Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 12 lutego 2026 22:41
  • Data zakończenia: 12 lutego 2026 22:52

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W topologii fizycznej gwiazdy wszystkie urządzenia działające w sieci są

A. podłączone do węzła sieci
B. podłączone do jednej magistrali
C. połączone z dwoma sąsiadującymi komputerami
D. połączone pomiędzy sobą odcinkami kabla tworząc zamknięty pierścień
W topologii fizycznej gwiazdy wszystkie urządzenia w sieci są podłączone do centralnego węzła, którym najczęściej jest przełącznik (switch) lub koncentrator (hub). Taki układ pozwala na zorganizowanie komunikacji w sieci w sposób efektywny i przejrzysty. Każde urządzenie ma indywidualne połączenie z węzłem, co umożliwia niezależną komunikację, a także zwiększa odporność na awarie. W przypadku, gdy jedno z urządzeń przestaje działać, pozostałe nie są bezpośrednio dotknięte, co jest kluczowe dla ciągłości działania sieci. Przykładowo, w biurach często stosuje się topologię gwiazdy, aby zapewnić łatwą rozbudowę sieci oraz prostą identyfikację i lokalizację problemów. Dobre praktyki w zakresie projektowania sieci z uwzględnieniem topologii gwiazdy obejmują również stosowanie odpowiednich kabli oraz technologii, aby zminimalizować straty sygnału i zapewnić optymalną wydajność sieci.

Pytanie 2

Proces łączenia sieci komputerowych, który polega na przesyłaniu pakietów protokołu IPv4 przez infrastrukturę opartą na protokole IPv6 oraz w przeciwnym kierunku, nosi nazwę

A. podwójnego stosu IP
B. mapowaniem
C. translacją protokołów
D. tunelowaniem
Mechanizmy integracji sieci komputerowych mogą być mylone, co prowadzi do nieprawidłowych wyborów odpowiedzi. Mapowanie, chociaż istotne w kontekście konwersji adresów IP, nie odnosi się bezpośrednio do transferu pakietów między różnymi wersjami protokołu IP. Mapowanie to proces, który ma miejsce w kontekście translacji adresów, ale nie obejmuje bezpośredniego przesyłania danych w formie tuneli. Z kolei translacja protokołów dotyczy zmiany jednego protokołu na inny, co niekoniecznie oznacza tunelowanie. Takie podejście nie uwzględnia infrastruktury sieciowej, która jest kluczowa w kontekście komunikacji między IPv4 a IPv6. Ponadto, podwójny stos IP to metoda, w której urządzenia obsługują zarówno IPv4, jak i IPv6 równolegle, co również nie jest synonimem tunelowania. W praktyce, pomylenie tych terminów może prowadzić do błędnej konfiguracji sieci oraz problemów z komunikacją między różnymi systemami. Kluczowe jest więc zrozumienie różnicy między tymi mechanizmami i ich zastosowaniem w praktyce, aby uniknąć typowych pułapek związanych z integracją nowoczesnych i starszych systemów sieciowych.

Pytanie 3

Urządzenia spełniające standard 802.11 g mogą osiągnąć maksymalną prędkość transmisji danych wynoszącą

A. 54 Mb/s
B. 108 Mb/s
C. 150 Mb/s
D. 11 Mb/s
Odpowiedzi takie jak 150 Mb/s, 11 Mb/s czy 108 Mb/s to niestety nieporozumienia. Przykładowo, 150 Mb/s nie pasuje do żadnego dobrze znanego standardu 802.11; to prędkość z 802.11n lub 802.11ac, ale nie 802.11g. Natomiast 11 Mb/s odnosi się do 802.11b, który był stosowany głównie przed 802.11g. 108 Mb/s to też chyba mylne wrażenie, bo to wartość z dodatkowego trybu w 802.11g, ale nie jest to maksymalna prędkość. Takie błędne myślenie często bierze się z mylenia różnych standardów i ich specyfikacji, co prowadzi do przypisania złej prędkości. Warto więc lepiej poznać różnice między standardami oraz ich zastosowaniem, aby nie wpaść w takie pułapki.

Pytanie 4

Aby umożliwić komunikację pomiędzy sieciami VLAN, wykorzystuje się

A. modem
B. punkt dostępowy
C. koncentrator
D. ruter
Ruter to naprawdę ważne urządzenie, które łączy różne sieci, w tym również VLAN-y, czyli wirtualne sieci lokalne. Dzięki VLAN-om można lepiej zarządzać ruchem w sieci i zwiększać jej bezpieczeństwo. Żeby urządzenia w różnych VLAN-ach mogły ze sobą rozmawiać, potrzebny jest ruter, który zajmuje się przełączaniem danych między tymi sieciami. W praktyce ruter korzysta z różnych protokołów routingu, jak OSPF czy EIGRP, żeby skutecznie przesyłać informacje. Co więcej, nowoczesne rutery potrafią obsługiwać routing między VLAN-ami, dzięki czemu można przesyłać dane między nimi bez potrzeby używania dodatkowych urządzeń. Używanie rutera w sieci VLAN to świetny sposób na projektowanie sieci, co ma duży wpływ na efektywność i bezpieczeństwo komunikacji.

Pytanie 5

Protokół TCP (Transmission Control Protocol) funkcjonuje w trybie

A. hybrydowym
B. bezpołączeniowym
C. sekwencyjnym
D. połączeniowym
Pojęcia hybrydowego, sekwencyjnego oraz bezpołączeniowego nie oddają charakterystyki działania protokołu TCP. Tryb hybrydowy nie jest standardowo definiowany w kontekście protokołów transportowych; zazwyczaj odnosi się do architektur, które łączą różne podejścia. W kontekście protokołu TCP, nie ma zastosowania, ponieważ TCP jest zdefiniowany jako protokół połączeniowy. Odpowiedź sekwencyjna mogłaby sugerować, że dane są przesyłane w ustalonej kolejności, co jest prawdą, ale nie oddaje to istoty działania TCP jako protokołu połączeniowego, który zapewnia dodatkowo kontrolę nad jakością połączenia. Z kolei tryb bezpołączeniowy, z którym związany jest protokół UDP (User Datagram Protocol), oznacza, że dane są przesyłane bez ustanawiania połączenia, co prowadzi do większej szybkości, ale bez gwarancji dostarczenia czy kolejności pakietów. Użytkownicy mogą błędnie interpretować TCP jako działający w trybie sekwencyjnym, skupiając się jedynie na kolejności przesyłania danych, nie rozumiejąc, że kluczowym aspektem jest sama natura połączenia i zapewnienie niezawodności. W praktyce, zrozumienie różnicy między połączeniowym a bezpołączeniowym podejściem jest kluczowe dla projektowania aplikacji sieciowych, co często prowadzi do zjawiska pomieszania ról różnych protokołów.

Pytanie 6

W technologii Ethernet protokół CSMA/CD stosowany w dostępie do medium opiera się na

A. przekazywaniu żetonu
B. priorytetach żądań
C. unikaniu kolizji
D. wykrywaniu kolizji
Protokół CSMA/CD (Carrier Sense Multiple Access with Collision Detection) jest kluczowym elementem w technologii Ethernet, który umożliwia efektywne zarządzanie dostępem do wspólnego medium transmisyjnego. Jego działanie opiera się na zasadzie wykrywania kolizji, co oznacza, że urządzenia w sieci najpierw nasłuchują kanał, aby upewnić się, że nie jest on zajęty. Jeśli dwa urządzenia rozpoczną przesyłanie danych jednocześnie, dochodzi do kolizji. Protokół CSMA/CD wykrywa tę kolizję i natychmiast przerywa transmisję, a następnie oba urządzenia czekają losowy czas przed ponowną próbą wysyłania danych. Ta mechanika jest fundamentalna dla prawidłowego funkcjonowania sieci Ethernet, co zostało opisane w standardach IEEE 802.3. W praktyce, pozwala to na efektywne i sprawne zarządzanie danymi, minimalizując ryzyko utraty informacji i zwiększając wydajność całej sieci, co jest niezwykle istotne w środowiskach o dużym natężeniu ruchu, takich jak biura czy centra danych.

Pytanie 7

Które z poleceń w systemie Windows umożliwia sprawdzenie zapisanych w pamięci podręcznej komputera tłumaczeń nazw DNS na odpowiadające im adresy IP?

A. ipconfig /flushdns
B. ipconfig /displaydns
C. ipconfig /release
D. ipconfig /renew
Wybór 'ipconfig /release' to nie jest najlepszy pomysł, bo to polecenie zwalnia adres IP, a nie ma nic wspólnego z pamięcią podręczną DNS. To może wprowadzać w błąd, bo można pomyśleć, że na pewno coś zmienia w kontekście monitorowania tej pamięci. Z kolei polecenie 'ipconfig /flushdns' też nie jest dobre, bo ono służy do czyszczenia pamięci, a nie do jej wyświetlania. Ważne jest, żeby znać różnice między tymi poleceniami, bo czyszczenie to jedno, a sprawdzanie zawartości to zupełnie co innego. A 'ipconfig /renew' to też nie jest odpowiednia odpowiedź, bo odnawia ono dzierżawę adresu IP z serwera DHCP. Wiele osób się gubi w tych poleceniach, bo wszystkie zaczynają się od 'ipconfig', ale każde z nich ma inne zastosowanie. Dlatego warto wiedzieć, jakie polecenie kiedy użyć, żeby rozwiązywanie problemów z siecią było skuteczniejsze.

Pytanie 8

Która para: protokół – warstwa, w której dany protokół funkcjonuje, jest prawidłowo zestawiona według modelu TCP/IP?

A. TCP – warstwa Internetu
B. DHCP – warstwa dostępu do sieci
C. RARP – warstwa transportowa
D. DNS – warstwa aplikacyjna
Wybór odpowiedzi, która łączy RARP z warstwą transportową, jest błędny, ponieważ RARP (Reverse Address Resolution Protocol) działa na warstwie dostępu do sieci, a nie transportowej. RARP jest używany do mapowania adresów MAC na adresy IP, co jest kluczowe dla urządzeń w sieci lokalnej, które potrzebują informacji o swoim adresie IP w oparciu o adres sprzętowy. Poza tym, DHCP (Dynamic Host Configuration Protocol) również nie działa na warstwie dostępu do sieci, lecz na warstwie aplikacji, ponieważ służy do dynamicznego przydzielania adresów IP i innych parametrów konfiguracyjnych urządzeniom w sieci. Przypisanie TCP do warstwy Internetu jest także błędne, ponieważ TCP (Transmission Control Protocol) działa na warstwie transportowej. Warstwa transportowa jest odpowiedzialna za zapewnienie komunikacji między hostami, oferując usługi takie jak kontrola błędów oraz zapewnienie dostarczania. Dobrym przykładem zastosowania tych protokołów jest to, jak aplikacje korzystające z TCP zapewniają niezawodne przesyłanie danych, co jest kluczowe w przypadku transmisji plików czy transmisji wideo. Dlatego zrozumienie, w której warstwie działają konkretne protokoły, jest istotne dla prawidłowego projektowania i zarządzania sieciami komputerowymi.

Pytanie 9

Jakie polecenie pozwoli na wyświetlenie ustawień interfejsu sieciowego w systemie Linux?

A. ipaddr show
B. traceroute
C. ipconfig
D. iproute show
Odpowiedzi takie jak 'ipconfig', 'traceroute' i 'iproute show' to powszechne źródła nieporozumień, które mogą prowadzić do błędnych wniosków w kontekście administracji siecią w systemie Linux. 'ipconfig' jest poleceniem, które działa w systemach Windows i służy do wyświetlania konfiguracji sieciowej, co może wprowadzać w błąd użytkowników, którzy są przyzwyczajeni do pracy w tym środowisku. W systemie Linux zamiast tego używa się polecenia 'ip addr' lub 'ip addr show', które jest bardziej wszechstronne i dostarcza szczegółowych informacji o konfiguracji interfejsów. 'Traceroute' to narzędzie do diagnozowania tras pakietów w sieci, które pokazuje, przez jakie węzły przechodzą dane, ale nie dostarcza informacji o konfiguracji lokalnych interfejsów sieciowych, co czyni je nieodpowiednim w tym kontekście. 'Iproute show' to nieco bliższe polecenie, ale również niepoprawne w tym przypadku, ponieważ 'iproute' dotyczy bardziej ogólnych informacji o routingu i nie wyświetla dokładnych informacji o samych interfejsach. Typowym błędem myślowym jest mylenie funkcji różnych poleceń, co może prowadzić do nieefektywnego rozwiązywania problemów sieciowych. Dlatego kluczowe jest zrozumienie, jakie narzędzia są dostępne i jak je prawidłowo wykorzystać w kontekście administracji siecią w systemie Linux.

Pytanie 10

Urządzenia przedstawione na zdjęciu to

Ilustracja do pytania
A. modemy.
B. bezprzewodowe karty sieciowe.
C. przełączniki.
D. adaptery PowerLine.
Urządzenia przedstawione na zdjęciu to adaptery PowerLine, które są niezwykle przydatne w tworzeniu sieci lokalnych, zwłaszcza w sytuacjach, gdzie standardowe połączenie WLAN nie jest wystarczające. Adaptery te korzystają z istniejącej instalacji elektrycznej, co oznacza, że można je w łatwy sposób zainstalować w każdym pomieszczeniu, gdzie dostępne są gniazdka elektryczne. Umożliwiają one przesyłanie danych z prędkościami, które mogą sięgać nawet kilku setek megabitów na sekundę, w zależności od modelu i jakości instalacji elektrycznej. Dzięki zastosowaniu technologii PowerLine, adaptery te eliminują potrzebę prowadzenia dodatkowych kabli, co jest nie tylko oszczędnością czasu, ale także estetycznym rozwiązaniem. W praktyce mogą być wykorzystywane do zasilania urządzeń do streamingu, gier online czy do pracy zdalnej, gdzie stabilne i szybkie połączenie internetowe jest kluczowe. Adaptery PowerLine są zgodne z różnymi standardami sieciowymi, co czyni je uniwersalnym rozwiązaniem dla wielu użytkowników.

Pytanie 11

Jakie polecenie służy do analizy statystyk protokołów TCP/IP oraz bieżących połączeń sieciowych w systemach operacyjnych rodziny Windows?

A. route
B. ping
C. tracert
D. netstat
Polecenie 'netstat' jest podstawowym narzędziem w systemach Windows, które umożliwia użytkownikom sprawdzenie statystyk protokołów TCP/IP oraz bieżących połączeń sieciowych. Dzięki 'netstat' można uzyskać informacje o aktywnych połączeniach TCP, korzystających z portów, a także o stanie tych połączeń. Przykładowo, użycie polecenia 'netstat -a' wyświetli wszystkie aktywne połączenia oraz porty nasłuchujące, co jest szczególnie przydatne w diagnostyce problemów z siecią czy w analizie bezpieczeństwa. Ponadto, 'netstat' potrafi zidentyfikować, które programy są odpowiedzialne za otwarte połączenia, co pozwala na lepszą kontrolę nad bezpieczeństwem systemu. Narzędzie to jest zgodne ze standardami administracji sieci, a jego zastosowanie w codziennej pracy może znacznie usprawnić zarządzanie infrastrukturą sieciową. Warto także wspomnieć, że 'netstat' jest wszechstronnym narzędziem, które znajduje zastosowanie w różnych systemach operacyjnych, co czyni je uniwersalnym rozwiązaniem dla specjalistów zajmujących się sieciami.

Pytanie 12

Adres MAC (Medium Access Control Address) stanowi sprzętowy identyfikator karty sieciowej Ethernet w warstwie modelu OSI

A. trzeciej o długości 48 bitów
B. trzeciej o długości 32 bitów
C. drugiej o długości 48 bitów
D. drugiej o długości 32 bitów
System modelu OSI dzieli architekturę komunikacyjną na siedem warstw, a adres MAC jest ściśle związany z warstwą drugą, czyli warstwą łącza danych. Odpowiedzi wskazujące, że adres MAC ma długość 32 bitów, są błędne, ponieważ standardowy format adresu MAC wynosi 48 bitów. Przyczyną tego błędu może być mylenie adresu MAC z innymi identyfikatorami w sieci, takimi jak adresy IP, które w wersji IPv4 mają długość 32 bitów. Warto zauważyć, że adresy MAC są konstrukcją sprzętową, co oznacza, że są przypisywane przez producentów urządzeń i są unikalne dla każdego interfejsu sieciowego. Oprócz tego, niepoprawne odpowiedzi mogą wynikać z braku znajomości standardów IEEE, które określają format i zasady przydzielania adresów MAC. Ważne jest, aby zrozumieć rolę adresów MAC w kontekście bezpieczeństwa sieci, ponieważ nieautoryzowane urządzenia mogą próbować podszywać się pod legalne, wykorzystując fałszywe adresy. Dlatego znajomość właściwego formatu adresu MAC oraz jego zastosowania w praktyce jest kluczowa dla każdej osoby zajmującej się administracją sieci.

Pytanie 13

Medium, w którym przesyłany sygnał nie jest narażony na wpływ zakłóceń elektromagnetycznych, to

A. fale radiowe
B. kabel typu skrętka
C. światłowód
D. kabel koncentryczny
Światłowód jest medium transmisyjnym, które charakteryzuje się wysoką odpornością na zakłócenia elektromagnetyczne. Działa na zasadzie przesyłania sygnału świetlnego przez włókna szklane lub plastikowe, co sprawia, że sygnał nie jest narażony na wpływy elektromagnetyczne, które mogą zakłócać jego jakość. W praktyce oznacza to, że światłowody są idealnym rozwiązaniem w środowiskach, gdzie występują silne zakłócenia, np. w pobliżu urządzeń elektronicznych czy w przemyśle. Dzięki temu, światłowody znalazły szerokie zastosowanie w telekomunikacji, sieciach komputerowych oraz systemach monitoringu. Warto też wspomnieć, że w porównaniu do tradycyjnych kabli miedzianych, światłowody oferują znacznie większą przepustowość oraz dłuższy zasięg transmisji bez utraty jakości sygnału. Standardy takie jak ITU-T G.652 określają wymagania dotyczące światłowodów wykorzystywanych w telekomunikacji.

Pytanie 14

Jakie medium transmisyjne powinno się zastosować do połączenia urządzeń sieciowych oddalonych o 110 m w pomieszczeniach, gdzie występują zakłócenia EMI?

A. Fal radiowych
B. Światłowodu jednodomowego
C. Kabla współosiowego
D. Skrętki ekranowanej STP
Światłowód jednodomowy to świetny wybór, jeśli chodzi o podłączanie różnych urządzeń w sieci, zwłaszcza na dystansie do 110 m. Ma tę przewagę, że radzi sobie w trudnych warunkach, gdzie jest dużo zakłóceń elektromagnetycznych. To naprawdę pomaga, bo światłowody są znacznie mniej wrażliwe na te zakłócenia w porównaniu do tradycyjnych kabli. Poza tym, oferują mega dużą przepustowość – da się przesyłać dane z prędkościami sięgającymi gigabitów na sekundę, co jest kluczowe dla aplikacji, które potrzebują dużo mocy obliczeniowej. Używa się ich w różnych branżach, takich jak telekomunikacja czy infrastruktura IT, gdzie ważne jest, żeby sygnał był mocny i stabilny. Warto też dodać, że światłowody są zgodne z międzynarodowymi standardami, co czyni je uniwersalnymi i trwałymi. Oczywiście, instalacja wymaga odpowiednich technik i narzędzi, co może być droższe na starcie, ale w dłuższej perspektywie na pewno się opłaca ze względu na ich efektywność i pewność działania.

Pytanie 15

W systemie Ubuntu Server, aby zainstalować serwer DHCP, należy zastosować komendę

A. sudo service isc-dhcp-server start
B. sudo apt-get isc-dhcp-server start
C. sudo apt-get install isc-dhcp-server
D. sudo service isc-dhcp-server install
Instalowanie serwera DHCP na Linuksie to kwestia znajomości procedur. Często się zdarza, że ludzie korzystają z błędnych poleceń i przez to mają problemy. Na przykład, polecenie 'sudo service isc-dhcp-server install' jest niewłaściwe, bo 'service' używasz do zarządzania już działającymi usługami, a nie do ich instalacji. Prawidłowe instalowanie powinno odbywać się przez menedżera pakietów, a nie przez uruchamianie usług. Jeszcze jedno, polecenie 'sudo service isc-dhcp-server start' próbuje uruchomić usługę, której jeszcze nie masz, więc to też się nie uda. Bez wcześniejszej instalacji, to polecenie się nie powiedzie, bo system nie zobaczy tej usługi. I ostatnie, 'sudo apt-get isc-dhcp-server start', jest błędne, ponieważ 'apt-get' nie działa z komendą 'start', tylko z takimi jak 'install', 'remove' czy 'update'. Takie nieporozumienia wynikają najczęściej z tego, że nie rozumie się, jak działa zarządzanie pakietami i różnice między poleceniami do instalacji a tymi do zarządzania usługami. Dobrze jest po prostu znać składnię, ale jeszcze lepiej zrozumieć, jak działa cały system i co się z tym wiąże, bo to jest kluczowe do właściwego zarządzania serwerami.

Pytanie 16

W zasadach grup włączono i skonfigurowano opcję "Ustaw ścieżkę profilu mobilnego dla wszystkich użytkowników logujących się do tego komputera":

\\serwer\profile\%username%
W którym folderze serwera będzie się znajdował profil mobilny użytkownika jkowal?
A. \profile\username
B. \profile\username\jkowal
C. \profile\jkowal
D. \profile\serwer\username
Wybór innych odpowiedzi wynika z nieporozumień dotyczących struktury ścieżek profilowych w systemach operacyjnych. Odpowiedzi takie jak \profile\serwer\username sugerują, że w ścieżce mogłoby być więcej subfolderów, co jest sprzeczne z zasadą prostoty konstruowania ścieżek do profili mobilnych. W kontekście zarządzania profilami mobilnymi, każda nazwa użytkownika tworzona jest jako podfolder bez dodatkowych poziomów hierarchii, co oznacza, że \profile\username jest również niewłaściwe z powodu braku konkretnej nazwy użytkownika. Z kolei \profile\username\jkowal zawiera zbędny poziom folderów, który nie jest wymagany w przypadku profili mobilnych. Typowym błędem myślowym jest założenie, że dodatkowe foldery są potrzebne do organizacji, co nie jest zgodne z logiką, jaką stosuje się w zarządzaniu profilami. Dobrą praktyką jest znajomość konwencji dotyczących tworzenia ścieżek w systemach operacyjnych, co pozwala uniknąć błędów w konfiguracji oraz poprawić organizację danych w systemie. Zrozumienie tych zasad jest istotne dla efektywnego administrowania oraz dla użytkowników, którzy chcą mieć łatwy dostęp do swoich profili na różnych urządzeniach.

Pytanie 17

W systemach Microsoft Windows, polecenie netstat –a pokazuje

A. statystyki odwiedzin witryn internetowych
B. aktualne ustawienia konfiguracyjne sieci TCP/IP
C. wszystkie aktywne połączenia protokołu TCP
D. tabelę trasowania
Analizując inne odpowiedzi, można dostrzec, że niektóre z nich opierają się na pomyłkach dotyczących działania polecenia <b>netstat</b>. Wskazanie, że polecenie to wyświetla aktualne parametry konfiguracyjne sieci TCP/IP jest błędne, ponieważ <b>netstat</b> koncentruje się na połączeniach, a nie na ich konfiguracji. Użytkownicy mogą mylnie sądzić, że parametry konfiguracyjne, takie jak adres IP czy maska podsieci, są wyświetlane, gdy w rzeczywistości wymagają one innych narzędzi, takich jak <b>ipconfig</b>. Natomiast stwierdzenie, że <b>netstat –a</b> dostarcza statystyki odwiedzin stron internetowych, jest zupełnie nie na miejscu. <b>Netstat</b> nie śledzi aktywności przeglądania, co jest domeną narzędzi analitycznych, a nie diagnostycznych. Wreszcie, opcja dotycząca tablicy trasowania, chociaż może sugerować związane z routingiem funkcjonalności, nie jest spełniana przez <b>netstat</b>. Ta funkcjonalność jest realizowana przez inne polecenia, takie jak <b>route</b>. Te błędne przekonania mogą prowadzić do nieefektywnego zarządzania siecią i zrozumienia jej działania, co podkreśla znaczenie znajomości narzędzi oraz ich właściwego zastosowania w praktyce administracyjnej.

Pytanie 18

Zarządzanie uprawnieniami oraz zdolnościami użytkowników i komputerów w sieci z systemem Windows serwerowym zapewniają

A. listy dostępu
B. ustawienia przydziałów
C. zasady grupy
D. zasady zabezpieczeń
Zasady grupy to mechanizm stosowany w systemach operacyjnych Windows, który umożliwia centralne zarządzanie uprawnieniami i dostępem do zasobów sieciowych. Dzięki zasadom grupy administratorzy mogą definiować, które ustawienia dotyczące bezpieczeństwa, konfiguracji systemów i dostępów do aplikacji oraz zasobów mają być stosowane w obrębie całej organizacji. Przykładem zastosowania zasad grupy jest możliwość wymuszenia polityki haseł, która określa minimalną długość haseł oraz wymagania dotyczące ich złożoności. W praktyce, zasady grupy mogą być przypisywane do jednostek organizacyjnych, co pozwala na elastyczne i dostosowane do potrzeb zarządzanie uprawnieniami. Wspierają one również dobre praktyki branżowe, takie jak zasada najmniejszych uprawnień, co oznacza, że użytkownicy oraz komputery mają dostęp tylko do tych zasobów, które są niezbędne do wykonywania ich zadań. Efektywne wykorzystanie zasad grupy przyczynia się do zwiększenia bezpieczeństwa sieci oraz uproszczenia zarządzania tymi ustawieniami.

Pytanie 19

Protokół, który komputery wykorzystują do informowania ruterów w swojej sieci o zamiarze dołączenia do określonej grupy multicastowej lub jej opuszczenia, to

A. Interior Gateway Protocol (IGP)
B. Transmission Control Protocol (TCP)
C. Internet Message Access Protocol (IMAP)
D. Internet Group Management Protocol (IGMP)
Protokóły takie jak Internet Message Access Protocol (IMAP), Transmission Control Protocol (TCP) oraz Interior Gateway Protocol (IGP) mają odmienne cele i funkcje w kontekście komunikacji sieciowej. IMAP jest protokołem używanym głównie do zarządzania pocztą elektroniczną. Pozwala użytkownikom na dostęp do wiadomości e-mail przechowywanych na zdalnym serwerze, co jest zgoła innym zadaniem niż zarządzanie grupami multicastowymi. TCP to protokół transportowy, który zapewnia niezawodność przesyłania danych pomiędzy urządzeniami sieciowymi, ale nie ma zastosowania do zarządzania członkostwem w grupach multicastowych. Z kolei IGP odnosi się do protokołów rutowania używanych wewnątrz autonomicznych systemów, ale także nie dotyczy zarządzania grupami multicastowymi. Typowym błędem myślowym jest mylenie protokołów zarządzających różnymi aspektami komunikacji w sieciach komputerowych. Kluczowym różnicą jest to, że IGMP koncentruje się na kwestiach związanych z multicastem, natomiast inne wymienione protokoły operują w różnych domenach. Zrozumienie różnic między tymi protokołami oraz ich zastosowań jest niezbędne dla efektywnego projektowania i zarządzania sieciami komputerowymi, zwłaszcza w kontekście rosnących potrzeb dotyczących wydajności i zarządzania ruchem w sieciach.

Pytanie 20

Jaki protokół umożliwia przeglądanie stron www w przeglądarkach internetowych poprzez szyfrowane połączenie?

A. Hypertext Transfer Protocol
B. Hypertext Transfer Protocol Secure
C. SSH File Transfer Protocol
D. FTP Secure
Odpowiedzi, które nie są poprawne, mają swoje uzasadnienie, które wymaga dokładniejszego omówienia. SSH File Transfer Protocol (SFTP) jest protokołem używanym do przesyłania plików przez zabezpieczone połączenie, ale nie jest przeznaczony do wyświetlania stron www. To protokół zaprojektowany z myślą o zabezpieczeniu transferu danych, a nie o komunikacji przeglądarki z serwerem w kontekście wyświetlania treści internetowych. Hypertext Transfer Protocol (HTTP) to podstawowy i niezabezpieczony protokół do przesyłania danych w Internecie, który nie oferuje szyfrowania i naraża użytkowników na ryzyko przechwycenia danych. FTP Secure (FTPS) to również protokół transferu plików, który wprowadza zabezpieczenia, ale nie ma zastosowania w kontekście przesyłania treści stron www. Kluczowym błędem w rozumieniu tych odpowiedzi jest mylenie różnych protokołów i ich specyfiki. Każdy z wymienionych protokołów ma swoje miejsce w ekosystemie internetowym, ale HTTPS jest jedynym, który zapewnia szyfrowanie danych w kontekście przeglądania stron www. Zrozumienie różnic między nimi pozwala lepiej ocenić, jakie zabezpieczenia są potrzebne w różnych scenariuszach oraz jak ważne jest korzystanie z właściwego protokołu w kontekście ochrony danych użytkowników. Wiedza ta jest kluczowa w dobie rosnących zagrożeń związanych z cyberatakami i prywatnością danych.

Pytanie 21

Po zainstalowaniu roli usług domenowych Active Directory na serwerze Windows, możliwe jest

A. udostępnienie użytkownikom witryny internetowej
B. centralne zarządzanie użytkownikami oraz komputerami
C. automatyczne przypisywanie adresów IP komputerom w sieci
D. współdzielenie plików znajdujących się na serwerze
Centralne zarządzanie użytkownikami i komputerami jest kluczową funkcjonalnością roli usług domenowych Active Directory (AD DS) na serwerach Windows. Dzięki tej roli administratorzy mogą tworzyć, modyfikować i usuwać konta użytkowników oraz urządzeń w zorganizowany sposób, co znacząco ułatwia zarządzanie dużymi środowiskami IT. W praktyce, AD DS pozwala na wdrażanie polityk bezpieczeństwa i grupowych, co umożliwia określenie, jakie zasoby i aplikacje są dostępne dla poszczególnych użytkowników oraz grup. Na przykład, administrator może przydzielić dostęp do określonej aplikacji tylko pracownikom działu finansowego. Dodatkowo, dzięki integracji z innymi usługami Microsoft, takimi jak Exchange czy SharePoint, AD DS wspiera efektywne zarządzanie infrastrukturą IT w organizacji, umożliwiając centralizację procesów uwierzytelniania i autoryzacji. To podejście jest zgodne z najlepszymi praktykami w zakresie zarządzania tożsamością i dostępem, co przyczynia się do zwiększenia bezpieczeństwa i efektywności operacyjnej w środowiskach korporacyjnych.

Pytanie 22

Którego numeru portu używa usługa FTP do wysyłania komend?

A. 69
B. 80
C. 21
D. 20
Wybór innych numerów portów w kontekście usługi FTP do przesyłania poleceń jest błędny z kilku kluczowych powodów. Port 80 jest standardowym portem dla protokołu HTTP, który jest używany do przesyłania treści stron internetowych. Jego zastosowanie w kontekście FTP jest mylące, ponieważ FTP i HTTP to różne protokoły służące do różnych celów – FTP do transferu plików, a HTTP do przesyłania dokumentów HTML. Port 20, z kolei, jest wykorzystywany do transferu danych w ramach FTP, a nie do komunikacji kontrolnej, dlatego jego wybór jako portu do przesyłania poleceń jest błędny. Port 69 jest zarezerwowany dla TFTP (Trivial File Transfer Protocol), który jest uproszczoną wersją FTP, jednak nie jest używany do typowych zastosowań FTP. Typowym błędem myślowym jest mylenie ról portów oraz protokołów, co prowadzi do nieporozumień w konfiguracji usług sieciowych. Aby prawidłowo zarządzać połączeniami i zapewnić ich bezpieczeństwo, kluczowe jest zrozumienie, który port jest przypisany do jakiego protokołu i w jaki sposób te protokoły współdziałają w sieci.

Pytanie 23

Administrator sieci planuje zapisać konfigurację urządzenia Cisco na serwerze TFTP. Jakie polecenie powinien wydać w trybie EXEC?

A. copy running-config tftp:
B. backup running-config tftp:
C. restore configuration tftp:
D. save config tftp:
<strong>Pozostałe polecenia, choć na pierwszy rzut oka wydają się logiczne, nie są poprawnymi komendami w systemie Cisco IOS i mogą wprowadzić w błąd osoby mniej doświadczone.</strong> <u>restore configuration tftp:</u> sugeruje przywrócenie konfiguracji z serwera TFTP, a nie jej zapisanie – w Cisco IOS nie istnieje taka komenda, a do przywracania używa się zwykle <code>copy tftp: running-config</code>. To częsty błąd – zamiana kierunków kopiowania, przez co można przypadkowo nadpisać bieżącą konfigurację niewłaściwym plikiem. <u>save config tftp:</u> wygląda bardzo naturalnie, bo wiele systemów operacyjnych czy aplikacji używa polecenia 'save' do zapisu ustawień. Jednak w Cisco IOS nie znajdziemy takiej komendy – zapis konfiguracji odbywa się właśnie przez 'copy' z odpowiednimi argumentami. To jest typowe nieporozumienie, gdy ktoś przenosi przyzwyczajenia z innych środowisk, np. z Linuksa czy Windowsa. <u>backup running-config tftp:</u> również wydaje się intuicyjne i oddaje sens operacji, ale niestety Cisco IOS nie obsługuje polecenia 'backup' w tym kontekście. W rzeczywistości, błędne użycie takich nieistniejących poleceń kończy się komunikatem o nieznanej komendzie, co może być frustrujące dla początkujących administratorów. Z praktyki wiem, że wielu uczniów i kandydatów do pracy w IT myli się właśnie przez zbyt dosłowne tłumaczenie na język angielski tego, co chcą osiągnąć. Branżowa terminologia Cisco jest dość rygorystyczna i warto ją opanować, żeby nie popełniać prostych, ale kosztownych błędów podczas pracy z infrastrukturą sieciową.

Pytanie 24

Administrator zauważa, że jeden z komputerów w sieci LAN nie może uzyskać dostępu do Internetu, mimo poprawnie skonfigurowanego adresu IP. Który parametr konfiguracji sieciowej powinien sprawdzić w pierwszej kolejności?

A. Maskę podsieci
B. Adres serwera DNS
C. Adres bramy domyślnej
D. Adres MAC karty sieciowej
<strong>Adres bramy domyślnej</strong> jest kluczowym parametrem konfiguracji sieciowej, który umożliwia komputerowi w sieci LAN komunikację z urządzeniami poza swoją lokalną podsiecią, w tym z Internetem. Brama domyślna to zwykle adres IP routera lub innego urządzenia pośredniczącego, które przekazuje ruch wychodzący z lokalnej sieci do innych sieci. Nawet jeśli komputer ma poprawnie ustawiony adres IP i maskę podsieci, brak lub błędna konfiguracja bramy domyślnej uniemożliwi mu wysyłanie pakietów poza własny segment sieci – czyli właśnie do Internetu. To dlatego w praktyce administratorzy zawsze zaczynają od weryfikacji tego parametru, gdy urządzenie nie może się połączyć z zasobami zewnętrznymi. W standardowych systemach operacyjnych, takich jak Windows czy Linux, parametr ten jest podawany ręcznie lub automatycznie przez DHCP. Z mojego doświadczenia, nawet przy poprawnych pozostałych ustawieniach sieciowych najczęstszą przyczyną braku dostępu do Internetu jest właśnie brak lub literówka w adresie bramy. W środowiskach produkcyjnych i edukacyjnych regularnie powtarza się zasada: jeśli lokalna komunikacja działa, a Internet nie – sprawdź najpierw bramę domyślną. To podstawowy krok w diagnostyce sieciowej i element każdej checklisty administratora.

Pytanie 25

Jakie polecenie spowoduje wymuszenie aktualizacji wszystkich zasad grupowych w systemie Windows, bez względu na to, czy uległy one zmianie?

A. gpupdate /force
B. gpupdate /wait
C. gpupdate /boot
D. gpupdate /sync
Odpowiedzi 'gpupdate /boot', 'gpupdate /sync' oraz 'gpupdate /wait' nie są odpowiednie w kontekście wymuszania aktualizacji zasad grupy, ponieważ każde z tych poleceń ma inne funkcje. 'gpupdate /boot' jest używane do wymuszenia ponownego uruchomienia systemu w celu zastosowania polityk grupowych, co nie jest konieczne w przypadku, gdy chcemy tylko zaktualizować zasady bez restartu. 'gpupdate /sync' synchronizuje zasady grupowe tylko wtedy, gdy zasady zostały zmienione, co oznacza, że nie wymusza ich ponownego przetworzenia w sytuacji, gdy nie zaszły żadne zmiany. Z kolei 'gpupdate /wait' ustala czas, przez jaki system czeka na zakończenie synchronizacji zasad grupowych, ale nie zmienia sposobu ich aktualizacji. Te podejścia prowadzą do opóźnień i nieefektywności w zarządzaniu politykami grupowymi, co może skutkować niezgodnością z wymaganiami organizacyjnymi. Administratorzy powinni unikać takich nieefektywnych metod, skupiając się na 'gpupdate /force', które zapewnia natychmiastowy efekt w zastosowaniu polityk. Użycie niewłaściwych poleceń może prowadzić do niepełnej lub opóźnionej implementacji zasad, co jest niezgodne z najlepszymi praktykami w zarządzaniu IT.

Pytanie 26

Użytkownik korzysta z polecenia ipconfig /all w systemie Windows. Jaką informację uzyska po jego wykonaniu?

A. Listę aktywnych połączeń TCP wraz z numerami portów i adresami zdalnymi.
B. Dane o aktualnym wykorzystaniu miejsca na wszystkich partycjach dysku twardego.
C. Informacje dotyczące wersji i stanu sterownika karty graficznej zainstalowanej w systemie.
D. Szczegółową konfigurację wszystkich interfejsów sieciowych, w tym adresy IP, maski podsieci, bramy domyślne, adresy serwerów DNS oraz fizyczne adresy MAC.
Polecenie <code>ipconfig /all</code> w systemie Windows służy do wyświetlania szczegółowych informacji o wszystkich interfejsach sieciowych zainstalowanych w komputerze. Wynik tego polecenia to nie tylko podstawowy adres IP czy maska podsieci, ale także takie dane jak: adresy fizyczne MAC poszczególnych kart, adresy bram domyślnych, serwerów DNS i WINS, status DHCP, a nawet identyfikatory poszczególnych interfejsów. Dzięki temu narzędziu administrator może w prosty sposób zweryfikować, jak skonfigurowane są poszczególne karty sieciowe, czy komputer korzysta z DHCP, czy adresy przydzielone są statycznie, a także czy nie występują konflikty adresów. Praktycznie – przy rozwiązywaniu problemów z siecią lokalną, właśnie <code>ipconfig /all</code> jest jednym z pierwszych poleceń, po jakie sięga technik czy administrator. Moim zdaniem, każdy, kto chce efektywnie zarządzać sieciami komputerowymi i rozumieć ich działanie, powinien znać szczegóły wyjścia tego polecenia na pamięć. W branży IT to jedna z absolutnych podstaw, a jednocześnie narzędzie, które nie raz potrafi zaoszczędzić godziny żmudnego szukania błędów konfiguracyjnych. Standardy branżowe wręcz zalecają korzystanie z tego polecenia przy każdej diagnozie sieciowej.

Pytanie 27

Aby stworzyć las w strukturze katalogowej AD DS (Active Directory Domain Services), konieczne jest zrealizowanie co najmniej

A. dwóch drzew domeny
B. trzech drzew domeny
C. czterech drzew domeny
D. jednego drzewa domeny
Utworzenie lasu w strukturze katalogowej Active Directory Domain Services (AD DS) wymaga jedynie jednego drzewa domeny, co stanowi podstawowy element struktury AD. Drzewo domeny to kolekcja jednego lub więcej obiektów, w tym domen, które są ze sobą powiązane w hierarchii. Przykładowo, w organizacji, która potrzebuje zorganizować swoje zasoby w sposób hierarchiczny, wystarczy założyć jedną domenę, aby umożliwić zarządzanie kontami użytkowników, komputerami i innymi zasobami. Praktyczne zastosowanie tej wiedzy można zaobserwować w małych firmach, które często korzystają z jednego drzewa domeny do centralizacji swoich zasobów i ułatwienia zarządzania. W rzeczywistości, dodatkowe drzewa domeny są niezbędne jedynie w bardziej złożonych środowiskach, gdzie potrzeba zarządzania wieloma, różnymi domenami w ramach jednego lasu, na przykład w międzynarodowych korporacjach. Zgodnie z najlepszymi praktykami branżowymi, minimalizowanie liczby drzew domeny ogranicza złożoność zarządzania oraz poprawia bezpieczeństwo i wydajność systemu.

Pytanie 28

Ile bitów o wartości 1 występuje w standardowej masce adresu IPv4 klasy B?

A. 8 bitów
B. 32 bity
C. 16 bitów
D. 24 bity
Odpowiedzi, które wskazują na inne wartości bitów w masce adresu IPv4 klasy B, bazują na mylnych założeniach dotyczących struktury adresacji w sieciach. Przykładowo, stwierdzenie, że maska klasy B zawiera 8 bitów, może wynikać z nieporozumienia dotyczącego ogólnej struktury adresów IPv4. Adres IPv4 składa się z 32 bitów, jednak te bity dzielą się na część identyfikującą sieć oraz część przeznaczoną dla hostów. W przypadku klasy B, mamy do czynienia z podziałem na 16 bitów dla adresu sieci i 16 bitów dla adresów hostów. Wybór 32 bitów jako odpowiedzi może wynikać z błędnej interpretacji, gdzie cały adres IP jest brany pod uwagę, nie zaś maska. Podobnie, błędna odpowiedź wskazująca na 24 bity może sugerować, że osoba odpowiadająca myli maskę z prefiksem CIDR stosowanym w klasie C. Warto pamiętać, że klasy adresowe oraz ich maski są podstawowym elementem projektowania sieci i znajomość ich właściwego przypisania jest kluczowa w kontekście zarządzania infrastrukturą oraz przydzielania adresów IP w sieciach komputerowych. Dlatego istotne jest, aby zrozumieć nie tylko liczby, ale również ich znaczenie i zastosowanie w praktyce.

Pytanie 29

Poniżej przedstawiono wynik działania polecenia

Interface Statistics

                         Received              Sent
Bytes                  3828957336        3249252169
Unicast packets          35839063         146809272
Non-unicast packets          5406             25642
Discards                       50                 0
Errors                          0                 0
Unknown protocols               0
A. dnslookup -e
B. ipconfig -e
C. netstat -e
D. tracert -e
Odpowiedzi takie jak 'ipconfig -e', 'tracert -e' oraz 'dnslookup -e' są nieprawidłowe, ponieważ każde z tych poleceń ma zupełnie inną funkcjonalność i nie dostarcza informacji na temat statystyk interfejsu sieciowego. 'Ipconfig' jest używane do wyświetlania konfiguracji IP, takich jak adresy IP, maski podsieci i bramy domyślnej, ale nie prezentuje szczegółów dotyczących przesyłania danych. Z kolei 'tracert' jest narzędziem służącym do śledzenia trasy pakietów w sieci, co pozwala na identyfikację punktów przerywania połączenia, ale znowu nie odnosi się do statystyk interfejsu. 'Dnslookup' natomiast służy do zapytań o rekordy DNS, używane do tłumaczenia nazw domen na adresy IP. Typowe nieporozumienia związane z tymi poleceniami polegają na myleniu ich funkcjonalności oraz niewłaściwym przypisywaniu ról narzędzi sieciowych. Aby efektywnie zarządzać siecią, kluczowe jest zrozumienie, jakie dane mogą być uzyskiwane z poszczególnych poleceń i w jaki sposób każde z nich przyczynia się do całościowego obrazu stanu sieci. Właściwe wykorzystanie narzędzi diagnostycznych jest fundamentalne w praktykach administracji systemami sieciowymi.

Pytanie 30

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. router.
B. hub.
C. switch.
D. driver.
Ruter jest kluczowym urządzeniem w infrastrukturze sieciowej, które umożliwia podłączenie lokalnej sieci komputerowej do Internetu. Jego rola polega na kierowaniu pakietami danych pomiędzy różnymi sieciami, co pozwala na komunikację pomiędzy urządzeniami w sieci lokalnej a zdalnymi zasobami w Internecie. Ruter pracuje na warstwie trzeciej modelu OSI, co oznacza, że analizuje adresy IP w pakietach danych, aby określić najlepszą trasę do docelowego adresu. Przykładem zastosowania rutera może być domowa sieć Wi-Fi, gdzie ruter łączy wiele urządzeń, takich jak komputery, smartfony czy telewizory, z globalną siecią Internet. W praktyce, ruter może także pełnić funkcje zabezpieczeń, takie jak zapora ogniowa (firewall), co zwiększa bezpieczeństwo naszej sieci. Dobre praktyki w konfiguracji rutera obejmują regularne aktualizacje oprogramowania oraz stosowanie silnych haseł do zabezpieczenia dostępu do administracji. Warto również zwrócić uwagę na konfigurację NAT (Network Address Translation), która pozwala na ukrycie wewnętrznych adresów IP w sieci lokalnej, co dodatkowo zwiększa bezpieczeństwo.

Pytanie 31

Jakie polecenie powinno być użyte w systemie Windows, aby uzyskać informacje o adresach wszystkich kolejnych ruterów przekazujących dane z komputera do celu?

A. ipconfig
B. tracert
C. arp
D. ping
Polecenie tracert (trace route) jest narzędziem diagnostycznym używanym w systemie Windows do śledzenia trasy pakietów IP do docelowego adresu. Działa poprzez wysyłanie pakietów ICMP Echo Request z różnymi czasami życia (TTL - Time To Live), co pozwala na identyfikację każdego ruter, przez który przechodzą pakiety. Każdy ruter zmniejsza wartość TTL o 1, a gdy TTL osiąga 0, ruter wysyła z powrotem komunikat ICMP Time Exceeded, co umożliwia identyfikację jego adresu IP. Tracert jest szczególnie przydatnym narzędziem w diagnostyce sieciowej, umożliwiającym administratorom zrozumienie, gdzie mogą występować opóźnienia lub problemy w trasie pakietów. Przykładowo, używając komendy tracert www.example.com, możemy zobaczyć, przez jakie urządzenia przeszły pakiety, co może pomóc w lokalizacji problemów z łącznością lub identyfikacji nieprawidłowości w sieci. Dobrą praktyką jest regularne korzystanie z tracert w celu monitorowania wydajności sieci oraz analizy jej struktury.

Pytanie 32

Aby zapewnić, że jedynie wybrane urządzenia mają dostęp do sieci WiFi, konieczne jest w punkcie dostępowym

A. zmienić sposób szyfrowania z WEP na WPA
B. zmienić hasło
C. zmienić kanał radiowy
D. skonfigurować filtrowanie adresów MAC
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi tylko dla wybranych urządzeń. Adres MAC (Media Access Control) to unikalny identyfikator przypisany do interfejsu sieciowego każdego urządzenia. Konfigurując filtrowanie adresów MAC na punkcie dostępowym, administrator może stworzyć listę zatwierdzonych adresów, co oznacza, że tylko te urządzenia będą mogły nawiązać połączenie z siecią. To podejście jest powszechnie stosowane w małych sieciach domowych oraz biurowych, jako dodatkowa warstwa zabezpieczeń w połączeniu z silnym hasłem i szyfrowaniem. Należy jednak pamiętać, że filtrowanie adresów MAC nie jest nieomylnym rozwiązaniem, gdyż adresy MAC można podsłuchiwać i fałszować. Mimo to, w praktyce jest to skuteczny sposób na ograniczenie nieautoryzowanego dostępu, zwłaszcza w środowiskach, gdzie liczba urządzeń jest ograniczona i łatwa do zarządzania. Dobrą praktyką jest łączenie tego rozwiązania z innymi metodami zabezpieczeń, takimi jak WPA3, co znacząco podnosi poziom ochrony.

Pytanie 33

Jakie oprogramowanie odpowiada za funkcję serwera DNS w systemie Linux?

A. bind
B. samba
C. apache
D. vsftpd
Samba, vsftpd i Apache to oprogramowanie, które pełni zupełnie inne funkcje i nie są one związane z rolą serwera DNS. Samba jest narzędziem do współdzielenia plików i drukarek w sieciach Windows i Unix/Linux, co umożliwia integrację z systemami operacyjnymi Windows. W związku z tym, w kontekście DNS, Samba nie ma żadnych zastosowań, a jej funkcjonalności skupiają się na protokołach SMB/CIFS. Vsftpd, z drugiej strony, to serwer FTP, który umożliwia przesyłanie plików przez protokół FTP. Choć jest to ważne narzędzie do zarządzania plikami na serwerze, nie ma ono nic wspólnego z rozwiązywaniem nazw domenowych ani obsługą DNS. Apache to serwer HTTP, który hostuje strony internetowe, jednak również nie pełni roli serwera DNS. Typowym błędem myślowym jest mylenie usług sieciowych, takich jak hosting aplikacji webowych czy transfer plików, z usługami związanymi z systemem nazw. Każda z wymienionych technologii ma swoje specyficzne przeznaczenie i nie mogą być stosowane zamiennie w kontekście zarządzania DNS. Zrozumienie różnorodności zastosowań różnych technologii sieciowych jest kluczowe dla prawidłowego projektowania architektury systemów informatycznych.

Pytanie 34

Do ilu sieci należą komputery o adresach IPv4 przedstawionych w tabeli?

NazwaAdres IPMaska
Komputer 110.11.161.10255.248.0.0
Komputer 210.12.161.11255.248.0.0
Komputer 310.13.163.10255.248.0.0
Komputer 410.14.163.11255.248.0.0
A. Czterech.
B. Dwóch.
C. Jednej.
D. Trzech.
Wybór odpowiedzi wskazującej na więcej niż jedną sieć opiera się na nieporozumieniu związanym z pojęciem podsieci i zastosowaniem masek sieciowych. Wiele osób może błędnie zakładać, że różne adresy IP automatycznie sugerują obecność różnych sieci. W rzeczywistości to właśnie maska sieciowa określa, które bity adresu IP są używane do identyfikacji sieci, a które do identyfikacji poszczególnych hostów. Jeśli adresy IP mają tę samą maskę, oznacza to, że mogą należeć do tej samej sieci. Kluczowym błędem myślowym jest założenie, że różne adresy IP muszą oznaczać różne sieci, co jest niezgodne z zasadami działania protokołu IP. Zrozumienie działania maski sieciowej oraz sposobu, w jaki różne bity adresu IP są przypisywane do sieci i hostów, jest kluczowe dla właściwego zarządzania i projektowania sieci. W praktyce, projektanci sieci muszą uwzględniać te zasady, aby unikać większych problemów z komunikacją i zarządzaniem ruchem w przyszłości. Wybierając właściwe wartości masek, można efektywniej zarządzać adresowaniem IP i optymalizować działanie sieci, co jest zgodne ze standardami branżowymi.

Pytanie 35

Ransomware to rodzaj szkodliwego oprogramowania, które

A. rejestruje naciskane przez użytkownika klawisze.
B. szyfruje lub blokuje dane w celu wyłudzenia okupu.
C. ukrywa pliki lub procesy, aby wspierać kontrolę nad zainfekowanym komputerem.
D. używa zainfekowanego komputera do rozsyłania wiadomości spam.
Ransomware to jedna z najgroźniejszych form złośliwego oprogramowania, która szyfruje lub blokuje dostęp do danych na komputerze ofiary w celu wyłudzenia okupu. Gdy system zostanie zainfekowany, użytkownik często otrzymuje wiadomość, w której informuje się go o tym, że dostęp do jego plików został zablokowany, a ich odzyskanie jest możliwe tylko po zapłaceniu określonej sumy pieniędzy. Przykładem ransomware jest złośliwe oprogramowanie WannaCry, które w 2017 roku sparaliżowało wiele organizacji na całym świecie. Ważne jest, aby stosować dobre praktyki w zakresie zabezpieczeń, takie jak regularne tworzenie kopii zapasowych, aktualizowanie oprogramowania oraz korzystanie z zaawansowanych rozwiązań antywirusowych i zapór sieciowych. Ponadto, edukacja pracowników w zakresie rozpoznawania podejrzanych wiadomości e-mail i linków jest kluczowym elementem obrony przed tego typu zagrożeniami. Zrozumienie mechanizmów działania ransomware pozwala na skuteczniejsze przygotowanie się na potencjalne ataki i minimalizowanie ryzyka ich wystąpienia.

Pytanie 36

Jaki adres wskazuje, że komputer jest częścią sieci o adresie IP 192.168.10.64/26?

A. 192.168.10.50
B. 192.168.10.100
C. 192.168.10.200
D. 192.168.10.1
Jak to jest z adresami IP? One mają swoją klasyfikację i maski podsieci, które mówią, ile bitów jest na identyfikację sieci, a ile na hosty. W przypadku 192.168.10.64 z maską /26, sieć powinna obejmować adresy od 192.168.10.64 do 192.168.10.127. Jak wybierasz adresy 192.168.10.50, 192.168.10.1 i 192.168.10.200, to nie do końca to rozumiesz. 192.168.10.50 trochę za blisko dolnej granicy, ale nie jest z tej sieci, bo jest w innej. 192.168.10.1, to zazwyczaj domyślny adres bramy u routerów, więc możesz się mylić. 192.168.10.200? To już za dużo, bo wychodzi z dostępnych adresów. Generalnie, problem leży w tym, że nie wiesz, jak działa maska podsieci i zakładasz, że różne adresy IP mogą być w tej samej sieci, a to nie tak działa.

Pytanie 37

Planowanie wykorzystania przestrzeni dyskowej komputera do przechowywania i udostępniania informacji, takich jak pliki i aplikacje dostępne w sieci oraz ich zarządzanie, wymaga skonfigurowania komputera jako

A. serwer plików
B. serwer aplikacji
C. serwer DHCP
D. serwer terminali
Wybór odpowiedzi dotyczącej serwera terminali, serwera DHCP lub serwera aplikacji może wynikać z nieporozumień dotyczących ich funkcji. Serwer terminali jest używany do zdalnego dostępu do aplikacji na komputerze serwerowym, co oznacza, że użytkownicy mogą korzystać z tych aplikacji bezpośrednio z innych urządzeń. Jednak nie jest on przeznaczony do przechowywania plików, a raczej do hostowania aplikacji, co czyni go nieodpowiednim rozwiązaniem w kontekście zarządzania plikami. Serwer DHCP, z kolei, jest odpowiedzialny za automatyczne przydzielanie adresów IP w sieci, co ma znaczenie dla konfiguracji i zarządzania siecią, ale nie ma związku z przechowywaniem danych. Z kolei serwer aplikacji to środowisko, w którym uruchamia się aplikacje, natomiast ich dane i pliki nadal muszą być przechowywane w odpowiednim miejscu, co wyklucza ten typ serwera z roli, której poszukujemy. Wybierając serwer plików, zapewniamy sobie centralizację zarządzania danymi, co jest kluczowe w obecnych czasach, gdzie dostęp do danych jest niezbędny dla efektywnej pracy zespołowej i organizacyjnej.

Pytanie 38

Na ilustracji przedstawiono symbol

Ilustracja do pytania
A. rutera.
B. przełącznika.
C. bramki VoIP.
D. punktu dostępowego.
Na ilustracji przedstawiono symbol punktu dostępowego, który jest istotnym elementem nowoczesnych sieci bezprzewodowych. Punkt dostępowy (ang. access point) umożliwia połączenie urządzeń takich jak laptopy, smartfony czy tablety z siecią lokalną LAN, zapewniając zasięg i mobilność. Działa jako most łączący urządzenia klienckie z infrastrukturą sieciową, co jest szczególnie ważne w biurach, szkołach czy domach, gdzie wiele urządzeń korzysta z jednego źródła internetu. W kontekście standardów, punkty dostępowe są zgodne z normami IEEE 802.11, co zapewnia interoperacyjność i bezpieczeństwo przesyłanych danych. Przykładem zastosowania punktów dostępowych jest tworzenie rozległych sieci Wi-Fi w obiektach publicznych, takich jak centra handlowe czy lotniska, gdzie niezbędne jest zapewnienie stabilnego i szybkiego dostępu do internetu dla wielu użytkowników jednocześnie. Zrozumienie funkcji punktów dostępowych jest kluczowe dla projektowania efektywnych i wydajnych sieci bezprzewodowych.

Pytanie 39

W protokole FTPS litera S odnosi się do ochrony danych przesyłanych przez

A. autoryzację
B. uwierzytelnianie
C. logowanie
D. szyfrowanie
Odpowiedź 'szyfrowanie' jest prawidłowa, ponieważ litera 'S' w protokole FTPS (FTP Secure) odnosi się do zabezpieczania danych przesyłanych przez protokół FTP za pomocą szyfrowania. FTPS rozszerza klasyczny protokół FTP o metody zapewniające bezpieczeństwo, w tym SSL (Secure Sockets Layer) i TLS (Transport Layer Security). Szyfrowanie danych to kluczowy element, który chroni przed przechwyceniem informacji przez nieautoryzowane osoby. Dzięki tym technologiom, dane są kodowane podczas transmisji, co sprawia, że nawet w przypadku ich przechwycenia, są one nieczytelne dla intruzów. W praktyce, FTPS jest często stosowany w scenariuszach wymagających przesyłania wrażliwych danych, takich jak dane osobowe, finansowe czy medyczne, zgodnie z regulacjami prawnymi, takimi jak RODO. Zastosowanie protokołu FTPS pozwala nie tylko na szyfrowanie, ale również na zachowanie integralności danych, co jest niezbędne w kontekście współczesnych standardów bezpieczeństwa informacyjnego.

Pytanie 40

W którym rejestrze systemu Windows znajdziemy informacje o błędzie spowodowanym brakiem synchronizacji czasu systemowego z serwerem NTP?

A. Ustawienia.
B. Aplikacja.
C. System.
D. Zabezpieczenia.
Wybór dziennika systemowego jako źródła informacji o błędach synchronizacji czasu z serwerem NTP jest prawidłowy, ponieważ dziennik systemowy w systemie Windows rejestruje wszystkie zdarzenia związane z działaniem systemu operacyjnego, w tym problemy z synchronizacją czasu. Synchronizacja czasu jest kluczowym procesem, który zapewnia, że system operacyjny działa w zgodzie z czasem serwera NTP, co jest istotne dla wielu aplikacji i operacji sieciowych. Problemy z synchronizacją mogą prowadzić do błędów w logowaniu, problemów z certyfikatami SSL oraz niestabilności w aplikacjach zależnych od dokładnego czasu. Aby zdiagnozować problem, administratorzy mogą uruchomić Podgląd zdarzeń (Event Viewer) i przeszukać dziennik systemowy pod kątem wpisów związanych z NTP, takich jak błędy „Time-Service” lub „Sync”. Dobrą praktyką jest również regularne monitorowanie dzienników systemowych, co pozwala na wczesne wykrywanie i rozwiązywanie potencjalnych problemów związanych z synchronizacją czasu.