwracać uwagę na impedancję przy doborze wzmacniaczy i głośników – to podstawowa wiedza dla każdego, kto zajmuje się dźwiękiem.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Aby przeprowadzić ocenę jakości sygnału cyfrowej telewizji satelitarnej, wymagane jest użycie miernika

A. DVB-C
B. DVB-S
C. DVB-H
D. DVB-T
Odpowiedź DVB-S jest prawidłowa, ponieważ jest to standard telewizji satelitarnej, który jest wykorzystywany do przesyłania sygnałów cyfrowych przez satelity. Mierniki DVB-S są zaprojektowane specjalnie do analizy sygnałów satelitarnych, co obejmuje pomiar jakości sygnału, siły sygnału oraz innych parametrów, takich jak BER (Bit Error Rate) i MER (Modulation Error Ratio). Zastosowanie takiego miernika jest kluczowe dla instalacji anten satelitarnych i optymalizacji ich ustawienia, co może znacząco wpłynąć na jakość odbioru. Na przykład, w przypadku ustawiania anteny, ważne jest, aby uzyskać jak najwyższą jakość sygnału, aby zminimalizować utratę pakietów danych i zniekształcenia obrazu. Standard DVB-S jest powszechnie stosowany w Europie i wielu innych regionach, co czyni go najlepszym wyborem dla profesjonalistów w dziedzinie telekomunikacji satelitarnej. Warto pamiętać, że podczas pomiarów należy także zwrócić uwagę na warunki atmosferyczne, które mogą wpływać na jakość sygnału.

Pytanie 30

W urządzeniach do zdalnego sterowania wykorzystuje się diody do przesyłania danych

A. RGB
B. Zenera
C. IR
D. mikrofalowe
Dioda podczerwieni to mega ważny element w zdalnym sterowaniu. Działa tak, że emituje promieniowanie, którego ludzkie oko nie widzi, ale urządzenia potrafią to wykryć. Można to zobaczyć w pilotach do telewizorów czy audio, gdzie dioda IR wysyła sygnały w postaci impulsów świetlnych. Dzięki temu można wygodnie sterować różnymi sprzętami. Są różne standardy, jak RC5 czy NEC, które mówią, jak kodować te sygnały. Dobrze to widać na przykładzie pilota telewizyjnego, który sprawia, że korzystanie z telewizora jest o wiele prostsze i przyjemniejsze.

Pytanie 31

Urządzenie, które sumuje sygnały o odmiennych częstotliwościach (pochodzące z różnych MUX’ów) z dwóch lub więcej anten odbiorczych, aby przesłać je do odbiornika przy pomocy jednego przewodu, to

A. zwrotnica antenowa
B. multiswitch
C. konwerter
D. głowica antenowa
Zwrotnica antenowa jest kluczowym urządzeniem w systemach telewizyjnych oraz radiowych, które umożliwia integrację sygnałów z wielu anten. Jej zastosowanie pozwala na efektywne przesyłanie różnorodnych sygnałów, pochodzących z różnych multipleksów (MUX’ów), jednym przewodem do odbiornika. W praktyce, zwrotnice antenowe są wykorzystywane w instalacjach domowych oraz większych systemach telewizyjnych, gdzie wymagane jest połączenie sygnałów z kilku źródeł, co znacząco redukuje liczbę potrzebnych kabli i ułatwia instalację. Z punktu widzenia branżowych standardów, zwrotnice antenowe muszą spełniać określone parametry dotyczące tłumienia sygnału, izolacji oraz pasma przenoszenia, aby zapewnić jak najwyższą jakość odbieranego sygnału. Dzięki zastosowaniu zwrotnic antenowych, możliwe jest również unikanie zakłóceń, co jest kluczowe w kontekście jakości odbioru sygnału. W związku z tym, są one szeroko rekomendowane w dokumentacji dotyczącej projektowania systemów antenowych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

W przypadku wzmacniaczy prądu stałego nie wykorzystuje się sprzężenia pojemnościowego pomiędzy poszczególnymi stopniami, ponieważ kondensator

A. prowadzi do przerwy dla sygnału o wysokiej częstotliwości
B. działa jak zwarcie dla sygnału stałego
C. nie przekazuje składowej stałej sygnału
D. tak jak dioda, umożliwia przepływ sygnału tylko w jednym kierunku
Kondensator w obwodach elektrycznych pełni kluczową rolę w separacji sygnałów stałych i zmiennych. Działając jako element filtrujący, blokuje składową stałą sygnału, co jest niezwykle istotne w aplikacjach wzmacniaczy prądu stałego. Wzmacniacze te muszą przenosić sygnały o składowej stałej, aby zapewnić stabilność i precyzję działania. Sprzężenie pojemnościowe, wykorzystujące kondensatory, nie tylko blokuje składową stałą, ale także może wprowadzać niepożądane zniekształcenia w sygnale, co może wpłynąć na wydajność całego obwodu. W praktyce oznacza to, że w przypadku wzmacniaczy prądu stałego, ich projektanci muszą unikać układów, które mogą wpływać na integralność sygnału, a tym samym stosować inne metody sprzężenia, które nie zakłócają składowej stałej. Ponadto, zgodnie z zasadami projektowania układów elektronicznych, bliskie związki między elementami w obwodach prądu stałego są kluczowe dla ich prawidłowego działania.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Pokazane na ilustracji wskazanie woltomierza dla zakresu 150 V wynosi

Ilustracja do pytania
A. 30 V
B. 75 V
C. 90 V
D. 60 V
Wskazanie na woltomierzu LM-3 dla zakresu 150 V wynoszące 60 V jest poprawne dzięki zastosowanej analizie skali woltomierza. Skala ta składa się z 75 działek, co oznacza, że każda działka odpowiada wartości 2 V (150 V / 75 działek). Zgodnie z zasadą proporcjonalności, jeśli wskazówka znajduje się na 30 działce, możemy obliczyć wartość napięcia, stosując wzór: x = (30 * 150) / 75, co daje nam 60 V. W praktyce, umiejętność odczytywania wartości z woltomierza jest kluczowa w wielu dziedzinach, takich jak elektronika, automatyka czy instalacje elektryczne. Wiedza na temat sposobu działania woltomierzy oraz interpretacji ich wskazań pozwala na skuteczną diagnostykę oraz monitorowanie systemów elektrycznych. Przy analizie układów elektronicznych zawsze należy uwzględniać margines błędu oraz kalibrację urządzeń, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 37

Ilość stabilnych stanów przerzutnika bistabilnego wynosi

A. 1
B. 0
C. 3
D. 2
Przerzutnik bistabilny, czyli ten flip-flop, to całkiem ciekawy układ cyfrowy. Ma dwie stabilne wartości: 0 albo 1. To znaczy, że jest w stanie jednocześnie przechowywać jeden bit informacji. Można go spotkać w różnych miejscach, jak rejestry czy pamięci RAM, ale też w generatorach zegarów i układach sekwencyjnych. Właśnie to, że potrafi zmieniać swoje stany w odpowiedzi na sygnały wejściowe, sprawia, że mogą powstawać złożone układy logiczne, które są podstawą współczesnych komputerów. Różne standardy, jak TTL i CMOS, dają nam różne typy tych przerzutników, co otwiera drzwi do wielu zastosowań w elektronice cyfrowej. Moim zdaniem, to naprawdę interesujące jak te małe elementy potrafią mieć tak duże znaczenie w naszym codziennym życiu.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Aktywna bariera podczerwieni może działać, wykorzystując fale elektromagnetyczne o długości wynoszącej

A. 600 nm
B. 500 nm
C. 300 nm
D. 900 nm
Aktywna bariera podczerwieni, znana również jako czujnik podczerwieni, wykorzystuje promieniowanie elektromagnetyczne o długości fali około 900 nm do detekcji obiektów. Długość fali 900 nm znajduje się w zakresie bliskiej podczerwieni, co sprawia, że jest idealna do zastosowań związanych z detekcją ruchu i obecności. Czujniki te są powszechnie stosowane w systemach alarmowych, automatycznych drzwiach oraz w systemach inteligentnych budynków. W praktyce, czujniki te działają na zasadzie analizy zmian w promieniowaniu podczerwonym emitowanym przez obiekty w ich zasięgu. Kiedy obiekt, na przykład człowiek, przemieszcza się w polu detekcji, zmienia to ilość promieniowania docierającego do czujnika, co wyzwala sygnał alarmowy. Warto zaznaczyć, że technologie te są zgodne z aktualnymi standardami branżowymi, co zapewnia ich niezawodność oraz efektywność w różnych warunkach zastosowania.

Pytanie 40

Jaką wartość ma liczba poziomów w dwunastobitowym przetworniku C/A?

A. 212
B. (2-1)12
C. 212-1
D. 212-1
Odpowiedź 212 jest poprawna, ponieważ liczba poziomów przetwornika C/A (cyfrowo-analogowego) jest obliczana na podstawie liczby bitów, które ten przetwornik obsługuje. W przypadku dwunastobitowego przetwornika, liczba poziomów wynosi 2^12, co daje 4096 różnych poziomów sygnału analogowego. Taki przetwornik może więc generować 4096 różnych wartości napięcia, co jest istotne w wielu zastosowaniach elektronicznych, takich jak audio, wideo oraz w systemach kontrolnych. W praktyce, wyższa liczba poziomów pozwala na dokładniejsze odwzorowanie sygnału analogowego, co zwiększa jakość dźwięku i obrazu. W kontekście standardów, przetworniki C/A o wysokiej rozdzielczości są często stosowane w urządzeniach audio wysokiej jakości, gdzie precyzja sygnału jest kluczowa. Dlatego zrozumienie, jak oblicza się liczbę poziomów w przetwornikach, jest kluczowe dla inżynierów zajmujących się projektowaniem takich systemów.