Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 19 grudnia 2025 11:50
  • Data zakończenia: 19 grudnia 2025 12:26

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Element przedstawiony na rysunku to

Ilustracja do pytania
A. czujnik rezystancyjny.
B. pirometr.
C. termometr rtęciowy.
D. czujnik pojemnościowy.
To, co widzimy na rysunku, to czujnik rezystancyjny, znany również jako termometr rezystancyjny (RTD). Jest szeroko stosowany w przemyśle do pomiaru temperatury dzięki swojej precyzji i stabilności. Czujniki rezystancyjne działają na zasadzie zmiany rezystancji metalu pod wpływem temperatury. Najczęściej spotykanymi materiałami są platyna (Pt-100, Pt-500, Pt-1000), ponieważ oferuje liniową charakterystykę i dobrą powtarzalność pomiarów. Przykładowo, Pt-100 oznacza, że rezystancja czujnika wynosi 100 omów przy 0°C. W praktyce, znajdziesz takie czujniki w systemach HVAC, procesach chemicznych czy nawet w sprzęcie laboratoryjnym. Standardy, takie jak DIN EN 60751, określają ich konstrukcję i precyzję. Dzięki swoim właściwościom, czujniki te są preferowane w aplikacjach, gdzie małe błędy pomiarowe są kluczowe. Moim zdaniem, ich popularność wynika również z dostępności precyzyjnych przetworników, które łatwo integrują się z systemami automatyki.

Pytanie 2

Tabliczka znamionowa przedstawiona na rysunku, to tabliczka znamionowa

Ilustracja do pytania
A. silnika prądu stałego.
B. kondensatora.
C. transformatora.
D. silnika prądu przemiennego.
Tabliczka znamionowa, którą widzimy, to klasyczna tabliczka silnika prądu przemiennego. Jest to ważny element, który zawiera kluczowe informacje o specyfikacji technicznej urządzenia. Na tej tabliczce znajdziemy między innymi dane dotyczące napięcia, mocy, prędkości obrotowej oraz częstotliwości. Te parametry są istotne dla poprawnego podłączenia i eksploatacji silnika. W przypadku silników prądu przemiennego, zgodnie z dobrymi praktykami, warto zwrócić uwagę na współczynnik mocy (cos φ), który wpływa na efektywność energetyczną urządzenia. Moim zdaniem, takie tabliczki są nie tylko praktyczne, ale wręcz niezbędne w procesie instalacji i konserwacji. W praktyce zawodowej często spotykamy się z sytuacjami, gdzie dokładne odczytanie tych informacji potrafi zaoszczędzić wiele problemów. Silniki prądu przemiennego są szeroko stosowane w przemyśle, od napędów maszyn po wentylatory, dlatego zrozumienie ich specyfikacji to podstawa.

Pytanie 3

Do mocowania elementów przy wykorzystaniu wkrętów o wyglądzie przedstawionym na ilustracji trzeba użyć

Ilustracja do pytania
A. kluczy oczkowych.
B. wkrętaków płaskich.
C. wkrętaków krzyżowych.
D. kluczy imbusowych.
Wybór wkrętaka krzyżowego do tego rodzaju wkrętów jest absolutnie właściwy. Wkręty z łbem krzyżowym, często oznaczane jako Phillips, są zaprojektowane tak, by zapewniać pewne mocowanie bez ryzyka wyślizgnięcia się narzędzia. Konstrukcja krzyża w łbie wkrętu umożliwia lepszą dystrybucję siły, co przekłada się na bardziej efektywne wkręcanie. Dzięki temu nie tylko łatwiej jest uzyskać odpowiedni moment dokręcania, ale także zmniejsza się ryzyko uszkodzenia samego wkrętu. W codziennej praktyce, takie wkręty są używane w wielu dziedzinach, od montażu mebli po skomplikowane konstrukcje elektroniczne. Korzystanie z wkrętaka krzyżowego jest zgodne z dobrymi praktykami branżowymi, które podkreślają znaczenie właściwego dopasowania narzędzia do elementu złącznego. Jest to kluczowe nie tylko dla trwałości samego połączenia, ale także dla bezpieczeństwa użytkowania danego produktu. Obecnie, na rynku dostępne są wkrętaki krzyżowe o różnych rozmiarach, co pozwala na precyzyjne dopasowanie narzędzia do konkretnego wkrętu, co jest nieocenione w profesjonalnych zastosowaniach.

Pytanie 4

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0 ÷ 100°C/0 ÷ 20 mA dla wejścia sterownika PLC 0 ÷ 20 mA?

Ilustracja do pytania
A. INPUT - 01011010, OUTPUT - 1001
B. INPUT - 01011010, OUTPUT - 0110
C. INPUT - 01001001, OUTPUT - 0000
D. INPUT - 10001100, OUTPUT - 0000
Wybór ustawienia INPUT - 01001001, OUTPUT - 0000 jest właściwy, ponieważ odpowiada on konfiguracji dla sygnału wejściowego 0 ÷ 20 mA, co jest idealne dla czujnika o zakresie 0 ÷ 100°C/0 ÷ 20 mA, oraz dla wyjścia sterownika PLC również ustawionego na 0 ÷ 20 mA. To ustawienie zapewnia poprawne skalowanie sygnałów, unikając nieprawidłowości w odczytach. Dzięki temu możemy być pewni, że dane z czujnika są przekazywane bez zniekształceń do PLC. W praktyce takie rozwiązanie jest powszechnie stosowane w systemach automatyki przemysłowej, gdzie dokładność pomiarów jest kluczowa. Ważne jest, aby zawsze dobierać odpowiednie ustawienia DIP switcha do charakterystyki sygnału, co znacznie zwiększa niezawodność całego systemu. Moim zdaniem, znajomość takich konfiguracji to podstawowa wiedza dla każdego inżyniera automatyka, która pomaga uniknąć błędów w konfiguracji systemów sterowania. Stosowanie standardów jest nie tylko zgodne z dobrymi praktykami, ale także z normami branżowymi, co jest niezwykle istotne w kontekście jakości i bezpieczeństwa pracy urządzeń.

Pytanie 5

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PID
B. P
C. PI
D. PD
Wybór innych typów regulatorów często wynika z błędnego zrozumienia ich charakterystyki. Regulator P, charakteryzujący się tylko reakcją proporcjonalną, nie jest wystarczający w systemach wymagających eliminacji uchybu ustalonego. Bez komponentu całkującego, jak w PI, nie może on zredukować stałego błędu do zera. Z kolei regulator PD, dodaje do proporcjonalnego komponentu element różniczkujący, który zwiększa szybkość reakcji na zmiany. Jednakże nie eliminuje stałego błędu, co czyni go nieodpowiednim w aplikacjach wymagających precyzyjnego ustalenia wartości zadanej, jak w pokazanym przykładzie. PID, będący połączeniem P, I i D, jest bardziej zaawansowany i zdolny do szybkiej reakcji na zmiany oraz eliminacji stałego błędu. Jednakże jego złożoność jest zbędna w systemach, gdzie nie występują szybkie zakłócenia i wystarcza prostota PI. Typowym błędem jest zakładanie, że bardziej rozbudowany PID zawsze będzie lepszy. W rzeczywistości, jego nieodpowiednie zastosowanie może prowadzić do nadmiernych oscylacji i destabilizacji. Właściwy wybór regulatora zależy od specyfiki systemu i jego wymagań dynamicznych, co w tym przypadku uzasadnia użycie PI.

Pytanie 6

Które piny przetwornika pomiarowego należy podłączyć z odbiornikami sygnału?

Ilustracja do pytania
A. 3 i 4.
B. 2 i 4.
C. 1 i 4.
D. 2 i 3.
Dobrze, że zauważyłeś, że piny 2 i 4 są kluczowe w tym układzie. Pin 2 oznaczony jest jako NC (normally closed), a pin 4 jako NO (normally open). To typowe oznaczenia w technice przekaźników i czujników, gdzie NC oznacza, że obwód jest zamknięty w stanie nieaktywnym, a NO że jest otwarty. W praktyce, wiele przetworników, szczególnie w automatyce przemysłowej, wykorzystuje te piny do przesyłania sygnałów do odbiorników. Podłączając piny 2 i 4 do odbiorników, zapewniasz prawidłowe działanie zarówno w trybie normalnie zamkniętym, jak i otwartym, co jest często wymogiem w systemach zabezpieczeń i automatyki. To podejście jest zgodne z wieloma normami, takimi jak IEC 60947 dotyczących aparatury rozdzielczej i sterowniczej. Warto pamiętać, że takie połączenia zwiększają niezawodność systemu i pozwalają na szybką reakcję w przypadku zmiany stanu czujnika.

Pytanie 7

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. rezystancyjne metalowe.
B. rezystancyjne półprzewodnikowe.
C. bimetalowe.
D. termoelektryczne.
W systemach automatyki pomiar temperatury jest kluczowy dla wielu procesów, dlatego ważne jest, aby używać odpowiednich czujników. Czasami błędnie można założyć, że czujniki rezystancyjne półprzewodnikowe, termoelektryczne czy bimetalowe będą stosowane zamiennie z czujnikami Pt100, jednak każda z tych technologii ma swoje unikalne cechy i zastosowania. Czujniki rezystancyjne półprzewodnikowe, często znane jako termistory, różnią się znacząco od czujników Pt100. Termistory mają nieliniową charakterystykę i są zazwyczaj stosowane w aplikacjach wymagających kompaktowych rozwiązań o ograniczonym zakresie temperatur. Natomiast czujniki termoelektryczne, zwane też termoparami, generują napięcie w odpowiedzi na różnicę temperatur, co czyni je idealnymi dla wysokich temperatur i aplikacji wymagających szybkiej reakcji. Z kolei czujniki bimetalowe działają na zasadzie fizycznego wyginania się dwóch zespawanych metali o różnej rozszerzalności cieplnej. Choć są one proste i tanie, ich dokładność i szybkość reakcji są ograniczone. Typowym błędem myślowym jest założenie, że wszystkie czujniki temperatury działają w podobny sposób, co może prowadzić do nieodpowiedniego doboru czujnika do konkretnej aplikacji. Wybór odpowiedniego czujnika jest kluczowy dla zapewnienia dokładności i efektywności procesów przemysłowych.

Pytanie 8

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 1 000 Ω
B. 500 Ω
C. 0 Ω
D. 100 Ω
Czujniki Pt500 są powszechnie używane w systemach regulacji temperatury, głównie ze względu na ich dokładność i stabilność. Tego rodzaju czujnik nazywany jest rezystancyjnym czujnikiem temperatury (RTD) i działa na zasadzie zmiany rezystancji w zależności od temperatury. Pt w nazwie odnosi się do platyny, materiału, z którego jest wykonany element reagujący na temperaturę. Przykładowo, w temperaturze 0 °C jego rezystancja wynosi 500 Ω, co wynika ze specyfikacji technicznej tego typu czujników. To, że czujnik Pt500 w 0 °C pokazuje 500 Ω, jest zgodne ze standardami kalibracji RTD. W praktyce, instalując taki czujnik, mamy pewność, że pomiary będą precyzyjne, jeśli są wykonane zgodnie z przyjętymi normami. Dodatkowo Pt500 jest kompatybilny z różnymi układami pomiarowymi, co czyni go elastycznym narzędziem w wielu zastosowaniach przemysłowych. Warto pamiętać, że w miarę wzrostu temperatury rezystancja czujnika również wzrasta, co pozwala na precyzyjne monitorowanie zmian termicznych. Poznanie charakterystyki czujników RTD, takich jak Pt500, to klucz do efektywnego projektowania układów pomiarowych w automatyce przemysłowej.

Pytanie 9

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 60 mm
B. 30 mm
C. 20 mm
D. 10 mm
Długość krawędzi X wynosi 20 mm. Widać to, gdy dokładnie przeanalizuje się wymiary całego rysunku – całość ma szerokość 70 mm, a fragment poziomy poniżej linii oznaczonej X ma wymiary 30 mm (od środka do prawej krawędzi) i 20 mm (po lewej stronie odcięcie ukośne). Oznacza to, że pozostaje odcinek 70 − 30 − 20 = 20 mm, czyli właśnie wartość X. Takie zadania bardzo dobrze uczą logicznego myślenia i analizy rysunku technicznego – trzeba czytać wymiary nie tylko tam, gdzie są podane, ale też szukać ich pośrednio przez różnice. W praktyce warsztatowej (np. w obróbce skrawaniem lub przy cięciu blach) takie proste obliczenia robi się niemal automatycznie. Moim zdaniem warto zawsze pamiętać o zasadzie: jeśli czegoś nie ma wprost wymiarowanego, to da się to wyliczyć z układu pozostałych wymiarów. W dokumentacji technicznej stosuje się wymiarowanie łańcuchowe lub współrzędne – tu mamy przykład łańcuchowego, więc każde przesunięcie w poziomie można łatwo zsumować lub odjąć. To niby drobny szczegół, ale takie rzeczy robią różnicę przy czytaniu rysunku jak zawodowiec.

Pytanie 10

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód 3
Ilustracja do odpowiedzi A
B. Przewód 1
Ilustracja do odpowiedzi B
C. Przewód 2
Ilustracja do odpowiedzi C
D. Przewód 4
Ilustracja do odpowiedzi D
Do połączenia silnika 3-fazowego z przemiennikiem częstotliwości należy użyć przewodu ekranowanego, takiego jak ten przedstawiony na zdjęciu. Jest to specjalny przewód silnikowy z oplotem miedzianym (ekranem), który tłumi zakłócenia elektromagnetyczne generowane przez falownik. Wewnątrz znajdują się trzy żyły fazowe oraz przewód ochronny PE, co w pełni odpowiada wymaganiom zasilania silnika 3-fazowego. Ekran musi być podłączony po obu stronach – do obudowy falownika oraz do korpusu silnika – aby skutecznie odprowadzać prądy zakłóceniowe. Z mojego doświadczenia, tego typu przewody (oznaczenia np. ÖLFLEX SERVO, Bitner BiTservo, Helukabel TOPFLEX) są odporne na drgania, oleje i podwyższoną temperaturę, co ma duże znaczenie w aplikacjach przemysłowych. Dzięki ekranowi sygnały sterujące i komunikacyjne w sąsiednich przewodach są chronione przed interferencją. W praktyce warto też zwrócić uwagę, by długość przewodu między falownikiem a silnikiem była możliwie krótka – to minimalizuje emisję zakłóceń EMC.

Pytanie 11

Wskaż element, którym można zastąpić uszkodzony element S1 w układzie, którego schemat przedstawiono na rysunku.

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Wybór odpowiedniego elementu do zastąpienia uszkodzonego S1 jest kluczowy dla prawidłowego działania układu. Na schemacie widzimy elektrozawór sterujący, gdzie S1 pełni funkcję zaworu rozdzielającego. Jego zadaniem jest kontrolowanie przepływu medium, dzięki czemu układ pneumatyczny działa zgodnie z założeniami. W tym kontekście wybór zaworu z odpowiednim typem sterowania, np. mechanicznego czy pneumatycznego, jest istotny. Poprawna odpowiedź wskazuje na element, który może pełnić tę funkcję, zapewniając niezawodność i dokładność działania układu. W branży pneumatycznej dobór elementu zastępczego często opiera się na standardach, takich jak ISO 5599-1, które określają wymiary i sposób montażu. Właściwie dobrany zawór zapewnia minimalizację ryzyka przecieków i optymalne działanie systemu. Praktyczne zastosowanie tego wyboru można zauważyć w automatyzacji procesów, gdzie takie elementy odpowiadają za szybką i precyzyjną kontrolę ruchów mechanicznych.

Pytanie 12

Jakie powinny być nastawy przełącznika przemiennika częstotliwości, aby można było sterować jego pracą za pomocą sygnału 0÷20 mA?

Ilustracja do pytania
A. 1-ON, 2-OFF, 3-OFF, 4-OFF
B. 1-OFF, 2-OFF, 3-OFF, 4-OFF
C. 1-ON, 2-ON, 3-ON, 4-ON
D. 1-OFF, 2-ON, 3-OFF, 4-OFF
Ta odpowiedź jest prawidłowa, ponieważ ustawienie przełącznika przemiennika częstotliwości 1-ON, 2-OFF, 3-OFF, 4-OFF odpowiada sygnałowi sterującemu 0-20 mA. W praktyce oznacza to, że przemiennik został skonfigurowany do pracy z urządzeniami, które wysyłają sygnały o natężeniu prądu w tym zakresie. Jest to częsty standard w automatyce przemysłowej, gdzie sygnały 0-20 mA są wykorzystywane do komunikacji pomiędzy czujnikami a urządzeniami wykonawczymi. Dzięki temu można płynnie regulować parametry pracy, jak prędkość obrotową silnika, co jest niezwykle istotne w aplikacjach wymagających precyzyjnego sterowania. Warto też pamiętać, że stosowanie sygnałów prądowych zamiast napięciowych ma tę zaletę, że jest mniej podatne na zakłócenia elektromagnetyczne, co jest szczególnie ważne w środowiskach przemysłowych. Z mojego doświadczenia, dobrze jest pamiętać, aby zawsze sprawdzać specyfikacje urządzeń, z którymi pracujemy, aby uniknąć błędnych konfiguracji, które mogą prowadzić do nieprawidłowej pracy systemu.

Pytanie 13

Element przedstawiany na schemacie symbolem graficznym jak na przedstawionym rysunku najczęściej w układzie automatyki pełni funkcję elementu

Ilustracja do pytania
A. sterującego.
B. regulującego.
C. wykonawczego.
D. pomiarowego.
Symbol przedstawiony na rysunku to symbol silnika elektrycznego, który w automatyce przemysłowej pełni funkcję elementu wykonawczego. Silniki elektryczne są kluczowe w układach automatyzacji, ponieważ przekształcają energię elektryczną w mechaniczną, co pozwala na napędzanie różnych maszyn i urządzeń. W praktyce, kiedy mówimy o elementach wykonawczych, mamy na myśli komponenty, które faktycznie wykonują zadanie, takie jak włączanie taśmy produkcyjnej, obracanie wałka czy podnoszenie ładunku. W układach sterowania, silniki są sterowane przez układy elektryczne, które regulują ich prędkość, kierunek obrotu oraz moment obrotowy. Standardowe praktyki w inżynierii obejmują użycie falowników do płynnej regulacji parametrów silnika. Ważne jest, aby odpowiednio dobrać silnik do aplikacji, biorąc pod uwagę jego moc, napięcie zasilania oraz charakterystykę obciążenia. W systemach automatyki, silniki są często używane w tandemach z przekładniami, co pozwala na zwiększenie momentu obrotowego przy niskiej prędkości, co jest pożądane w wielu aplikacjach przemysłowych. Moim zdaniem, zrozumienie roli elementów wykonawczych, takich jak silniki, jest kluczowe dla projektowania efektywnych i niezawodnych systemów automatyki.

Pytanie 14

Aby przekaźnik czasowy PCU-504 realizował funkcję opóźnionego załączenia po czasie 2 minut, kolejno przełączniki P1, P2 i P3 powinny być ustawione w następujących pozycjach:

Ilustracja do pytania
A. P1 – 2, P2 – 2, P3 – A0,1
B. P1 – 1, P2 – 1, P3 – A10
C. P1 – 1, P2 – 2, P3 – B0,1
D. P1 – 2, P2 – 1, P3 – B10
Ustawienia przekaźnika czasowego PCU-504 są kluczowe dla jego prawidłowego działania w funkcji opóźnionego załączenia. Zastosowanie opcji P1 – 2, P2 – 1, P3 – B10 oznacza, że ustawiamy 2 na pokrętle jednostek, 1 na dziesiątkach oraz wybieramy funkcję opóźnionego załączenia z mnożnikiem 10. Opóźnienie wynosi 2 minuty, co jest wynikiem ustawienia wartości 2 na pokrętle jednostek, a wartość 10 na pokrętle mnożnika (B10 na P3). Funkcja opóźnionego załączenia jest przydatna w wielu zastosowaniach, na przykład w systemach oświetleniowych czy wentylacyjnych, gdzie chcemy uniknąć nagłych skoków mocy. W praktyce, takie ustawienia pomagają w utrzymaniu stabilności systemu oraz zmniejszają obciążenie mechaniczne urządzeń. Standardy instalacji elektrycznych zalecają stosowanie przekaźników czasowych do ochrony obwodów przed przeciążeniem. Z mojego doświadczenia, poprawne ustawienie tych pokręteł może znacząco zwiększyć wydajność i żywotność systemu. Pamiętajcie, że właściwa konfiguracja to podstawa w automatyce przemysłowej, dlatego zawsze warto dokładnie analizować instrukcje i specyfikacje sprzętu.

Pytanie 15

Którym narzędziem nie można ściągnąć izolacji z przewodów elektrycznych wielożyłowych?

A. Narzędzie 1
Ilustracja do odpowiedzi A
B. Narzędzie 2
Ilustracja do odpowiedzi B
C. Narzędzie 4
Ilustracja do odpowiedzi C
D. Narzędzie 3
Ilustracja do odpowiedzi D
Pierwsze narzędzie widoczne na zdjęciu to obcinak do rur, najczęściej używany przy pracach hydraulicznych – do cięcia rur z tworzyw sztucznych, miedzi lub aluminium. Nie nadaje się do zdejmowania izolacji z przewodów elektrycznych, ponieważ jego ostrze jest zaprojektowane do przecinania grubych, sztywnych materiałów, a nie do precyzyjnego nacinania powłoki przewodów. Gdyby ktoś próbował użyć go do kabli, bardzo łatwo mógłby uszkodzić żyły przewodzące. W przeciwieństwie do niego, pozostałe narzędzia (2, 3 i 4) to ściągacze izolacji, zaprojektowane właśnie do pracy z przewodami jedno- i wielożyłowymi. Mają regulację średnicy, ograniczniki głębokości cięcia i specjalne szczęki zapobiegające przecięciu miedzi. Moim zdaniem to bardzo dobre pytanie praktyczne – w warsztacie czy na budowie zdarza się, że ktoś myli obcinak do rur z ściągaczem, bo oba mają podobny kształt uchwytu. W rzeczywistości jednak to zupełnie inne narzędzia – jedno tnie, drugie tylko usuwa cienką warstwę izolacji, zachowując nienaruszony przewodnik. Profesjonalny elektryk zawsze użyje dedykowanego ściągacza, aby uniknąć ryzyka przegrzania lub zwarcia w przewodzie.

Pytanie 16

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód 2.
Ilustracja do odpowiedzi A
B. Przewód 3.
Ilustracja do odpowiedzi B
C. Przewód 1.
Ilustracja do odpowiedzi C
D. Przewód 4.
Ilustracja do odpowiedzi D
Właściwy wybór to przewód 1. Ten typ przewodu jest przeznaczony do zasilania silników 3-fazowych z przemiennikiem częstotliwości (falownikiem). Ma on ekran z oplotu miedzianego lub aluminiowego, który ogranicza emisję zakłóceń elektromagnetycznych (EMC) oraz chroni przed ich przenikaniem do innych urządzeń. Przewody tego typu są odporne na drgania, wyższe temperatury i impulsy napięciowe generowane przez falownik. Dodatkowo posiadają izolację z materiałów trudnopalnych, często w klasie odporności na promieniowanie UV i oleje, co pozwala stosować je zarówno wewnątrz, jak i na zewnątrz obiektów przemysłowych. Z mojego doświadczenia wynika, że takie przewody – np. typu Ölflex Servo, BiTservo lub Helukabel Topflex – są niezbędne, aby uniknąć problemów z czujnikami, sterownikami PLC i komunikacją sieciową. Standard PN-EN 60204-1 wyraźnie zaleca stosowanie ekranowanych kabli przy połączeniach silników z falownikami właśnie ze względu na ograniczenie zakłóceń harmonicznych.

Pytanie 17

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. licznika impulsów zliczającego w dół CTD
B. licznika impulsów zliczającego w górę CTU
C. timera opóźniającego załączenie TON
D. timera opóźniającego wyłączenie TOF
Większość niepoprawnych odpowiedzi wynika z błędnego rozumienia działania bloków funkcjonalnych w sterownikach PLC. Po pierwsze, timery opóźniające załączenie (TON) i wyłączenie (TOF) są używane do kontrolowania zdarzeń czasowych, nie zliczają impulsów jak liczniki. Timery TON zaczynają odliczać czas od momentu załączenia sygnału, a TOF od momentu jego wyłączenia. To różne zastosowanie w porównaniu do liczników impulsów, które bazują na liczbach impulsów, a nie czasie. Dla przykładu, w aplikacjach, gdzie czas odgrywa kluczową rolę, jak regulacja oświetlenia czy systemy wentylacyjne, timery są bardziej odpowiednie niż liczniki. Ponadto, licznik impulsów zliczający w górę (CTU) działa odwrotnie do CTD, zwiększając swoją wartość przy każdym impulsie. Jest często używany, gdy potrzebujemy wiedzieć, ile impulsów zostało do tej pory zarejestrowanych, co jest przydatne w aplikacjach monitorowania produkcji. Typowy błąd to myślenie, że każdy blok impulsowy działa na tej samej zasadzie, jednak różnią się one w praktycznych zastosowaniach i sposobie działania. Rozróżnienie między timerami a licznikami oraz między różnymi typami liczników jest kluczowe dla właściwego projektowania układów automatyki.

Pytanie 18

Na przedstawionym rysunku siłownik jest połączony ze słupkiem za pomocą

Ilustracja do pytania
A. kołnierza przedniego.
B. ucha.
C. jarzma.
D. łapy.
Siłownik połączony ze słupkiem za pomocą ucha to jedno z najczęściej stosowanych rozwiązań w mechanice. Ucho, jako element maszyny, pozwala na łatwe i pewne przymocowanie siłownika, co jest kluczowe dla jego poprawnego działania. W praktyce, takie połączenie umożliwia obrót siłownika wokół osi ucha, co jest niezbędne w wielu aplikacjach, takich jak automatyka bram czy napędy maszynowe. Dzięki użyciu ucha można osiągnąć większą elastyczność konstrukcyjną oraz zapewnić odpowiednią wytrzymałość połączenia. W standardach projektowych, jak normy DIN czy ISO, uwzględnia się ten sposób montażu ze względu na jego skuteczność oraz łatwość implementacji. Dobrze zamocowane ucho minimalizuje ryzyko uszkodzeń i zwiększa trwałość całego systemu, co jest niezwykle ważne w długoterminowej eksploatacji. Przy projektowaniu takich połączeń inżynierowie zwracają uwagę na odpowiednie materiały oraz wytrzymałość na obciążenia dynamiczne.

Pytanie 19

Na schemacie przedstawiono

Ilustracja do pytania
A. przetwornik pomiarowy prądu lub napięcia AC
B. przetwornik napięcia AC na prąd AC
C. regulowany wzmacniacz napięć lub prądów zmiennych.
D. konwerter łącza szeregowego na łącze światłowodowe.
Wybrałeś konwerter łącza szeregowego na łącze światłowodowe, co jest trafnym wyborem. Tego typu urządzenia są kluczowe w systemach komunikacji, gdyż pozwalają na przesył danych na duże odległości bez strat sygnału. Konwersja sygnału z RS232 na transmisję światłowodową eliminuje problemy z zakłóceniami elektromagnetycznymi, które są częste w tradycyjnych kablach miedzianych. Z mojego doświadczenia, tego rodzaju konwertery są standardem w przemyśle, gdzie niezawodność i odporność na zakłócenia są kluczowe. Zastosowanie światłowodów również zwiększa bezpieczeństwo transmisji danych, co jest istotne w aplikacjach przemysłowych i wojskowych. Standard RS232, choć stary, nadal jest powszechnie używany ze względu na swoją prostotę i niezawodność, a jego integracja ze światłowodami dodatkowo przedłuża jego użyteczność. Konwertery te są często stosowane w automatyce przemysłowej oraz systemach sterowania, gdzie istotna jest precyzja i stabilność sygnału. Warto także wspomnieć, że światłowody mają o wiele większą przepustowość w porównaniu do tradycyjnych kabli, co w przyszłości może być kluczowe w przypadku rosnącej ilości przesyłanych danych.

Pytanie 20

Który element silnika tłokowego wskazuje strzałka?

Ilustracja do pytania
A. Korbowód.
B. Wał korbowy.
C. Wodzik.
D. Dźwignię.
Podczas analizy elementów silnika tłokowego można łatwo pomylić niektóre z nich, szczególnie jeśli nie ma się doświadczenia w tej dziedzinie. Zacznijmy od wodzika. Wodzik w rzeczywistości nie jest częścią silnika tłokowego, a raczej elementem przekładni, który pełni funkcję łącznika w mechanizmach dźwigniowych. Może być używany w innych typach maszyn, ale w kontekście silnika tłokowego to zupełnie co innego. Dźwignia, z drugiej strony, to element, który może być używany w różnych mechanizmach do przenoszenia siły, ale w silniku tłokowym nie znajduje się w bezpośrednim połączeniu z tłokiem. Korbowód, co jest najczęściej mylonym elementem, jest rzeczywiście kluczową częścią silnika tłokowego, ale jego rolą jest połączenie tłoka z wałem korbowym, co pozwala na przeniesienie ruchu liniowego na obrotowy. W praktyce, błędne zrozumienie funkcji i konstrukcji tych elementów może prowadzić do problemów podczas projektowania czy naprawy silnika. Warto znać standardy branżowe i funkcje każdego z elementów silnika, aby prawidłowo go serwisować i diagnozować ewentualne problemy.

Pytanie 21

Przedstawiony na zdjęciu czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. ciśnienia.
B. naprężeń.
C. pola magnetycznego.
D. temperatury.
Wybrałeś odpowiedź dotyczącą pola magnetycznego, co jest prawidłowe. Przedstawiony czujnik to kontaktron, czyli rodzaj przełącznika sterowanego polem magnetycznym. Działa na zasadzie zamykania lub otwierania obwodu elektrycznego pod wpływem zbliżenia magnesu. Jest to bardzo popularne rozwiązanie w systemach zabezpieczeń, na przykład w alarmach okiennych i drzwiowych, gdzie magnes umieszczony na ruchomej części powoduje zmianę stanu kontaktronu. Kontaktrony są również wykorzystywane w licznikach rowerowych do detekcji obrotu koła. Dzięki swojej prostocie i niezawodności są szeroko stosowane w różnych aplikacjach przemysłowych. Warto pamiętać, że ich działanie opiera się na prostym fizycznym zjawisku reakcji na pole magnetyczne, co czyni je niezawodnymi w wielu zastosowaniach. Standardy branżowe dla takich urządzeń obejmują normy dotyczące ich czułości i trwałości, co zapewnia bezpieczeństwo i długą żywotność. Moim zdaniem, kontaktrony są doskonałym przykładem na to, jak prosta technologia może być niezwykle efektywna w praktyce.

Pytanie 22

Oszacuj na podstawie charakterystyki pompy wysokość podnoszenia cieczy, jeżeli przy prędkości obrotowej n = 1 850 1/min pracuje ona z wydajnością 550 m³/h.

Ilustracja do pytania
A. 6,4 m
B. 2,2 m
C. 8,5 m
D. 4,2 m
Dobrze to rozgryzłeś. Wysokość podnoszenia cieczy przy prędkości obrotowej n = 1850 1/min i wydajności 550 m³/h to 4,2 m. Z wykresu widać, że dla tej wartości obrotów, krzywa charakterystyczna pompy przecina się w okolicach 4,2 m na osi wysokości podnoszenia. Takie oszacowanie jest zgodne z zasadami projektowania i doboru pomp w praktyce inżynierskiej. Ważne jest, aby zrozumieć, jak parametry takie jak prędkość obrotowa i wydajność wpływają na działanie pompy. W przypadku pomp, ich charakterystyki są kluczowym elementem pozwalającym określić, jak będą działały w różnych warunkach. Znajomość tej zależności jest istotna podczas projektowania systemów pompowych, gdzie należy dążyć do pracy w optymalnym punkcie charakterystyki. Dobrze dobrana pompa zapewnia nie tylko efektywne działanie, ale także mniejsze zużycie energii, co jest szczególnie ważne w kontekście zrównoważonego rozwoju i oszczędności energii w przemyśle.

Pytanie 23

W dokumentacji powykonawczej nie należy umieszczać

A. dowodów zakupu z cenami.
B. warunków gwarancji.
C. protokołów pomiarowych.
D. certyfikatów użytych materiałów.
Dokumentacja powykonawcza to kluczowy element w każdej budowie czy projekcie technicznym. Jest jak skarb dla każdego inżyniera czy technika, ponieważ zawiera wszystkie istotne informacje o zakończonym projekcie. Dlatego właśnie nie umieszczamy w niej dowodów zakupu z cenami. Dlaczego? Ponieważ dokumentacja powykonawcza ma być przede wszystkim dokumentem technicznym, a nie finansowym. Skupiamy się w niej na aspektach technicznych, takich jak warunki gwarancji, protokoły pomiarowe czy certyfikaty użytych materiałów. Wszystko to jest niezbędne do utrzymania i ewentualnych napraw, ale ceny zakupu nie mają tu większego znaczenia. Ceny mogą się zmieniać, inflacja robi swoje, ale dokumentacja techniczna powinna być zawsze aktualna i zgodna z faktycznym stanem technicznym obiektu. W praktyce, ceny zakupu są ważne na etapie budżetowania i rozliczeń, ale nie w kontekście późniejszej eksploatacji budynku. Moim zdaniem, skupienie się na jakości i technologiach użytych w projekcie ma większe znaczenie i dlatego dowody zakupu z cenami są pomijane.

Pytanie 24

Który typ złącza przedstawiono na rysunku?

Ilustracja do pytania
A. HDMI
B. RJ-45
C. USB
D. RS-232
Wybrałeś poprawną odpowiedź, ponieważ złącze RS-232 to klasyczny interfejs, który przez lata był standardem komunikacji szeregowej w komputerach i urządzeniach przemysłowych. Złącze te, najczęściej spotykane w wersji DB9, umożliwia przesyłanie danych szeregowo, co oznacza, że bity są przesyłane jeden po drugim. Jest znane ze swojej prostoty i niezawodności, chociaż jego prędkość transmisji nie jest zbyt wysoka w porównaniu z nowoczesnymi standardami. Używane jest często w aplikacjach przemysłowych, systemach POS czy do podłączania modemów i drukarek. Mimo że RS-232 zostało wypierane przez nowsze technologie, takie jak USB czy Ethernet, nadal znajduje zastosowanie tam, gdzie wymagana jest długa odległość transmisji i odporność na zakłócenia. W praktyce, złącza RS-232 są często wykorzystywane do konfiguracji urządzeń sieciowych czy w systemach automatyki przemysłowej. Warto także pamiętać, że ten typ połączenia wymaga odpowiedniego kabla z ekranowaniem, aby zminimalizować wpływ zakłóceń elektromagnetycznych. Moim zdaniem, znajomość RS-232 to podstawa dla każdego, kto interesuje się elektroniką i telekomunikacją, ponieważ pozwala zrozumieć fundamenty komunikacji szeregowej i jej zastosowania w praktyce.

Pytanie 25

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami aluminiowymi w izolacji z polwinitu, należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. ADS-t
B. ALY-t
C. ADS-w
D. ADY-w
Wybór przewodu oznaczonego jako ADY-w jest prawidłowy w kontekście wykonania połączeń wysokonapięciowych. Oznaczenie 'A' wskazuje na materiał przewodu – aluminium, co jest standardowym wyborem dla przewodów wykorzystywanych w aplikacjach wysokonapięciowych ze względu na jego lekkość i dobrą przewodność. 'D' oznacza, że żyła jest jednodrutowa, co zapewnia odpowiednią integralność i wytrzymałość mechaniczną przy przesyle wysokiego napięcia. 'Y' sugeruje, że izolacja przewodu wykonana jest z polwinitu, co jest powszechnie stosowane ze względu na swoją odporność na warunki atmosferyczne i izolacyjne właściwości. Dodatkowy symbol 'w' wskazuje, że przewód jest zaprojektowany do pracy na wysokie napięcie, co jest kluczowe w zapewnieniu bezpieczeństwa i efektywności w takich instalacjach. Zastosowanie przewodów ADY-w jest uznawane za standardową praktykę w branży energetycznej, zapewniając zgodność z normami bezpieczeństwa i efektywności energetycznej. Praktyczne zastosowanie to np. linie przesyłowe między stacjami transformatorowymi.

Pytanie 26

Przedstawione na ilustracjach narzędzie służy do montażu

Ilustracja do pytania
A. zabezpieczeń E-ring.
B. kołków rozprężnych.
C. pierścieni Segera.
D. podkładek dystansowych.
Choć na pierwszy rzut oka mogą się mylić, narzędzie przedstawione na ilustracjach nie służy do montażu pierścieni Segera. Pierścienie te, znane również jako pierścienie zabezpieczające, wymagają specjalnych szczypiec z końcówkami dopasowanymi do ich otworów. Bez odpowiedniego narzędzia, montaż i demontaż takich pierścieni jest nie tylko trudny, ale i ryzykowny dla mechanizmów. Podobnie, narzędzie to nie jest przeznaczone do montażu kołków rozprężnych, które działają na zasadzie sił rozszerzających, a ich montaż wymaga najczęściej młotka lub prasy. Podkładki dystansowe z kolei nie wymagają użycia tego rodzaju narzędzi, ponieważ są to płaskie elementy mające na celu regulację odległości pomiędzy częściami, a ich montaż jest manualny. Typowym błędem jest mylenie szczypiec do E-ring z innymi narzędziami z powodu ich zewnętrznego podobieństwa. Jednak funkcja i konstrukcja są specjalnie dostosowane do konkretnego zastosowania. W przypadku E-ringów, kluczowe jest odpowiednie dopasowanie narzędzia, aby zapewnić właściwe działanie zabezpieczenia i uniknąć uszkodzeń mechanicznych. Dlatego zawsze warto dokładnie sprawdzić specyfikację techniczną narzędzia przed jego użyciem.

Pytanie 27

Na podstawie fragmentu karty katalogowej zaworu elektromagnetycznego określ maksymalne wartości ciśnienia roboczego i temperatury medium.

Fragment karty katalogowej
Typ modułu pneumatykizawór elektromagnetyczny
GwintBSP 3/4"
Średnica zewnętrzna przewodu20 mm
Ciśnienie robocze0.1÷16 bar
Temperatura pracymax. 50°C
Temperatura medium maks.90°C
Napięcie zasilania24 V DC
Klasa szczelnościIP65
Materiał korpusumosiądz
Materiał uszczelnieniakauczuk NBR
Podłączenie elektryczneDIN 43650 typ A
A. Ciśnienie robocze 10 barów i temperatura 90°C
B. Ciśnienie robocze 16 barów i temperatura 50°C
C. Ciśnienie robocze 16 barów i temperatura 90°C
D. Ciśnienie robocze 0,1 bara i temperatura 50°C
Maksymalne wartości ciśnienia roboczego i temperatury medium w zaworach elektromagnetycznych są kluczowe dla ich prawidłowego funkcjonowania i trwałości. W podanym fragmencie karty katalogowej znajdziemy informację, że ciśnienie robocze wynosi od 0,1 do 16 barów, co oznacza, że zawór może pracować z ciśnieniem nawet do 16 barów. To ważne, bo różne aplikacje w przemyśle wymagają różnych poziomów ciśnienia, a zawory muszą być w stanie spełnić te wymagania. Jeżeli chodzi o temperaturę medium, tutaj maksymalna wartość wynosi 90°C. Oznacza to, że ciecz lub gaz przepływające przez zawór mogą mieć temperaturę do 90°C, co jest istotne przy zastosowaniach w miejscach, gdzie medium może być gorące, na przykład w systemach grzewczych lub przemysłowych procesach chemicznych. Ważne jest, aby zawsze sprawdzać te parametry przed doborem zaworu do konkretnego zastosowania, ponieważ przekroczenie dopuszczalnych wartości może prowadzić do uszkodzenia zaworu i potencjalnych awarii w systemie. Warto też zwrócić uwagę na standardy branżowe, które regulują dobór i zastosowanie zaworów elektromagnetycznych, takie jak normy PN-EN dotyczące armatury przemysłowej.

Pytanie 28

W celu wykonania połączeń wysokonapięciowych przewodem z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu należy wybrać przewód oznaczony jako

Ilustracja do pytania
A. DG-w
B. DS-w
C. LY-w
D. DY-w
Wybór przewodu oznaczonego jako DY-w jest trafny, ponieważ wskazuje on na przewód z jednodrutowymi żyłami miedzianymi w izolacji z polwinitu, przeznaczony do połączeń wysokonapięciowych. Litera 'D' oznacza, że mamy do czynienia z żyłą jednodrutową, co jest typowe dla przewodów, które muszą wytrzymać wysokie napięcia. Miedź jako materiał przewodzący jest idealnym wyborem ze względu na doskonałą przewodność elektryczną i mechaniczną wytrzymałość. Izolacja z polwinitu ('Y') jest powszechnie stosowana w sytuacjach wymagających trwałości i odporności na różne czynniki środowiskowe, takie jak wilgoć czy chemikalia. Dodatek 'w' w oznaczeniu informuje nas, że przewód jest przeznaczony na wysokie napięcie, co czyni go odpowiednim do zastosowań w energetyce i przemysłowych instalacjach elektrycznych. Polwinit jako izolacja nie tylko chroni przed uszkodzeniami, ale również posiada właściwości samogasnące, co jest kluczowe w przypadku ewentualnego zwarcia. Standardy branżowe zalecają stosowanie takich przewodów w instalacjach, gdzie niezawodność i bezpieczeństwo są priorytetem.

Pytanie 29

Która z przekładni mechanicznych na pokazanych rysunkach pracuje zgodnie z przedstawionym schematem kinematycznym?

Ilustracja do pytania
A. Przekładnia 2.
Ilustracja do odpowiedzi A
B. Przekładnia 3.
Ilustracja do odpowiedzi B
C. Przekładnia 1.
Ilustracja do odpowiedzi C
D. Przekładnia 4.
Ilustracja do odpowiedzi D
Schemat kinematyczny przedstawia przekładnię, w której osie wałów przecinają się pod kątem prostym – a więc klasyczną przekładnię stożkową. Przekładnia 2 to przekładnia pasowa, gdzie moment przenoszony jest przez elastyczny pas, a osie wałów są równoległe, więc nie odpowiada ona rysunkowi. Przekładnia 3 przedstawia układ ślimakowy – osie również przecinają się pod kątem prostym, ale nie w jednym punkcie, lecz są przesunięte, co daje zupełnie inny charakter pracy (przekształcenie ruchu obrotowego z dużym przełożeniem i samohamownością). Z kolei przekładnia 4 to przekładnia śrubowa, w której osie wałów są równoległe i zazębienie odbywa się liniowo. Typowym błędem jest utożsamianie każdego układu o kącie 90° z przekładnią stożkową – tymczasem tylko ona ma zęby ukształtowane na powierzchni stożka i zapewnia bezpośrednie, punktowe przenoszenie momentu między osiami przecinającymi się w jednym punkcie. W praktyce błędny dobór przekładni może powodować nieprawidłowe przeniesienie siły, zwiększony hałas lub nawet uszkodzenie łożysk i wałów. Dlatego w schematach zawsze zwraca się uwagę na wzajemne położenie osi i rodzaj zazębienia.

Pytanie 30

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. analogowo-cyfrowy konwerter USB.
B. przetwornica napięcia.
C. zadajnik cyfrowo-analogowy.
D. przetwornik PWM.
Zgadza się, przedstawiony przetwornik to analogowo-cyfrowy konwerter USB. Dlaczego? Konwertery tego rodzaju służą do przekształcania sygnałów analogowych na cyfrowe, co jest kluczowe w wielu aplikacjach, gdzie potrzebujemy monitorować i analizować sygnały analogowe za pomocą komputerów. Proces ten odbywa się dzięki przetwornikowi analogowo-cyfrowemu (A/D), który zamienia sygnał analogowy na cyfrowy, a następnie poprzez interfejs USB przekazuje go do komputera. USB zapewnia także zasilanie i komunikację, co czyni te urządzenia bardzo praktycznymi i wszechstronnymi. W praktyce takie konwertery są często używane w laboratoriach, przemyśle oraz w projektach inżynieryjnych, gdzie dokładne pomiary i analiza danych są niezbędne. Z mojego doświadczenia, są one również bardzo wygodne w zastosowaniach edukacyjnych, ponieważ pozwalają na szybkie i bezproblemowe podłączenie urządzeń pomiarowych do PC.

Pytanie 31

Podczas montażu został nacięty przewód zasilający 3-fazowy silnik hydroforu. Uszkodzeniu uległy izolacja zewnętrzna oraz izolacja żyły N niepodłączonej do silnika. Które zdanie poprawnie określa możliwość użytkowania tak uszkodzonej instalacji?

Ilustracja do pytania
A. Ta instalacja nie może być eksploatowana.
B. Można tę instalację eksploatować pod warunkiem, że nie ma wycieku wody z hydroforu.
C. Eksploatacja tej instalacji jest możliwa, ale przy uszkodzonym przewodzie trzeba umieścić tabliczkę ostrzegawczą.
D. Mimo tego uszkodzenia instalacja może być normalnie eksploatowana.
Taka instalacja nie może być eksploatowana. Nawet jeśli uszkodzenie dotyczy tylko izolacji zewnętrznej i nieużywanej żyły N, przepisy jasno zabraniają użytkowania przewodów z naruszoną izolacją. Zgodnie z normą PN-EN 50110-1 oraz zasadami eksploatacji urządzeń elektrycznych, każdy przewód musi mieć pełną, nienaruszoną izolację, gwarantującą ochronę przed porażeniem i zwarciem. W tym przypadku przewód jest nacięty – odsłonięty metalowy rdzeń może stanowić zagrożenie porażeniem, a także doprowadzić do zwarcia między żyłami. W praktyce zawodowej taki przewód należy niezwłocznie wymienić lub odciąć uszkodzony odcinek i wykonać nowe połączenie zgodne z normami. Moim zdaniem nie warto ryzykować – nawet najmniejsze nacięcie może w dłuższym czasie prowadzić do przegrzewania, utleniania i awarii całej instalacji, szczególnie w środowisku wilgotnym, jak przy hydroforze.

Pytanie 32

W jaki sposób należy ustawić separator dla toru pomiarowego czujnika 0÷100°C/0÷20 mA dla wejścia sterownika PLC 0÷20 mA?

Ilustracja do pytania
A. input SW1 - 01001001, output SW2 - 0000
B. input SW1 - 01011010, output SW2 - 1001
C. input SW1 - 01011010, output SW2 - 0110
D. input SW1 - 10001100, output SW2 - 0000
Ustawienie separatora toru pomiarowego czujnika w zakresie 0÷100°C/0÷20 mA dla wejścia sterownika PLC 0÷20 mA jest kluczowe dla zapewnienia dokładności pomiarów oraz bezawaryjnej pracy urządzenia. Poprawna odpowiedź to ustawienie input SW1 na 01001001 oraz output SW2 na 0000. To ustawienie zapewnia, że sygnał wejściowy w pełni pokrywa zakres 0÷20 mA, co jest zgodne z wymaganiami sterownika PLC. W praktyce, ustawienie to pozwala na pełne odwzorowanie sygnałów z czujnika, eliminując ryzyko błędów pomiarowych. Dobrze dobrany separator sygnału nie tylko optymalizuje działanie systemu, ale także zapewnia jego długotrwałą niezawodność. Ustawienie SW1 na 01001001 oznacza, że aktywowane są odpowiednie przełączniki dla zakresu 0÷20 mA, co jest często wykorzystywane w aplikacjach przemysłowych, gdzie precyzja i stabilność odczytu są kluczowe. To ustawienie jest zgodne z najlepszymi praktykami w dziedzinie automatyki przemysłowej, co gwarantuje nie tylko poprawność działania, ale również zgodność z normami.

Pytanie 33

W celu wykonania połączenia między zasilaczem a sterownikiem punktów oznaczonych jako PE należy zastosować przewód którego izolacja ma kolor

A. żółto-zielony.
B. niebiesko-zielony.
C. czerwony.
D. niebieski.
Kolor przewodu ma kluczowe znaczenie w elektryce, ponieważ pozwala na szybkie i bezbłędne rozpoznanie jego funkcji. Żółto-zielona izolacja przewodów jest zarezerwowana dla przewodów ochronnych, znanych jako PE (Protective Earth). Przewody te są niezbędne do ochrony przed porażeniem prądem elektrycznym, gdyż zapewniają bezpieczną drogę przepływu prądu w przypadku uszkodzenia izolacji. W praktyce, przewody PE są podłączane do metalowych obudów urządzeń elektrycznych i prowadzone do ziemi, co powoduje, że potencjalnie niebezpieczne napięcia są bezpiecznie odprowadzane. Zgodnie z normą IEC 60446, kolor żółto-zielony jest jednoznacznie przypisany do przewodów ochronnych. Warto dodać, że właściwe oznaczenie kolorystyczne przewodów nie tylko zwiększa bezpieczeństwo, ale także ułatwia późniejszą konserwację i ewentualne naprawy instalacji. Wybór żółto-zielonego przewodu dla połączeń ochronnych jest standardem międzynarodowym, który pomaga unikać pomyłek i zapewnia spójność w projektowaniu instalacji elektrycznych. Moim zdaniem, znajomość i stosowanie tych standardów jest nie tylko kwestią dobrych praktyk, ale też świadczy o profesjonalizmie w pracy elektryka.

Pytanie 34

Którą funkcję logiczną realizuje program zapisany w pamięci sterownika PLC przedstawiony na rysunku?

Ilustracja do pytania
A. OR
B. NAND
C. NOR
D. XOR
Rozważając, dlaczego inne odpowiedzi mogą być błędne, zacznijmy od funkcji OR. OR to funkcja logiczna, która włącza wyjście, jeśli co najmniej jedno z wejść jest aktywne. To nie pasuje do naszej sytuacji, gdzie wyjście jest aktywne tylko, gdy oba wejścia są wyłączone. Funkcja XOR, czyli „exclusive OR”, aktywuje wyjście tylko wtedy, gdy dokładnie jedno z wejść jest aktywne. Jest to użyteczne w sytuacjach, gdzie chcemy wykryć różnice pomiędzy dwoma sygnałami, ale nie w przypadku naszego schematu. NOR to dokładne przeciwieństwo OR, co oznacza, że wyjście jest aktywne tylko wtedy, gdy wszystkie wejścia są nieaktywne. Funkcja NAND, z kolei, jest przeciwieństwem AND, czyli wyjście jest aktywne, jeżeli przynajmniej jedno wejście jest nieaktywne. Typowy błąd, który można popełnić, to mylenie tych funkcji. Warto zwrócić uwagę, że każda z nich ma swoje miejsce i zastosowanie w automatyce i projektowaniu układów logicznych. Dobra praktyka polega na dokładnym zrozumieniu potrzeb systemu i wybraniu odpowiedniej funkcji, co jest kluczowe dla poprawnego projektowania układów sterujących zgodnie ze standardami branżowymi.

Pytanie 35

Element przedstawione na rysunku to

Ilustracja do pytania
A. czujnik pojemnościowy.
B. czujnik rezystancyjny.
C. termometr rtęciowy.
D. pirometr.
To świetnie, że rozpoznajesz czujnik rezystancyjny. Te czujniki, zwane także RTD (Resistance Temperature Detector), są szeroko stosowane w przemyśle do precyzyjnych pomiarów temperatury. Ich działanie opiera się na zależności rezystancji metalu od temperatury. Najczęściej spotykane są czujniki wykonane z platyny, takie jak Pt100, Pt500 czy Pt1000, gdzie liczby oznaczają wartość rezystancji w omach przy 0°C. Czujniki te są cenione za swoją dokładność i stabilność pomiarową. Są stosowane tam, gdzie wymagana jest wysoka precyzja, jak w przemyśle chemicznym, farmaceutycznym czy w laboratoriach badawczych. Ich kalibracja i zgodność z międzynarodowymi standardami, np. IEC 60751, zapewniają spójność i wiarygodność pomiarów. Dodatkowo, dzięki zastosowaniu różnych materiałów na osłonę, mogą być stosowane w trudnych warunkach środowiskowych. Takie czujniki mogą pracować w szerokim zakresie temperatur, co czyni je niezwykle uniwersalnymi narzędziami pomiarowymi.

Pytanie 36

Którym z przedstawionych na rysunkach miernikiem należy się posłużyć przy testowaniu okablowania strukturalnego?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Do testowania okablowania strukturalnego należy użyć specjalistycznego miernika sieciowego Fluke Networks CableIQ. To urządzenie zostało zaprojektowane właśnie do kwalifikacji i diagnostyki kabli miedzianych w instalacjach komputerowych i teleinformatycznych. Pozwala sprawdzić, czy dany odcinek przewodu spełnia wymagania dla transmisji 10BASE-T, 100BASE-TX, 1000BASE-T lub VoIP. Miernik ten wykonuje testy ciągłości, mapy połączeń, długości żył, a także wykrywa błędy takie jak zwarcia, przerwy, zamiany par czy przesłuchy. Co więcej, potrafi określić jakość toru transmisyjnego – czyli tzw. kwalifikację kabla – bez potrzeby używania certyfikatora. W praktyce Fluke Networks to standard w branży telekomunikacyjnej i instalatorskiej; dzięki prostemu interfejsowi i automatycznym raportom jest niezastąpiony przy odbiorach sieci LAN. Moim zdaniem to najlepsze rozwiązanie do pracy w terenie – szybkie, dokładne i odporne na błędy użytkownika.

Pytanie 37

Na rysunku przedstawiono

Ilustracja do pytania
A. blok rozdzielający.
B. zespół przygotowania powietrza.
C. zawór odcinający.
D. elektrozawór.
To, co widzisz na rysunku, to typowy zespół przygotowania powietrza. Składa się z kilku kluczowych elementów: filtr, regulator ciśnienia oraz smarownica. Filtr ma za zadanie usuwać zanieczyszczenia z powietrza, takie jak kurz czy wilgoć, co jest niezwykle ważne w zapewnieniu prawidłowego działania narzędzi pneumatycznych. Regulator ciśnienia pozwala na utrzymanie stałego ciśnienia w systemie, co jest kluczowe dla stabilnej pracy urządzeń. Natomiast smarownica dodaje mgiełkę oleju do przepływającego powietrza, co zmniejsza tarcie i zużycie ruchomych części narzędzi pneumatycznych, wydłużając ich żywotność. Takie zespoły są powszechnie stosowane w warsztatach samochodowych, w przemyśle czy na liniach produkcyjnych. Znajomość ich działania jest kluczowa dla każdego technika zajmującego się systemami pneumatycznymi, ponieważ zapewnia to nie tylko niezawodność, ale także bezpieczeństwo pracy. Praktyka pokazuje, że regularne przeglądy i konserwacja tego typu urządzeń znacząco wpływają na wydajność całego systemu pneumatycznego.

Pytanie 38

Do sygnalizacji położenia tłoka siłownika pneumatycznego, którego symbol graficzny pokazano na rysunku, należy zastosować czujnik

Ilustracja do pytania
A. ultradźwiękowy.
B. pojemnościowy.
C. magnetyczny.
D. indukcyjny.
Wybór innego rodzaju czujnika niż magnetyczny do sygnalizacji położenia tłoka siłownika pneumatycznego nie jest najlepszym rozwiązaniem. Zacznijmy od czujnika indukcyjnego. Ten typ czujnika działa poprzez wykrywanie zmian pola elektromagnetycznego w obecności metalowych obiektów. Jednak tłok siłownika nie zawsze musi być wykonany z metalu, co oznacza, że czujnik indukcyjny może nie działać prawidłowo, jeżeli materiał tłoka nie współdziała z polem elektromagnetycznym. Czujnik pojemnościowy z kolei wykrywa zmiany pojemności elektrycznej w obecności różnych materiałów, ale jego zastosowanie w tym przypadku może być ograniczone przez jego wrażliwość na zmiany wilgotności i inne czynniki środowiskowe. Jest to mniej precyzyjne rozwiązanie w porównaniu do czujników magnetycznych. Czujnik ultradźwiękowy, który działa na zasadzie wysyłania i odbierania fal dźwiękowych, również nie jest idealny. Chociaż jest bardzo wszechstronny, jego dokładność może być zakłócana przez zmienne warunki akustyczne, takie jak odbicia fal dźwiękowych od pobliskich obiektów. Często popełnianym błędem jest zakładanie, że uniwersalność czujnika oznacza jego najlepszą adaptację do każdego środowiska, co nie zawsze jest prawdą. Podsumowując, każdy z tych czujników ma swoje zastosowania, ale w przypadku sygnalizacji położenia tłoka siłownika pneumatycznego, wybór powinien paść na czujnik magnetyczny, ze względu na jego precyzyjność, odporność na warunki środowiskowe i łatwość integracji z systemami automatyki.

Pytanie 39

Do odkręcania śrub przedstawionych na zdjęciu służy klucz z nasadką o nacięciu

Ilustracja do pytania
A. torx.
B. trójkątnym.
C. krzyżowym.
D. prostym.
Śruby przedstawione na zdjęciu mają charakterystyczne, sześcioramienne gniazdo w kształcie gwiazdy. Klucze torx oznaczane są symbolem T (np. T20, T30) i zostały zaprojektowane tak, aby przenosić większy moment obrotowy bez ryzyka uszkodzenia łba śruby. W przeciwieństwie do tradycyjnych śrub krzyżowych lub prostych, torx zapewnia znacznie lepszy kontakt narzędzia z gniazdem, co zmniejsza efekt tzw. wyślizgiwania się końcówki (cam-out). W praktyce technicznej śruby torx stosuje się w motoryzacji, elektronice, urządzeniach przemysłowych i meblarstwie – tam, gdzie wymagana jest precyzja i trwałość połączenia. Z mojego doświadczenia wynika, że warto mieć w warsztacie pełen zestaw torxów, bo coraz częściej zastępują one klasyczne krzyżaki. Dodatkowo istnieją wersje zabezpieczone (torx z bolcem w środku), które wymagają specjalnego klucza, co chroni przed nieautoryzowanym rozkręceniem urządzeń.

Pytanie 40

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to

Ilustracja do pytania
A. blok licznika impulsów zliczającego w dół CTD
B. blok timera opóźniającego wyłączenie TOF
C. blok licznika impulsów zliczającego w górę CTU
D. blok timera opóźniającego załączenie TON
Analizując inne dostępne opcje, warto skupić się na błędnych koncepcjach związanych z działaniem timerów i liczników. Timer opóźniający załączenie (TON) jest często używany w aplikacjach, gdzie po otrzymaniu sygnału wejściowego chcemy uzyskać opóźnione załączenie wyjścia. Na wykresie jednak nie obserwujemy charakterystycznego dla TON stałego przyrostu wartości w miarę upływu czasu. Podobnie, timer opóźniający wyłączenie (TOF) działa na zasadzie opóźnionego wyłączenia sygnału wyjściowego po zaniku sygnału wejściowego. Tutaj również, brak charakterystycznego zachowania pokazującego wyłączenie po upływie określonego czasu dyskwalifikuje TOF. Licznik impulsów zliczający w górę (CTU) z kolei zwiększa wartość CV przy każdym kolejnym impulsie, co jest odwrotnością tego, co widzimy na wykresie. Typowym błędem jest mylenie tych funkcji z powodu podobnych nazw i zastosowań, jednak kluczowe różnice w ich działaniu mają istotne znaczenie w projektowaniu systemów automatyki. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i implementacji systemów sterowania.