Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 21 lutego 2026 20:51
  • Data zakończenia: 21 lutego 2026 20:58

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Który rodzaj połączenia przedstawiono na rysunku?

Ilustracja do pytania
A. sworzniowe.
B. wciskowe.
C. kołkowe.
D. klinowe.
Wybór odpowiedzi sugerującej inne rodzaje połączeń, takie jak klinowe, wciskowe czy sworzniowe, wskazuje na pewne nieporozumienia dotyczące charakterystyki i zastosowania tych mechanizmów łączenia. Połączenia klinowe wykorzystują kształt klinów do zapewnienia stabilności, co jest skuteczne w niektórych kontekstach, ale nie oddaje zasady działania kołków, które działają na zasadzie przejrzystego przepływu sił przez cylindryczny element. Ponadto, połączenia wciskowe opierają się na dopasowaniu elementów, które są łączone poprzez siłę tarcia, co również różni się od mechanizmu opartego na kołkach. W przypadku sworzniowych połączeń, elementy są łączone za pomocą sworzni, które również mają inną funkcję i zastosowanie. Wiele osób myli różne typy połączeń, co może prowadzić do nieefektywności w projektach inżynieryjnych czy konstrukcyjnych. Kluczowe jest, aby zrozumieć, jakie są różnice między tymi mechanizmami oraz ich specyfikę w kontekście materiałów i zastosowań. Znajomość standardów branżowych, takich jak PN-EN 1993 dla konstrukcji stalowych, pozwoli na lepsze zrozumienie, kiedy i jakie połączenie zastosować, aby zapewnić maksymalną wydajność, bezpieczeństwo i trwałość w budownictwie.

Pytanie 3

Podczas rozbierania łożysk kulkowych powinno się wykorzystać

A. ściągacz
B. palnik gazowy
C. klucz dynamometryczny
D. młotek
Ściągacz to narzędzie specjalnie zaprojektowane do usuwania łożysk, kołków i innych elementów, które mogą być trudne do wyjęcia z powodu ich pasowania lub osadzenia na wrzecionie. W przypadku łożysk kulkowych, ściągacz umożliwia równomierne i bezpieczne usunięcie łożyska z wału lub obudowy bez ryzyka uszkodzenia elementów. Użycie ściągacza minimalizuje ryzyko uszkodzeń powierzchni oraz zmniejsza potrzebę stosowania siły, co wpływa na przedłużenie żywotności zarówno łożyska, jak i wału. W praktyce, podczas serwisowania maszyn lub pojazdów, ściągacz jest często standardowym wyposażeniem warsztatu, zgodnym z branżowymi standardami bezpieczeństwa i efektywności. Zaleca się stosowanie ściągaczy o odpowiednim rozmiarze, co zapewnia precyzyjne dopasowanie do usuwanego elementu. Dodatkowo, warto zapoznać się z procedurami demontażu opisanymi w dokumentacji technicznej producentów, aby zapewnić prawidłowe wykonanie operacji.

Pytanie 4

Osoba pracująca z urządzeniami pneumatycznymi emitującymi głośny dźwięk jest narażona na

A. uszkodzenie skóry dłoni
B. uszkodzenie narządu słuchu
C. zmiany w układzie kostnym
D. porażenie prądem elektrycznym
Uszkodzenie skóry rąk, zmiany w układzie kostnym oraz porażenie prądem elektrycznym to zagrożenia, które nie są bezpośrednio związane z ekspozycją na hałas, a ich wystąpienie wymaga innych okoliczności. Uszkodzenie skóry rąk może wystąpić w wyniku kontaktu z ostrymi krawędziami lub substancjami chemicznymi, a nie hałasu. Z kolei zmiany w układzie kostnym są zazwyczaj efektem długotrwałego przeciążenia lub urazów mechanicznych, a nie narażenia na dźwięk. Porażenie prądem elektrycznym jest zagrożeniem związanym z niewłaściwym użytkowaniem urządzeń elektrycznych lub brakiem odpowiednich zabezpieczeń, a nie z hałasem. Typowym błędem myślowym jest utożsamianie różnych rodzajów ryzyka zdrowotnego z jednym czynnikiem, jakim jest hałas. W praktyce, podczas pracy w głośnym otoczeniu, należy skupić się na ochronie słuchu, zgodnie z regulacjami takimi jak dyrektywa Unii Europejskiej 2003/10/WE, która odnosi się bezpośrednio do narażenia na hałas w środowisku pracy. Takie zaniedbania mogą prowadzić do długotrwałych problemów zdrowotnych, które są znacznie trudniejsze do naprawienia niż uszkodzenia mechaniczne, a ich konsekwencje mogą być nieodwracalne.

Pytanie 5

Którą metodę łączenia materiałów przedstawiono na rysunku?

Ilustracja do pytania
A. Klejenie.
B. Spawanie.
C. Zgrzewanie.
D. Lutowanie.
Lutowanie jest procesem, który polega na łączeniu metali z wykorzystaniem dodatkowego materiału, zwanego lutem, o niższej temperaturze topnienia niż metale łączone. Na zdjęciu widoczne są przewody elektryczne, których połączenie zostało wykonane w tej technice. Lutowanie jest powszechnie stosowane w elektronice do łączenia elementów w obwodach elektronicznych, ponieważ zapewnia silne i trwałe połączenia. W praktyce lutowanie wykorzystuje się nie tylko w elektronice, ale również w wielu innych branżach, takich jak motoryzacja czy przemysł maszynowy. Standardy branżowe, takie jak IPC-A-610 dotyczące akceptowalności montażu elektronicznego, podkreślają znaczenie jakości połączeń lutowanych. Właściwe techniki lutowania, takie jak stosowanie odpowiednich lutów i technik grzewczych, są kluczowe dla zapewnienia niezawodności i bezpieczeństwa w aplikacjach. Ponadto, lutowanie może być stosowane do naprawy i konserwacji urządzeń, co czyni go niezwykle wartościową umiejętnością w wielu zawodach technicznych.

Pytanie 6

Tłok siłownika pneumatycznego zasilanego sprężonym powietrzem o ciśnieniu P = 600 000 Pa powinien oddziaływać z siłą F = 1 200 N. Jaka powinna być powierzchnia czynna tłoka, jeżeli w siłowniku nie występują straty powietrza?

P = F/S
A. 0,500 m2
B. 0,050 m2
C. 0,002 m2
D. 0,020 m2
Odpowiedź 0,002 m2 jest prawidłowa, ponieważ w celu obliczenia powierzchni czynnej tłoka w siłowniku pneumatycznym, należy zastosować wzór: A = F / P, gdzie A to powierzchnia, F to siła, a P to ciśnienie. W tym przypadku, dzieląc siłę 1200 N przez ciśnienie 600 000 Pa, otrzymujemy 0,002 m2. W praktyce, wiedza na temat doboru odpowiedniej powierzchni tłoka jest kluczowa w inżynierii pneumatycznej, ponieważ wpływa na efektywność i wydajność systemu. W wielu zastosowaniach, takich jak automatyka przemysłowa czy maszyny pakujące, wybór właściwej powierzchni tłoka pozwala na precyzyjne sterowanie ruchem oraz zminimalizowanie zużycia energii. Warto dodać, że zgodnie z normami branżowymi, odpowiednia powierzchnia czynna tłoka wpływa także na żywotność urządzenia oraz jego bezpieczeństwo, dlatego inżynierowie powinni zawsze brać pod uwagę zarówno parametry techniczne, jak i warunki pracy siłowników pneumatycznych.

Pytanie 7

Toczenie powierzchni czołowej przedstawia rysunek

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Toczenie powierzchni czołowej jest kluczowym procesem w obróbce skrawaniem, gdzie narzędzie toczenia przesuwa się w kierunku prostopadłym do osi obrotu obrabianego przedmiotu. W przypadku rysunku C, możemy zauważyć, że narzędzie jest poprawnie ustawione, co umożliwia efektywne skrawanie i uzyskiwanie pożądanej powierzchni. W praktyce toczenie powierzchni czołowej stosuje się w produkcji elementów, które wymagają precyzyjnego wykończenia, takich jak wały czy tuleje. Proces ten pozwala na uzyskanie dokładnych wymiarów oraz wysokiej jakości powierzchni, co jest zgodne z najlepszymi praktykami branżowymi. Dodatkowo, toczenie powierzchni czołowej można optymalizować poprzez odpowiedni dobór parametrów technologicznych, takich jak prędkość skrawania czy posuw, co wpływa na żywotność narzędzi i jakość obróbki. W związku z tym, poprawne zrozumienie ustawienia narzędzia toczenia oraz zasad działania tego procesu jest kluczowe dla każdego inżyniera czy technika w branży mechanicznej.

Pytanie 8

Którego z narzędzi przedstawionych na ilustracjach należy zastosować do cięcia przewodów miedzianych, wykorzystanych do budowy instalacji hydraulicznej?

Ilustracja do pytania
A. Narzędzia 3.
B. Narzędzia 1.
C. Narzędzia 4.
D. Narzędzia 2.
Narzędzie 4, czyli obcinak do rur, jest specjalistycznym narzędziem przeznaczonym do precyzyjnego cięcia przewodów miedzianych, które są powszechnie stosowane w instalacjach hydraulicznych. Obcinaki do rur charakteryzują się ostrzami, które zapewniają gładkie cięcie bez uszkodzenia krawędzi materiału, co jest istotne w kontekście cięcia przewodów miedzianych, które są wrażliwe na deformacje. Ponadto, stosowanie obcinaka do rur zgodnie z normami branżowymi, takimi jak PN-EN 1057, gwarantuje, że cięcie odbywa się w sposób kontrolowany, co z kolei wpływa na trwałość i szczelność połączeń hydraulicznych. Dzięki ergonomicznemu designowi obcinaków można wykonywać cięcia w trudno dostępnych miejscach, co znacznie ułatwia prace instalacyjne. W praktyce, użycie odpowiedniego narzędzia, jakim jest obcinak do rur, pozwala na oszczędność czasu i zwiększenie efektywności pracy.

Pytanie 9

Który z elementów tyrystora ma funkcję sterowania?

A. Bramka
B. Źródło
C. Anoda
D. Katoda
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jakie urządzenie jest używane do pomiaru temperatury płynów?

A. termoelement
B. czujnik termiczny
C. termostat
D. urządzenie do regulacji temperatury z cyfrowym wyświetlaczem
Regulator temperatury z wyświetlaczem cyfrowym to urządzenie, które monituruje i kontroluje temperaturę, ale nie mierzy jej bezpośrednio. Głównie utrzymuje zadaną temperaturę, kontrolując inne urządzenia, jak grzałki czy wentylatory. Temperatura zazwyczaj pochodzi z czujników, a one same nie są do pomiaru. Termostat też jest urządzeniem sterującym, ale raczej zajmuje się kontrolowaniem ciepła niż pomiarem. Przekaźnik termiczny włącza lub wyłącza obwody elektryczne w zależności od temperatury, ale również nie mierzy temperatury. Często ludzie mylą te funkcje, co prowadzi do błędnych wniosków. W praktyce to, że te urządzenia mogą zarządzać temperaturą, nie znaczy, że potrafią ją zmierzyć. Żeby prawidłowo mierzyć temperaturę, potrzeba dedykowanych urządzeń, jak termoelementy, które są dokładne i niezawodne.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Elastyczny przewód elektryczny, służący do łączenia elementów systemu elektrycznego w aplikacjach mechatronicznych, powinien być

A. odizolowany na dowolną długość
B. zaizolowany na końcach
C. zakończony na końcach tulejkami
D. równo przycięty na końcach
Odpowiedzi dotyczące odizolowania przewodu na dowolną długość lub równego obcinania końców naprawdę mija się z celem, bo nie uwzględniają praktycznych aspektów zakończenia przewodów. Odizolowanie kabla na dowolną długość może prowadzić do sytuacji, gdzie nieodpowiednio przygotowane końcówki stwarzają ryzyko zwarcia czy innych awarii. Dobrze jest precyzyjnie przygotować końce przewodów, ale sama izolacja niewiele da, jeśli ich nie zabezpieczymy przed uszkodzeniami mechanicznymi. Równo obcięte końce, mimo że mogą ładnie wyglądać, nie zapewniają odpowiedniej ochrony dla żył przewodów i mogą łatwo się uszkodzić podczas montażu czy eksploatacji. A stwierdzenie, że przewody powinny być zaizolowane na końcach, to w ogóle nie pasuje do zastosowań mechatronicznych, gdzie ważne jest nie tylko zabezpieczenie przed przewodnictwem elektrycznym, ale też fizyczna integralność połączeń. Przykłady złych praktyk to chociażby lutowanie przewodów bez użycia tulejek, co prowadzi do osłabienia połączenia i zwiększa ryzyko awarii. Dlatego, żeby mieć długoterminowe i efektywne połączenia, zdecydowanie warto korzystać z tulejek, które chronią przewody i zapewniają niezawodność elektryczną.

Pytanie 14

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 30
B. 24
C. 75
D. 60
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 15

Na podstawie wskazania mikrometru wynik pomiaru wynosi

Ilustracja do pytania
A. 21,14 mm
B. 22,14 mm
C. 22,16 mm
D. 21,64 mm
Odpowiedź 21,64 mm jest prawidłowa, ponieważ wynika z dokładnego odczytu z mikrometru. Mikrometr składa się z dwóch skali: głównej i pomocniczej. W tym przypadku odczyt z głównej skali wynosi 21,5 mm, co oznacza, że wskazanie jest już na poziomie 21 mm. Następnie, aby uzyskać precyzyjny wynik, należy dodać wartość z skali pomocniczej, która wynosi 0,14 mm. Sumując te wartości (21,5 mm + 0,14 mm), uzyskujemy dokładny wynik 21,64 mm. Użycie mikrometru w takich pomiarach jest zgodne z najlepszymi praktykami pomiarowymi w inżynierii, gdzie dokładność i precyzja mają kluczowe znaczenie. Mikrometry są powszechnie stosowane w produkcji oraz kontroli jakości, gdzie wymagana jest wysoka dokładność w pomiarach wymiarowych. Wiedza na temat odczytu mikrometru jest niezbędna w wielu dziedzinach inżynierii, w tym mechanice, elektronice i inżynierii materiałowej, gdzie wymiary elementów muszą być ściśle kontrolowane.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Transformator specjalny działający w warunkach zbliżonych do zwarcia, do którego podłącza się przyrząd pomiarowy, nosi nazwę

A. przekładnik prądowy
B. transformator bezpieczeństwa
C. transformator do zmiany liczby faz
D. przekładnik napięciowy
Przekładnik prądowy jest urządzeniem zaprojektowanym do pomiaru prądu w obwodach elektrycznych, które działa w stanie zbliżonym do zwarcia. Jego głównym zadaniem jest proporcjonalne przekształcanie prądu wysokiego napięcia na prąd niskiego napięcia, umożliwiając tym samym bezpieczne podłączenie przyrządów pomiarowych, takich jak amperomierze, do obwodów. W praktyce, przekładniki prądowe są szeroko stosowane w systemach energetycznych, w tym w stacjach transformatorowych oraz rozdzielniach elektrycznych. Dzięki nim można monitorować i analizować prądy robocze oraz przeciążeniowe, co jest niezbędne do zapewnienia bezpieczeństwa i niezawodności pracy instalacji elektrycznych. W kontekście norm branżowych, przekładniki prądowe muszą spełniać określone standardy, takie jak normy IEC 60044, co zapewnia ich wysoką jakość i niezawodność w trudnych warunkach pracy. Użycie przekładników prądowych w systemach automatyki przemysłowej pozwala na dokładne monitorowanie parametrów energii, co jest kluczowe dla optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacji.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Które narzędzia należy zastosować podczas wymiany układu scalonego przedstawionego na rysunku?

Ilustracja do pytania
A. Lutownicę i odsysacz.
B. Szczypce i pilnik.
C. Pilnik i zaciskarkę.
D. Wkrętak i szczypce.
Lutownica i odsysacz to kluczowe narzędzia stosowane podczas wymiany układów scalonych na płytkach drukowanych. Lutownica pozwala na precyzyjne podgrzewanie miejsca lutowania, co pozwala na stopienie lutowia, a tym samym umożliwia usunięcie uszkodzonego układu scalonego. Odsysacz, zwany również odsysaczem lutowia, jest niezbędny do efektywnego usunięcia stopionego lutowia, co jest kluczowe, aby uniknąć uszkodzenia ścieżek drukowanych i innych komponentów znajdujących się w pobliżu. Praktyczne zastosowanie tych narzędzi można zaobserwować w standardach serwisowych, takich jak IPC-A-610, które określają wymagania dotyczące jakości lutowania w elektronice. Odpowiednie wykorzystanie lutownicy oraz odsysacza nie tylko zwiększa skuteczność naprawy, ale również zapewnia długoterminową niezawodność i stabilność całego układu elektronicznego. Dobrą praktyką jest również używanie lutowia o niskiej temperaturze topnienia, co minimalizuje ryzyko uszkodzenia innych komponentów na płytce.

Pytanie 20

Na rysunku przedstawiono tabliczkę znamionową

Ilustracja do pytania
A. silnika synchronicznego.
B. silnika indukcyjnego.
C. prądnicy prądu stałego.
D. przetwornicy jednotwornikowej.
Ta odpowiedź jest prawidłowa, ponieważ tabliczka znamionowa przedstawiona na rysunku zawiera informacje charakterystyczne dla silników indukcyjnych. Silniki te są szeroko stosowane w przemyśle, szczególnie w zastosowaniach wymagających dużej mocy, jak w napędach maszyn przemysłowych. Wartości, takie jak moc 20 kW, napięcie 400 V oraz prąd 42,5 A, są typowe dla silników indukcyjnych, które często działają w zakresie napięć trójfazowych. Częstotliwość 50 Hz wskazuje na standardowy zasilacz w Europie, co dodatkowo potwierdza zastosowanie silnika w warunkach przemysłowych. Współczynnik mocy (cos φ) oraz liczba biegunów (P) są również kluczowymi parametrami, które wpływają na efektywność energetyczną silnika. W praktyce, silniki indukcyjne znajdują zastosowanie w pompach, wentylatorach, kompresorach oraz wielu innych urządzeniach, gdzie wymagana jest wysoka niezawodność i trwałość. Wiedza o charakterystyce tabliczki znamionowej jest kluczowa dla inżynierów i techników, by prawidłowo dobierać silniki do konkretnych zastosowań.

Pytanie 21

Wskaż, którą metodą pracownik dokonuje pomiaru prędkości obrotowej łopat wentylatora.

Ilustracja do pytania
A. Bezkontaktową, przy pomocy czujnika odbiciowego.
B. Bezkontaktową, przy pomocy lampy stroboskopowej.
C. Kontaktową, przy pomocy tachometru.
D. Bezkontaktową, przy pomocy czujnika indukcyjnego.
Pomiar prędkości obrotowej wentylatora za pomocą czujnika indukcyjnego lub odbiciowego, jak również tachometru kontaktowego, nie jest optymalnym podejściem w wielu sytuacjach przemysłowych. Czujniki indukcyjne, mimo że są popularne w wielu zastosowaniach, wymagają bezpośredniego kontaktu z wirującym obiektem, co może prowadzić do zużycia elementów pomiarowych oraz potencjalnego uszkodzenia wentylatora. W przypadku czujników odbiciowych, ich działanie opiera się na mierzeniu zmian w świetle odbitym od obracających się elementów, co jest stosunkowo mało precyzyjne w obliczu zmiennych warunków oświetleniowych lub zanieczyszczeń na powierzchni wentylatora. Z kolei tachometry kontaktowe, choć mogą dostarczać dokładnych wyników, generują siły tarcia na wirniku, co w dłuższej perspektywie może prowadzić do uszkodzeń nie tylko samego czujnika, ale i mierzonych komponentów. W praktyce, w środowiskach wymagających ciągłego monitorowania, zastosowanie metod bezkontaktowych, takich jak lampy stroboskopowe, jest preferowane, ponieważ zapewnia większą trwałość oraz dokładność podejmowanych pomiarów, a także minimalizuje ryzyko uszkodzeń sprzętu. Warto również zwrócić uwagę na fakt, że metody kontaktowe są nieodpowiednie w przypadku elementów w ruchu, gdzie dokładne pomiary są kluczowe dla wydajności i bezpieczeństwa operacji.

Pytanie 22

W celu uzupełnienia smaru w łożysku przedstawionym na rysunku należy użyć

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Aby skutecznie uzupełnić smar w łożysku, kluczowe jest wykorzystanie odpowiednich narzędzi, takich jak smarownica, co potwierdza poprawność odpowiedzi D. Smarownice, w porównaniu do innych narzędzi, oferują precyzyjne i kontrolowane dozowanie smaru, co jest istotne dla efektywności i trwałości łożysk. Właściwe smarowanie łożysk jest nie tylko kwestią wydajności, ale także wpływa na bezpieczeństwo całego mechanizmu, w którym się znajdują. W praktyce, stosowanie smarownic jest zgodne z najlepszymi praktykami w zakresie konserwacji maszyn, ponieważ pozwala na minimalizowanie ryzyka przepełnienia lub niedoboru smaru, co może prowadzić do uszkodzenia łożysk. Regularne stosowanie smarownic w ramach planowanych przeglądów technicznych nie tylko zapewnia długotrwałą wydajność, ale również zmniejsza koszty związane z naprawami, co jest zgodne z zasadami zarządzania majątkiem i efektywności operacyjnej w branży. Z tego powodu, znajomość i umiejętność stosowania smarownicy jest kluczowa dla każdej osoby zajmującej się konserwacją maszyn.

Pytanie 23

Jaką czynność zrealizuje polecenie COMPILE w kontekście programowania systemów mechatronicznych?

A. Konwersja kodu binarnego na format dziesiętny
B. Przesłanie programu do kontrolera
C. Przetłumaczenie programu na kod binarny
D. Pobranie programu z kontrolera
Wywołanie polecenia COMPILE w kontekście programowania urządzeń mechatronicznych może być mylone z innymi czynnościami związanymi z zarządzaniem programem. Nie należy utożsamiać kompilacji z przesyłaniem programu do sterownika, gdyż te operacje są od siebie odrębne. Przesłanie programu do sterownika odbywa się po etapie kompilacji, a jego celem jest zainstalowanie odpowiednio przetłumaczonego kodu binarnego w pamięci urządzenia. Zrozumienie tego procesu jest kluczowe, aby uniknąć błędów w programowaniu. Kolejnym typowym nieporozumieniem jest mylenie kompilacji z tłumaczeniem kodu binarnego na format zrozumiały dla człowieka, jak kod decymalny. Tego rodzaju operacje, nazywane dekompilacją, są rzadko praktykowane w kontekście programowania urządzeń mechatronicznych, ponieważ zazwyczaj pracujemy w odwrotnym kierunku, przetwarzając kod źródłowy na binarny. Ostatnią pomyłką jest pomylenie kompilacji z pobieraniem programu ze sterownika, co jest kolejnym krokiem w cyklu życia oprogramowania, ale nie jest bezpośrednio związane z procesem kompilacji. Kluczowym elementem skutecznego programowania jest zrozumienie tych różnic oraz umiejętność ich zastosowania w praktyce.

Pytanie 24

Do czego służy stabilizator napięcia?

A. do wygładzania napięcia po prostowaniu przez prostownik
B. do przekształcania napięcia przemiennego w napięcie stałe
C. do konwersji napięcia przemiennego na napięcie przemienne o innej częstotliwości oraz innej wartości skutecznej
D. do utrzymywania stałego napięcia niezależnie od zmian natężenia prądu obciążenia oraz zmian napięcia wejściowego
Niektóre odpowiedzi mogą wydawać się atrakcyjne na pierwszy rzut oka, jednak nie odpowiadają one funkcji stabilizatora napięcia. Na przykład, wygładzanie napięcia wyprostowanego przez prostownik to proces, który przeprowadza kondensator, który eliminuje tętnienia napięcia po prostowaniu. Stabilizator nie działa w tym kontekście, a jego zadanie nie obejmuje prostowania napięcia, lecz jego stabilizację. Z kolei przetwarzanie napięcia przemiennego na napięcie przemienne o innej częstotliwości i innej wartości skutecznej jest funkcją falowników lub transformatorów, a nie stabilizatorów napięcia, które koncentrują się na utrzymaniu stałego poziomu napięcia. Dodatkowo, przetwarzanie napięcia przemiennego na napięcie stałe jest realizowane przez prostowniki, które również nie są związane z funkcją stabilizacji napięcia. Pomieszanie tych pojęć często wynika z niejasności w zrozumieniu zasad działania różnych elementów elektronicznych. Stabilizatory napięcia pełnią unikalną rolę w układach zasilających, a ich funkcja polega przede wszystkim na eliminacji fluktuacji napięcia, co jest kluczowe dla zapewnienia prawidłowego działania delikatnych urządzeń elektronicznych, które mogą być wrażliwe na zmiany napięcia. Stąd kluczowe jest precyzyjne rozumienie, jakie urządzenia i procesy są odpowiedzialne za różne aspekty zasilania w systemach elektrycznych.

Pytanie 25

Który miernik należy zastosować w układzie, którego schemat przedstawiono na ilustracji, w celu pomiaru napięcia metodą bezpośrednią?

Ilustracja do pytania
A. Omomierz.
B. Watomierz.
C. Amperomierz.
D. Woltomierz.
Woltomierz jest kluczowym narzędziem w pomiarach elektrycznych, które umożliwia bezpośrednie określenie napięcia w obwodzie. Jego zastosowanie polega na podłączeniu do układu równolegle do elementu, którego napięcie chcemy zmierzyć. Dzięki temu woltomierz nie zakłóca pracy obwodu, co jest zgodne z zasadami pomiarów elektrycznych. Przykładowo, w praktyce inżynierskiej, woltomierz jest używany do sprawdzania napięcia w obwodach zasilających urządzenia, co pozwala na ocenę ich stanu funkcjonalności. Zgodnie z normami IEC, pomiar napięcia powinien być przeprowadzany z użyciem sprzętu odpowiedniego do wartości mierzonych oraz warunków pracy - woltomierze cyfrowe są w tym przypadku preferowane ze względu na ich dokładność i łatwość odczytu. Dodatkowo, woltomierze mogą mieć różne tryby pracy, co pozwala na pomiar zarówno napięcia stałego, jak i zmiennego, co czyni je wszechstronnym narzędziem inżynierskim.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jaka powinna być wartość znamionowego napięcia zasilania urządzenia, aby mogło być zasilane przez zasilacz impulsowy o charakterystyce obciążeniowej przedstawionej na rysunku?

Ilustracja do pytania
A. 80 V
B. 160 V
C. 60 V
D. 150 V
Wartość znamionowego napięcia zasilania wynosząca 150 V została określona na podstawie analizy charakterystyki obciążeniowej zasilacza impulsowego. Na wykresie można zauważyć, że przy tym napięciu zasilacz osiąga optymalny punkt pracy, co oznacza, że jego parametry są zgodne z wymaganiami urządzenia. Użycie napięcia 150 V jest istotne, ponieważ zasilacz impulsowy powinien działać w swoim zakresie znamionowym, aby zapewnić efektywność energetyczną oraz stabilność pracy. W praktyce, stosowanie zasilaczy impulsowych o odpowiednich wartościach znamionowych jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności urządzeń. Przykładem może być system zasilania w automatyce przemysłowej, gdzie zasilacz impulsowy o napięciu 150 V zasila różne komponenty, takie jak czujniki, siłowniki czy kontrolery. Dlatego ważne jest, aby dobierać zasilacze zgodnie z określonymi wartościami znamionowymi, co wpływa na ich długowieczność oraz minimalizuje ryzyko uszkodzenia sprzętu.

Pytanie 28

Podczas inspekcji systemu podnośnika hydraulicznego zauważono, że olej się spienia i jest wydobywany przez odpowietrznik zbiornika. Co może być przyczyną tej usterki?

A. Nieszczelność zaworu bezpieczeństwa
B. Nieszczelność w przewodzie ssawnym pompy
C. Wytarte pierścienie uszczelniające tłokowe
D. Wytarte pierścienie uszczelniające rozdzielaczy
Wybór odpowiedzi dotyczącej zużytych pierścieni uszczelniających rozdzielaczy, tłokowych pierścieni uszczelniających czy nieszczelnego zaworu bezpieczeństwa nietrafnie wskazuje na przyczynę spieniania oleju w układzie hydraulicznym. Pierścienie uszczelniające rozdzielaczy odpowiadają za kontrolowanie przepływu oleju, ale ich zużycie objawia się najczęściej przeciekiem oleju, a nie wytwarzaniem bąbelków powietrza. Podobnie, zużycie tłokowych pierścieni uszczelniających może prowadzić do utraty ciśnienia, co również nie jest bezpośrednio związane z problemem spieniania. Z kolei nieszczelny zawór bezpieczeństwa, choć może wpłynąć na ciśnienie w układzie, nie jest bezpośrednią przyczyną dostawania się powietrza do oleju. Niesprawność ta powoduje raczej niebezpieczne wzrosty ciśnienia niż spienienie oleju. Wysokiej jakości diagnostyka układów hydraulicznych powinna koncentrować się na wszystkich elementach, aby uniknąć błędnych wniosków. Typowym błędem myślowym w tym przypadku jest mylenie objawów i przyczyn, co często prowadzi do niewłaściwego rozwiązywania problemów i nieefektywnej konserwacji. Zamiast tego, kluczowe jest zrozumienie mechanizmu działania układu hydraulicznego oraz rzetelna analiza źródeł problemów, co pozwala na skuteczne ich usuwanie.

Pytanie 29

Jeśli w trakcie standardowych warunków eksploatacji pneumatyczne urządzenie mechatroniczne generuje duże drgania, to osoba obsługująca powinna być wyposażona w

A. rękawice antywibracyjne.
B. obuwie ochronne.
C. kask zabezpieczający.
D. okulary ochronne.
Obuwie profilaktyczne, kask ochronny oraz okulary ochronne są elementami wyposażenia ochronnego, które mają swoje konkretne zastosowanie w różnych warunkach pracy, jednak nie odpowiadają one na specyficzne zagrożenia związane z drganiami generowanymi przez pneumatyczne urządzenia mechatroniczne. Obuwie profilaktyczne może chronić przed urazami stóp, ale nie ma wpływu na ochronę przed drganiami. W przypadku obsługi narzędzi wytwarzających drgania, pracownik jest narażony na potencjalne uszkodzenia rąk, co sprawia, że ochrona rąk jest kluczowym priorytetem. Kask ochronny jest niezbędny w sytuacjach, gdy istnieje ryzyko uderzeń w głowę lub upadku przedmiotów, ale nie wpływa na ochronę operatora przed skutkami drgań. Z kolei okulary ochronne chronią wzrok przed odpryskami czy pyłem, lecz również nie odpowiadają na problem drgań. Typowym błędem myślowym, który prowadzi do wyboru tych elementów, jest niedocenienie wpływu drgań na zdrowie operatora i przekonanie, że standardowe środki ochrony osobistej są wystarczające. W rzeczywistości, aby skutecznie chronić zdrowie pracowników w takich warunkach, konieczne jest stosowanie dedykowanych rozwiązań, jak rękawice antywibracyjne, które nie tylko zmniejszają ryzyko urazów, ale także poprawiają komfort pracy i efektywność operacyjną.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Układ sterowania obrotami silnika elektrycznego (prawo-lewo), w którym wykorzystano sterownik PLC, działający według programu LD jak na rysunku, nie działa prawidłowo. Przyczyną jest błędne wykorzystanie w programie sterowniczym operandu

Ilustracja do pytania
A. X1
B. X0
C. Y1
D. Y2
Wybór odpowiedzi X1, Y2 lub Y1 nie jest właściwy z kilku powodów. Przede wszystkim, każda z tych opcji odnosi się do innych elementów w systemie sterowania, które nie mają bezpośredniego związku z rzeczywistym działaniem styku S0. X1, jako potencjalny styk inny od X0, mógłby być użyty w całkowicie innym kontekście, ale nie odpowiada na problem związany z normalnie zamkniętym stykiem S0. Przykładowo, jeśli styk X1 byłby użyty jako główny przycisk włączający, to jego działanie zależałoby od innego zestawu warunków, co nie wpływałoby na rzeczywiste połączenie i działanie silnika. W przypadku Y2 i Y1, oba te elementy są wyjściami, które nie mają wpływu na stan wejścia S0. Zrozumienie różnicy między stykami wejściowymi a wyjściowymi jest kluczowe w projektowaniu układów sterowania. W kontekście programowania PLC istotne jest, aby nie mylić styku normalnie zamkniętego z normalnie otwartym, ponieważ prowadzi to do niepoprawnych wniosków i może skutkować nieprawidłowym działaniem całego systemu. W takich sytuacjach, kluczowe jest przeanalizowanie schematu elektrycznego i upewnienie się, że każde oznaczenie odpowiada rzeczywistym elementom w układzie. Zastosowanie dobrych praktyk w projektowaniu i programowaniu układów sterowania jest niezbędne do osiągnięcia niezawodności i efektywności w działaniu systemów automatyki.

Pytanie 33

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. utlenianie
B. lepkość
C. smarność
D. gęstość
Lepkość jest miarą oporu, jaki ciecz stawia podczas przepływu i jest kluczowym parametrem w ocenie właściwości olejów smarowych. Wysoka lepkość oznacza, że ciecz jest bardziej gęsta i oporna na przepływ, co jest korzystne w zastosowaniach wymagających skutecznego smarowania. Przykładowo, oleje silnikowe muszą mieć odpowiednią lepkość, aby skutecznie chronić silnik przed zużyciem oraz zapewniać odpowiednie smarowanie w różnych temperaturach pracy. Standardy, takie jak SAE, określają klasyfikacje lepkości, co pozwala na wybór odpowiedniego oleju do konkretnego zastosowania. Na przykład, olej 10W-40 ma różne właściwości lepkości w niskich i wysokich temperaturach, co czyni go wszechstronnym wyborem dla wielu silników. Ponadto, lepkość wpływa na inne parametry, takie jak temperatura krzepnięcia i przewodność cieplna, co jest istotne w kontekście efektywności energetycznej urządzeń mechanicznych.

Pytanie 34

W układzie hydraulicznym zainstalowano zawór dławiąco-zwrotny w sposób pokazany na rysunku. Jaką reakcję wywołuje w tym układzie odkręcanie pokrętła ręcznego?

Ilustracja do pytania
A. Stabilizuje ciśnienie pracy.
B. Reguluje skok siłownika.
C. Zmniejsza prędkość wysuwu tłoka.
D. Zwiększa prędkość powrotu tłoka.
Wybór odpowiedzi dotyczącej stabilizacji ciśnienia pracy lub zmniejszenia prędkości wysuwu tłoka wynika z niepełnego zrozumienia funkcji zaworu dławiąco-zwrotnego. Zawór ten nie działa na zasadzie stabilizowania ciśnienia w układzie hydraulicznym, lecz reguluje przepływ płynu, co wpływa na dynamikę ruchu tłoka. Można błędnie założyć, że regulacja oporu przepływu jest równoważna stabilizacji ciśnienia, jednak w rzeczywistości ciśnienie w układzie hydraulicznie zmienia się w zależności od oporu oraz przepływu. Zmniejszenie prędkości wysuwu tłoka również nie jest właściwe, ponieważ odkręcanie pokrętła dławiącego redukuje opór, co skutkuje przeciwnie - przyspieszeniem ruchu. Problem leży w tym, że często mylone są pojęcia związane z ciśnieniem i przepływem, co prowadzi do błędnych konkluzji. W przypadku hydrauliki, kluczowe jest zrozumienie, że ciśnienie to siła wywierana na jednostkę powierzchni, a przepływ to objętość płynu przechodząca przez przekrój w jednostce czasu. Dlatego odpowiedzi, które nie uwzględniają tej różnicy, są błędne i mogą prowadzić do nieefektywnej pracy układów hydraulicznych oraz potencjalnych uszkodzeń lub awarii systemu.

Pytanie 35

Dla którego stanu wejść na wyjściu Y układu logicznego pojawi się "1"?

Ilustracja do pytania
A. A=0, B=0, C=0
B. A=0, B=1, C=1
C. A=1, B=1, C=1
D. A=l, B=0, C=0
W odpowiedzi A=1, B=0, C=0 wszystko pasuje, bo w tym przypadku układ logiczny daje nam wynik Y równy 1. A, B i C to stany logiczne, gdzie '1' to aktywny stan, a '0' to nieaktywny. Weźmy bramkę AND – jej wyjście działa tylko wtedy, kiedy wszystkie wejścia są równe '1'. W tej sytuacji A ma wartość '1', a B i C są '0', przez co Y jest '1'. To jest zgodne z tym, jak działają bramki logiczne. Wiedza o tych bramkach jest ważna, bo pomaga w budowie bardziej skomplikowanych systemów. Na przykład, w mikroprocesorach wykorzystuje się takie bramki do operacji arytmetycznych i logicznych, a to jest podstawą działania nowoczesnych urządzeń elektronicznych.

Pytanie 36

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
B. wymienić membranę
C. zmierzyć rezystancję cewki
D. wymienić uszczelkę
Zwiększenie napięcia zasilania i podawanie go na cewkę elektrozaworu jest podejściem, które może prowadzić do poważnych problemów. Przede wszystkim, jeżeli elektrozawór nie otwiera się przy podanym napięciu znamionowym, może to sugerować, że cewka jest uszkodzona lub występuje inny problem, a niekoniecznie zbyt niskie napięcie. Podawanie wyższego napięcia może spowodować przegrzanie cewki i jej trwałe uszkodzenie, co jest niezgodne z zasadami bezpiecznej eksploatacji. Kolejnym błędem jest zakładanie, że membrana lub inne elementy zaworu są odpowiedzialne za jego niesprawność bez wcześniejszego zbadania stanu cewki. Takie podejście może prowadzić do niepotrzebnych kosztów i przedłużających się czasów napraw. Należy pamiętać, że elektrozawory powinny być diagnozowane w sposób systematyczny i zgodny z procedurami ustalonymi przez producentów oraz branżowe standardy, aby zminimalizować ryzyko błędnych decyzji naprawczych. Właściwą praktyką jest najpierw sprawdzenie wszystkich elementów, zanim podejmie się decyzje o ich wymianie.

Pytanie 37

Pamięć EPROM (ang. Erasable Programmable Read-Only Memory) to typ pamięci cyfrowej realizowanej w formie układu scalonego, którą można

A. programować i usuwać elektrycznie
B. kasować za pomocą promieniowania ultrafioletowego
C. tylko odczytywać
D. bezpowrotnie stracić po odłączeniu zasilania
Pamięć EPROM, czyli Erasable Programmable Read-Only Memory, to dosyć ciekawy typ pamięci. Charakteryzuje się tym, że można w niej skasować dane przy użyciu promieniowania ultrafioletowego. To znaczy, że jak chcemy pozbyć się zapisanych informacji, to wystawiamy chip EPROM na odpowiednie źródło UV i tak to działa. Takie pamięci są bardzo przydatne w sytuacjach, gdzie trzeba często programować i kasować, na przykład w prototypach układów elektronicznych oraz podczas testowania. Osobiście uważam, że EPROM to dobry wybór w elektronice użytkowej i w systemach wbudowanych, bo rzeczywiście lubimy mieć elastyczność w programowaniu. Ważne jest też to, że po zakończonym programowaniu i kasowaniu, dane zostają w pamięci, aż do momentu, kiedy ponownie je skasujemy. To sprawia, że EPROM jest świetnym rozwiązaniem dla systemów, które muszą mieć stabilne dane.

Pytanie 38

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 986 Nm
B. 10 Nm
C. 1 Nm
D. 9 420 Nm
W przypadku momentu obrotowego na wale silnika synchronicznego, istnieje kilka kluczowych koncepcji, które mogą prowadzić do błędnych odpowiedzi. Moment obrotowy jest miarą siły, która powoduje obrót ciała wokół osi. Odpowiedzi takie jak 986 Nm, 1 Nm, czy 9 420 Nm nie uwzględniają prawidłowego przeliczenia mocy na moment obrotowy. Często mylnie przyjmuje się, że moc silnika bezpośrednio przekłada się na moment obrotowy, co jest nieprawidłowe. Prawidłowe obliczenie wymaga uwzględnienia zarówno mocy, jak i prędkości obrotowej. Typowym błędem jest także mylenie jednostek, zwłaszcza przy konwersji mocy z kilowatów na waty, co może prowadzić do znacznych niedoszacowań lub przeszacowań momentu obrotowego. Przykładowo, odpowiedź 986 Nm sugeruje, że silnik jest znacznie bardziej mocny niż to wynika z podanych danych. Z drugiej strony, odpowiedzi takie jak 1 Nm czy 10 Nm również nie oddają rzeczywistej wartości momentu, co może wpłynąć na niewłaściwy dobór napędu w praktycznych zastosowaniach przemysłowych. Dokładne zrozumienie tych zasad jest kluczowe dla inżynierów i techników, aby unikać potencjalnych problemów w projektowaniu układów napędowych.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.