Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 2 listopada 2025 20:11
  • Data zakończenia: 2 listopada 2025 20:16

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Regulator oświetlenia.
B. Przekaźnik bistabilny.
C. Przekaźnik priorytetowy.
D. Sterownik rolet.
Pomimo atrakcyjności pozostałych odpowiedzi, żaden z wymienionych elementów nie pasuje do opisu przekaźnika priorytetowego. Regulator oświetlenia jest urządzeniem służącym do dostosowywania natężenia światła w pomieszczeniach, co jest istotne w kontekście oszczędności energetycznej, ale nie ma on funkcji zarządzania priorytetami zasilania. Sterownik rolet z kolei jest dedykowany do automatyzacji otwierania i zamykania rolet, co ma na celu poprawę komfortu użytkowania oraz ochronę przed słońcem, lecz nie ma zastosowania w kontekście zarządzania priorytetami zasilania. Przekaźnik bistabilny, mimo że jest elementem wykorzystywanym w automatyce do przełączania stanów, nie posiada mechanizmu rozróżniania priorytetów dla różnych urządzeń elektrycznych. Wszyscy odpowiadający mogą mylnie sądzić, że elementy te mogą pełnić podobne funkcje, jednak kluczowe różnice funkcjonalne sprawiają, że odpowiedzi te są błędne. Zrozumienie tych różnic jest kluczowe dla projektowania i wdrażania skutecznych systemów automatyki budynkowej, które są zgodne z najlepszymi praktykami branżowymi.

Pytanie 5

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. rozłożyć dywanik izolacyjny w rejonie pracy
B. poinformować dostawcę energii
C. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
D. oznaczyć obszar roboczy
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda siłowego. Po wyłączeniu napięcia, aby zapewnić bezpieczeństwo, należy zastosować odpowiednie środki, takie jak umieszczenie blokady na wyłączniku, co uniemożliwi jego przypadkowe włączenie. W przeciwnym razie, nieodpowiednie działanie lub nieuwaga mogą prowadzić do poważnych wypadków, takich jak porażenie prądem. Przykładem dobrych praktyk w branży elektrycznej jest stosowanie tabliczek informacyjnych ostrzegających, że obwód jest wyłączony i nie należy go włączać. Dodatkowo, w przypadku pracy w większych instalacjach, warto stosować procedury lockout/tagout (LOTO), które są standardem w zapobieganiu nieautoryzowanemu włączeniu urządzeń. Te praktyki są zgodne z normami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakie czynności nie są częścią przeglądów instalacji elektrycznej?

A. oględzin
B. pomiarów napięcia oraz rezystancji izolacji
C. przeprowadzania konserwacji i napraw
D. przyjęcia do eksploatacji
Przyjęcie do eksploatacji instalacji elektrycznej to proces, który następuje po zakończeniu wszystkich działań związanych z jej budową oraz po przeprowadzeniu wymaganych testów i pomiarów. Proces ten nie jest częścią regularnych przeglądów instalacji elektrycznej, które koncentrują się głównie na ocenie stanu technicznego, wykonaniu pomiarów, takich jak napięcia oraz rezystancje izolacji, a także na przeprowadzaniu oględzin wizualnych oraz ocenie bezpieczeństwa użytkowania instalacji. Przyjęcie do eksploatacji obejmuje natomiast sprawdzenie, czy instalacja została wykonana zgodnie z projektem oraz obowiązującymi normami, takimi jak PN-IEC 60364. W praktyce oznacza to, że przed oddaniem instalacji do użytku, wszystkie jej elementy muszą być starannie skontrolowane, a wyniki pomiarów muszą spełniać określone normy, co przekłada się na bezpieczeństwo użytkowników oraz standardy jakości. Warto zauważyć, że odpowiednie dokumenty potwierdzające przyjęcie do eksploatacji są niezbędne dla przyszłych przeglądów oraz konserwacji.

Pytanie 8

Ile maksymalnie gniazd wtyczkowych można zainstalować w jednym obwodzie w systemach odbiorczych?

A. 10 szt.
B. 6 szt.
C. 12 szt.
D. 2 szt.
Maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu w instalacjach elektrycznych, wynosi 10 sztuk. Taka wartość wynika z przepisów zawartych w normie PN-IEC 60364 oraz wytycznych dotyczących projektowania instalacji elektrycznych. Ograniczenie to ma na celu zapewnienie bezpieczeństwa użytkowania oraz ochrony przed przeciążeniem obwodu. W praktyce, jeżeli do obwodu podłączonych jest zbyt wiele gniazd, może to prowadzić do znacznego wzrostu obciążenia, co z kolei zwiększa ryzyko przegrzania przewodów, a w skrajnych przypadkach może prowadzić do pożaru. Warto zwrócić uwagę na rzeczywiste obciążenie urządzeń, które będą podłączane do gniazd, a także na rodzaj przewodów użytych w danym obwodzie. Przykładowo, jeśli planujemy podłączenie urządzeń o wysokim poborze mocy, takich jak czajniki elektryczne czy grzejniki, lepiej jest zredukować liczbę gniazd do mniejszej wartości, aby zabezpieczyć obwód przed nadmiernym przeciążeniem. Dobrą praktyką jest także stosowanie zabezpieczeń w postaci wyłączników różnicowoprądowych oraz odpowiedniego doboru przekrojów przewodów, co dodatkowo zwiększa bezpieczeństwo korzystania z instalacji elektrycznej.

Pytanie 9

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Wiertarkę, punktak, zestaw wkrętaków
B. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
C. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
D. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
Wybór narzędzi zaproponowany w innych odpowiedziach, takich jak tylko taśma miernicza i młotek, bądź jedynie wiertarka i komplet wkrętaków, jest niewłaściwy dla tego konkretnego zadania. Taśma miernicza, mimo że jest przydatna do pomiarów, nie zastępuje potrzeby precyzyjnego wyznaczenia miejsc wiercenia, co może prowadzić do błędów w montażu. Młotek sam w sobie nie jest wystarczający do pracy z cegłą pełną, gdzie konieczne jest użycie punktaka do wstępnego oznaczenia otworów. Wiertarka bez odpowiedniego wiertła widiowego może nie sprostać twardości cegły, co skutkuje trudnościami w procesie wiercenia oraz możliwym uszkodzeniem narzędzia. Piła do metalu może być używana, lecz w kontekście montażu rurek PVC, kluczowe jest posiadanie narzędzi do obróbki i mocowania, a nie tylko cięcia. Ostatecznie, brak poziomnicy w zestawie narzędzi jest istotnym błędem, ponieważ precyzyjne wypoziomowanie rurek jest kluczowe dla prawidłowego funkcjonowania instalacji. Takie nieprzemyślane podejście do przygotowania narzędzi może prowadzić do poważnych błędów w instalacji, co w dłuższym czasie może generować dodatkowe koszty związane z poprawkami i ponownym montażem.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 20-30 krotności prądu znamionowego
B. 5-10 krotności prądu znamionowego
C. 3-5 krotności prądu znamionowego
D. 10-20 krotności prądu znamionowego
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 12

Oznaczenie YDYn 4x2,5 mm2 znajdujące się na izolacji dotyczy przewodu

A. podtynkowego
B. samonośnego
C. natynkowego
D. oponowego
Wybór innych odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji przewodów elektrycznych. Przewody natynkowe są zazwyczaj instalowane w sposób widoczny, na powierzchni ścian, co nie odpowiada charakterystyce przewodów samonośnych, które są przeznaczone do wieszania bez dodatkowego wsparcia. Z kolei przewody oponowe, które są elastyczne i strukturalnie dostosowane do ciężkich warunków, nie są przeznaczone do instalacji na zewnątrz bez dodatkowych osłon, co czyni je nieodpowiednimi do zastosowań samonośnych. Przewody podtynkowe, jak sama nazwa wskazuje, muszą być montowane w murach, co również odróżnia je od przewodów samonośnych. Kluczową różnicą jest to, że przewody samonośne muszą być przystosowane do pracy w warunkach atmosferycznych, co jest potwierdzone odpowiednimi atestami i normami. W rozumieniu tych kategorii, można zauważyć, że mylenie ich zastosowań prowadzi do praktycznych problemów w instalacjach elektrycznych, takich jak uszkodzenia mechaniczne czy niewłaściwe zasilanie urządzeń. Właściwy dobór przewodu jest kluczowy dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Wyznacz znamionowy współczynnik mocy dla silnika trójfazowego z następującymi danymi: PN = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,82
B. 0,57
C. 0,69
D. 0,99
Obliczenie znamionowego współczynnika mocy (cos φ) dla silnika trójfazowego to dość prosta sprawa, jeśli mamy wszystkie potrzebne dane. Mówiąc w skrócie, ten współczynnik to stosunek mocy czynnej (P) do mocy pozornej (S). Może być obliczony za pomocą wzoru: cos φ = P / (√3 * U * I), gdzie P to moc czynna, U to napięcie, a I to prąd znamionowy. Jak podstawimy wartości z pytania: P = 2,2 kW, U = 400 V, I = 4,6 A, to najpierw liczymy S = √3 * 400 V * 4,6 A, co daje nam 2,664 kVA. Potem obliczamy cos φ = 2,2 kW / 2,664 kVA, co wychodzi około 0,826. Jak zaokrąglimy, to dostaniemy 0,82. Wiesz, czemu to jest ważne? Bo dobrze obliczony współczynnik mocy pomaga w projektowaniu układów elektroenergetycznych, a to z kolei przekłada się na lepszą efektywność energetyczną i mniejsze straty energii. Silniki z wyższym współczynnikiem mocy są bardziej efektywne i można na nich zaoszczędzić, co jest korzystne zarówno dla nas, jak i dla sieci zasilającej.

Pytanie 17

Jaka jest maksymalna wartość napięcia dotykowego bezpiecznego dla człowieka przy normalnych warunkach eksploatacji?

A. 100 V
B. 50 V
C. 230 V
D. 12 V
Wartość 230 V jest typowym napięciem używanym w domowych instalacjach elektrycznych, ale nie jest to wartość bezpieczna dla dotyku. To napięcie jest wystarczająco wysokie, aby spowodować poważne obrażenia lub nawet śmierć w przypadku kontaktu fizycznego. Z tego powodu instalacje muszą być odpowiednio zabezpieczone, a użytkownicy świadomi zagrożeń. 100 V to wartość, która również przekracza bezpieczny poziom napięcia dotykowego. Choć niższa niż 230 V, nadal pozostaje niebezpieczna i wymaga podobnych środków ostrożności. Przy takim napięciu może dojść do poważnych obrażeń w przypadku jego kontaktu z ciałem ludzkim. 12 V jest napięciem często używanym w niskonapięciowych systemach zasilania, jak np. w elektronice użytkowej czy oświetleniu LED. Jest to wartość uznawana za bezpieczną do dotyku, ale nie spełnia definicji napięcia dotykowego bezpiecznego, które wynosi 50 V, właśnie z uwagi na jego zastosowanie do określenia pewnych standardów ochrony. Bezpieczeństwo w kontekście elektryki nie ogranicza się jedynie do samego napięcia, ale także do warunków, w jakich jest stosowane, co podkreśla wagę przestrzegania norm i standardów branżowych w celu minimalizacji ryzyka.

Pytanie 18

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Rdzeniowe
B. Szynowe
C. Uzbrojone
D. Kabelkowe
Odpowiedzi 'uzbrojone', 'kabelkowe' oraz 'rdzeniowe' są niewłaściwe w kontekście montażu na izolatorach wsporczych, ponieważ każda z tych opcji odnosi się do innego rodzaju przewodów, które nie są projektowane do takiego zastosowania. Uzbrojone przewody, na przykład, są zazwyczaj stosowane w instalacjach, gdzie wymagana jest dodatkowa ochrona mechaniczna, jednak ich montaż polega na umieszczaniu w rurkach lub osłonach, a nie na izolatorach. Kabelkowe to przewody, które są z reguły używane w systemach o niskim napięciu, gdzie ich budowa i sposób prowadzenia nie wymagają izolatorów wsporczych w tradycyjnym sensie. Rdzeniowe przewody są natomiast konstrukcjami, które można spotkać w aplikacjach zasilających, jednak nie są one mocowane na izolatorach. Typowe błędy myślowe związane z tymi odpowiedziami to mylenie różnych typów przewodów oraz nieznajomość ich podstawowych zastosowań. Właściwe zrozumienie różnic między tymi rodzajami przewodów jest kluczowe dla prawidłowego projektowania systemów elektroenergetycznych oraz ich bezpiecznej eksploatacji.

Pytanie 19

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Izolator wsporczy.
B. Izolator przepustowy wysokiego napięcia.
C. Wkładkę topikową bezpiecznika mocy.
D. Bezpiecznik aparatowy.
Wkładka topikowa bezpiecznika mocy to kluczowy element zabezpieczający w obwodach elektrycznych, który chroni przed przeciążeniami i zwarciami. Na ilustracji widać charakterystyczne cechy tego komponentu, takie jak metalowe końcówki, które zapewniają dobrą przewodność elektryczną, oraz oznaczenia techniczne, które wskazują na parametry znamionowe wkładki. Wkładki topikowe są stosowane głównie w instalacjach przemysłowych i komercyjnych, gdzie występuje duże ryzyko przeciążeń. Zgodnie z normą IEC 60269, wkładki te powinny być dobierane na podstawie maksymalnego prądu, który może przepływać przez dany obwód, co wymaga precyzyjnego obliczenia. Przykłady zastosowania wkładek topikowych to ochrona silników elektrycznych, transformatorów oraz innych urządzeń, które mogą być narażone na nagłe skoki prądu. Użycie odpowiednich wkładek topikowych jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.

Pytanie 20

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
B. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
C. niskonapięciowych liniach elektroenergetycznych.
D. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Co może być przyczyną wzrostu temperatury łącznika puszkowego po włączeniu oświetlenia?

A. Zwarcie w obwodzie lampy
B. Zbyt niska moc żarówki
C. Przerwa w obwodzie lampy
D. Luźny przewód w przełączniku
Poluzowany przewód w wyłączniku może być odpowiedzialny za nagrzewanie się łącznika puszkowego, ponieważ prowadzi do zwiększonego oporu elektrycznego w miejscu połączenia. Gdy przewód nie jest odpowiednio dokręcony, pojawia się luz, co skutkuje niewłaściwym kontaktem i generowaniem ciepła. Zjawisko to jest zgodne z zasadą Joule'a, według której moc wydzielająca się na oporze jest proporcjonalna do kwadratu natężenia prądu i oporu. Przykłady zastosowania tej wiedzy można znaleźć w praktykach instalacyjnych, gdzie stosuje się odpowiednie narzędzia do dokręcania połączeń, co minimalizuje ryzyko nagrzewania się. Dobre praktyki branżowe zalecają regularne przeglądy połączeń elektrycznych oraz zastosowanie elementów zabezpieczających, takich jak złączki z funkcją blokady, aby uniknąć luzów w instalacjach elektrycznych.

Pytanie 24

Do czego służą przy montażu instalacji elektrycznej przedstawione na ilustracji kleszcze?

Ilustracja do pytania
A. Zaciskania końcówek tulejkowych na żyłach przewodu.
B. Formowania oczek na końcach żył.
C. Montażu zacisków zakleszczających.
D. Zaprasowywania przewodów w połączeniach wsuwanych.
Wybór innej odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji kleszczy w kontekście instalacji elektrycznych. Zaprasowywanie przewodów w połączeniach wsuwanych oraz montaż zacisków zakleszczających to techniki, które wymagają innych narzędzi, takich jak szczypce do zaprasowywania lub specjalistyczne narzędzia do zaciskania kabli. Te podejścia są stosowane w zupełnie innych kontekstach, a pomylenie ich z formowaniem oczek może prowadzić do znacznych problemów w instalacji. Zaciskanie końcówek tulejkowych na żyłach przewodu również nie jest funkcją kleszczy przeznaczonych do formowania oczek, ponieważ to zadanie wymaga użycia odpowiednich narzędzi zaprasowujących, które na ogół nie mają funkcji tworzenia oczek. Ważne jest, aby podczas pracy z instalacjami elektrycznymi stosować odpowiednie narzędzia do specyficznych zadań, co jest zgodne z normami bezpieczeństwa i efektywności. Typowym błędem myślowym jest przyjmowanie, że różne narzędzia mogą pełnić te same funkcje, co prowadzi do nieprawidłowości w realizacji instalacji oraz potencjalnych zagrożeń. Właściwe zrozumienie zadań przypisanych do poszczególnych narzędzi jest kluczowe dla sukcesu w pracy elektryka.

Pytanie 25

Co powoduje zwęglenie izolacji na końcu przewodu fazowego blisko zacisku w puszce rozgałęźnej?

A. Wzrost napięcia zasilającego spowodowany przepięciem
B. Zbyt mały przekrój użytego przewodu
C. Poluzowanie śruby mocującej w puszce
D. Zbyt wysoka wartość prądu długotrwałego
Poluzowanie się śruby dociskowej w puszce rozgałęźnej jest jedną z najczęstszych przyczyn zwęglenia izolacji na końcu przewodu fazowego. Kiedy śruba mocująca luzuje się, może to prowadzić do niewłaściwego kontaktu elektrycznego, co powoduje wzrost oporu na styku. W wyniku tego oporu generowane jest ciepło, które może spalić izolację przewodu, prowadząc do zwęglenia. Praktyczne przykłady wskazują, że regularne przeglądy instalacji elektrycznych oraz zastosowanie odpowiednich narzędzi do prawidłowego dokręcania połączeń są niezbędne dla zapewnienia bezpieczeństwa. W standardach branżowych, takich jak PN-IEC 60364, zwraca się uwagę na konieczność stosowania wysokiej jakości materiałów oraz odpowiednich technik montażu, aby zminimalizować ryzyko wystąpienia takich problemów. Dobrą praktyką jest także oznaczanie i dokumentowanie przeprowadzonych kontroli oraz konserwacji połączeń, co sprzyja długoterminowemu bezpieczeństwu użytkowania instalacji elektrycznej.

Pytanie 26

Który z łączników elektrycznych stosowanych do zarządzania oświetleniem w instalacjach budowlanych dysponuje czterema oddzielnymi zaciskami przyłączeniowymi oraz jednym klawiszem do sterowania?

A. Świecznikowy
B. Schodowy
C. Jednobiegunowy
D. Krzyżowy
Odpowiedzi schodowy, jednobiegunowy i świecznikowy to różne rodzaje łączników, a każdy z nich ma swoje konkretne zastosowanie. Łącznik schodowy, który często widzimy przy schodach, działa tylko z dwóch punktów i ma tylko dwa zaciski. To oznacza, że nie nadaje się do bardziej rozbudowanych układów, gdzie musimy sterować światłem z kilku miejsc. Z kolei jednobiegunowy łącznik jest jeszcze bardziej ograniczony, bo działa tylko w jednym miejscu. A łącznik świecznikowy, jak sama nazwa wskazuje, jest do obsługi jednego obwodu, więc też nie spełnia wymagań do sterowania z wielu lokalizacji. Takie myślenie, że każdy łącznik sprawdzi się wszędzie, to błąd, bo wymogi instalacyjne bywają różne. Dlatego warto wybierać łączniki zgodnie z ich przeznaczeniem oraz zasadami budowlanymi, żeby wszystko działało sprawnie i bezpiecznie, co jest ważne dla komfortu użytkowania.

Pytanie 27

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Watomierza
B. Omomierza
C. Megaomomierza
D. Amperomierza
Omomierz jest instrumentem pomiarowym, który służy do określania oporu elektrycznego w obwodach. Użycie omomierza do sprawdzenia ciągłości przewodów instalacyjnych jest standardową praktyką w branży elektrycznej. Narzędzie to pozwala na ocenę, czy przewody są poprawnie podłączone i czy nie ma w nich przerw, co jest kluczowe dla bezpieczeństwa i efektywności instalacji. Przykładowo, podczas montażu instalacji elektrycznej w budynkach mieszkalnych, omomierz może być użyty do testowania połączeń między różnymi elementami systemu, co zapewnia, że żadne przerwy w przewodzeniu nie zakłócą działania urządzeń. Dobrą praktyką jest również pomiar oporu izolacji, co może zapobiec potencjalnym awariom i zagrożeniom pożarowym. Warto pamiętać, że w przypadku wyniku wskazującego na wysoką wartość oporu, może to oznaczać problem z przewodem, który należy rozwiązać przed zakończeniem instalacji.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.
A. D.
B. B.
C. C.
D. A.
Wybór odpowiedzi, która nie uwzględnia parametrów prądu znamionowego i prądu różnicowego, prowadzi do niewłaściwych wniosków dotyczących wymiany wyłącznika różnicowoprądowego. Wyłączniki różnicowoprądowe są projektowane w sposób, który musi zapewniać bezpieczeństwo instalacji elektrycznej, co oznacza, że nie można stosować urządzeń o nieodpowiednich parametrach. Na przykład, jeśli wybierzemy wyłącznik o prądzie różnicowym 300 mA, zignorujemy ryzyko porażenia prądem, ponieważ standardowe parametry dla instalacji domowych wymagają prądu różnicowego 30 mA, aby skutecznie zareagować na niewielkie upływy prądu. Wybór wyłącznika z inną liczbą biegunów, jak na przykład 4P, również nie jest odpowiedni dla trójfazowej instalacji z jednym przewodem neutralnym, co może skutkować złą funkcjonalnością i potencjalnym zagrożeniem. Wiele osób popełnia błąd, zakładając, że każda zamiana wyłącznika na inny model, bez uwzględnienia szczegółowych parametrów technicznych, jest wystarczająca. Kluczowe jest, aby przy takich decyzjach kierować się nie tylko dostępnością danego wyłącznika, ale przede wszystkim jego parametrami, które powinny być zgodne z wymaganiami instalacji oraz aktualnymi normami, jak PN-EN 61008-1. Właściwy dobór wyłączników jest nie tylko kwestią zgodności z normami, ale przede wszystkim zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji elektrycznej.

Pytanie 30

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Zamieniony przewód ochronny z neutralnym
B. Odłączony przewód ochronny
C. Zamieniony przewód fazowy z neutralnym
D. Uszkodzona izolacja przewodu fazowego
Odpowiedź "Zamieniony przewód ochronny z neutralnym" jest prawidłowa, ponieważ w opisanej sytuacji, gdy odbiornik II klasy ochronności podłączony do gniazda ze stykiem ochronnym powoduje zadziałanie wyłącznika różnicowoprądowego, a w innym gniazdku na tym samym obwodzie odbiornik działa prawidłowo, wskazuje na problem z przewodami w pierwszym gnieździe. Zamiana przewodów ochronnego i neutralnego prowadzi do sytuacji, w której przewód neutralny, zamiast pełnić swoją rolę, staje się przewodem ochronnym. W rezultacie, w momencie, gdy odbiornik próbuje pobrać prąd, każdy potencjalny błąd może prowadzić do niebezpiecznego napięcia na obudowie urządzenia, co jest szczególnie niebezpieczne. Przepisy normy PN-IEC 60364 podkreślają znaczenie prawidłowego podłączenia przewodów ochronnych w celu zapewnienia bezpieczeństwa użytkowników. W praktyce, regularne przeglądy instalacji elektrycznych oraz stosowanie kolorów przewodów zgodnych z normami mogą zapobiec takim błędom. Zrozumienie funkcji każdego z przewodów oraz ich poprawne podłączenie jest kluczowe dla bezpieczeństwa i sprawności instalacji elektrycznej.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jaką z wymienionych czynności należy wykonać podczas inspekcji działającego transformatora?

A. Weryfikacja poziomu oleju w olejowskazie konserwatora
B. Serwis styków oraz połączeń śrubowych
C. Obsługa przełącznika zaczepów
D. Czyszczenie izolatorów
Sprawdzenie poziomu oleju w olejowskazie konserwatora jest kluczowym elementem oględzin pracującego transformatora, ponieważ poziom oleju wpływa na prawidłowe działanie urządzenia. Olej w transformatorze pełni kilka istotnych funkcji, takich jak izolacja elektryczna oraz chłodzenie. W trakcie eksploatacji transformatorów, obniżony poziom oleju może prowadzić do przegrzewania się rdzenia oraz uzwojeń, co w konsekwencji może skutkować uszkodzeniem sprzętu. Zgodnie z normami i dobrymi praktykami branżowymi, regularne sprawdzanie poziomu oleju powinno być przeprowadzane w określonych odstępach czasowych lub przed rozpoczęciem eksploatacji. Przykładem może być stosowanie olejowskazów, które umożliwiają wizualną kontrolę poziomu oleju bez konieczności demontażu urządzenia. Warto również pamiętać o konieczności monitorowania jakości oleju oraz okresowym jego badaniu, co pozwala na wczesne wykrycie ewentualnych zanieczyszczeń czy degradacji, a tym samym na podjęcie działań prewencyjnych.

Pytanie 33

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. czyszczenia urządzeń w rozdzielniach
B. czyszczenia lamp oświetleniowych
C. montażu nowych punktów świetlnych
D. wymiany gniazd zasilających
Wiesz, konserwacja instalacji elektrycznych to głównie dbanie o to, co już istnieje. Czyszczenie lamp czy tablic rozdzielczych jest mega ważne, bo brud może doprowadzić do różnych problemów, jak przegrzewanie się czy mniejsza efektywność. Wymiana gniazdek też jest istotna, bo często się zużywają i mogą stwarzać niebezpieczeństwo. Zrozumienie różnicy między montażem a konserwacją to kluczowa sprawa. Często zapominamy, że to różne rzeczy, które wymagają różnych umiejętności. Trzymanie się norm, jak PN-IEC 60364, to podstawa, żeby wszystko działało bezpiecznie i sprawnie. Myślę, że ważne, by nie mylić tych dwóch procesów, bo może to prowadzić do kłopotów.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakie akcesoria, oprócz szczypiec, trzeba pobrać z magazynu, aby zasilić zamontowany plafon sufitowy, kiedy instalacja została wykonana przewodami YDYp?

A. Nóż monterski, wiertarkę, ściągacz izolacji
B. Ściągacz izolacji, nóż monterski, wkrętak
C. Wiertarkę, lutownicę, wkrętak
D. Lutownicę, wiertarkę, ściągacz izolacji
Wybór narzędzi w odpowiedziach niepoprawnych wskazuje na błędne zrozumienie podstawowych zasad związanych z instalacjami elektrycznymi i ich wykonaniem. Lutownica, mimo że jest narzędziem użytecznym w niektórych pracach elektrycznych, nie jest konieczna w tym przypadku, ponieważ przewody YDYp są zazwyczaj łączone poprzez skręcanie lub złączki, a nie lutowanie. Wiertarka również nie jest narzędziem niezbędnym do podłączenia plafonu, gdyż jej zastosowanie ogranicza się głównie do wiercenia otworów w sufitach, co nie jest wymagane, jeżeli montaż może odbyć się na gotowych mocowaniach. Wykorzystanie wkrętaka jest istotne, jednak w połączeniu z niewłaściwymi narzędziami, nie spełnia ono swojej funkcji w kontekście prawidłowego podłączenia. Błędy myślowe, które mogą prowadzić do takich wniosków, to m.in. mylenie funkcji narzędzi oraz niezrozumienie specyfikacji stosowanych kabli i ich użycia w praktyce. Dla zapewnienia bezpieczeństwa oraz efektywności pracy, ważne jest, aby używać odpowiednich narzędzi zgodnie z ich przeznaczeniem oraz z zachowaniem zasad bezpieczeństwa, co zwiększa jakość wykonanej instalacji.