Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 14:56
  • Data zakończenia: 17 grudnia 2025 15:05

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaka jest podstawowa funkcja wyłącznika różnicowoprądowego?

A. Przekształcenie prądu przemiennego na stały
B. Ochrona przed przeciążeniem obwodu
C. Ochrona przed porażeniem poprzez wykrycie różnicy prądów w przewodach
D. Regulacja napięcia wyjściowego
Wyłącznik różnicowoprądowy jest kluczowym elementem systemów ochrony elektrycznej, którego głównym zadaniem jest zapobieganie porażeniom prądem elektrycznym. Działa on na zasadzie wykrywania różnicy pomiędzy prądem wpływającym a wypływającym z urządzenia lub instalacji. Jeśli taka różnica zostanie wykryta, oznacza to, że część prądu gdzieś 'ucieka', co może sugerować uszkodzenie izolacji lub kontakt prądu z osobą. W praktyce wyłącznik różnicowoprądowy automatycznie odłącza zasilanie w momencie wykrycia tego typu anomalii, minimalizując ryzyko porażenia. To urządzenie jest szeroko stosowane w instalacjach domowych i przemysłowych, zapewniając dodatkową warstwę ochrony w miejscach, gdzie mogą występować uszkodzenia izolacji lub wilgoć. Warto pamiętać, że nie zastępuje on standardowych zabezpieczeń nadprądowych, ale uzupełnia je, oferując ochronę przed skutkami niekontrolowanego przepływu prądu do ziemi. W kontekście bezpieczeństwa użytkownika wyłącznik różnicowoprądowy jest nieocenionym narzędziem, które powinno być standardem w każdej nowoczesnej instalacji elektrycznej.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Dokumentacja użytkowania instalacji elektrycznych, które są chronione wyłącznikami nadmiarowo-prądowymi, nie musi zawierać

A. opisu doboru urządzeń zabezpieczających
B. spisu terminów oraz zakresów prób i pomiarów kontrolnych
C. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
D. specyfikacji technicznej instalacji
Wszystkie pozostałe odpowiedzi odnoszą się do kluczowych aspektów, które powinny być uwzględnione w instrukcji eksploatacji instalacji elektrycznych. Wykaz terminów oraz zakresów prób i pomiarów kontrolnych jest niezbędny, ponieważ regularne kontrole są podstawą utrzymania bezpieczeństwa i niezawodności instalacji. Dzięki nim można monitorować stan techniczny systemów i wykrywać potencjalne usterki. Charakterystyka techniczna instalacji również ma kluczowe znaczenie; zawiera informacje o parametrach pracy oraz specyfikacji zastosowanych elementów, co jest istotne dla personelu wykonującego prace eksploatacyjne. Zasady bezpieczeństwa przy wykonywaniu prac eksploatacyjnych są fundamentalne dla ochrony osób pracujących z instalacjami elektrycznymi. Zawierają one informacje o środkach ochrony osobistej oraz procedurach, które mają na celu zminimalizowanie ryzyka wystąpienia wypadków. Ignorowanie tych elementów w instrukcji eksploatacji może prowadzić do poważnych konsekwencji, w tym wypadków przy pracy. Warto podkreślić, że każdy z tych elementów jest zgodny z normami branżowymi, które nakładają obowiązek zapewnienia odpowiednich zabezpieczeń i procedur operacyjnych. Niezrozumienie ich znaczenia może prowadzić do błędnych wniosków oraz niedopatrzeń w procesie eksploatacji instalacji elektrycznych.

Pytanie 5

Jaki sprzęt gaśniczy powinien zostać użyty do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Hydronetkę
B. Gaśnicę płynową
C. Tłumicę
D. Gaśnicę proszkową
Gaśnica proszkowa jest najskuteczniejszym narzędziem do gaszenia pożarów, które mają miejsce w obszarze rozdzielnic elektrycznych, zwłaszcza gdy nie można ich wyłączyć spod napięcia. Działa na zasadzie przerwania reakcji chemicznej, a jej proszek gaśniczy skutecznie tłumi ogień, nie przewodząc prądu elektrycznego. W przypadku pożaru rozdzielnicy elektrycznej, klasyfikowanego jako pożar klasy C, gaśnice proszkowe są rekomendowane przez normy PN-EN 2 oraz PN-EN 3, które określają środki gaśnicze odpowiednie do różnych rodzajów pożarów. Użycie gaśnicy proszkowej nie tylko minimalizuje ryzyko porażenia prądem, ale także nie powoduje uszkodzeń sprzętu elektrycznego, co jest kluczowe w przypadkach, gdy urządzenia muszą pozostać w ruchu. Przykłady zastosowania obejmują sytuacje w zakładach przemysłowych, gdzie pożar rozdzielnicy może prowadzić do poważnych strat materialnych, a zastosowanie odpowiednich środków gaśniczych jest kluczowe dla szybkiej reakcji oraz minimalizacji strat.

Pytanie 6

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 7 do 14
B. Od 47 do 52
C. Od 1 do 6
D. Od 19 do 26
Wybór odpowiedzi związanej z innymi zakresami (np. od 47 do 52, od 1 do 6 czy od 19 do 26) świadczy o małym nieporozumieniu z identyfikacją komponentów silnika szlifierki. Te numery dotyczą różnych części, które nie są kluczowe dla samego działania silnika, co może sprawić, że serwisowanie stanie się mniej efektywne. Na przykład, numery od 1 do 6 mogą obejmować części, które tak naprawdę nie wpłyną na wydajność silnika. Jak się pomylisz z ich identyfikacją, to naprawa może się wydłużyć. Numery od 47 do 52 to z kolei mogą być jakieś osłony, które też nie są bezpośrednio związane z napędem. Takie błędy najczęściej wynikają z braku znajomości dokumentacji oraz braku zrozumienia, jak różne elementy działają razem. Dobrze jest posiedzieć nad dokumentacją i ogarnąć, jak poszczególne części wpływają na całość maszyny, bo to przekłada się na lepszą obsługę i konserwację. Im lepsza znajomość identyfikacji części, tym szybciej uda się naprawić sprzęt, a dla operatorów będzie to też bezpieczniejsze.

Pytanie 7

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między
zaciskami silnika
Rezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1– W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. uszkodzoną izolację w uzwojeniach U1 — U2 oraz V1 — V2
B. przerwę w uzwojeniu U1 — U2
C. zwarcie międzyzwojowe w uzwojeniu W1 — W2
D. zwarcie między uzwojeniami U1 — U2 oraz W1 - W2
Wybrałeś odpowiedź mówiącą o uszkodzonej izolacji w uzwojeniach U1 — U2 oraz V1 — V2, i to jest akurat słuszne. Wyniki pomiarów rezystancji pokazują wyraźne anomalie. Na przykład, rezystancja izolacji między uzwojeniem U1 a V1 wynosi 0 Ω, co jasno wskazuje, że izolacji tam nie ma. Prowadzi to do potencjalnego zagrożenia dla bezpieczeństwa zarówno urządzenia, jak i użytkowników. Z mojej perspektywy, dobrze jest pamiętać, że normy branżowe, jak IEC 60034 dotyczące silników elektrycznych, mówią, że odpowiednie wartości rezystancji są kluczowe dla bezpieczeństwa i niezawodności silnika. Regularne pomiary rezystancji izolacji powinny być częścią rutyny konserwacji, żeby móc wcześnie wykrywać problemy i unikać awarii. Dbanie o tę izolację jest naprawdę istotne, bo jej uszkodzenie może prowadzić do zwarcia, co może zrujnować silnik i inne elementy systemu zasilania. W praktyce, ważne jest, żeby trzymać się pewnych procedur pomiarowych i konserwacyjnych – to naprawdę fundament, by działać zgodnie z najlepszymi praktykami.

Pytanie 8

Jaką funkcję pełni bocznik rezystancyjny używany podczas dokonywania pomiarów?

A. Zwiększa zakres pomiarowy woltomierza
B. Umożliwia pomiar upływu prądu przez izolację
C. Poszerza zakres pomiarowy amperomierza
D. Daje możliwość zdalnego pomiaru energii elektrycznej
Wszystkie pozostałe odpowiedzi sugerują zastosowanie bocznika rezystancyjnego w kontekście pomiarów, jednak żaden z tych scenariuszy nie odzwierciedla jego rzeczywistej roli. Rozszerzenie zakresu pomiarowego woltomierza nie jest realizowane za pomocą bocznika, ponieważ bocznik działa w kontekście pomiaru prądu, a nie napięcia. Woltomierze mogą być używane do pomiaru napięcia w obwodach, ale w tym przypadku stosuje się inne techniki, takie jak dzielniki napięcia, które są zaprojektowane do pracy z wysokimi wartościami napięcia, a nie prądu. Twierdzenie, że bocznik pozwala zmierzyć upływ prądu przez izolację, jest mylne, ponieważ upływ prądu można oceniać za pomocą testów izolacyjnych, które angażują inne metody pomiarowe, jak megametry. Natomiast sugestia, że bocznik umożliwia zdalny pomiar energii elektrycznej, jest również nieprecyzyjna. Zdalne pomiary energii wymagają zastosowania bardziej złożonych układów pomiarowych, które mogą obejmować rozdzielnicze liczniki energii oraz komunikację bezprzewodową, co wykracza poza funkcjonalność bocznika. W efekcie, mylenie funkcji bocznika z innymi technikami pomiarowymi pokazuje brak zrozumienia podstawowych zasad działania tych urządzeń oraz ich zastosowań w praktyce inżynieryjnej.

Pytanie 9

Podczas pomiaru rezystancji izolacji przewodów, jakie napięcie testowe jest zazwyczaj stosowane dla obwodów o napięciu znamionowym 230 V?

A. 750 V
B. 230 V
C. 100 V
D. 500 V
Pomiar rezystancji izolacji jest kluczowym krokiem w ocenie stanu technicznego instalacji elektrycznych. Dla obwodów o napięciu znamionowym 230 V zaleca się stosowanie napięcia testowego 500 V. Wybór tego napięcia wynika z norm i standardów, które nakładają wymogi dotyczące minimalnej wartości napięcia testowego, aby zapewnić wiarygodne wyniki pomiarów. Rozporządzenia takie jak PN-HD 60364-6:2016-07 wskazują, że dla obwodów o napięciu znamionowym do 500 V, napięcie testowe powinno wynosić 500 V. Zastosowanie wyższego napięcia testowego niż napięcie znamionowe jest konieczne, aby wykryć ewentualne uszkodzenia izolacji, które mogą pojawić się w warunkach rzeczywistej eksploatacji. Dzięki temu można zidentyfikować miejsca, gdzie izolacja może być osłabiona, co pozwala na podjęcie kroków naprawczych przed wystąpieniem awarii. To podejście jest powszechnie stosowane w branży, zapewniając bezpieczeństwo i niezawodność instalacji elektrycznej.

Pytanie 10

W jaki sposób zmieni się spadek napięcia na przewodzie zasilającym przenośny odbiornik, jeśli zamienimy przewód OWY 5×4 mm2 o długości 5 m na przewód OWY 5×6 mm2 o długości 15 m?

A. Zwiększy się trzykrotnie
B. Zwiększy się dwukrotnie
C. Zmniejszy się trzykrotnie
D. Zmniejszy się dwukrotnie
Wybór odpowiedzi sugerujących, że spadek napięcia zwiększy się trzykrotnie lub zmniejszy się trzykrotnie, opiera się na błędnym rozumieniu zasad obliczania spadku napięcia i wpływu długości oraz przekroju przewodu na ten parametr. Niektórzy mogą myśleć, że zwiększenie długości przewodu automatycznie prowadzi do proporcjonalnego wzrostu spadku napięcia, jednak to nie jest jedyny czynnik. Oporność przewodu zależy od jego długości oraz przekroju. Chociaż długość przewodu wzrasta, co sprzyja wzrostowi oporności, również zmienia się pole przekroju, które wpływa na opór. W przypadku zamiany przewodu o mniejszym przekroju na większy przy jednoczesnym wydłużeniu, wynikowy efekt na spadek napięcia nie jest prostą proporcją, ale wymaga złożonych obliczeń. Odpowiedzi sugerujące, że spadek napięcia zmniejszy się, pomijają aspekt, że większa długość przewodu, mimo lepszego przekroju, może generować większą oporność, co prowadzi do wyższego spadku napięcia. W praktyce, montując długie przewody, należy zawsze brać pod uwagę zarówno długość, jak i rozmiar przekroju, aby uzyskać optymalne parametry elektryczne. Użycie algorytmów obliczeniowych oraz norm branżowych, jak PN-IEC 60364, powinno zawsze towarzyszyć tym decyzjom. Błędne podejście do oceny wpływu długości i przekroju na spadek napięcia może prowadzić do poważnych problemów z jakością zasilania i naruszeniem zasad bezpieczeństwa.

Pytanie 11

W elektrycznej instalacji o napięciu 230 V, zasilanej z systemu sieciowego TN-S, zmierzona impedancja pętli zwarcia wynosi 2,5 Ω. Wskaż, które oznaczenie wyłącznika jest zgodne z wymogiem samoczynnego odłączenia zasilania jako środka ochrony przeciwporażeniowej w przypadku awarii w tej instalacji?

A. B16
B. C16
C. B20
D. C10
Odpowiedź 'B16' jest prawidłowa, ponieważ dotyczy wyłącznika, który spełnia wymogi samoczynnego wyłączenia zasilania w przypadku uszkodzenia. W przypadku instalacji o napięciu 230 V, zasilanej z sieci TN-S, ważne jest, aby wyłącznik miał odpowiednią wartość prądową oraz aby czas zadziałania był krótki, co pozwoli na zabezpieczenie osób przed porażeniem prądem. Zgodnie z normą PN-EN 61008-1, dla instalacji o impedancji pętli zwarcia wynoszącej 2,5 Ω, maksymalny czas zadziałania wyłącznika powinien wynosić 0,4 sekundy. Wyłącznik typu B16, charakteryzujący się prądem znamionowym 16 A, jest w stanie skutecznie zadziałać w tym czasie, co czyni go odpowiednim do ochrony przed porażeniem. Przykładowo, w domowych instalacjach elektrycznych często stosuje się wyłączniki B16 do zabezpieczenia obwodów oświetleniowych lub gniazd zasilających, co dodatkowo wspiera bezpieczeństwo użytkowników.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Która z poniższych opcji najprawdopodobniej prowadzi do obniżenia prędkości obrotowej silnika indukcyjnego pod obciążeniem?

A. Nierównomierna szczelina powietrzna w silniku
B. Wyższa częstotliwość napięcia zasilającego
C. Niewłaściwe wyważenie wirnika silnika
D. Przerwa w jednym z fazowych przewodów zasilających
Przerwa w jednym z fazowych przewodów zasilających jest najczęstszą przyczyną zmniejszenia prędkości obrotowej obciążonego silnika indukcyjnego. Taki stan rzeczy prowadzi do nierównomiernego zasilania silnika, co skutkuje nieodpowiednim momentem obrotowym oraz destabilizacją pracy maszyny. W przypadku silników trójfazowych, przerwa w jednej z faz powoduje, że silnik nie może osiągnąć pełnej prędkości obrotowej, co prowadzi do nadmiernego nagrzewania oraz potencjalnego uszkodzenia wirnika. Praktycznie, operatorzy maszyn powinni regularnie kontrolować linie zasilające oraz stosować odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zapobiec awariom w wyniku przerwy w zasilaniu. Ważne jest również, aby przeprowadzać okresowe inspekcje stanu kabli oraz złączek, co jest zgodne z normami branżowymi, takimi jak IEC 60204-1 dotycząca bezpieczeństwa urządzeń elektrycznych.

Pytanie 15

Który z wymienionych wyłączników nadprądowych powinien zabezpieczać obwód zasilający trójfazowy silnik klatkowy o parametrach znamionowych: Pn = 11 kW, Un = 400 V, cos φ = 0,73, η = 80 %?

A. S303 C20
B. S303 C40
C. S303 C32
D. S303 C25
Wybór wyłącznika nadprądowego S303 C32 jest odpowiedni dla obwodu zasilania trójfazowego silnika klatkowego o parametrach Pn = 11 kW, Un = 400 V, cos φ = 0,73 oraz η = 80%. Przy obliczaniu prądu znamionowego silnika, korzystając z wzoru I = Pn / (√3 * Un * cos φ), otrzymujemy wartość około 18,7 A. Wyłącznik C32 ma zdolność przenoszenia prądu do 32 A, co daje odpowiedni margines bezpieczeństwa w przypadku przeciążeń, a także umożliwia ochronę przed zwarciami. Dobrą praktyką w doborze wyłączników jest uwzględnienie dodatkowego zapasu prądowego, co chroni instalację przed uszkodzeniem. Na przykład, w przypadku rozruchu silnika, prąd może wzrosnąć do 6-7 razy wartości nominalnej, dlatego rekomenduje się stosowanie wyłączników z wyższymi wartościami znamionowymi. Zgodnie z normami PN-EN 60947-2, wyłączniki muszą być dostosowane do specyficznych warunków pracy, co czyni wybór S303 C32 właściwym rozwiązaniem w kontekście zapewnienia bezpieczeństwa i niezawodności systemu zasilania.

Pytanie 16

Podczas badania transformatora średniej mocy stwierdzono, że jego temperatura wzrosła ponad normę. Co może być tego przyczyną?

A. Zwarcie międzyzwojowe
B. Przerwa w uzwojeniu
C. Uszkodzenie rdzenia
D. Przeciążenie transformatora
Przeciążenie transformatora często prowadzi do zwiększenia jego temperatury. Gdy transformator jest obciążony powyżej swojej znamionowej mocy, zaczyna generować więcej ciepła niż jest w stanie oddać do otoczenia. Z tego powodu temperatura uzwojeń oraz innych elementów wewnętrznych transformatora wzrasta. Przeciążenia mogą wynikać z niewłaściwego projektowania systemu, nieprawidłowych połączeń, czy też nagłych wzrostów zapotrzebowania na moc. W praktyce, transformator powinien być zawsze eksploatowany w granicach swojej znamionowej mocy, a jego obciążenie monitorowane za pomocą odpowiednich urządzeń pomiarowych. Długotrwałe przeciążenie nie tylko prowadzi do wzrostu temperatury, ale może również skrócić żywotność transformatora, uszkodzić izolację uzwojeń i spowodować awarie całego systemu. Dlatego tak ważne jest stosowanie się do zaleceń producenta oraz regularne przeglądy i konserwacje urządzenia. Dodatkowo, instalacja systemów chłodzenia, takich jak wentylatory lub chłodzenie olejowe, może pomóc w zarządzaniu temperaturą podczas większych obciążeń.

Pytanie 17

Jakie mogą być powody częstego wypalania się żarówki w żyrandolu?

A. Zainstalowanie żarówki o niewystarczającej mocy
B. Luźne połączenie oprawy z instalacją
C. Niewłaściwie dobrane zabezpieczenie przeciążeniowe
D. Uszkodzenie przewodu ochronnego
Wybór żarówki o zbyt małej mocy jako przyczyny częstego przepalania się żarówek jest błędnym rozumowaniem. Mniejsza moc żarówki nie prowadzi do jej przepalania; wręcz przeciwnie, może skutkować mniejszym poborem prądu, co jest korzystne dla instalacji elektrycznej. Warto jednak zauważyć, że stosowanie żarówek o zbyt dużej mocy w oprawach może prowadzić do przegrzewania się, ale nie w przypadku mocy zbyt niskiej. Z kolei źle dobrane zabezpieczenie przeciążeniowe może wprowadzać problemy z nadmiernym przepływem prądu, co również przyczynia się do uszkodzeń, ale nie jest bezpośrednio związane z przepalaniem żarówek w żyrandolu. Istotne jest, aby dobrać odpowiednie zabezpieczenia, które chronią przed przeciążeniem i zwarciem, co jest zgodne z normami instalacyjnymi. Natomiast uszkodzenie przewodu ochronnego, chociaż poważne, nie wpływa bezpośrednio na częstotliwość przepalania się żarówek. Uszkodzony przewód ochronny stwarza zagrożenie elektryczne i może prowadzić do porażenia prądem, ale nie jest przyczyną problemów z samymi żarówkami. Kluczem do zrozumienia problemu jest znajomość zasad działania instalacji elektrycznych oraz prawidłowe podejście do konserwacji i przeglądów, co pozwala unikać błędnych interpretacji takich przypadków.

Pytanie 18

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Czterokrotnie wzrośnie
B. Dwukrotnie zmniejszy się
C. Dwukrotnie wzrośnie
D. Czterokrotnie zmniejszy się
W kontekście prędkości obrotowej silnika synchronicznego, niektóre odpowiedzi mogą prowadzić do mylnych wniosków. Na przykład, stwierdzenie, że prędkość obrotowa zmaleje czterokrotnie, jest niezgodne z podstawowymi zasadami działania tych silników. Zmniejszenie liczby par biegunów z 2 na 1 nie prowadzi do zmniejszenia prędkości, lecz do jej wzrostu, co jest kluczowym aspektem zapamiętywania zasady działania silników synchronicznych. Z kolei stwierdzenie, że prędkość zmaleje dwukrotnie, także jest błędne, gdyż sugeruje, że zmiana liczby par biegunów działa w odwrotny sposób, co jest sprzeczne z równaniem n = (120 * f) / p. Powinno być jasne, że zmniejszenie liczby par biegunów zwiększa prędkość obrotową, a nie zmniejsza. Ponadto, błędne koncepcje związane z odpowiedziami mówiącymi o czterokrotnym wzroście prędkości również wskazują na nieporozumienia dotyczące proporcjonalności między liczbą par biegunów a prędkością obrotową. W rzeczywistości, prędkość obrotowa jest odwrotnie proporcjonalna do liczby par biegunów, co potwierdza, że w przypadku zmiany liczby z 2 na 1 prędkość obrotowa wzrośnie dokładnie dwukrotnie. Czynniki te są kluczowe dla zrozumienia działania silników elektrycznych, a ich zrozumienie jest niezbędne dla inżynierów i techników, którzy zajmują się projektowaniem oraz eksploatacją systemów napędowych.

Pytanie 19

Jaką wartość powinno mieć napięcie testowe podczas pomiaru rezystancji izolacyjnej uzwojenia wtórnego transformatora ochronnego?

A. 500 V
B. 1 000 V
C. 250 V
D. 2 000 V
Wybór wartości napięcia probierczego spośród 1000 V, 500 V oraz 2000 V może być wynikiem niepełnego zrozumienia specyfiki pomiarów rezystancji izolacji uzwojeń wtórnych transformatorów bezpieczeństwa. Przy pomiarze rezystancji izolacji kluczowe jest zrozumienie, że transformator bezpieczeństwa jest przeznaczony do pracy w niskonapięciowych systemach elektrycznych, co wymaga zastosowania odpowiednich wartości napięcia probierczego. Napięcia na poziomie 1000 V i 2000 V są zbyt wysokie i mogą prowadzić do uszkodzenia izolacji oraz wrażliwych komponentów elektrycznych, co w konsekwencji zagraża bezpieczeństwu użytkowników. Napięcie 500 V, choć niższe od 1000 V, nadal jest zbyt wysokie dla niektórych zastosowań, szczególnie w kontekście transformatorów bezpieczeństwa, gdzie obowiązują normy ograniczające stosowane napięcia probiercze. Wybierając niewłaściwe napięcie, można również pominąć kluczowe testy, które powinny być przeprowadzane zgodnie z najlepszymi praktykami branżowymi. Dlatego istotne jest, aby podczas określania wartości napięcia probierczego kierować się zaleceniami takich norm jak IEC 61557, które wyraźnie wskazują na 250 V jako optymalną wartość dla takich pomiarów. Niezrozumienie tej kwestii może prowadzić do nieodpowiednich wniosków oraz potencjalnych zagrożeń, co podkreśla wagę znajomości i przestrzegania obowiązujących standardów w branży.

Pytanie 20

Jakie oznaczenia powinien posiadać wyłącznik różnicowoprądowy RCD przeznaczony do ochrony obwodu gniazd jednofazowych w pracowni komputerowej, gdzie używane są 15 zestawy komputerowe?

A. 16/2/010-A
B. 63/4/300-A
C. 25/4/100-A
D. 40/2/030-A
Wybór wyłącznika różnicowoprądowego do zabezpieczenia obwodu gniazd jednofazowych jest kluczowy dla zapewnienia bezpieczeństwa. Odpowiedzi zawierające oznaczenia 25/4/100-A, 63/4/300-A oraz 16/2/010-A są nieodpowiednie z kilku powodów. Oznaczenie 25/4/100-A wskazuje na nominalny prąd różnicowy 25 mA, co jest zbyt niską wartością dla obwodów gniazdowych, szczególnie w pracowni komputerowej, gdzie ryzyko porażenia prądem jest wyższe. Z kolei 63/4/300-A z nominalnym prądem różnicowym 300 mA może nie zapewnić wystarczającego poziomu ochrony, ponieważ tak wysoka wartość prądu różnicowego jest odpowiadająca bardziej obwodom przemysłowym, gdzie ryzyko jest mniejsze. Ostatnie oznaczenie 16/2/010-A, z nominalnym prądem 10 mA, jest niewystarczające dla takiej ilości urządzeń, co stwarza poważne zagrożenie, gdyż zastosowanie zbyt niskiego prądu różnicowego może prowadzić do częstych wyłączeń oraz problemów z użytkowaniem sprzętu komputerowego. Prawidłowy dobór wyłącznika powinien uwzględniać zarówno aspekty techniczne, jak i specyfikę użytkowania w danym środowisku, co jest kluczowe dla zapewnienia funkcjonalności oraz bezpieczeństwa.

Pytanie 21

Który z podanych przewodów elektrycznych powinno się zastosować do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z napowietrzną linią 230/400 V?

A. AsXS 4×70
B. YAKY 4×10
C. AAFLwsXSn 50
D. AFL 6 120
Przewody AsXS 4×70, AAFLwsXSn 50 oraz AFL 6 120, mimo że są to przewody o dużych przekrojach i różnych zastosowaniach, nie spełniają wymagań dla wykonania przyłącza elektrycznego ziemnego dla budynku jednorodzinnego z linią napowietrzną 230/400 V. Przewód AsXS 4×70, mimo że ma wyższy przekrój, jest typowym przewodem stosowanym w instalacjach przemysłowych, co czyni go zbyt dużym i niepraktycznym w kontekście przyłącza do jednorodzinnego budynku. Wybór przewodu o tak dużym przekroju może prowadzić do nieefektywnie wysokich kosztów oraz problemów z montażem. Przewód AAFLwsXSn 50, z kolei, jest przewodem aluminiowym, ale jego przekrój i specyfika zastosowania nie są zgodne z wymaganiami dla bezpiecznego przyłącza ziemnego. Użycie przewodu o takiej budowie mogłoby prowadzić do problemów z uziemieniem oraz zwiększoną podatnością na uszkodzenia mechaniczne. Natomiast AFL 6 120, choć jest przewodem dostosowanym do dużych obciążeń, to jego konstrukcja i przeznaczenie w szczególności w instalacjach energetycznych sprawiają, że nie jest on zalecany do przyłącza dla budynku jednorodzinnego. Wybór niewłaściwego przewodu może prowadzić nie tylko do problemów technicznych, ale również do naruszenia przepisów prawa budowlanego oraz norm bezpieczeństwa, co jest szczególnie istotne w kontekście zapewnienia bezpieczeństwa użytkowników budynku.

Pytanie 22

Jaka jest wartość skuteczna napięcia przemiennego dotykowego, która może być utrzymywana w standardowych warunkach otoczenia, przy rezystancji ciała ludzkiego wynoszącej około 1 kΩ?

A. 50 V
B. 12 V
C. 25 V
D. 60 V
Istniejące nieprawidłowe odpowiedzi związane z wartością skuteczną napięcia dotykowego dotykają kluczowych aspektów bezpieczeństwa elektrycznego, które są niezwykle istotne w kontekście ochrony życia i zdrowia ludzi. Odpowiedzi sugerujące ilości mniejsze niż 50 V, jak 12 V, 25 V czy 60 V, mogą wprowadzać w błąd co do rzeczywistego ryzyka związanego z narażeniem na działanie prądu przemiennego. Po pierwsze, 12 V to napięcie, które w większości przypadków uznawane jest za bezpieczne, ale w praktyce, zwłaszcza w warunkach wilgotnych, nawet niskie napięcia mogą stanowić zagrożenie, jeśli nie są odpowiednio zabezpieczone. 25 V również nie jest wystarczająco zabezpieczone, biorąc pod uwagę, że normy bezpieczeństwa w różnych aplikacjach zazwyczaj uwzględniają wyższe wartości. Co więcej, 60 V, choć bliskie rzeczywistego niebezpieczeństwa, przekracza zalecaną wartość 50 V, co wyraźnie narusza zasady ochrony przeciwporażeniowej. Warto również podkreślić, że w przypadku napięć przekraczających 50 V, znaczenie ma nie tylko ich wartość, ale również czas ekspozycji oraz warunki otoczenia. Błędem jest zakładanie, że napięcie poniżej 50 V jest zawsze bezpieczne, co ignoruje złożoność interakcji między prądem a organizmem ludzkim. Z tego powodu kluczowe jest przestrzeganie standardów, takich jak IEC 60479, które stanowią fundament dla bezpiecznego projektowania instalacji elektrycznych.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W systemach elektrycznych o niskim napięciu uzupełniająca ochrona przed porażeniem elektrycznym polega na

A. zastosowaniu separacji elektrycznej pojedynczego odbiornika
B. zainstalowaniu podwójnej lub wzmocnionej izolacji elektrycznej
C. umieszczeniu elementów czynnych poza zasięgiem rąk
D. wykonaniu ochronnych połączeń wyrównawczych miejscowych
Wybór odpowiedzi dotyczącej wykonania ochronnych połączeń wyrównawczych miejscowych jest prawidłowy, ponieważ te połączenia mają na celu zminimalizowanie ryzyka porażenia prądem elektrycznym w sytuacji awaryjnej, zapewniając jednocześnie odpowiednie warunki ochrony przed uszkodzeniami. Ochronne połączenia wyrównawcze miejscowe polegają na połączeniu metalowych elementów instalacji elektrycznej lub obudów urządzeń z systemem uziemiającym. Dzięki temu w momencie wystąpienia uszkodzenia, prąd zwarciowy jest kierowany do uziemienia, co zmniejsza potencjał elektryczny na obudowach urządzeń, a tym samym minimalizuje ryzyko porażenia użytkowników. Przykładem zastosowania tej metody mogą być instalacje w łazienkach, gdzie stosuje się specjalne połączenia wyrównawcze, aby zapewnić bezpieczeństwo w obszarach narażonych na kontakt z wodą. Zgodnie z normą PN-IEC 60364-5-54, wykonanie tych połączeń jest kluczowym elementem zapewniającym bezpieczeństwo w obszarach niskich napięć, co czyni tę odpowiedź szczególnie istotną w kontekście ochrony przed porażeniem elektrycznym.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jaką maksymalną wartość impedancji pętli zwarcia można zastosować w trójfazowym układzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczność ochrony przeciwporażeniowej w przypadku uszkodzenia izolacji, gdy wyłączenie tego obwodu ma być realizowane przez instalacyjny wyłącznik nadprądowy C10?

A. 2,3 Ω
B. 7,7 Ω
C. 8,0 Ω
D. 4,6 Ω
Wybór wartości impedancji pętli zwarcia wyższej niż 2,3 Ω w kontekście zapewnienia skutecznej ochrony przeciwporażeniowej jest nieprawidłowy z kilku powodów. Po pierwsze, każda wartość impedancji, która przekracza tę wartość, skutkuje niższym prądem zwarciowym, co wydłuża czas wyłączenia zasilania przez wyłącznik nadprądowy. Dla przykładu, przy impedancji 4,6 Ω prąd zwarciowy wynosi jedynie około 87 A, co może spowodować, że wyłącznik C10 nie zareaguje wystarczająco szybko, co zwiększa ryzyko porażenia. Ponadto, wartość 7,7 Ω oraz 8,0 Ω stawia instalację w strefie ryzyka, gdyż czas wyłączenia może przekroczyć bezpieczne limity określone w normach, co jest sprzeczne z zasadami ochrony elektrycznej. Wartości te są również niezgodne z zaleceniami wynikającymi z dyrektyw unijnych i krajowych przepisów prawa budowlanego, które nakładają obowiązek przeprowadzenia analizy ryzyka oraz projektowania instalacji zgodnie z zasadami bezpieczeństwa. W praktyce, projektanci i wykonawcy powinni zawsze dążyć do zminimalizowania impedancji pętli zwarcia, aby zapewnić maksymalną ochronę użytkowników. Nieprzestrzeganie tej zasady może prowadzić do poważnych konsekwencji, zarówno dla użytkowników, jak i dla samej instalacji elektrycznej.

Pytanie 29

Jakie urządzenie powinno być wykorzystane do płynnej regulacji prędkości obrotowej silnika indukcyjnego zwartego?

A. Autotransformator
B. Softstart
C. Rozrusznik
D. Falownik
Używanie softstartów do regulacji obrotów silnika indukcyjnego zwartego opiera się na błędnym założeniu, że ten typ urządzenia może zmieniać prędkość silnika. Softstarty służą głównie do ograniczenia prądu rozruchowego silników oraz do wygodnego uruchamiania i zatrzymywania silników. Działają poprzez stopniowe zwiększanie napięcia zasilającego, co pozwala na łagodny start, ale nie umożliwiają regulacji prędkości obrotowej w sposób płynny i ciągły. Tego typu urządzenia są przydatne w aplikacjach, gdzie wymagana jest ochrona silnika przed przeciążeniem, ale nie można ich stosować tam, gdzie potrzebna jest precyzyjna kontrola obrotów. Autotransformator, z kolei, zmienia napięcie zasilające, co wpływa na moment obrotowy silnika, jednak nie jest w stanie zapewnić pełnej kontroli nad jego prędkością. Takie podejście prowadzi do nieefektywności energetycznej oraz może być przyczyną uszkodzeń silnika przy dużych zmianach obciążenia. Rozruszniki, zwłaszcza te ręczne, w ogóle nie oferują regulacji obrotów; ich głównym zadaniem jest uruchomienie silnika. W kontekście nowoczesnej automatyki przemysłowej, zastosowanie niewłaściwych urządzeń lub metod może prowadzić do utraty wydajności systemu oraz zwiększenia kosztów operacyjnych, co podkreśla znaczenie wyboru odpowiednich technologii dla specyficznych aplikacji.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jak wymiana uzwojenia pierwotnego na inne, wykonane z drutów nawojowych o podwójnym przekroju i tej samej liczbie zwojów, wpłynie na działanie transformatora, przy zachowanym uzwojeniu wtórnym?

A. Zwiększy się efektywność transformatora
B. Zmaleje napięcie na końcówkach uzwojenia wtórnego
C. Wzrasta napięcie na końcówkach uzwojenia wtórnego
D. Zredukuje się moc pobierana z transformatora
Zrozumienie wpływu zmiany uzwojenia transformatora na jego parametry pracy wymaga przemyślenia kilku kluczowych aspektów. Zmiana uzwojenia pierwotnego na druty o większym przekroju nie prowadzi do zmniejszenia mocy pobieranej z transformatora, ponieważ moc pobierana przez transformator zależy głównie od obciążenia podłączonego do uzwojenia wtórnego oraz od napięcia i prądu w uzwojeniu pierwotnym. Zmiana przekroju drutu nie wpływa na zjawisko obciążenia, a zatem moc pozostaje na poziomie wymaganym przez odbiornik. Odpowiedź dotycząca zmniejszenia napięcia na zaciskach uzwojenia wtórnego jest także błędna, ponieważ napięcie wtórne w transformatorze zależy od stosunku liczby zwojów uzwojenia pierwotnego do wtórnego, a nie od przekroju drutów. Zwiększenie przekroju drutu może prowadzić do mniejszych strat w uzwojeniu, ale nie zmienia samego napięcia. W przypadku zwiększenia przekroju drutów, nie jest możliwe zwiększenie napięcia na zaciskach uzwojenia wtórnego, ponieważ napięcie jest determinowane przez stosunek zwojów, a nie przez ich przekrój. Zrozumienie tych zasad jest kluczowe w kontekście projektowania i eksploatacji transformatorów, aby nie wprowadzać zamieszania w doborze parametrów technicznych i ich wpływu na efektywność energetyczną.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Wkładka topikowa przedstawiona na rysunku, zabezpieczająca jeden z obwodów elektrycznych w pewnym pomieszczeniu, zapewnia skuteczną ochronę

Ilustracja do pytania
A. urządzeń energoelektronicznych tylko przed skutkami przeciążeń.
B. urządzeń energoelektronicznych przed skutkami zwarć i przeciążeń.
C. przewodów elektrycznych tylko przed skutkami zwarć.
D. przewodów elektrycznych przed skutkami zwarć i przeciążeń.
Wybór odpowiedzi sugerującej, że wkładka topikowa zabezpiecza tylko przed skutkami zwarć lub wyłącznie przed przeciążeniami, jest niepoprawny, ponieważ nie odzwierciedla rzeczywistego działania tego elementu. Wkładka topikowa działa jako zabezpieczenie zarówno przed przeciążeniem, jak i zwarciem, które są dwoma różnymi, ale równie istotnymi zagrożeniami dla instalacji elektrycznych. Przeciążenie następuje, gdy prąd w obwodzie przekracza wartość nominalną, co może prowadzić do przegrzania przewodów, a w rezultacie ich uszkodzenia. Z kolei zwarcie generuje nagły wzrost prądu, co również stwarza ryzyko pożaru lub uszkodzenia urządzeń elektrycznych. Propozycja, że wkładka topikowa chroni jedynie urządzenia energoelektroniczne, jest również myląca, ponieważ jej funkcją jest ochrona całego obwodu elektrycznego, a nie tylko poszczególnych urządzeń. Dobrze zaprojektowana instalacja elektryczna powinna uwzględniać zastosowanie odpowiednich wkładek topikowych, które zapewnią ochronę przed oboma rodzajami zagrożeń. Niestety, brak zrozumienia roli wkładek topikowych w instalacjach elektrycznych prowadzi do zagrożeń, które można by uniknąć poprzez właściwe dobranie zabezpieczeń oraz ich zastosowanie zgodnie z obowiązującymi normami.

Pytanie 36

Która z wymienionych czynności nie jest częścią oceny stanu technicznego podczas przeglądu układu napędowego z wykorzystaniem przekształtnika energoelektronicznego?

A. Sprawdzenie natężenia oświetlenia na stanowisku obsługi układu napędowego
B. Ocena czystości filtrów powietrza chłodzącego
C. Kontrola połączeń stykowych
D. Weryfikacja jakości zabezpieczeń nadprądowych oraz zmiennozwarciowych
Sprawdzanie natężenia oświetlenia na stanowisku obsługi układu napędowego to nie to samo, co przegląd stanu technicznego tego układu. Jak dla mnie, w takim przeglądzie powinniśmy skupić się na kluczowych aspektach, które wpływają na to, czy układ działa wydajnie i bezpiecznie. Na przykład, trzeba by sprawdzić zabezpieczenia nadprądowe i zmiennozwarciowe, bo one chronią urządzenia przed uszkodzeniem, gdy coś idzie nie tak, jak powinno. I nie zapominajmy o połączeniach stykowych, które odpowiadają za przekazywanie sygnałów elektrycznych. Filtry powietrza chłodzącego też mają ogromne znaczenie, bo odpowiednia temperatura pracy układu wpływa na jego długowieczność. Zadbanie o te wszystkie aspekty to klucz do efektywności operacyjnej oraz bezpieczeństwa użycia systemów z przekształtnikami. Przeglądy zgodne z normami, jak IEC 60204, mogą pomóc w uniknięciu awarii i sprawić, że układy napędowe będą działały jak należy.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Aby ograniczyć prąd płynący w obwodzie zasilania silnika indukcyjnego pierścieniowego podczas rozruchu, co należy zrobić?

A. zwiększyć obciążenie na wale
B. dostosować rozrusznik obwodu wirnika
C. zmienić kolejność faz w stojanie
D. przetoczyć pierścienie ślizgowe wirnika
Dopasowanie rozrusznika obwodu wirnika jest kluczowym działaniem mającym na celu zmniejszenie prądu rozruchowego silnika indukcyjnego pierścieniowego. W momencie uruchamiania silnika indukcyjnego, zwłaszcza w przypadku silników o dużej mocy, prąd rozruchowy może być kilkukrotnie większy od prądu nominalnego. Użycie rozrusznika, który ogranicza ten prąd, umożliwia płynne rozpoczęcie pracy silnika oraz zabezpiecza pozostałe elementy obwodu przed uszkodzeniem. Przykładem takiego rozrusznika jest rozrusznik z opornikami, który na początku wprowadza oporność do obwodu wirnika, a następnie stopniowo ją zmniejsza, co pozwala na kontrolowanie momentu obrotowego i prądu. W praktyce, prawidłowe dopasowanie rozrusznika do parametrów silnika i obciążenia ma kluczowe znaczenie dla efektywności energetycznej oraz długowieczności urządzenia, co jest zgodne z najlepszymi praktykami w branży. Warto również zwrócić uwagę na normy ustanowione przez organizacje takie jak IEC, które wskazują na znaczenie odpowiednich systemów rozruchowych w przemyśle.

Pytanie 39

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Zwiększenie prędkości obrotowej wirnika silnika
B. Nawrót wirnika silnika
C. Uszkodzenie wirnika silnika
D. Zmniejszenie prędkości obrotowej wirnika silnika
Zwiększenie prędkości obrotowej wirnika silnika asynchronicznego zasilanego napięciem o częstotliwości 60 Hz w porównaniu do znamionowej częstotliwości 50 Hz jest wynikiem zjawiska zwanego poślizgiem. W przypadku silników asynchronicznych prędkość obrotowa wirnika jest zawsze niższa od prędkości synchronicznej, która zależy od częstotliwości zasilania oraz liczby par biegunów. Wzór na prędkość synchroniczną jest następujący: n_s = (120 * f) / P, gdzie n_s to prędkość synchroniczna w obrotach na minutę (RPM), f to częstotliwość zasilania w hercach, a P to liczba par biegunów. W przypadku zasilania 60 Hz, prędkość synchroniczna wzrośnie, co skutkuje wzrostem prędkości obrotowej wirnika. Praktycznie, dla silnika z dwiema parami biegunów zasilanego z sieci 50 Hz, prędkość będzie wynosić 1200 RPM, natomiast przy 60 Hz wzrośnie do 1440 RPM. Takie zjawisko może być wykorzystywane w aplikacjach, gdzie wymagana jest większa prędkość obrotowa, jednak należy pamiętać o możliwych konsekwencjach, takich jak zwiększone straty cieplne i ryzyko uszkodzenia silnika. W przemyśle standardem jest dostosowywanie zasilania do znamionowych parametrów silnika w celu zapewnienia jego długowieczności i efektywności.

Pytanie 40

Uszkodzenie izolacji uzwojenia w działającym przekładniku może wystąpić na skutek rozłączenia zacisków jego strony

A. pierwotnej przekładnika napięciowego
B. wtórnej przekładnika prądowego
C. pierwotnej przekładnika prądowego
D. wtórnej przekładnika napięciowego
Odpowiedzi związane z pierwotnym uzwojeniem przekładników prądowych i napięciowych są nieprawidłowe, ponieważ zakładają, że rozwarcie może wystąpić w obwodzie, który nie generuje niebezpiecznych warunków. W rzeczywistości pierwotne uzwojenie przekładnika prądowego jest na stałe podłączone do obwodu zasilającego i nie jest narażone na bezpośrednie rozwarcie, co powodowałoby wzrost napięcia na jego końcach. W przypadku przekładnika napięciowego, rozwarcie uzwojenia wtórnego może prowadzić do sytuacji, w której napięcie na uzwojeniu pierwotnym wzrasta, ale nie prowadzi to do uszkodzenia izolacji. Typowym błędem myślowym jest mylenie ról uzwojeń wtórnych i pierwotnych; uzwojenia wtórne są wrażliwe na rozwarcia, które prowadzą do ryzykownych warunków operacyjnych z powodu braku obciążenia. Dlatego istotne jest, aby zrozumieć, że uszkodzenia izolacji wynikają głównie z nieprawidłowego działania obwodów wtórnych, a nie pierwotnych, co powinno być uwzględnione w każdym projekcie systemu energetycznego. Przestrzeganie norm oraz stosowanie odpowiednich zabezpieczeń to kluczowe elementy zapewniające bezpieczeństwo i niezawodność systemów elektroenergetycznych.