Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 09:01
  • Data zakończenia: 8 grudnia 2025 09:16

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. smarowanie
B. temperaturę
C. bicie osiowe
D. naprężenie
Naprężenie paska zębatego jest kluczowym czynnikiem wpływającym na jego wydajność oraz trwałość. Utrzymanie odpowiedniego naprężenia jest niezbędne, aby zapewnić właściwe przeniesienie napędu i uniknąć poślizgu paska. Zbyt niskie naprężenie może prowadzić do niewłaściwego zazębienia zębatek, co w efekcie zwiększa ryzyko uszkodzenia paska oraz zębatek. Z kolei zbyt wysokie naprężenie może powodować nadmierne zużycie łożysk oraz innych elementów mechanicznych, co obniża efektywność całego systemu. Przykładowo, w różnych aplikacjach przemysłowych, takich jak maszyny CNC czy taśmociągi, regularne sprawdzanie i dostosowywanie naprężenia paska jest praktyką zgodną z normami ISO 9001, co zapewnia wysoką jakość procesu produkcyjnego. Dobre praktyki inżynieryjne sugerują, aby kontrola naprężenia była przeprowadzana w cyklach serwisowych, a także po każdej wymianie paska. W przypadku wykrycia nieprawidłowości, należy dostosować naprężenie zgodnie z zaleceniami producenta, co zapewnia optymalną wydajność i minimalizuje ryzyko awarii.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Na podstawie wskazania mikrometru wynik pomiaru wynosi

Ilustracja do pytania
A. 22,14 mm
B. 22,16 mm
C. 21,14 mm
D. 21,64 mm
Odpowiedź 21,64 mm jest prawidłowa, ponieważ wynika z dokładnego odczytu z mikrometru. Mikrometr składa się z dwóch skali: głównej i pomocniczej. W tym przypadku odczyt z głównej skali wynosi 21,5 mm, co oznacza, że wskazanie jest już na poziomie 21 mm. Następnie, aby uzyskać precyzyjny wynik, należy dodać wartość z skali pomocniczej, która wynosi 0,14 mm. Sumując te wartości (21,5 mm + 0,14 mm), uzyskujemy dokładny wynik 21,64 mm. Użycie mikrometru w takich pomiarach jest zgodne z najlepszymi praktykami pomiarowymi w inżynierii, gdzie dokładność i precyzja mają kluczowe znaczenie. Mikrometry są powszechnie stosowane w produkcji oraz kontroli jakości, gdzie wymagana jest wysoka dokładność w pomiarach wymiarowych. Wiedza na temat odczytu mikrometru jest niezbędna w wielu dziedzinach inżynierii, w tym mechanice, elektronice i inżynierii materiałowej, gdzie wymiary elementów muszą być ściśle kontrolowane.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Czujnik Pt 100 pokazany na ilustracji służy do pomiaru

A. napięcia elektrycznego
B. temperatury powietrza
C. ciśnienia cieczy
D. objętości cieczy
Podczas analizy dostępnych odpowiedzi warto zauważyć, że czujnik Pt 100 jest nieodpowiedni do pomiaru napięcia elektrycznego, ciśnienia cieczy ani objętości cieczy. Czujnik napięcia opiera się na zupełnie innych zasadach działania, gdzie wykorzystuje się różnice potencjałów elektrycznych, a nie zmiany oporności materiału. W przypadku ciśnienia cieczy, pomiary odbywają się zazwyczaj za pomocą manometrów lub czujników piezorezystancyjnych, które reagują na siłę wywieraną przez ciecz na przetwornik. Z kolei pomiar objętości cieczy zazwyczaj przeprowadza się przy użyciu przepływomierzy, które mierzą ilość cieczy przepływającej przez określony punkt w jednostce czasu, a nie poprzez analizę oporności materiału. Zrozumienie fundamentalnych właściwości czujników pomiarowych jest kluczowe, ponieważ różne typy czujników są projektowane do specyficznych zastosowań, które wymagają unikalnych cech. Wybór nieodpowiednich czujników do danego zadania prowadzi do błędnych wyników pomiarów i może skutkować poważnymi konsekwencjami w systemach, gdzie precyzja jest kluczowa, jak w medycynie czy przemyśle chemicznym. Dlatego istotne jest, aby przy wyborze odpowiednich czujników kierować się ich zasadą działania oraz przeznaczeniem, co jest zgodne z dobrymi praktykami w zakresie inżynierii pomiarowej.

Pytanie 9

Jakie urządzenie służy do pomiaru prędkości obrotowej wirnika silnika?

A. galwanometr.
B. prądnica tachometryczna.
C. tensometr.
D. resolver.
Prądnica tachometryczna jest urządzeniem stosowanym do pomiaru prędkości obrotowej wirnika silnika, które działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej wału. Jest to szczególnie przydatne w aplikacjach, gdzie precyzyjny pomiar prędkości jest kluczowy, takich jak w silnikach elektrycznych, systemach automatyki czy pojazdach. Prądnice tachometryczne są często wykorzystywane w systemach regulacji, gdzie dokładne informacje o prędkości obrotowej są niezbędne do uzyskania stabilności i efektywności działania układu. W praktyce, prądnice te znajdują zastosowanie w napędach, robotyce oraz w różnych maszynach przemysłowych. Dobrą praktyką jest regularne kalibrowanie prądnic tachometrycznych, aby zapewnić ich dokładność oraz niezawodność. Znajomość działania prądnic tachometrycznych oraz ich zastosowań pozwala inżynierom na efektywniejsze projektowanie systemów automatyki i zwiększa efektywność produkcji.

Pytanie 10

Na którym rysunku przedstawiono mocowanie kołnierzowe siłowników pneumatycznych?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Odpowiedzi A, C i D nie są prawidłowe, ponieważ przedstawiają inne metody mocowania siłowników pneumatycznych, które nie korzystają z kołnierza montażowego. W przypadku odpowiedzi A, mogła być zaprezentowana koncepcja mocowania za pomocą śrub, co jest typowe w instalacjach, gdzie przestrzeń jest ograniczona lub gdzie wymagane są elastyczne rozwiązania. Chociaż mocowanie siłownika za pomocą śrub jest praktyczne, nie zapewnia ono takiej stabilności jak mocowanie kołnierzowe, co może prowadzić do problemów z precyzją działania siłownika w aplikacjach wymagających dużej dokładności. Z kolei odpowiedzi C i D mogą przedstawiać inne metody, takie jak mocowanie z wykorzystaniem wsporników czy prowadnic, które również mają swoje miejsce w inżynierii, ale nie są dedykowane do siłowników pneumatycznych z kołnierzem. Typowe błędy myślowe prowadzące do tych niepoprawnych odpowiedzi to mylenie różnych metod montażu i brak uwagi na specyfikę danego zastosowania. Ważne jest, aby przy wyborze metody mocowania uwzględnić nie tylko wymagania dotyczące przestrzeni, ale także charakterystykę pracy siłowników, aby zapewnić ich optymalne funkcjonowanie.

Pytanie 11

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. przymiar liniowy
B. kątomierz
C. czujnik zegarowy
D. poziomnicę
Poziomnica jest narzędziem niezbędnym do precyzyjnego ustawienia siłowników w pozycji poziomej, co jest kluczowe dla prawidłowego działania bramy. Użycie poziomnicy pozwala na dokładne pomiary, które zapewniają, że siłowniki będą pracować w optymalnych warunkach, co z kolei wpływa na ich żywotność i efektywność. Na przykład, podczas montażu bramy przesuwnej, brak precyzyjnego ustawienia siłowników może prowadzić do ich uszkodzenia w wyniku nadmiernego obciążenia lub niewłaściwego działania mechanizmu. Dodatkowo, stosowanie poziomnicy jest zgodne z najlepszymi praktykami montażowymi, które zalecają regularne sprawdzanie poziomu oraz wyrównania elementów konstrukcji. Ważne jest również, aby pamiętać, że ustawienie siłowników w pozycji poziomej wpływa na równomierność działania bramy, co jest istotne z perspektywy bezpieczeństwa użytkowania. Dlatego poziomnica jest kluczowym narzędziem w procesie instalacji siłowników, a jej kompetentne użycie ma fundamentalne znaczenie dla sukcesu całego projektu.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jak często należy sprawdzać poziom oleju sprężarki tłokowej, której wskaźnik poziomu oleju przedstawiono na rysunku?

Ilustracja do pytania
A. Po 50 godzinach pracy sprężarki.
B. Raz na 2 lata.
C. Każdego dnia przed pierwszym uruchomieniem.
D. Raz do roku.
Sprawdzanie poziomu oleju w sprężarce tłokowej każdego dnia przed jej pierwszym uruchomieniem jest kluczowym elementem zapewnienia jej prawidłowego funkcjonowania. Olej pełni istotną funkcję w smarowaniu ruchomych części, co zmniejsza tarcie i zapobiega przegrzewaniu się jednostki. Regularna kontrola poziomu oleju pozwala na wczesne wykrycie ewentualnych wycieków oraz utraty smarności, co mogłoby prowadzić do poważnych uszkodzeń sprężarki. W praktyce, wiele firm zajmujących się konserwacją sprzętu zaleca takie codzienne sprawdzenie jako standardową procedurę operacyjną. Standardy ISO 9001 czy normy branżowe ASHRAE podkreślają znaczenie regularnych przeglądów i konserwacji urządzeń, co jest niezbędne do zachowania ich efektywności i wydajności. Dzięki nawykowi codziennego sprawdzania poziomu oleju można uniknąć nieprzewidzianych przestojów produkcyjnych oraz kosztownych napraw, co w dłuższej perspektywie przynosi oszczędności.

Pytanie 15

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi
B. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
C. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
D. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
Odpowiedzi wskazujące na porażenie prądem elektrycznym w różnych kontekstach nie uwzględniają specyfiki klasy ochronności III oraz właściwego zrozumienia ryzyka związanych z pracą z urządzeniami elektrycznymi. Porażenie prądem elektrycznym może wystąpić w sytuacjach, gdy pracownik ma kontakt z nieizolowanymi elementami aktywnymi, jednak kluczowe jest zrozumienie, że w przypadku urządzeń z III klasą ochronności ryzyko to jest odpowiednio zminimalizowane. Pierwsza z niewłaściwych odpowiedzi odnosi się do kontaktu z nieizolowanym zaciskiem PEN. W praktyce, zacisk PEN jest elementem instalacji elektrycznej, który pełni rolę zarówno neutralnego, jak i ochronnego, a jego nieizolowane wbudowanie w system może być niezgodne z zasadami projektowymi. Kolejna niepoprawna koncepcja sugeruje, że kontakt z metalową obudową urządzenia skutkuje porażeniem prądem, co w kontekście odpowiednich zabezpieczeń i prawidłowego uziemienia nie powinno mieć miejsca. Ważne jest, aby zrozumieć, że w przypadku prawidłowo skonstruowanych urządzeń klasy III, wszelkie elementy przewodzące powinny być odpowiednio izolowane lub uziemione w celu zapewnienia bezpieczeństwa użytkowników. Typowym błędem jest zatem założenie, że jakikolwiek kontakt z elementami urządzenia o napięciu 60 V musi automatycznie prowadzić do porażenia, co jest sprzeczne z zasadami bezpieczeństwa elektrycznego oraz dobrą praktyką inżynieryjną.

Pytanie 16

Które urządzenie zostało przedstawione na fotografii?

Ilustracja do pytania
A. Zawór czasowy.
B. Zawór szybkiego spustu.
C. Serwonapęd.
D. Zespół przygotowania powietrza.
Ten zespół przygotowania powietrza, który widzisz na zdjęciu, jest super ważny w systemach pneumatycznych. Odpowiada za oczyszczanie, regulację ciśnienia i smarowanie powietrza, co jest kluczowe, żeby wszystko działało jak należy. Składa się z trzech podstawowych elementów: filtru, regulatora ciśnienia i smarownicy. Filtr ma za zadanie usunąć zanieczyszczenia i wilgoć z powietrza, co ma duże znaczenie dla trwałości sprzętu pneumatycznego. Z kolei regulator ciśnienia dostosowuje to ciśnienie do potrzeb konkretnej aplikacji, co zapobiega uszkodzeniom maszyn przez zbyt wysokie ciśnienie. A smarownica wprowadza olej do systemu, co zmniejsza tarcie i wydłuża żywotność części. W praktyce, znajdziesz to w różnych branżach, jak automatyka, produkcja czy obróbka metali, gdzie dobre zarządzanie powietrzem jest naprawdę istotne dla sprawności i bezpieczeństwa. Ważne jest, żeby regularnie serwisować te urządzenia, bo to pomaga uniknąć awarii i zapewnić im efektywność na dłużej.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Aby zmierzyć nierówności osiowe (bicie) obracającej się tarczy, należy użyć

A. mikrometru
B. suwmiarki
C. czujnika zegarowego
D. średnicówki mikrometrycznej
Czujnik zegarowy jest narzędziem pomiarowym, które umożliwia precyzyjne określenie nierówności osiowej (bicia) wirujących tarcz. Działa na zasadzie pomiaru odległości, przy czym jego igła stykowa przesuwa się wzdłuż powierzchni obrabianego elementu, rejestrując wszelkie wahania. Dzięki wysokiej dokładności, czujniki zegarowe są standardowo stosowane w inżynierii mechanicznej do oceny i kontrolowania jakości elementów rotacyjnych. W praktyce, czujnik zegarowy jest niezbędny do ustawienia tarczy w maszynach takich jak tokarki czy frezarki. Użytkownik umieszcza czujnik w odpowiedniej pozycji, a następnie obraca tarczę, co pozwala na odczyt bicia. Każde odchylenie od idealnej osi wskazuje na konieczność korekcji ustawienia, co jest kluczowe dla zapewnienia nie tylko precyzyjnego działania maszyny, ale także wydłużenia jej żywotności oraz zapewnienia bezpieczeństwa pracy. Wysoka jakość czujników zegarowych oraz ich precyzyjne kalibracje są zgodne z najlepszymi praktykami w branży mechanicznej.

Pytanie 19

Jakie napięcie wyjściowe przetwornika ciśnienia będzie przy wartościach ciśnienia wynoszących 450 kPa, jeśli jego napięcie wyjściowe mieści się w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa przy liniowej charakterystyce?

A. 7,5 V
B. 4,5 V
C. 3,0 V
D. 10,0 V
Odpowiedź 7,5 V to dobra odpowiedź. Przetwornik ciśnienia działa liniowo, co znaczy, że napięcie na wyjściu rośnie proporcjonalnie do ciśnienia. Zaczynając od 0 kPa do 600 kPa, napięcia wahają się od 0 do 10 V. Możemy łatwo policzyć napięcie dla 450 kPa. To 75% całego zakresu, bo 450 kPa podzielone przez 600 kPa daje 0,75. Jak to pomnożymy przez 10 V, dostajemy 7,5 V. W inżynierii, zwłaszcza w automatyce, takie dokładne pomiary ciśnienia są naprawdę ważne. Liniowe przetworniki są wszędzie tam, gdzie trzeba mieć precyzyjne dane. Oczywiście warto regularnie kalibrować te urządzenia, bo to zapewnia ich prawidłowe działanie i eliminuje błędy w pomiarach.

Pytanie 20

Jak można zmierzyć moc pobieraną przez urządzenie zasilane napięciem 24 V DC?

A. woltomierzem i amperomierzem
B. mostkiem Wheatstone'a
C. watomierzem w układzie Arona
D. mostkiem Thompsona
Pomiar mocy pobieranej przez urządzenie zasilane napięciem 24 V DC można zrealizować poprzez zastosowanie woltomierza oraz amperomierza. Woltomierz umożliwia zmierzenie napięcia w obwodzie, natomiast amperomierz mierzy natężenie prądu. Moc (P) można obliczyć korzystając z równania P = U * I, gdzie U to napięcie, a I to natężenie prądu. Przykładowo, jeśli woltomierz wskazuje 24 V, a amperomierz 2 A, moc wynosi 48 W. Takie podejście jest zgodne z najlepszymi praktykami pomiarowymi, gdzie dokładność pomiarów jest kluczowa. Używanie woltomierza i amperomierza jest standardową metodą w wielu zastosowaniach, w tym w inżynierii elektrycznej i automatyce przemysłowej, co zapewnia wiarygodne i precyzyjne wyniki. Warto również pamiętać o prawidłowej kalibracji urządzeń pomiarowych, co wpływa na jakość wyników.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Czym charakteryzuje się filtr dolnoprzepustowy?

A. tłumi sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
B. przepuszcza sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
C. wzmacnia sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
D. przepuszcza sygnały sinusoidalne o częstotliwości wyższej od częstotliwości granicznej
Filtr dolnoprzepustowy jest urządzeniem, które umożliwia przechodzenie sygnałów o częstotliwości mniejszej od określonej częstotliwości granicznej, skutecznie tłumiąc sygnały o wyższych częstotliwościach. Użycie filtrów dolnoprzepustowych jest powszechne w systemach audio, gdzie pozwalają one na eliminację niepożądanych wysokoczęstotliwości, co skutkuje czystszych dźwiękiem. Przykładem praktycznego zastosowania jest użycie filtrów w subwooferach, które mają za zadanie reprodukcję niskich częstotliwości. W zastosowaniach telekomunikacyjnych filtry dolnoprzepustowe są wykorzystywane w celu eliminacji zakłóceń wysokoczęstotliwościowych, umożliwiając lepszą jakość sygnału. Ponadto, filtry te są integralną częścią wielu układów elektronicznych, na przykład w systemach pomiarowych, gdzie są używane do wygładzania sygnałów oraz eliminacji szumów. W praktyce inżynieryjnej, dobór filtrów dolnoprzepustowych opiera się na analizie częstotliwościowej oraz parametrach projektowych, co jest zgodne z zasadami dobrych praktyk w dziedzinie elektroniki i telekomunikacji.

Pytanie 23

Jaki rodzaj czujnika nadaje się do pomiaru poziomu bez kontaktu?

A. Czujnik ultradźwiękowy
B. Czujnik hydrostatyczny
C. Czujnik pływakowy
D. Czujnik pojemnościowy
Czujniki pływakowe opierają się na fizycznym mechanizmie, w którym pływak unosi się na powierzchni cieczy, a zmiana jego położenia sygnalizuje poziom medium. Ich stosowanie wiąże się z ograniczeniami, takimi jak możliwość zanieczyszczenia mechanizmu oraz konieczność zapewnienia dostępu do cieczy. Czujniki hydrostatyczne mierzą ciśnienie hydrostatyczne w danym punkcie, co również wymaga kontaktu z medium, a zmiany temperatury czy gęstości cieczy mogą wpłynąć na dokładność pomiarów. Czujniki pojemnościowe działają na zasadzie pomiaru zmian pojemności elektrycznej spowodowanych obecnością medium, ale również wymagają kontaktu z mierzonym substancją, co ogranicza ich zastosowanie w przypadku substancji agresywnych lub zanieczyszczających. Błędem myślowym jest założenie, że wszystkie czujniki mogą działać w systemach bezkontaktowych; każdy z wymienionych czujników ma swoje ograniczenia i specyfikę, co należy uwzględnić przy wyborze odpowiedniego rozwiązania dla konkretnej aplikacji.

Pytanie 24

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 10 V
B. 25 V
C. 15 V
D. 5 V
Scalone układy cyfrowe wykonane w technologii TTL (Transistor-Transistor Logic) są zaprojektowane do pracy z napięciem zasilania wynoszącym 5 V. To napięcie jest standardem w branży, zapewniającym stabilną i niezawodną pracę tych układów. Dzięki temu, że TTL operuje na niskim napięciu, układy te charakteryzują się mniejszym zużyciem energii, co jest korzystne w zastosowaniach mobilnych oraz w systemach zasilanych z baterii. W praktyce, układy TTL są powszechnie wykorzystywane w różnych aplikacjach, takich jak obliczenia cyfrowe, sterowanie procesami oraz w systemach automatyki. Dobre praktyki w projektowaniu obwodów cyfrowych zalecają używanie stabilnych źródeł zasilania, aby zminimalizować ryzyko zakłóceń oraz błędów w działaniu układów. Dodatkowo, w niektórych zastosowaniach, takich jak komunikacja szeregowa, dokładne napięcie zasilania jest kluczowe do zapewnienia odpowiedniej wydajności i zgodności z innymi komponentami systemu. Warto również pamiętać, że nieprzestrzeganie tych specyfikacji może prowadzić do uszkodzenia układów oraz obniżenia ich żywotności.

Pytanie 25

Jaką wielkość fizyczną definiuje się jako ilość ładunku elektrycznego przepływającego przez przekrój poprzeczny przewodnika w jednostce czasu?

A. Indukcyjność przewodnika
B. Gęstość prądu elektrycznego
C. Natężenie prądu elektrycznego
D. Rezystancja przewodnika
Gęstość prądu elektrycznego odnosi się do ilości ładunku elektrycznego przepływającego przez jednostkę powierzchni przekroju poprzecznego przewodnika w danym czasie, co może prowadzić do mylnych wniosków, jeśli nie zostanie właściwie zrozumiane. Podczas gdy gęstość prądu (oznaczana jako 'j') jest istotnym parametrem w kontekście analizy rozkładu prądu w przewodnikach, nie odpowiada ona bezpośrednio na postawione pytanie dotyczące ilości ładunku przepływającego przez przekrój w jednostce czasu. Indukcyjność przewodnika, z kolei, jest miarą jego zdolności do generowania siły elektromotorycznej w odpowiedzi na zmiany prądu i nie ma bezpośredniego związku z ilością ładunku przepływającego w danym czasie. Rezystancja przewodnika określa jego opór dla przepływającego prądu, co również nie jest tym samym co natężenie prądu. Typowe błędy myślowe, które prowadzą do pomyłek przy definiowaniu tych pojęć, często wynikają z mylenia definicji i jednostek, co może być szczególnie problematyczne w kontekście analizy układów elektrycznych. Zrozumienie różnicy między natężeniem prądu a innymi wielkościami, takimi jak gęstość prądu, rezystancja i indukcyjność, jest kluczowe dla prawidłowego projektowania i analizy obwodów elektrycznych oraz dla zapewnienia ich efektywności i bezpieczeństwa.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jaki zawór powinien być użyty, aby umożliwić przepływ czynnika wyłącznie w jednym kierunku?

A. Dławiący
B. Rozdzielający
C. Regulacyjny
D. Zwrotny
Wybór niewłaściwego zaworu w systemie hydraulicznym lub pneumatycznym może prowadzić do poważnych problemów operacyjnych. Zawór rozdzielający ma na celu kierowanie przepływu czynnika do różnych sekcji systemu, ale nie ma właściwości zabezpieczających przed cofaniem się medium. Jego główną rolą jest zatem dystrybucja, a nie kontrola kierunku przepływu, co czyni go nieodpowiednim do zastosowań wymagających zapobiegania cofaniu. Zawór regulacyjny, z drugiej strony, jest zaprojektowany do kontrolowania ciśnienia lub przepływu, ale nie zapewnia jednoznacznej blokady cofaniu się medium. Tego rodzaju zawory są stosowane w aplikacjach, gdzie istotne jest dostosowanie parametrów pracy, a nie ochrona przed odwrotnym przepływem. Zawór dławiący również nie spełnia wymagań dotyczących kierunku przepływu; jego funkcją jest ograniczanie przepływu, co może prowadzić do niekontrolowanych warunków w układzie. Użycie niewłaściwego zaworu, takiego jak rozdzielający, regulacyjny czy dławiący, może prowadzić do uszkodzenia systemu, awarii sprzętu lub nawet zagrożeń dla bezpieczeństwa. W związku z tym, przy projektowaniu systemów hydraulicznych czy pneumatycznych, kluczowe jest dobieranie odpowiednich zaworów zgodnie z ich funkcjami i zastosowaniami w oparciu o normy branżowe i najlepsze praktyki.

Pytanie 31

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. Hz
B. V/(obr./min)
C. V
D. obr./min
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Przedstawiony na rysunku układ jest symbolem regulatora typu

Ilustracja do pytania
A. PID
B. I
C. PD
D. PI
Regulator PID, którym jest prezentowany na rysunku, składa się z trzech kluczowych elementów: proporcjonalnego (P), całkującego (I) oraz różniczkującego (D). Każdy z tych składników odgrywa istotną rolę w osiągnięciu stabilności i szybkości reakcji w systemach regulacji. Część proporcjonalna odpowiada za dostosowanie wyjścia regulatora wprost proporcjonalnie do błędu, co pozwala na szybkie reagowanie na zmiany. Część całkująca zbiera błąd w czasie, eliminując błąd ustalony i stabilizując system, natomiast część różniczkująca przewiduje przyszłe zmiany błędu, co pozwala na szybsze dostosowanie wyjścia regulatora. Przykłady zastosowania regulatora PID obejmują aplikacje w automatyce przemysłowej, gdzie precyzyjne kontrolowanie temperatury, ciśnienia czy prędkości jest kluczowe. W praktyce stosowanie regulatora PID zgodnie z dobrymi praktykami inżynieryjnymi wymaga odpowiedniego dostrojenia wartości współczynników Kp, Ki, Kd, co można osiągnąć poprzez różne metody, takie jak metoda Zieglera-Nicholsa czy symulacje komputerowe. Poprawne zrozumienie działania regulatora PID jest niezbędne dla inżynierów i techników pracujących w dziedzinie automatyki oraz kontroli procesów.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakie jest zastosowanie przedstawionego na rysunku elementu?

Ilustracja do pytania
A. Zamiana prądu przemiennego na prąd jednokierunkowy.
B. Filtrowanie zakłóceń napięcia sieciowego.
C. Zamiana prądu przemiennego na prąd stały.
D. Obniżanie napięcia sieciowego.
Niepoprawne odpowiedzi na to pytanie mogą wynikać z nieporozumienia dotyczącego funkcji mostka prostowniczego i innych elementów elektronicznych. Zamiana prądu przemiennego na prąd jednokierunkowy w kontekście użycia mostka prostowniczego jest często mylona z innymi procesami, takimi jak filtrowanie zakłóceń napięcia, które w rzeczywistości są realizowane przez kondensatory oraz inne komponenty. Filtracja polega na eliminowaniu niepożądanych składowych sygnału, co jest innym zadaniem niż prostowanie. Obniżanie napięcia sieciowego również nie jest funkcją mostka prostowniczego, gdyż do tego celu używa się transformatorów. Transformator zmienia wartości napięcia, ale nie konwertuje typu prądu. Typowe błędy prowadzące do takich niepoprawnych wniosków obejmują mylenie funkcji prostowniczych z innymi funkcjami elektrycznymi, co wskazuje na brak zrozumienia zasad działania podstawowych komponentów w obwodach elektrycznych. Aby w pełni zrozumieć rolę mostka prostowniczego, ważne jest zagłębienie się w temat prądów przemiennych i stałych, a także zrozumienie, w jaki sposób te dwa typy prądu różnią się pod względem zastosowania i przetwarzania w obwodach elektronicznych. Zrozumienie tych różnic jest kluczowe dla poprawnego projektowania i analizy układów elektronicznych.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Na którym rysunku przedstawiono triak?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Triak, będący elementem półprzewodnikowym, odgrywa kluczową rolę w aplikacjach związanych z kontrolą mocy w obwodach prądu przemiennego. W odpowiedzi B widoczny jest triak, który można łatwo zidentyfikować dzięki jego unikalnym oznaczeniom oraz kształtowi. Triaki są powszechnie stosowane w regulatorach oświetlenia, silnikach elektrycznych oraz w systemach grzewczych, gdzie konieczne jest precyzyjne sterowanie mocą. W praktyce triak działa jako przełącznik, który może włączać i wyłączać przepływ prądu w cyklu AC, co pozwala na skuteczną kontrolę energii bez strat mocy. Dodatkowo, triaki są projektowane zgodnie z normami IEC, co zapewnia ich wysoką jakość i niezawodność. Znajomość triaków oraz ich zastosowań jest niezbędna dla inżynierów i techników, którzy pracują w dziedzinie elektroniki i automatyki.