Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 18 grudnia 2025 00:31
  • Data zakończenia: 18 grudnia 2025 00:43

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Kąty odpowiedzialne za określenie kierunku ustawienia anteny satelitarnej to

A. azymutu, elewacji, transpondera
B. azymutu, konwertera, transpondera
C. elewacji, konwertera, transpondera
D. elewacji, konwertera, azymutu
Prawidłowe wyznaczenie kierunku ustawienia anteny satelitarnej wymaga znajomości trzech fundamentalnych kątów: elewacji, azymutu oraz kąta konwertera. Niektóre z odpowiedzi zawierają błędne pojęcia lub niewłaściwe zestawienia kątów, co prowadzi do nieporozumień. Na przykład, kąt elewacji jest niezbędny, ponieważ pozwala określić, pod jakim kątem antena ma być skierowana w górę, co jest kluczowe dla odbioru sygnału z satelitów. Kąt azymutu z kolei wskazuje kierunek poziomy, w którym antena powinna być ustawiona, aby móc odebrać sygnał. Zdarza się, że odpowiedzi sugerują użycie kąta transpondera, co jest niepoprawne, ponieważ transponder to element satelity, który przetwarza sygnał, a nie parametr ustawienia anteny. Często występującym błędem jest mylenie funkcji konwertera z innymi kątami, co prowadzi do niepoprawnych wniosków. Konwerter LNB jest kluczowym elementem, który określa, jak sygnał z satelity jest odbierany i przetwarzany, dlatego jego odpowiednie ustawienie jest niezwykle istotne. Właściwe zrozumienie tych kątów i ich zastosowania jest kluczowe dla uzyskania optymalnej jakości sygnału. Niezrozumienie tych aspektów może skutkować problemami z odbiorem, co w praktyce oznacza niedziałającą antenę lub niską jakość sygnału.

Pytanie 3

Znak graficzny przedstawiony na rysunku informuje, że podczas prac z urządzeniem należy zastosować środki ochrony indywidualnej zabezpieczające przed

Ilustracja do pytania
A. mikrofalami.
B. substancją żrącą.
C. światłem lasera.
D. polem elektromagnetycznym.
Znak graficzny przedstawiony na rysunku to symbol ostrzegawczy dotyczący promieniowania laserowego. Użycie tego symbolu wskazuje na konieczność stosowania środków ochrony indywidualnej, w tym specjalnych okularów ochronnych, które są kluczowe w ochronie oczu przed szkodliwymi skutkami promieniowania laserowego. Przykładem zastosowania tej ochrony jest praca w laboratoriach, gdzie lasery są powszechnie używane do różnych zastosowań, takich jak cięcie materiałów czy badania naukowe. Okulary ochronne posiadają specjalne filtry, które blokują określone długości fal światła, co minimalizuje ryzyko uszkodzenia wzroku. W kontekście standardów branżowych, stosowanie odpowiednich środków ochrony indywidualnej jest regulowane przez normy ISO oraz przepisy BHP, które nakładają obowiązek zapewnienia bezpieczeństwa pracowników w miejscu pracy. Ignorowanie tych wymogów może prowadzić do poważnych konsekwencji zdrowotnych, dlatego tak istotne jest przestrzeganie zasad ochrony osobistej w przypadku pracy z urządzeniami emitującymi promieniowanie laserowe.

Pytanie 4

Który z wymienionych standardów nie opiera się na komunikacji radiowej?

A. NFC
B. WiFi
C. Bluetooth
D. IrDA
IrDA (Infrared Data Association) to standard komunikacyjny, który wykorzystuje podczerwień do przesyłania danych pomiędzy urządzeniami. W odróżnieniu od pozostałych standardów wymienionych w pytaniu, takich jak WiFi, NFC i Bluetooth, które operują na falach radiowych, IrDA działa w zakresie podczerwieni, co oznacza, że wymaga bezpośredniej linii wzroku między nadajnikiem a odbiornikiem. Przykładem zastosowania IrDA mogą być połączenia między urządzeniami mobilnymi a drukarkami, gdzie dane są przesyłane bezprzewodowo, ale w sposób wymagający precyzyjnego ustawienia obu urządzeń. IrDA była powszechnie stosowana w starszych telefonach komórkowych oraz laptopach do przesyłania plików. Ze względu na swoje ograniczenia, takie jak krótki zasięg oraz konieczność utrzymania linii wzroku, IrDA nie zdołała utrzymać konkurencyjnej pozycji wobec technologii radiowych, które oferują większą wszechstronność i wygodę. Warto również zauważyć, że IrDA była jednym z pierwszych standardów w zakresie bezprzewodowej komunikacji, co czyni ją przykładem historycznym w kontekście rozwoju technologii transmisji danych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Miernik przedstawiony na zdjęciu służy do testowania instalacji

Ilustracja do pytania
A. światłowodowej.
B. komputerowej.
C. energetycznej.
D. satelitarnej.
Miernik, który widzisz na zdjęciu, służy do testowania instalacji komputerowych. Zauważ, że ma złącza RJ45, które są typowe dla sieci Ethernet. Dzięki takiemu testerowi można sprawdzić, czy połączenia są poprawne i znaleźć problemy w kablach, takie jak zwarcia czy przerwy. Na przykład, w biurze przy zakładaniu sieci lokalnej warto użyć takiego urządzenia, żeby mieć pewność, że wszystko działa jak należy. To ważne, bo stabilność i wydajność przesyłu danych są kluczowe. Te testery są zgodne z normami, co daje pewność co do ich dokładności. Najlepiej jest używać ich przed uruchomieniem sieci, żeby upewnić się, że każdy element działa sprawnie. Dobrą praktyką jest też regularne sprawdzanie nawet tych starszych instalacji, żeby uniknąć przyszłych problemów.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Brak uziemiającej opaski na nadgarstku pracownika podczas montażu układów CMOS może prowadzić do

A. porażenia prądem elektrycznym
B. uszkodzenia układów scalonych
C. uszkodzenia sprzętu lutowniczego
D. poparzenia gorącym spoiwem
Nie da się ukryć, że pomysł, że brak opaski uziemiającej może prowadzić do porażenia prądem, poparzenia spoiwem czy uszkodzenia sprzętu lutowniczego, to nieporozumienie. Porażenie prądem jest tu mało prawdopodobne, bo te układy działają na niskim napięciu, więc nie ma ryzyka wysokiego napięcia, które mogłoby zaszkodzić pracownikowi. Co do poparzenia gorącym spoiwem, to raczej dotyczy to lutowania, a nie ESD. Uszkodzenia sprzętu lutowniczego mogą się zdarzyć przez złe użytkowanie lub błędne ustawienia temperatury, a nie przez brak opaski. Często myli się te różne zagrożenia związane z ESD i innymi problemami w procesie lutowania. Ważne jest, żeby dobrze zrozumieć zagrożenia związane z ESD i ich wpływ na elektronikę, bo to klucz do zapewnienia jakości i bezpieczeństwa w laboratoriach czy na liniach produkcyjnych. Warto wprowadzać procedury ochrony przed ESD, żeby zminimalizować ryzyko uszkodzeń, co w efekcie wpływa na wydajność i jakość finalnych produktów.

Pytanie 9

Rysunek przedstawia symbol graficzny

Ilustracja do pytania
A. filtru górnoprzepustowego.
B. generatoram.cz.
C. generatora w.cz
D. filtru dolnoprzepustowego.
Symbol graficzny przedstawiony na rysunku rzeczywiście reprezentuje filtr dolnoprzepustowy. Filtr ten jest kluczowym komponentem w wielu systemach elektronicznych, gdzie jego główną funkcją jest eliminowanie sygnałów o częstotliwościach wyższych niż określona częstotliwość odcięcia. Takie filtry są powszechnie stosowane w aplikacjach audio, telekomunikacyjnych i w systemach przetwarzania sygnałów. Przykładem zastosowania filtru dolnoprzepustowego może być jego użycie w systemach audio, gdzie ma za zadanie usunięcie niepożądanych szumów oraz wyższych harmonicznych, co umożliwia czystsze brzmienie dźwięku. W praktyce, filtry dolnoprzepustowe mogą być realizowane zarówno w postaci analogowej, na przykład za pomocą kondensatorów i rezystorów, jak i cyfrowej, gdzie są implementowane w oprogramowaniu przetwarzającym sygnał. Zgodnie z dobrą praktyką inżynieryjną, projektując układ z filtrem dolnoprzepustowym, należy uwzględnić parametry takie jak częstotliwość odcięcia oraz charakterystyka tłumienia, aby zapewnić optymalne działanie w danej aplikacji.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Wykonanie polecenia NOP przez mikrokontroler z rodziny '51

A. wywoła skok warunkowy do adresu zarejestrowanego w akumulatorze
B. wykona logiczny iloczyn na odpowiednich bitach argumentów
C. spowoduje przesunięcie zawartości akumulatora w prawo
D. nie spowoduje żadnych działań, zajmie jedynie 1 cykl maszynowy
Wielu programistów błędnie interpretuje instrukcję NOP jako mechanizm do przetwarzania danych, co prowadzi do nieporozumień na temat jej funkcji. Obie odpowiedzi sugerujące przesunięcie zawartości akumulatora w prawo oraz wykonanie logicznego iloczynu na bitach argumentów są całkowicie niezgodne z definicją NOP. Rozkaz NOP nie modyfikuje żadnych rejestrów ani danych w pamięci, co czyni go pasywną instrukcją. Przesunięcie w prawo wymagałoby użycia odpowiedniej instrukcji, takiej jak 'SHR' (Shift Right), która specyficznie przesuwa bity w akumulatorze, a tym samym może wpłynąć na jego zawartość. Podobnie, wykonanie operacji logicznej wymagałoby wskazania konkretnych operandów oraz zastosowania właściwych instrukcji, takich jak 'AND' czy 'OR'. Skok warunkowy, który sugeruje kolejna odpowiedź, również jest niepoprawny, ponieważ wymaga on konkretnego warunku oraz adresu docelowego, co jest sprzeczne z ideą NOP jako instrukcji bezoperacyjnej. Błędy te często wynikają z mylnego zrozumienia podstawowych zasad działania mikrokontrolerów oraz ich architektury, co podkreśla znaczenie solidnych podstaw w programowaniu niskopoziomowym.

Pytanie 12

W instalacji należy wykonać pomiary wartości napięć, prądów i mocy. Wskaż prawidłowe umiejscowienie mierników.

Ilustracja do pytania
A. 1 – amperomierz, 2 – watomierz, 3 – woltomierz
B. 1 – woltomierz, 2 – watomierz, 3 – amperomierz
C. 1 – watomierz, 2 – amperomierz, 3 – woltomierz
D. 1 – woltomierz, 2 – amperomierz, 3 – watomierz
Wybór błędnego umiejscowienia mierników w obwodzie elektrycznym prowadzi do niewłaściwych odczytów, które mogą zafałszować wyniki analiz energetycznych. W przypadku wskazania woltomierza jako pierwszego urządzenia, pomiar prądu będzie niewłaściwy, ponieważ woltomierz powinien być podłączony równolegle, a nie szeregowo. Ważne jest, aby pamiętać, że amperomierz musi być umieszczony w obwodzie szeregowo, co oznacza, że wszystkie prądy przepływające przez obciążenie muszą przechodzić przez ten przyrząd. Podłączenie watomierza jako pierwszego również jest nieprawidłowe, ponieważ wymaga on zarówno połączenia szeregowego dla prądu, jak i równoległego dla napięcia. Nieprawidłowe umiejscowienie tych urządzeń skutkuje brakiem możliwości obliczenia rzeczywistej mocy czynnej w układzie elektrycznym. Typowym błędem myślowym jest mylenie funkcji tych urządzeń, co prowadzi do błędnych wniosków o efektywności energetycznej całego systemu. W praktyce, niezrozumienie zasad podłączania tych mierników może prowadzić do nieefektywnego zarządzania energią i zwiększonych kosztów operacyjnych, co jest niezgodne z aktualnymi standardami przemysłowymi, które promują optymalizację procesów energetycznych.

Pytanie 13

Stabilizator o symbolu LM7812 charakteryzuje się

A. nieregulowanym dodatnim napięciem na wyjściu
B. nieregulowanym ujemnym napięciem na wyjściu
C. regulowanym ujemnym napięciem na wyjściu
D. regulowanym dodatnim napięciem na wyjściu
Wybór odpowiedzi dotyczącej regulowanego napięcia wyjściowego wskazuje na nieporozumienie w zrozumieniu funkcji stabilizatorów. Stabilizatory, takie jak LM7812, zostały zaprojektowane z myślą o dostarczaniu stałego napięcia, a nie regulowanego, co oznacza, że nie są przeznaczone do zmiany napięcia wyjściowego w zależności od potrzeb użytkownika. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z pomylenia stabilizatora napięcia z regulatorem, który może dostosować wyjście do zmieniających się warunków obciążenia. Odpowiedź o nieregulowanym ujemnym napięciu jest również błędna, ponieważ LM7812 dostarcza napięcia dodatniego. Stabilizatory ujemne, takie jak LM7912, mają zastosowanie w sytuacjach wymagających zasilania ujemnego, jednak LM7812 nie jest ich odpowiednikiem. Niezrozumienie różnic między stabilizatorami dodatnimi i ujemnymi oraz ich regulowalnymi i nieregulowalnymi wersjami może prowadzić do nieprawidłowego doboru komponentów w projektach elektronicznych, co z kolei wpływa na nieprawidłowe działanie całego układu. Dlatego tak ważne jest, aby rozumieć specyfikacje i zastosowania poszczególnych stabilizatorów, co z pewnością przyczyni się do efektywniejszego projektowania i realizacji systemów elektronicznych.

Pytanie 14

Jakim skrótem opisuje się modulację szerokości impulsów?

A. FSK
B. QAM
C. PSK
D. PWM
Istnieją różne techniki modulacji, które różnią się między sobą w zależności od zastosowania i charakterystyki sygnałów. PSK (Phase Shift Keying) to metoda, która polega na modulacji fazy sygnału nośnego, co jest szczególnie przydatne w komunikacji cyfrowej, gdzie dane są przesyłane w formie bitów. W tym przypadku zmiana fazy sygnału odzwierciedla zmiany w danych, co czyni PSK efektywnym sposobem na przesyłanie informacji, ale nie ma bezpośredniego związku z modulacją szerokości impulsów. FSK (Frequency Shift Keying) to kolejna technika, w której informacje są przesyłane poprzez zmianę częstotliwości nośnej. Podobnie jak w przypadku PSK, FSK jest używane w systemach komunikacyjnych, ale nie dotyczy modulacji szerokości impulsów. QAM (Quadrature Amplitude Modulation) łączy różne amplitudy i fazy sygnału w celu przesyłania danych, co jest stosowane w telekomunikacji, ale także nie odnosi się bezpośrednio do PWM. Często mylące jest to, że wszystkie te techniki dotyczą modulacji sygnałów, jednak każda z nich ma swoje specyficzne zastosowanie i właściwości. Zrozumienie różnic między tymi metodami jest kluczowe, aby uniknąć błędnych wniosków w kontekście wyboru odpowiedniej techniki do konkretnego zastosowania.

Pytanie 15

Gdy zachodzi potrzeba połączenia światłowodu ze skrętką, co należy użyć?

A. router
B. koncentrator
C. wzmacniak
D. konwerter
Konwerter to urządzenie, które umożliwia interakcję między różnymi typami mediów transmisyjnych, w tym wypadku między światłowodem a skrętką. Światłowód transmituje dane za pomocą światła, co zapewnia znacznie większe prędkości oraz mniejsze straty sygnału na długich dystansach w porównaniu do skrętki, która wykorzystuje sygnał elektryczny. W praktyce, konwertery światłowodowe są często stosowane w sieciach komputerowych, gdzie metrów kabli światłowodowych nie można bezpośrednio podłączyć do urządzeń korzystających z kabli miedzianych. Przy użyciu konwertera można zrealizować połączenie, które łączy różne segmenty sieci, na przykład w biurach czy dużych obiektach. Standardy, takie jak IEEE 802.3, uwzględniają konwertery w kontekście budowy nowoczesnych sieci, co czyni je istotnym elementem infrastruktury. Dodatkowo, korzystanie z konwerterów pozwala na elastyczne rozbudowywanie sieci oraz adaptację do różnych wymagań technologicznych.

Pytanie 16

Podczas serwisowania urządzeń elektronicznych w stanie pod napięciem, stosowane narzędzia muszą mieć

A. utwardzone końcówki
B. wysoką wytrzymałość mechaniczną
C. metalowe uchwyty
D. odpowiednią izolację napięciową
Odpowiednia izolacja napięciowa narzędzi używanych w czasie prac serwisowych przy urządzeniach elektronicznych pod napięciem jest kluczowym elementem zapewnienia bezpieczeństwa. Izolacja ta minimalizuje ryzyko porażenia prądem elektrycznym, co może prowadzić do poważnych obrażeń lub nawet śmierci. Narzędzia z odpowiednią izolacją są zaprojektowane tak, aby wytrzymać określone napięcia, co jest zgodne z normami takimi jak IEC 60900, które określają wymagania dotyczące narzędzi izolowanych dla pracowników elektrotechnicznych. Przykładowo, przy użyciu wkrętaka z izolowaną rękojeścią, technik może bezpiecznie pracować przy urządzeniach pod napięciem do 1000V, co jest fundamentalne dla zachowania bezpieczeństwa. W praktyce stosowanie narzędzi z odpowiednią izolacją jest standardem w każdym warsztacie zajmującym się serwisem urządzeń elektrycznych, co podkreśla znaczenie przestrzegania zasad BHP w tej dziedzinie. Właściwa izolacja jest nie tylko wymaganiem prawnym, ale także praktycznym środkiem ochrony zdrowia pracowników.

Pytanie 17

Na ekranie odbiornika OTV widoczna jest bardzo jasna linia pozioma, podczas gdy reszta ekranu pozostaje ciemna. W którym module odbiornika doszło do awarii?

A. W module odchylania pionowego
B. We wzmacniaczu p.cz. różnicowym fonii
C. W module odchylania poziomego
D. W dekoderze kolorów
Poprawna odpowiedź to blok odchylania pionowego, ponieważ opisany objaw, czyli jasna linia pozioma na ekranie, sugeruje problem w obszarze odpowiedzialnym za kontrolę odchylania obrazu w kierunku pionowym. W przypadku awarii tego bloku, sygnał odchylania pionowego nie jest prawidłowo przetwarzany, co prowadzi do niemożności skanowania obrazu w pionie, co z kolei skutkuje wyświetlaniem tylko poziomej linii. Tego typu problem jest typowy dla uszkodzeń w układach analogowych, gdzie niewłaściwe napięcia lub przerwy w obwodzie mogą całkowicie zablokować sygnał. W praktyce, diagnostyka takich usterek wymaga użycia oscyloskopu do analizy sygnałów odchylających oraz pomiaru napięć w kluczowych punktach obwodu, co pozwala na szybkie zlokalizowanie problemu. W branży elektronicznej standardowe procedury naprawcze zalecają wymianę uszkodzonych komponentów, takich jak kondensatory czy tranzystory, aby przywrócić prawidłowe działanie odbiornika.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Wykonano pomiar napięcia stałego za pomocą woltomierza cyfrowego w zakresie 20 V, uzyskując wynik 5 V. Błąd przyrządu wynosi ± 1 % ± 2 D, a pole odczytowe miernika to 3,5 cyfry. Która forma zapisu wyniku pomiaru jest właściwa?

A. U = (5,00 ± 0,01) V
B. U = (5,00 ± 0,05) V
C. U = (5,00 ± 0,07) V
D. U = (5,00 ± 0,02) V
Odpowiedź U = (5,00 ± 0,07) V jest prawidłowa, ponieważ uwzględnia zarówno błąd procentowy, jak i błąd stały przyrządu. Błąd przyrządu wynosi ± 1 % ± 2 D, co oznacza, że dla odczytu 5 V obliczamy błąd procentowy jako 1 % z 5 V, co daje 0,05 V. Dodatkowo, zaokrąglając błąd stały do jednego miejsca po przecinku, mamy ± 0,02 V. Wartość 0,07 V uwzględnia sumę tych dwóch błędów, uwzględniając ich wpływ na dokładność pomiaru. W praktyce, podczas wykonywania pomiarów elektrycznych, ważne jest, aby poprawnie zrozumieć i obliczyć błędy pomiarowe, ponieważ dokładność sprzętu pomiarowego wpływa na jakość wyników. W przypadku pomiarów w inżynierii elektrycznej, standardy takie jak ISO 10012 określają wymagania dotyczące dokładności i niepewności pomiarowej. Dlatego odpowiedź 3 nie tylko jest poprawna, ale również pokazuje, jak istotne jest precyzyjne określenie błędów w pomiarach, co jest kluczowe w praktycznych zastosowaniach, takich jak projektowanie obwodów, kalibracja instrumentów czy analiza systemów elektronicznych.

Pytanie 20

Aby zapewnić prawidłowe funkcjonowanie systemu kontroli dostępu, konieczne jest

A. dostosowanie zwory elektromagnetycznej
B. konfiguracja czasu alarmowania
C. naprawa kontrolera ethernet
D. wymiana rejestratora cyfrowego
Ustawienie czasu alarmowania w kontekście konserwacji systemu kontroli dostępu może być mylące. Choć czas alarmowania jest istotnym parametrem w systemach zabezpieczeń, nie jest to kluczowy element konserwacji. Zmiana tego parametru dotyczy głównie reakcji systemu w sytuacji wykrycia naruszenia, a nie fizycznego stanu urządzeń. Regulacja zwory elektromagnetycznej jest bezpośrednio związana z bezpieczeństwem dostępu, podczas gdy czas alarmowania odnosi się do aspektów reakcji systemu. Przypadek wymiany rejestratora cyfrowego również jest mylący, ponieważ wymiana sprzętu następuje zazwyczaj w momencie awarii lub przestarzałości technologii, a nie jako część rutynowej konserwacji. Rejestrator pełni rolę w archiwizacji zdarzeń, a jego wymiana nie wpływa bezpośrednio na operacyjność systemu kontroli dostępu. Naprawa kontrolera ethernet również nie jest bezpośrednio związana z konserwacją systemu. Kontroler ethernet może wymagać serwisowania w przypadku awarii, ale nie jest to rutynowy proces konserwacji, a raczej interwencja doraźna. Te zrozumienia są kluczowe dla odpowiedniego zarządzania i utrzymania systemów zabezpieczeń. Błędem jest skupienie się na aspektach, które nie mają bezpośredniego wpływu na fizyczne działanie zabezpieczeń, co może prowadzić do niedoszacowania roli, jaką odgrywają mechanizmy zamykające w systemach kontroli dostępu.

Pytanie 21

W układzie sterowania automatyki przemysłowej został uszkodzony tyrystor BT138-600. Na podstawie parametrów przedstawionych w tabeli dobierz tyrystor zastępczy.

TypUDRMIT(RMS)ITSMIGTUGT
VAAmAV
BT136-500500425351,5
BT138-6006001290351,5
BT138-8008001290351,5
BT138-500F5001290351,5
BTA16-800B80016160501,5
A. BT138-500F
B. BT138-800
C. BTA16-800B
D. BT136-500
Tyrystor BT138-800 to doskonały wybór jako zamiennik dla uszkodzonego BT138-600, ponieważ charakteryzuje się parametrami, które są nie tylko równorzędne, ale wręcz lepsze. Przede wszystkim, maksymalne napięcie UDRM dla BT138-800 wynosi 800 V, co przewyższa 600 V uszkodzonego tyrystora. Taki parametr jest kluczowy, ponieważ zapewnia większą odporność na przebicia oraz stabilność w pracy w warunkach obciążenia. Dodatkowo, zachowanie identycznych wartości prądu oraz temperatury pracy oznacza, że BT138-800 będzie idealnie współpracował z resztą układu, co jest istotne dla zachowania ciągłości działania i bezpieczeństwa systemu. W praktyce, dobór odpowiednich tyrystorów do układów automatyki przemysłowej powinien opierać się na analizie danych katalogowych, co jest zgodne z zaleceniami branżowymi. Wybierając zamiennik, należy również zwrócić uwagę na producenta oraz oferowaną jakość komponentów, aby uniknąć problemów z kompatybilnością oraz niezawodnością, które mogą prowadzić do awarii całego systemu.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakie dodatkowe środki ochrony przeciwporażeniowej nie są wymagane podczas serwisowania urządzeń elektronicznych?

A. Uziemienie ochronne
B. Zerowanie ochronne
C. Wyłączniki różnicowoprądowe
D. Ekranowanie elektromagnetyczne
Wybór uziemienia ochronnego, ekranowania elektromagnetycznego, wyłączników różnicowoprądowych lub zerowania ochronnego jako środków ochrony przeciwporażeniowej może prowadzić do mylnych wniosków na temat ich zastosowania i znaczenia. Uziemienie ochronne to kluczowy element zapewnienia bezpieczeństwa w instalacjach elektrycznych. Działa poprzez odprowadzenie niebezpiecznego prądu do ziemi, co minimalizuje ryzyko porażenia prądem. Wyłączniki różnicowoprądowe również odgrywają istotną rolę w ochronie przed porażeniem, ponieważ są zaprojektowane do szybkiego wyłączania zasilania w przypadku wykrycia różnicy prądów, co może wskazywać na niebezpieczny wyciek prądu. Zerowanie ochronne to z kolei metoda zabezpieczająca, która polega na podłączeniu metalowych części urządzeń elektrycznych do przewodu uziemiającego, co również skutkuje minimalizacją ryzyka porażenia. W kontekście serwisowania urządzeń elektronicznych, istotne jest zrozumienie, że ekranowanie elektromagnetyczne, choć jest istotne dla ochrony przed zakłóceniami, nie jest środkiem ochrony przeciwporażeniowej. Może prowadzić to do nieodpowiedniego postrzegania zagrożeń związanych z porażeniem prądem i stosowania niewłaściwych środków ochrony. Użytkownicy powinni być świadomi, że odpowiednie środki ochrony, takie jak uziemienie i wyłączniki, są niezbędne dla zapewnienia bezpieczeństwa podczas pracy z urządzeniami elektrycznymi, a ich pominięcie może prowadzić do niebezpiecznych sytuacji.

Pytanie 24

Przedstawiony na schemacie układ pomiarowy służy do pomiaru rezystancji metodą

Ilustracja do pytania
A. techniczną.
B. porównawczą.
C. mostkową.
D. bezpośrednią.
Odpowiedź techniczna jest prawidłowa, ponieważ pomiar rezystancji w układzie pomiarowym opisanym w pytaniu opiera się na zasadzie pomiaru napięcia i prądu. Metoda techniczna, stosując prawo Ohma, umożliwia dokładne określenie rezystancji poprzez pomiar wartości napięcia (U) na rezystorze oraz prądu (I) płynącego przez niego. Dzięki temu można zastosować wzór R = U/I do obliczenia rezystancji. Ta metoda jest szeroko stosowana w laboratoriach i przemyśle, ponieważ pozwala na wysoką precyzję pomiarów. W praktyce, metoda ta jest szczególnie użyteczna w testowaniu komponentów elektronicznych, gdzie dokładność jest kluczowa. Wyposażenie pomiarowe, takie jak woltomierze i amperomierze, powinno być kalibrowane zgodnie z normami PN-EN ISO 9001, co zapewnia doskonałość w wynikach eksperymentalnych.

Pytanie 25

Przedstawione w tabeli parametry techniczne dotyczą

Pasmo częstotliwości pracy868,0 MHz ÷ 868,6 MHz
Zasięg komunikacji radiowej (w terenie otwartym)do 500 m
BateriaCR123A3V
Czas pracy na bateriido 3 lat
Pobór prądu w stanie gotowości50 μA
Maksymalny pobór prądu16 mA
Zakres temperatur pracy-10°C ÷ +55°C
Maksymalna wilgotność93±3%
Wymiary obudowy czujki26 x 112 x 29 mm
Wymiary obudowy magnesu do montażu powierzchniowego26 x 13 x 19 mm
Wymiary podkładki pod magnes do montażu powierzchniowego26 x 13 x 3,5 mm
Wymiary obudowy magnesu do montażu wpuszczanego28 x 10 x 10 mm
Masa56 g
A. czujki kontaktronowej.
B. czujki dymu.
C. czujki zalania.
D. bariery podczerwieni.
Wybór czujki zalania, czujki dymu lub bariery podczerwieni jako odpowiedzi na to pytanie może wynikać z nieporozumienia dotyczącego charakterystyki i zastosowania tych urządzeń. Czujki zalania są zaprojektowane do detekcji wody i są wykorzystywane głównie w miejscach narażonych na zalanie, takich jak piwnice czy łazienki. Ich działanie opiera się na odczycie zmian poziomu wody, a nie mechanizmie działania bazującym na obwodach magnetycznych. Z kolei czujki dymu są przeznaczone do wykrywania dymu w powietrzu, co jest kluczowe w kontekście ochrony przeciwpożarowej. Ich działanie opiera się na zmianach w poziomie światła lub ciepła, a nie na mechanizmie kontaktronowym. Bariery podczerwieni natomiast używają technologii detekcji ruchu, co oznacza, że reagują na zmiany w promieniowaniu podczerwonym, co jest zupełnie innym zjawiskiem niż wykrywanie otwarcia drzwi czy okien. Użytkownicy często popełniają błąd, zakładając, że różne typy czujek mogą mieć podobne zastosowania, co prowadzi do mylnych wniosków. W kontekście systemów zabezpieczeń ważne jest, aby stosować odpowiednie urządzenia dostosowane do konkretnych potrzeb i warunków, co jest kluczowe dla skuteczności całego systemu zabezpieczeń.

Pytanie 26

Jeśli złącze BE tranzystora bipolarnego jest spolaryzowane w kierunku przewodzenia, a złącze CB w kierunku zaporowym, to w jakim stanie pracuje tranzystor?

A. nasycenia
B. zatkania (odcięcia)
C. aktywnym
D. aktywnym inwersyjnym
Odpowiedzi, które wskazują na zatkanie, nasycenie lub aktywny inwersyjny, opierają się na błędnych zrozumieniach działania tranzystora bipolarnego. W stanie zatkania, zarówno złącze BE, jak i CB są spolaryzowane zaporowo, co oznacza, że nie ma przepływu prądu, a tranzystor nie przewodzi. To podejście jest sprzeczne z rzeczywistością przedstawioną w pytaniu, gdzie złącze BE jest w stanie przewodzenia. Z kolei stan nasycenia występuje, gdy obydwa złącza są spolaryzowane w kierunku przewodzenia, co prowadzi do maksymalnego przepływu prądu kolektora. To również nie odpowiada sytuacji opisanej w pytaniu. Aktywny inwersyjny tryb pracy odnosi się do sytuacji, w której tranzystor jest używany w konfiguracji inwersyjnej, co nie ma miejsca w przypadku podanych warunków. Typowe błędy myślowe w tym kontekście to mylenie polaryzacji złączy oraz niezrozumienie, że zależność między prądem bazy a prądem kolektora jest kluczowym aspektem pracy tranzystora w trybie aktywnym. Aby poprawnie zrozumieć działanie tranzystora, kluczowe jest przyswojenie zasad jego polaryzacji oraz roli złącza BE w procesie wzmacniania sygnału.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Którego przyrządu należy użyć do sprawdzenia poprawności połączeń okablowania sieci komputerowej?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Odpowiedź B jest trafna, bo żeby sprawdzić, czy wszystko w sieci komputerowej chodzi jak należy, korzysta się z testera kabli. Taki tester pomaga zobaczyć, które przewody są połączone dobrze, a które mogą mieć jakieś przerwy czy zwarcia. Na przykład, jak podłączysz tester do kabla, to pokaże Ci, jakie żyły działają oraz czy sygnał przechodzi przez wszystkie potrzebne linie. Gdy mówimy o standardach jak TIA/EIA-568-A/B, to tester kabli jest mega ważny, bo dzięki niemu można być pewnym, że instalacja spełnia normy do przesyłu danych. W sumie dobrze jest mieć taki tester po każdym etapie instalacji, bo można wtedy wcześnie wyłapać błędy, co w przyszłości ułatwi życie i obniży koszty związane z naprawami. Z mojego doświadczenia, używanie testera pozwala zaoszczędzić sporo czasu i nerwów przy tworzeniu sieci.

Pytanie 29

Który rodzaj kondensatora wymaga zachowania polaryzacji w trakcie wymiany?

A. Powietrzny
B. Elektrolityczny
C. Foliowy
D. Ceramiczny
Kondensatory elektrolityczne są elementami elektronicznymi, które charakteryzują się wyraźnie określoną polaryzacją. Oznacza to, że przy ich wymianie niezwykle istotne jest, aby zachować odpowiednią orientację biegunów, czyli podłączyć je w odpowiedni sposób do obwodu. W przeciwnym razie, mogą one ulec uszkodzeniu poprzez zwarcie, co może prowadzić do wydzielania się szkodliwych substancji i w konsekwencji do niebezpieczeństwa, takiego jak zwarcia i pożary. Elektryczna polaryzacja kondensatorów elektrolitycznych wynika z ich konstrukcji, w której jeden z biegunów, zwykle oznaczony jako „+”, jest anodem, a biegun ujemny jest katodem. W praktyce, stosowanie kondensatorów elektrolitycznych jest powszechne w zasilaczach, filtrach oraz w układach audio, gdzie wymagane są dużej pojemności wartości. Zgodnie z dobrymi praktykami, podczas wymiany kondensatora elektrolitycznego powinno się zawsze używać elementów o takich samych parametrach elektrycznych, w tym napięciu roboczym i pojemności, aby zapewnić stabilność i bezpieczeństwo działania całego układu.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie złącza powinny być wykorzystane dla kabli koncentrycznych w systemie monitoringu telewizyjnego?

A. HDMI
B. SCART
C. DIN
D. BNC
Złącza DIN, SCART i HDMI, mimo że są szeroko stosowane w różnych dziedzinach elektroniki, nie są odpowiednie do kabli koncentrycznych w systemach telewizji dozorowej. Złącza DIN stosowane są głównie w starszych urządzeniach audio i MIDI, a ich konstrukcja nie zapewnia optymalnych parametrów dla przesyłania sygnałów wideo. W kontekście telewizji dozorowej, ich użycie mogłoby prowadzić do degradacji jakości sygnału ze względu na niekompatybilność z typowym przewodem koncentrycznym. Z kolei złącza SCART, popularne w telewizorach i odtwarzaczach wideo, są projektowane do przesyłania sygnałów analogowych oraz cyfrowych, jednak ich zastosowanie w systemach CCTV jest ograniczone, ponieważ nie obsługują standardowych kabli koncentrycznych. HDMI, mimo że jest nowoczesnym złączem, które obsługuje wysoką jakość obrazu i dźwięku, również nie jest przeznaczone do pracy z kablami koncentrycznymi. HDMI wymaga zastosowania specjalnych przewodów, które nie są zgodne z konwencjonalnymi systemami CCTV. Wybierając złącza do systemu monitoringu, należy unikać typowych błędów myślowych, które mogą prowadzić do wyboru niewłaściwych komponentów, co może skutkować problemami z jakością obrazu oraz awariami systemu.

Pytanie 34

Na rysunku przedstawiono symbol

Ilustracja do pytania
A. wzmacniacza dystrybucyjnego.
B. gniazda abonenckiego.
C. anteny satelitarnej.
D. zacisku zasilania.
Odpowiedzi sugerujące inne elementy, takie jak zaciski zasilania, anteny satelitarne czy wzmacniacze dystrybucyjne, wskazują na pewne niedopowiedzenia w zakresie zrozumienia rysunków schematycznych w instalacjach telekomunikacyjnych. Zacisk zasilania, chociaż również istotny w infrastrukturze telekomunikacyjnej, służy do dostarczania energii do urządzeń, a nie do podłączania urządzeń końcowych. Antena satelitarna jest elementem, który umożliwia odbiór sygnałów z satelitów, ale nie ma związku z bezpośrednim podłączeniem użytkowników do sieci. Wzmacniacz dystrybucyjny, z kolei, jest urządzeniem stosowanym w celu zwiększenia sygnału w instalacji, co czyni go istotnym, ale nie bezpośrednio związanym z gniazdem, które jest punktem dostępu dla użytkowników. Podstawowym błędem myślowym w tych odpowiedziach jest pomylenie funkcji różnych elementów systemów telekomunikacyjnych. Każdy z wymienionych symboli ma swoją unikalną rolę, która nie powinna być mylona z funkcją gniazda abonenckiego. Zrozumienie różnic między tymi komponentami jest kluczowe dla efektywnej budowy i diagnozowania systemów telekomunikacyjnych.

Pytanie 35

Ile i jakich urządzeń można podłączyć do multiswitcha oznaczonego jako 9/12?

Liczba odbiorników TVLiczba konwerterów satelitarnychLiczba anten naziemnych
A.1221
B.931
C.912
D.623
A. A.
B. D.
C. B.
D. C.
Wybierając inną odpowiedź, można popaść w szereg nieporozumień dotyczących funkcji i możliwości, jakie oferuje multiswitch 9/12. Niezrozumienie oznaczenia multiswitcha może prowadzić do błędnych wniosków dotyczących liczby podłączanych urządzeń. Na przykład, niektóre odpowiedzi mogą sugerować, że multiswitch może obsługiwać więcej niż 12 wyjść lub mniej niż 9 wejść. Takie założenia są niezgodne z jego specyfikacją, ponieważ przekroczenie liczby wyjść znacznie zmniejsza sprawność całego systemu i może prowadzić do degradacji sygnału, co skutkuje gorszą jakością obrazu. Ponadto, koncepcja podłączania większej liczby konwerterów, niż przewiduje standardowe oznaczenie, wprowadza w błąd, gdyż każdy konwerter ma ograniczoną ilość odbieranych sygnałów, a ich przeciążenie może prowadzić do zakłóceń. Zrozumienie specyfikacji multiswitcha jest kluczowe, aby móc odpowiednio zaplanować instalację i uniknąć nieprawidłowego doboru komponentów, które mogą nie tylko wpłynąć na jakość sygnału, ale także na stabilność całego systemu telewizyjnego. Praktyczne podejście do instalacji wymaga znajomości zasad działania takich urządzeń oraz umiejętności dostosowania ich do indywidualnych potrzeb, co jest kluczowe w efektywnym zarządzaniu sygnałem.

Pytanie 36

Jaką rolę w systemie antenowym w budynku mieszkalnym odgrywa zwrotnica antenowa?

A. Wprowadza sygnał telewizyjny z kilku anten do jednego kabla antenowego
B. Pozwala na podłączenie anteny z wyjściem symetrycznym do asymetrycznego wejścia w telewizorze
C. Przesuwa zakres częstotliwości sygnału telewizji satelitarnej
D. Dzieli sygnał telewizyjny na kilka urządzeń odbiorczych
Zwrotnica antenowa pełni kluczową rolę w instalacji antenowej w budynkach wielorodzinnych, umożliwiając integrację sygnałów telewizyjnych z różnych źródeł. Dzięki jej zastosowaniu, sygnały z kilku anten mogą być wprowadzone do jednego przewodu antenowego, co pozwala na efektywne zarządzanie sygnałem i ogranicza ilość kabli w budynku. Przykładem może być budynek z instalacją odbierającą sygnał z anteny naziemnej oraz anteny satelitarnej – zwrotnica pozwala na przesyłanie tych sygnałów do jednego odbiornika. W praktyce, stosowanie zwrotnic zgodnych z obowiązującymi normami, takimi jak EN 50083, zapewnia ich wysoką jakość i minimalizację strat sygnału. Dobrze zaprojektowana instalacja z wykorzystaniem zwrotnic przyczynia się do uzyskania lepszego odbioru sygnału, co jest szczególnie istotne w budynkach o dużej liczbie mieszkańców, gdzie każdy chce mieć dostęp do wysokiej jakości transmisji telewizyjnej.

Pytanie 37

Jakiego pomiaru można dokonać za pomocą pirometru przedstawionego na rysunkach?

Ilustracja do pytania
A. Zasięgu transmisji radiowej.
B. Długości przewodu.
C. Prędkości obrotowej silnika.
D. Temperatury radiatora.
Pirometr to takie fajne urządzenie, które mierzy temperaturę bez dotykania obiektu. Działa na zasadzie promieniowania podczerwonego, więc można w łatwy sposób sprawdzić, jak gorąca jest powierzchnia, na przykład radiatora. W przemyśle pirometry są naprawdę przydatne do kontrolowania temperatury maszyn. To ważne, żeby maszyny działały jak należy, bo przegrzanie może je uszkodzić. Jeśli chodzi o radiatory, to pirometr pomaga ocenić, czy system chłodzenia w elektronice działa dobrze. Moim zdaniem, to istotne dla efektywności energetycznej. Użycie pirometru pozwala szybko i bez zbędnego zamieszania ocenić, w jakim stanie są urządzenia, co zwiększa bezpieczeństwo pracy i poprawia procesy produkcyjne. Żeby dobrze korzystać z pirometru, trzeba znać jego zakres pomiarowy i warunki otoczenia, bo to klucz do dokładnych wyników.

Pytanie 38

Osoba zajmująca się trawieniem płytek drukowanych w dziedzinie elektroniki może być narażona na

A. pylicę płuc
B. zatrucie pokarmowe
C. poparzenie środkiem chemicznym
D. porażenie prądem elektrycznym
Zatrucie pokarmowe, mimo że może być problemem zdrowotnym w różnych środowiskach pracy, nie jest typowym zagrożeniem dla elektroników zajmujących się trawieniem płytek drukowanych, które są procesem technologicznym, a nie kulinarnym. W przypadku pracy z chemikaliami, ryzyko związane z zatruciem pokarmowym jest znacznie niższe niż ryzyko oparzeń chemicznych. Porażenie prądem elektrycznym również nie jest bezpośrednio związane z procesem trawienia płytek, choć ogólnie jest to istotne zagrożenie w obszarze elektroniki. W tej branży standardowe procedury bezpieczeństwa obejmują stosowanie izolowanych narzędzi i przestrzeganie zasad pracy z urządzeniami elektrycznymi. Pylica płuc jest schorzeniem, które wynika z długotrwałej ekspozycji na pyły, ale w kontekście trawienia płytek drukowanych, ryzyko to jest ograniczone, jeśli przestrzegane są odpowiednie procedury odprowadzania powietrza i użycia filtrów. Typowe błędy myślowe, prowadzące do wyboru niepoprawnych odpowiedzi, mogą wynikać z niepełnej wiedzy na temat zagrożeń specyficznych dla danej branży, co podkreśla znaczenie edukacji w zakresie BHP i używania odpowiednich środków ochrony osobistej.

Pytanie 39

Analogowy oscyloskop dwukanałowy pozwala na pomiar

A. przesunięcia fazowego
B. bitowej stopy błędów
C. współczynnika błędów modulacji
D. stosunku sygnału do szumu
Odpowiedzi, które sugerują pomiar bitowej stopy błędów, stosunku sygnału do szumu oraz współczynnika błędów modulacji przy użyciu analogowego oscyloskopu, są niepoprawne. Bitowa stopa błędów (BER) jest miarą liczby błędów w stosunku do liczby przesłanych bitów, co wymaga analizy cyfrowej, a oscyloskop analogowy, z uwagi na swoje ograniczenia, nie jest najefektywniejszym narzędziem do tego pomiaru. Z kolei stosunek sygnału do szumu (SNR) opisuje jakość sygnału w porównaniu do szumów, i chociaż oscyloskop może wizualizować sygnały, dokładne pomiary SNR wymagają zastosowania bardziej specjalistycznego sprzętu, takiego jak analizatory widma. Wreszcie, współczynnik błędów modulacji jest miarą jakości sygnału modulowanego, co również nie jest bezpośrednio możliwe do zmierzenia za pomocą oscyloskopu analogowego. Istnieją liczne techniki i standardy, takie jak wykorzystanie analizatorów sygnału czy oprogramowania do analizy cyfrowej, które są bardziej odpowiednie do tych pomiarów. Dlatego istotne jest, aby przy wyborze metody pomiarowej kierować się aktualnymi standardami branżowymi i najlepszymi praktykami, co pozwoli na uzyskanie rzetelnych wyników w analizie sygnałów.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.