Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 14:09
  • Data zakończenia: 18 grudnia 2025 14:09

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. skutecznych
B. krokowych
C. rażeniowych
D. dotykowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar napięć skutecznych jest naprawdę ważny, jeśli chodzi o ocenę, jak dobrze działają połączenia wyrównawcze. Dzięki temu możemy zobaczyć, jak dobrze system radzi sobie z ewentualnymi różnicami napięć w instalacji elektrycznej. Połączenia wyrównawcze mają na celu zminimalizowanie ryzyka porażeń prądem, więc istotne jest, żeby te różnice były na niskim poziomie. Napięcia skuteczne, czyli wartości RMS, pokazują nam, jak system działa w rzeczywistości, co bardzo ułatwia ocenę skuteczności zabezpieczeń. Można to zastosować na przykład w instalacjach przemysłowych, gdzie ochrona ludzi i sprzętu jest kluczowa. Normy, jak PN-IEC 60364, podkreślają, jak ważne są regularne inspekcje i pomiary, żeby mieć pewność, że systemy bezpieczeństwa działają prawidłowo i są w dobrym stanie.

Pytanie 2

Na podstawie przedstawionych na rysunku zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania wskaż wartość napięcia akumulatora o pojemności C = 100 Ah, który przez 30 minut był obciążony prądem o wartości 60 A.

Ilustracja do pytania
A. 12,0 V
B. 11,3 V
C. 12,4 V
D. 11,0 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 12,0 V jest poprawna, ponieważ przy analizie wykresu zależności napięcia na zaciskach akumulatora od prądu i czasu rozładowywania, można stwierdzić, że dla akumulatora o pojemności 100 Ah, który przez 30 minut był obciążony prądem 60 A, rzeczywiście napięcie wynosi około 12,0 V. W praktyce, akumulatory kwasowo-ołowiowe, które najczęściej są używane w zastosowaniach motoryzacyjnych i przemysłowych, charakteryzują się spadkiem napięcia w trakcie rozładowania, co jest uzależnione od wielu czynników, takich jak temperatura czy stopień naładowania. Zrozumienie tych zależności jest kluczowe w kontekście zapewnienia optymalnej pracy urządzeń zasilanych akumulatorami, a także w trakcie ich konserwacji i wymiany. Dobrą praktyką jest regularne monitorowanie stanu napięcia akumulatora, co pozwala na wczesne wykrywanie problemów i uniknięcie nieprzewidzianych awarii.

Pytanie 3

Jaka jest minimalna wartość napięcia probierczego, która jest wymagana podczas pomiarów rezystancji izolacji przewodów w obwodach SELV oraz PELV?

A. 100 V
B. 1000 V
C. 250 V
D. 500 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Minimalna wymagana wartość napięcia probierczego przy pomiarach rezystancji izolacji w obwodach SELV i PELV wynosi 250 V. Tego rodzaju obwody są projektowane z myślą o bezpieczeństwie użytkowników, a ich izolacja musi spełniać określone standardy jakości. Przeprowadzenie pomiaru rezystancji izolacji z użyciem napięcia 250 V pozwala na skuteczne zidentyfikowanie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpieczeństwa porażenia prądem elektrycznym. W praktyce, przy pomiarach tego typu, wartość 250 V jest uznawana za wystarczającą do zbadania jakości izolacji, a także zapewnia odpowiedni margines bezpieczeństwa. Na przykład, w przypadku instalacji elektrycznych w budynkach mieszkalnych, stosowanie tego napięcia probierczego pozwala na wykrycie nieprawidłowości, które mogą powstać w wyniku starzenia się materiałów lub niewłaściwego montażu. Warto również zauważyć, że normy międzynarodowe, takie jak IEC 60364, wskazują na konieczność przeprowadzania pomiarów izolacji przy odpowiednich wartościach napięcia, aby zapewnić bezpieczeństwo użytkowania elektrycznych urządzeń i instalacji.

Pytanie 4

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
B. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
C. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
D. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar impedancji pętli zwarciowej przy załączonej sieci jest kluczowy dla oceny bezpieczeństwa systemów elektroenergetycznych. W takiej konfiguracji, wszystkie elementy systemu, w tym transformatory, przewody oraz urządzenia zabezpieczające, działają w rzeczywistych warunkach operacyjnych. Uwzględnienie impedancji transformatorów zasilających jest istotne, ponieważ ich właściwości mogą znacząco wpływać na wartość impedancji pętli zwarciowej. W praktyce, taka analiza pozwala na poprawne zaprojektowanie zabezpieczeń przeciwprądowych, co jest kluczowe dla szybkiej reakcji systemu na awarie. Dobre praktyki, takie jak stosowanie norm IEC 60909, podkreślają znaczenie pomiaru impedancji w warunkach załączonych, co prowadzi do bardziej rzetelnych wyników i lepszej ochrony instalacji. Ostatecznie, znajomość rzeczywistych warunków pracy systemu przekłada się na większe bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 5

Jakie zakresy powinien mieć multimetr woltomierza, wykorzystywanego do konserwacji systemu sterującego bramą garażową, jeśli brama jest napędzana silnikami prądu stałego, zasilanymi napięciem 24 V, a system sterujący otrzymuje zasilanie z sieci 230 V?

A. AC 500 V i DC 10 V
B. DC 500 V i AC 50 V
C. DC 500 V i AC 100 V
D. AC 500 V i DC 50 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór zakresów AC 500 V i DC 50 V dla multimetru używanego do prac konserwacyjnych w systemie sterowania bramą garażową jest uzasadniony ze względu na specyfikę zasilania urządzeń. Zasilanie silników prądu stałego o napięciu 24 V wymaga, by woltomierz mierzył napięcia stałe w zakresie do 50 V, co jest wystarczające dla takich zastosowań. Z kolei, zasilanie układu sterowania z sieci 230 V wymaga pomiaru napięcia zmiennego, dlatego górny zakres 500 V w AC jest konieczny dla zapewnienia bezpieczeństwa i dokładności pomiarów. W praktyce, tego typu pomiar może być użyty do diagnozowania i konserwacji obwodów sterujących, co jest kluczowe w zapewnieniu ich prawidłowej pracy. Używając multimetru o odpowiednich zakresach, technicy mogą swobodnie sprawdzać zarówno napięcia niskie, jak i wysokie bez ryzyka uszkodzenia urządzenia, co jest zgodne z zasadami dobrych praktyk branżowych oraz normami bezpieczeństwa.

Pytanie 6

Ile wynosi wartość impedancji pętli zwarcia wyznaczonej w układzie pomiarowym przedstawionym na rysunku, jeśli przy otwartym wyłączniku W woltomierz wskazywał napięcie 228 V, a przy zamkniętym wyłączniku W woltomierz wskazywał 218 V, a amperomierz wskazał prąd 4 A?

Ilustracja do pytania
A. 2,75 Ω
B. 2,50 Ω
C. 1,25 Ω
D. 1,50 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wartość impedancji pętli zwarcia, należy uwzględnić spadek napięcia, który pojawia się przy zamkniętym wyłączniku W, oraz wartość prądu zmierzonego amperomierzem. W tym przypadku różnica napięcia wynosi 10 V (228 V - 218 V). Przy zastosowaniu prawa Ohma, które mówi, że impedancja (Z) jest równa spadkowi napięcia (ΔU) podzielonemu przez natężenie prądu (I), możemy obliczyć wartość impedancji jako Z = ΔU / I. Dla danych w pytaniu mamy Z = 10 V / 4 A = 2,50 Ω. W praktyce, znajomość wartości impedancji pętli zwarcia jest kluczowa w projektowaniu instalacji elektrycznych, ponieważ pozwala na ocenę ich bezpieczeństwa i efektywności. Wartości impedancji pętli zwarcia powinny być zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące zabezpieczeń i ochrony przed porażeniem prądem elektrycznym. W sytuacjach awaryjnych, takich jak zwarcia, niska wartość impedancji pętli zwarcia zapewnia szybkie zadziałanie zabezpieczeń, co jest kluczowe dla ochrony ludzi i sprzętu. Poznanie metody obliczania impedancji pętli zwarcia pozwala na skuteczniejsze zapobieganie awariom i poprawę warunków pracy w instalacjach elektrycznych.

Pytanie 7

Jakiego narzędzia należy użyć, aby zweryfikować, czy nie ma napięcia w instalacji elektrycznej 230 V, przed przystąpieniem do prac konserwacyjnych?

A. Miernika parametrów instalacji
B. Omomierza cyfrowego
C. Neonowego wskaźnika napięcia
D. Czujnika zaniku fazy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Neonowy wskaźnik napięcia to urządzenie, które pozwala na szybkie i skuteczne sprawdzenie obecności napięcia w instalacjach elektrycznych. Działa na zasadzie świecenia diody neonowej, gdy napięcie przekracza określony próg. Jest to podstawowe narzędzie, które powinno być używane przed rozpoczęciem jakichkolwiek prac konserwacyjnych, aby zapewnić bezpieczeństwo techników. W praktyce, po podłączeniu wskaźnika do przewodów, jego świecenie sygnalizuje, że w instalacji występuje napięcie, co oznacza, że nie powinno się przystępować do prac. Zgodnie z ogólnymi zasadami BHP, każda osoba pracująca w branży elektrycznej powinna posiadać odpowiednie narzędzia do pomiaru, a neonowy wskaźnik jest jednym z najprostszych i najtańszych. Przykładem może być sytuacja, gdy elektryk musi wymienić gniazdko – przed rozpoczęciem wymiany, zawsze powinien skontrolować, czy w obwodzie nie ma napięcia, używając neonowego wskaźnika. Tego rodzaju praktyki są zgodne z normami PN-IEC 61010, które regulują kwestie bezpieczeństwa urządzeń elektrycznych.

Pytanie 8

Która z poniższych wartości wskazuje na najwyższy poziom precyzji narzędzia pomiarowego?

A. 0,5
B. 0,1
C. 5
D. 1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,1 jest poprawna, ponieważ w kontekście narzędzi pomiarowych oznacza najwyższą klasę dokładności. Klasa dokładności narzędzia pomiarowego wskazuje, jak blisko pomiar może być rzeczywistej wartości mierzonych wielkości. W przypadku narzędzi pomiarowych, im mniejsza wartość podana w jednostce, tym wyższa ich dokładność. W praktyce, narzędzia o dokładności 0,1 stosowane są w sytuacjach wymagających precyzyjnych pomiarów, takich jak laboratoria badawcze, przemysł precyzyjny czy metrologia. Na przykład, w pomiarach długości, takie narzędzia mogą być wykorzystywane do pomiarów w konstrukcji maszyn, gdzie minimalne odchylenie może prowadzić do dużych błędów w finalnym produkcie. Klasyfikacja narzędzi pomiarowych opiera się na standardach ISO, które definiują wymagania dotyczące dokładności i precyzji pomiarów. W praktyce, wybór narzędzia pomiarowego powinien być dostosowany do specyfikacji zadania, aby zapewnić optymalne wyniki pomiarów.

Pytanie 9

Jaką wartość mocy wskazuje watomierz pokazany na rysunku?

Ilustracja do pytania
A. 100 W
B. 50 W
C. 500 W
D. 1000 W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 500 W. Watomierz, który analizujemy, wskazuje wartość mocy w oparciu o dane pomiarowe, które musimy prawidłowo zinterpretować. Wartość mocy obliczamy, mnożąc napięcie przez prąd, co jest zgodne z zasadą Ohma i podstawowymi zasadami elektrotechniki. W tym przypadku, jeśli zakres napięcia wynosi 500 V, a prąd to 5 A, obliczenia wyglądają następująco: moc (P) = napięcie (U) x prąd (I). Zatem P = 500 V x 5 A = 2500 W. Jednakże, watomierz może przedstawiać wartość mocą do mocy rzeczywistej, co wprowadza pewne niejasności. Ważne jest, aby podczas korzystania z takich urządzeń zwracać uwagę na zakresy pomiarowe oraz jednostki, które mogą wpływać na odczyty. W praktyce, znajomość tych zasad jest kluczowa w pracy z instalacjami elektrycznymi, gdzie błędne odczyty mogą prowadzić do nieprawidłowej oceny wydajności systemu. Dlatego zawsze warto upewnić się, że przyrząd jest poprawnie skonfigurowany i że rozumiemy, jakie wartości są przedstawiane.

Pytanie 10

Jaka maksymalna wartość impedancji pętli zwarcia jest dopuszczalna w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, jeżeli wiadomo, że zasilanie tego obwodu ma odłączyć instalacyjny wyłącznik nadprądowy B20?

A. 6,6 Ω
B. 4,0 Ω
C. 3,8 Ω
D. 2,3 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 2,3 Ω jest prawidłowa, ponieważ w trójfazowym obwodzie elektrycznym o napięciu 230/400 V ochrona przeciwporażeniowa polega na szybkim wyłączeniu zasilania w przypadku uszkodzenia izolacji. Zgodnie z normą PN-EN 61140, maksymalna wartość impedancji pętli zwarcia, przy której może działać wyłącznik nadprądowy B20, wynosi 2,3 Ω. Wyłącznik B20 w typowych zastosowaniach ma czas zadziałania do 0,4 sekundy w przypadku zwarcia doziemnego, co oznacza, że impedancja pętli zwarcia nie powinna przekraczać tej wartości, aby zapewnić wystarczająco szybkie wyłączenie zasilania. W praktyce, aby system ochrony był skuteczny, wartość ta jest kluczowa, gdyż wpływa na bezpieczeństwo osób oraz urządzeń. Przykładowo, w instalacjach budowlanych i przemysłowych, pomiar impedancji pętli zwarcia powinien być regularnie wykonywany, aby upewnić się, że nie przekracza dopuszczalnych norm, co pomoże uniknąć niebezpiecznych sytuacji związanych z porażeniem prądem. Dodatkowo, przestrzeganie norm i wytycznych ochrony przeciwporażeniowej jest niezbędne do zapewnienia bezpieczeństwa użytkowników systemów elektrycznych.

Pytanie 11

Na rysunku przedstawiono schemat do pomiaru impedancji pętli zwarciowej metodą

Ilustracja do pytania
A. spadku napięcia.
B. techniczną.
C. zastosowania dodatkowego źródła.
D. bezpośredniego pomiaru.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'spadku napięcia' jest prawidłowa, ponieważ odnosi się do metody pomiaru impedancji pętli zwarciowej, która polega na pomiarze spadku napięcia wywołanego przez prąd zwarcia. W tym układzie stosuje się woltomierz do pomiaru napięcia oraz amperomierz do pomiaru prądu. Na podstawie tych pomiarów można zastosować prawo Ohma, aby obliczyć impedancję pętli, co jest kluczowe w ocenie funkcjonalności systemów elektroenergetycznych. Zgodnie z normą PN-EN 61010-1, zasady dotyczące bezpieczeństwa przy pomiarach elektrycznych wymagają, aby pomiary były dokładne i wiarygodne, co właśnie ta metoda zapewnia. Praktyczne zastosowanie tej metody znajduje się w procesach diagnostycznych instalacji elektrycznych, gdzie kluczowe jest określenie impedancji pętli zwarciowej dla oceny bezpieczeństwa użytkowania oraz zapewnienia, że systemy zabezpieczeń działają prawidłowo w przypadku awarii. Stosowanie metody spadku napięcia umożliwia również ocenę stanu izolacji oraz identyfikację potencjalnych problemów z instalacją.

Pytanie 12

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA
A. P302 25-10-AC
B. P202 25-30-AC
C. P304 40-100-AC
D. P304 40-30-AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik P202 25-30-AC jest prawidłową odpowiedzią, ponieważ jego zmierzony prąd zadziałania wynosi 12 mA, co nie spełnia wymaganego zakresu prądu zadziałania IΔ = (0,5÷1,00) IΔN. Zgodnie z normami, wyłączniki różnicowoprądowe powinny mieć prąd zadziałania w granicach 15 mA do 30 mA dla wyłączników o prądzie znamionowym 30 mA. Oznacza to, że każdy wyłącznik, który nie osiąga minimalnej wartości 15 mA, nie jest w stanie skutecznie zabezpieczyć instalacji przed pożarem czy porażeniem prądem. Prawidłowe działanie wyłączników różnicowoprądowych jest kluczowe w zapewnieniu bezpieczeństwa elektrycznego, dlatego inżynierowie i technicy powinni regularnie testować i sprawdzać ich parametry, aby zapewnić odpowiednią ochronę. W praktyce, wyłączniki tego typu stosuje się w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem, a ich efektywność jest ściśle monitorowana na podstawie norm PN-EN 61008 i PN-EN 62423.

Pytanie 13

W którym z punktów spośród wskazanych strzałkami na charakterystyce prądowo-napięciowej diody prostowniczej przedstawionej na wykresie odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. W punkcie B
B. W punkcie D
C. W punkcie C
D. W punkcie A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra decyzja z wyborem punktu A! W tym miejscu charakterystyka prądowo-napięciowa diody rzeczywiście pokazuje, że prąd rośnie bardzo szybko przy małym wzroście napięcia. To jest kluczowe, bo napięcie przebicia wyznacza moment, kiedy dioda zaczyna przewodzić w kierunku zaporowym, a to związane jest z przebiciem lawinowym. Z mojego doświadczenia, zrozumienie tego punktu jest mega ważne, zwłaszcza przy projektowaniu układów elektronicznych, gdzie diody prostownicze pomagają stabilizować napięcie i chronić obwody przed przepięciami. Na przykład, jak się robi zasilacze impulsowe, to trzeba mieć na uwadze napięcie przebicia, bo inaczej można łatwo uszkodzić komponenty. Fajnie też jest testować diody w różnych warunkach, żeby lepiej poznać ich charakterystyki, w tym napięcie przebicia. To wszystko pozwala na bardziej niezawodne projektowanie układów elektronicznych.

Pytanie 14

Jakie uszkodzenie nastąpiło w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1 – L2L2 – L3L1 – L3L1 – PENL2 – PENL3 – PEN
2,101,051,101,401,300,991,00
A. Pogorszenie izolacji jednej z faz.
B. Jednofazowe bezimpedancyjne zwarcie doziemne.
C. Zwarcie międzyfazowe.
D. Przeciążenie jednej z faz.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź dotycząca pogorszenia izolacji jednej z faz jest oparta na wynikach pomiarów rezystancji izolacji, które jasno wskazują na problem z izolacją w fazie L3. Wartość rezystancji izolacji dla L3-PEN wynosi 0,99 MΩ, co jest poniżej minimalnej wymaganej wartości 1 MΩ w instalacjach elektrycznych zgodnie z normą PN-EN 60204-1. Oznacza to, że potencjalnie niebezpieczne napięcie może pojawić się na obudowach urządzeń podłączonych do tej fazy, co stwarza ryzyko porażenia prądem. W praktyce, regularne pomiary rezystancji izolacji są kluczowe dla utrzymania bezpieczeństwa instalacji elektrycznych. Przy wykrywaniu pogorszenia izolacji, należy podjąć działania naprawcze, takie jak wymiana uszkodzonego przewodu lub poprawa warunków izolacyjnych. Warto również pamiętać, że według normy IEC 60364-6, kontrola izolacji powinna być przeprowadzana cyklicznie, co pozwala na wczesne wykrywanie problemów i minimalizowanie ryzyka awarii.

Pytanie 15

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Sprawdzenie układów sterowania i sygnalizacji
B. Pomiar rezystancji izolacji i próbne uruchomienie
C. Sprawdzenie układów rozruchowych i regulacyjnych
D. Impregnację uzwojeń i wyważenie wirnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 16

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. poprawności działania wyłącznika różnicowoprądowego
B. nastaw urządzeń zabezpieczających w instalacji
C. stanu obudów wszystkich elementów instalacji
D. wartości rezystancji izolacji przewodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz, wartość rezystancji izolacji przewodów mówi nam, jak dobrze te przewody są izolowane. Fajnie, że znasz tę definicję! Ale w praktyce, w trakcie sprawdzania instalacji elektrycznych w mieszkaniach nie ma wymogu, żeby to sprawdzać. Normy, jak PN-IEC 60364, mówią głównie o bezpieczeństwie użytkowników i tym, żeby instalacja działała jak należy. Gdy przeglądasz instalację, skup się na tym, żeby ocenić stan obudów i elementów zabezpieczających. Te rzeczy są na prawdę ważne. Wyłączniki różnicowoprądowe też warto sprawdzić, bo są kluczowe dla ochrony przed porażeniem elektrycznym. Możesz to zrobić, wciskając przycisk testowy, co jest dość standardowe. Dzięki temu łatwiej zauważysz, czy coś jest nie tak. Taki sposób działania pomaga uniknąć problemów i sprawia, że instalacja będzie bezpieczna i zgodna z normami.

Pytanie 17

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Sprawdzenie stanu izolacji oraz powłok przewodów
B. Zamiana wszystkich źródeł oświetlenia w oprawach
C. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
D. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie stanu izolacji i powłok przewodów jest kluczowym elementem konserwacji instalacji elektrycznych w mieszkaniach. Izolacja przewodów jest niezbędna do zapewnienia bezpieczeństwa użytkowania, ponieważ uszkodzona lub niewłaściwa izolacja może prowadzić do zwarć, pożarów, a także porażenia prądem. Regularne inspekcje stanu izolacji powinny być przeprowadzane zgodnie z obowiązującymi standardami, takimi jak norma PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych w obiektach budowlanych. Przykładowe metody oceny stanu izolacji obejmują pomiar rezystancji przy użyciu megomierza. Zastosowanie odpowiednich technik, takich jak testy izolacji, pozwala na wczesne wykrycie problemów i ich naprawę, co przekłada się na dłuższą żywotność instalacji oraz zwiększa bezpieczeństwo mieszkańców. Dbanie o stan izolacji to nie tylko spełnienie wymogów prawnych, ale także odpowiedzialność za bezpieczeństwo domowników i ich majątek.

Pytanie 18

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
B. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
C. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
D. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Protokół z badań po modernizacji sieci musi zawierać kluczowe informacje, takie jak nazwisko zleceniodawcy, nazwisko wykonawcy oraz czas wykonywania pomiarów. Te elementy są niezbędne, aby zapewnić pełną przejrzystość i odpowiedzialność w procesie pomiarów. Zleceniodawca, jako osoba zlecająca prace, powinien być wymieniony, aby można było w razie potrzeby zidentyfikować odpowiednie osoby odpowiedzialne za projekt. Nazwisko wykonawcy jest istotne, ponieważ odpowiada on za prawidłowe wykonanie badań, co jest kluczowe dla zapewnienia bezpieczeństwa i jakości sieci. Czas wykonywania pomiarów także ma znaczenie, ponieważ umożliwia śledzenie postępu prac oraz weryfikację, czy pomiary zostały przeprowadzone zgodnie z harmonogramem. Wszystkie te dane są zgodne z najlepszymi praktykami w branży oraz standardami, które zalecają dokumentowanie szczegółowych informacji o przebiegu prac oraz wynikach badań.

Pytanie 19

Miernikiem, którego przełącznik zakresów przedstawiono na rysunku, nie można zmierzyć

Ilustracja do pytania
A. impedancji pętli zwarcia.
B. ciągłości połączeń.
C. rezystancji izolacji.
D. parametrów wyłączników RCD.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to rezystancja izolacji, ponieważ miernik przedstawiony na rysunku nie posiada zakresu do jej pomiaru. Rezystancja izolacji jest kluczowym parametrem, który pozwala ocenić jakość izolacji przewodów i urządzeń elektrycznych. W praktyce, pomiar ten jest realizowany za pomocą specjalistycznych mierników, które generują napięcia o wysokiej wartości, co umożliwia dokładne zbadanie stanu izolacji. Wartości rezystancji izolacji powinny być zgodne z normami, takimi jak PN-EN 60204-1, które określają minimalne wymagania dla sprzętu elektrycznego stosowanego w maszynach. Regularne pomiary rezystancji izolacji są istotne dla zapewnienia bezpieczeństwa użytkowników oraz zapobiegania potencjalnym zagrożeniom, takim jak porażenie prądem czy zwarcia. Dlatego kluczowe jest posiadanie odpowiedniego wyposażenia, które pozwoli na przeprowadzenie tych pomiarów.

Pytanie 20

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 8,0 Ω
B. 2,3 Ω
C. 7,7 Ω
D. 4,6 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość impedancji pętli zwarcia wynosząca 4,6 Ω jest odpowiednia dla trójfazowego obwodu elektrycznego o napięciu 230/400 V, aby zapewnić skuteczną ochronę przeciwporażeniową. Przy takiej impedancji, w przypadku zwarcia, prąd zwarciowy osiągnie wartość wystarczającą do działania wyłącznika nadprądowego typu B10, który ma prąd znamionowy 10 A. Wartość impedancji pętli zwarcia oblicza się na podstawie napięcia zasilania oraz wymaganej wartości prądu, przy której następuje wyłączenie obwodu. W praktyce oznacza to, że w przypadku uszkodzenia izolacji, wyłącznik nadprądowy zadziała w odpowiednim czasie, minimalizując ryzyko porażenia prądem elektrycznym. Zgodnie z normami PN-IEC 60364-4-41 oraz PN-EN 60947-2, odpowiednia wartość impedancji pętli zwarcia jest kluczowa dla zabezpieczenia użytkowników przed skutkami awarii. Wartości te są również zgodne z wytycznymi dotyczącymi instalacji elektrycznych w budynkach, które zalecają, aby impedancja nie przekraczała 5 Ω dla ochrony przeciwporażeniowej. Dlatego 4,6 Ω to wartość, która spełnia te wymogi, a jej stosowanie w praktyce jest powszechną praktyką w branży elektrycznej.

Pytanie 21

Ile wynosi wartość mocy biernej w symetrycznym układzie trójfazowym przedstawionym na rysunku, jeżeli watomierz wskazuje 100 W?

Ilustracja do pytania
A. 100 var
B. 300 var
C. 519 var
D. 173 var

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 173 var, ponieważ w symetrycznym układzie trójfazowym moc bierna jest związana z mocą czynną. Wartość mocy biernej Q można obliczyć za pomocą wzoru Q = √3 * P, gdzie P to moc czynna. W przypadku, gdy watomierz wskazuje 100 W, możemy zastosować ten wzór, co prowadzi nas do obliczenia Q = √3 * 100 W, co daje około 173 var. W praktyce, moc bierna jest istotna w kontekście projektowania instalacji elektrycznych, gdzie ważne jest zrozumienie relacji między mocą czynną a mocą bierną, by zapewnić optymalne działanie urządzeń elektrycznych. W kontekście norm PN-EN 50160, które dotyczą jakości energii elektrycznej, światłowodów i systemów zasilania, umiejętność obliczania tych mocy jest niezbędna dla inżynierów zajmujących się systemami zasilania i ochroną przed przepięciami. Wiedza ta pozwala również na lepsze zarządzanie zużyciem energii i minimalizację strat, co jest kluczowe w działalności przemysłowej oraz w kontekście zrównoważonego rozwoju.

Pytanie 22

Urządzenie przedstawione na zdjęciu służy do

Ilustracja do pytania
A. pomiaru rezystancji uziemienia urządzenia.
B. sprawdzania ciągłości przewodów.
C. określania kolejności faz zasilających.
D. kontroli prądu upływu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenie przedstawione na zdjęciu to tester kolejności faz, co można zidentyfikować dzięki jego oznaczeniom, takim jak L1, L2, L3, które wskazują na różne fazy zasilające. W kontekście instalacji elektrycznych, poprawna kolejność faz jest kluczowa dla zapewnienia prawidłowego działania urządzeń oraz bezpieczeństwa instalacji. Niepoprawna kolejność może prowadzić do poważnych problemów, takich jak uszkodzenie sprzętu czy ryzyko porażenia prądem. Tester ten jest często używany przez elektryków do weryfikacji instalacji przed rozpoczęciem pracy, co pozwala na uniknięcie potencjalnych zagrożeń. Zgodnie z normami branżowymi, takimi jak PN-IEC 60364, zapewnienie poprawnej kolejności faz jest obowiązkowe w instalacjach trójfazowych. Przykłady zastosowania tego urządzenia obejmują kontrolę w przemyśle, w budynkach komercyjnych oraz w instalacjach domowych, gdzie prawidłowe zasilanie jest kluczowe dla funkcjonowania wielu urządzeń elektrycznych.

Pytanie 23

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania. Który z wyłączników nie spełnia warunku sprawności pod względem rzeczywistego prądu zadziałania (0,5 ÷ 1,0) IΔN?

Wyłącznik 1.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P302 25-10-AC8 mA
Wyłącznik 2.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P202 25-30-AC12 mA
Wyłącznik 3.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-30-AC25 mA
Wyłącznik 4.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-100-AC70 mA
A. Wyłącznik 4.
B. Wyłącznik 1.
C. Wyłącznik 3.
D. Wyłącznik 2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik 2 jest właściwą odpowiedzią, ponieważ jego rzeczywisty prąd zadziałania wynosi 12 mA, co nie mieści się w wymaganym zakresie 15 mA - 30 mA dla sprawnych wyłączników różnicowoprądowych. W praktyce, wyłączniki te powinny działać w określonym zakresie różnicowych prądów zadziałania, aby skutecznie chronić przed porażeniem prądem elektrycznym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny działać w określonym zakresie prądów, aby zapewnić nie tylko ochronę, ale także niezawodność działania. Utrzymanie tych parametrów jest kluczowe, ponieważ ich niewłaściwe działanie może prowadzić do zagrożeń, takich jak pożary czy niebezpieczeństwo porażenia prądem. W sytuacjach, gdy wyłącznik działa poza określonym zakresem, zaleca się jego wymianę lub dokładne sprawdzenie przez wykwalifikowanego technika. Właściwy dobór i regularna kontrola wyłączników różnicowoprądowych są kluczowe dla bezpieczeństwa instalacji elektrycznych oraz osób z nich korzystających.

Pytanie 24

Jaką maksymalną rezystancję uziemienia należy zastosować dla odbiornika w sieci TT, aby wyłącznik różnicowoprądowy o prądzie różnicowym 300 mA zapewniał skuteczną ochronę przed porażeniem w przypadku uszkodzenia izolacji, przy założeniu, że dopuszczalne napięcie dotykowe wynosi 50 V?

A. 766,7 Ω
B. 1,3 Ω
C. 6,0 Ω
D. 166,7 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 166,7 Ω jest prawidłowa, ponieważ określa maksymalną wartość rezystancji uziemienia, która zapewnia skuteczną ochronę przed porażeniem elektrycznym w systemie TT. W układzie tym, przy zastosowaniu wyłącznika różnicowoprądowego o znamionowym prądzie różnicowym 300 mA oraz długotrwale dopuszczalnym napięciu dotykowym wynoszącym 50 V, stosuje się wzór: Rmax = U / I, gdzie U to wartość napięcia dotykowego, a I to prąd różnicowy. Podstawiając wartości, otrzymujemy Rmax = 50 V / 0,3 A = 166,67 Ω, co zaokrąglamy do 166,7 Ω. W praktyce, przestrzeganie tego ograniczenia pozwala na zminimalizowanie ryzyka wystąpienia niebezpiecznych napięć dotykowych w przypadku uszkodzenia izolacji. Wiele norm, takich jak PN-EN 61008 i PN-EN 61140, wskazuje na konieczność przeprowadzania takich obliczeń, co potwierdza ich znaczenie w pracy projektantów instalacji elektrycznych. W związku z tym, odpowiednia wartość rezystancji uziemienia w systemie TT jest kluczowa dla zapewnienia bezpieczeństwa użytkowników i ochrony przed skutkami porażenia elektrycznego.

Pytanie 25

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
B. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
C. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
D. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota z odpowiedzią! To, co napisałeś, dobrze pokazuje, jakie kroki warto podjąć przed pomiarem rezystancji izolacji w instalacji elektrycznej. Najpierw trzeba wymontować źródła światła z opraw – to naprawdę ważne, żeby nie ryzykować porażeniem prądem w trakcie pomiarów. Poza tym, wyłączenie jednofazowych odbiorników i silników trójfazowych jest konieczne, żeby nie zakłócały one wyników i nie zostały uszkodzone przez niewłaściwe napięcie. Te zasady są zgodne z przepisami, jak PN-EN 50110-1, które mówią, że trzeba wyłączyć zasilanie przed przeprowadzeniem testów izolacji. To, że stosujesz te procedury, nie tylko zwiększa bezpieczeństwo, ale też sprawia, że pomiary są dokładniejsze. A to jest bardzo istotne, żeby dobrze ocenić stan izolacji i upewnić się, że instalacja jest w dobrym stanie.

Pytanie 26

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. ZL-N
B. ZL-PE
C. ZL-PE RCD
D. ZL-L

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "ZL-PE RCD" jest prawidłowa, ponieważ pomiar impedancji pętli zwarcia w układzie z urządzeniem różnicowoprądowym (RCD) wymaga uwzględnienia przewodu ochronnego PE oraz przewodu fazowego L. Zrozumienie tego zagadnienia jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. W praktyce, pomiar ZL-PE RCD pozwala na ocenę skuteczności ochrony przeciwporażeniowej, co jest istotne w kontekście norm bezpieczeństwa, takich jak PN-IEC 60364. Przykładowo, w instalacjach, gdzie stosuje się RCD, odpowiedni pomiar zapewnia, że w przypadku zwarcia, prąd różnicowy (ΔI) nie przekroczy wartości granicznych, co pozwala na szybkie wyłączenie zasilania i minimalizację ryzyka porażenia prądem. Warto również zauważyć, że pomiar ten powinien być wykonywany przez wykwalifikowanych specjalistów, aby zapewnić dokładność i wiarygodność wyników. W kontekście praktycznym, wyniki pomiaru można wykorzystać do analizy stanu instalacji oraz planowania ewentualnych działań serwisowych, co jest zgodne z dobrymi praktykami w branży elektrycznej.

Pytanie 27

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. magnetoelektrycznym
B. elektromagnetycznym
C. ferrodynamicznym
D. elektrodynamicznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Miernik o ustroju magnetoelektrycznym jest szczególnie odpowiedni do pomiaru wielkości elektrycznych o przebiegu stałym, ponieważ jego działanie opiera się na interakcji pola magnetycznego z prądem elektrycznym, co pozwala na dokładne i stabilne odczyty. W urządzeniach tych zastosowane są magnesy trwałe oraz ruchome cewki, co zapewnia wysoką czułość i precyzję pomiaru. Przykładem zastosowania mierników magnetoelektrycznych są laboratoria badawcze oraz instalacje przemysłowe, gdzie wymagane są dokładne pomiary prądu stałego, na przykład podczas testowania elementów elektronicznych. Standardy branżowe, takie jak IEC 61010, podkreślają istotność stosowania odpowiednich technik pomiarowych, co sprawia, że wybór miernika magnetoelektrycznego jest zgodny z dobrymi praktykami w zakresie bezpieczeństwa i dokładności pomiarów. Dodatkowo, mierniki te są często wykorzystywane w sprzęcie pomiarowym, takim jak multimetry, które są niezbędne w codziennej pracy inżynierów i techników w różnych branżach.

Pytanie 28

Zdjęcie przedstawia

Ilustracja do pytania
A. Woltomierz.
B. Megaomomierz.
C. Techniczny mostek pomiarowy
D. Woltomierz probierczy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Megaomomierz jest specjalistycznym przyrządem pomiarowym używanym do określenia rezystancji w zakresie megaomów. Jego konstrukcja, w tym duża skala oraz pokrętło do wyboru zakresu pomiaru, są charakterystyczne dla tego typu urządzeń. Megaomomierze są często wykorzystywane w przemyśle elektrycznym i elektronicznym do testowania izolacji przewodów oraz komponentów, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych. Na przykład, podczas przeprowadzania testów izolacji w instalacjach elektrycznych, megaomomierz pozwala na wykrycie ewentualnych przecieków prądu, co może zapobiec poważnym awariom. Stosowanie megaomomierzy jest zgodne z normami branżowymi, takimi jak IEC 61557, które regulują wymagania dotyczące pomiarów parametrów elektrycznych w instalacjach. Dzięki właściwemu doborowi przyrządów i umiejętnemu przeprowadzaniu testów, można znacznie zwiększyć bezpieczeństwo oraz trwałość instalacji.

Pytanie 29

Jaka jest znamionowa efektywność silnika trójfazowego, jeśli P = 2,2 kW (mocy mechanicznej), UN = 400 V, IN = 4,6 A oraz cos φ = 0,82?

A. 0,49
B. 0,69
C. 0,39
D. 0,84

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Znamionowa sprawność silnika trójfazowego obliczana jest na podstawie stosunku mocy mechanicznej do mocy czynnej dostarczonej do silnika. W tym przypadku, moc mechaniczna wynosi 2,2 kW, a moc czynna można obliczyć z wzoru: P = U * I * √3 * cos φ, gdzie U to napięcie, I to prąd, a cos φ to współczynnik mocy. Podstawiając dane: P = 400 V * 4,6 A * √3 * 0,82, otrzymujemy moc czynną równą około 2,63 kW. Następnie sprawność obliczamy jako: η = P_moc / P_czynna = 2,2 kW / 2,63 kW, co daje wartość około 0,84. W praktyce, znajomość sprawności silników elektrycznych jest kluczowa w doborze odpowiednich jednostek napędowych do maszyn i urządzeń, a także w ocenie efektywności energetycznej systemów. Standardy takie jak IEC 60034-30 definiują klasy sprawności dla silników elektrycznych, co pozwala na ich porównywanie i wybór najbardziej efektywnych rozwiązań.

Pytanie 30

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji uzwojeń silników
R₂₀ = K₂₀·Rₜ
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K₂₀0,670,730,810,901,001,101,211,341,48
A. 8,11 MΩ
B. 6,57 MΩ
C. 8,20 MΩ
D. 6,40 MΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 6,57 MΩ, co można obliczyć przy użyciu wzoru R20 = k20 * Rs. W tym przypadku, k20 wynosi 1,00, a Rs to zmierzona rezystancja w temperaturze 17 °C, która wynosi 7,3 MΩ. Zgodnie z danymi z tabeli, k17 = 0,90. Obliczamy współczynnik przeliczeniowy: k20/k17 = 1,00/0,90 = 1,11. Następnie, mnożymy tę wartość przez zmierzoną rezystancję: R20 = 1,11 * 7,3 MΩ ≈ 8,11 MΩ. Wartość ta jest istotna, ponieważ rezystancja izolacji jest kluczowym parametrem w ocenie stanu technicznego uzwojeń silników elektrycznych. Zbyt niska rezystancja może prowadzić do zwarć lub uszkodzeń, dlatego regularne pomiary i obliczenia te są konieczne dla zachowania bezpieczeństwa i efektywności pracy urządzeń. Zgodnie z normami, takich jak IEC 60034-1, zaleca się regularne monitorowanie rezystancji izolacji, aby zapewnić długotrwałą i niezawodną pracę silników.

Pytanie 31

Średnia wartość napięcia, które zostało zmierzone na wyjściu prostownika jednopołówkowego w stanie nieobciążonym, zasilanego z sinusoidalnego napięcia o wartości skutecznej 10 V, wynosi

A. 6,40 V
B. 7,07 V
C. 4,50 V
D. 10,00 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość średnia napięcia wyjściowego nieobciążonego prostownika jednopołówkowego zasilanego napięciem sinusoidalnym o wartości skutecznej 10 V można obliczyć, korzystając z odpowiednich wzorów. Dla prostownika jednopołówkowego, wartość średnia napięcia DC (Vdc) jest równa wartości szczytowej napięcia AC (Vp) podzielonej przez π. Wartość szczytowa napięcia sinusoidalnego oblicza się jako: Vp = Vrms × √2, co dla Vrms = 10 V daje Vp ≈ 14,14 V. Następnie obliczamy wartość średnią: Vdc = Vp / π ≈ 14,14 V / 3,14 ≈ 4,50 V. To pokazuje, że prostownik jednopołówkowy nie jest w stanie dostarczyć pełnej wartości skutecznej napięcia AC, a wartość średnia jest znacznie niższa. W praktyce, znajomość tej zależności jest kluczowa w projektowaniu zasilaczy, gdzie stosuje się prostowniki do konwersji napięcia AC na DC, co pozwala na zasilanie urządzeń elektronicznych. Wiedza ta jest również fundamentalna w kontekście analizy obwodów elektrycznych oraz zapewnienia optymalnego działania systemów zasilania.

Pytanie 32

Określ przyczynę nadmiernego wzrostu napięcia na zaciskach odbiornika Z1 przy założeniu, że impedancje Z1, Z2 i Z3 znacznie się różnią.

Ilustracja do pytania
A. Zwarcie pomiędzy dwoma przewodami fazowymi.
B. Uszkodzenie przewodu neutralnego.
C. Zwarcie na zaciskach odbiornika Z2 lub Z3.
D. Przerwa na zaciskach odbiornika Z2 lub Z3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy przewód neutralny w systemie trójfazowym ulega uszkodzeniu, napięcie na poszczególnych fazach rozkłada się nierównomiernie. To może mieć spore konsekwencje dla odbiorników, takich jak Z1. Na przykład, jeżeli przewód neutralny jest w złym stanie, napięcie na urządzeniach z mniejszą impedancją może znacznie wzrosnąć. To może prowadzić do ich uszkodzenia. W branży elektrycznej, jak mówi norma IEC 60364, prawidłowe uziemienie i sprawność przewodów neutralnych są mega istotne dla bezpieczeństwa instalacji. Wyobraź sobie sytuację, gdzie urządzenie podłączone do zepsutego obwodu neutralnego otrzymuje napięcie dużo wyższe niż 400V. To na pewno nie jest dobre dla sprzętu. Dlatego regularne sprawdzanie i konserwacja instalacji są kluczowe, żeby uniknąć takich problemów.

Pytanie 33

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
B. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
C. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
D. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 34

Z instrukcji obsługi przedstawionego na rysunku miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego cyfrą

Ilustracja do pytania
A. 2 przy zwartych przewodach pomiarowych.
B. 1 przy zwartych przewodach pomiarowych.
C. 1 przy odłączonych przewodach pomiarowych.
D. 2 przy odłączonych przewodach pomiarowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 2 przy zwartych przewodach pomiarowych. Aby uzyskać dokładny pomiar rezystancji, konieczne jest wyzerowanie omomierza przed przystąpieniem do pomiarów. W tym celu należy ustawić przewody pomiarowe w pozycji zwartej, co eliminuje wpływ ich własnej oporności na pomiar. Użycie pokrętła oznaczonego cyfrą 2 w tej konfiguracji pozwala na precyzyjne ustawienie wskazówki miernika na zerową wartość. W praktyce, przed każdym pomiarem rezystancji, zaleca się przeprowadzanie tego kroku, aby zapewnić rzetelność wyników. W branży elektrycznej i elektronicznej, zgodnie z najlepszymi praktykami, takie działanie minimalizuje błędy pomiarowe i zwiększa dokładność urządzeń pomiarowych. Dokładne wyzerowanie omomierza jest kluczowe, zwłaszcza w aplikacjach wymagających dużej precyzji, jak pomiary w obwodach elektronicznych czy analiza materiałów. Warto również pamiętać, że nieprawidłowe przeprowadzenie tego procesu może prowadzić do błędnych wniosków i dalszych problemów w analizie diagnostycznej.

Pytanie 35

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω
A. Przerwa w uzwojeniu fazy V
B. Zwarcie międzyzwojowe w fazie V
C. Przerwa w uzwojeniu fazy W
D. Zwarcie międzyzwojowe w fazie W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Zwarcie międzyzwojowe w fazie W" jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego wskazuje na istotne różnice w wartościach rezystancji, które są kluczowym wskaźnikiem stanu uzwojeń. W przypadku uzwojenia W, wartość rezystancji wynosi 5,0 Ω, co jest znacznie niższe od wartości uzwojeń U i V, które wynoszą odpowiednio 20,0 Ω i 15,0 Ω. Taka różnica wskazuje na wystąpienie zwarcia międzyzwojowego. W praktyce, gdy rezystancja jednego z uzwojeń jest znacznie niższa, oznacza to, że w tym uzwojeniu doszło do nieprawidłowości, która prowadzi do utraty właściwości izolacyjnych. W przypadku silników indukcyjnych, regularne monitorowanie rezystancji uzwojeń jest kluczowe dla wczesnego wykrywania uszkodzeń, co pozwala na zapobieganie poważniejszym awariom. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie regularnych przeglądów oraz testów, by zapewnić niezawodność i efektywność pracy urządzeń elektrycznych. Dodatkowo, znajomość typowych uszkodzeń, takich jak zwarcia międzyzwojowe, jest niezbędna dla techników w celu szybkiej diagnozy i naprawy silników elektrycznych.

Pytanie 36

Do pomiaru napięć stałych należy użyć miernika elektrycznego o ustroju, którego symbol graficzny przedstawiono na rysunku

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest prawidłowa, ponieważ symbol graficzny przedstawiony przy tej opcji to standardowy symbol miernika analogowego, powszechnie używanego do pomiaru napięć stałych. Mierniki te są kluczowym narzędziem w elektrotechnice, umożliwiającym dokładne pomiary w obwodach elektrycznych. W praktyce, miernik analogowy potrafi zmierzyć napięcie stałe w różnych aplikacjach, takich jak diagnostyka układów zasilających oraz pomiar parametrów akumulatorów. Warto zaznaczyć, że korzystanie z miernika analogowego wymaga umiejętności odczytu wskazań wskazówki na skali, co może być mniej intuicyjne niż w przypadku nowoczesnych multimetra cyfrowego. Jednakże, w pewnych aplikacjach, analogowy miernik może zapewnić lepszą wizualizację zmian napięcia w czasie. Dlatego znajomość tego symbolu i umiejętność korzystania z takiego sprzętu jest fundamentalna dla każdego technika elektryka.

Pytanie 37

Jakiego urządzenia należy użyć, aby zweryfikować ciągłość przewodu podczas instalacji?

A. Watomierza
B. Omomierza
C. Megaomomierza
D. Amperomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz jest instrumentem pomiarowym, który służy do określania oporu elektrycznego w obwodach. Użycie omomierza do sprawdzenia ciągłości przewodów instalacyjnych jest standardową praktyką w branży elektrycznej. Narzędzie to pozwala na ocenę, czy przewody są poprawnie podłączone i czy nie ma w nich przerw, co jest kluczowe dla bezpieczeństwa i efektywności instalacji. Przykładowo, podczas montażu instalacji elektrycznej w budynkach mieszkalnych, omomierz może być użyty do testowania połączeń między różnymi elementami systemu, co zapewnia, że żadne przerwy w przewodzeniu nie zakłócą działania urządzeń. Dobrą praktyką jest również pomiar oporu izolacji, co może zapobiec potencjalnym awariom i zagrożeniom pożarowym. Warto pamiętać, że w przypadku wyniku wskazującego na wysoką wartość oporu, może to oznaczać problem z przewodem, który należy rozwiązać przed zakończeniem instalacji.

Pytanie 38

Który układ połączeń watomierza jest zgodny z przedstawionym schematem pomiarowym?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest dobra, bo pokazuje, jak dobrze podpiąć watomierz w obwodzie elektrycznym. W tym układzie przewód L (fazowy) jest podłączony do prądowego zacisku watomierza, co pozwala na zmierzenie prądu, a przewód N (neutralny) do zacisku napięciowego, co z kolei umożliwia pomiar napięcia. Dzięki temu nasz watomierz może obliczyć moc czynną, co jest mega ważne, gdy chcemy śledzić zużycie energii. Według normy PN-EN 62053-21, odpowiednie połączenie urządzeń pomiarowych to podstawa, żeby pomiary były dokładne. W praktyce, kiedy robimy coś jak analiza efektywności energetycznej czy audyt instalacji, prawidłowe podłączenie watomierza jest kluczowe, żeby uzyskać rzetelne dane. Jeśli coś jest źle podłączone, to może prowadzić do błędnych odczytów, co wpłynie na decyzje o zarządzaniu energią i efektywności działań.

Pytanie 39

Jakiego urządzenia pomiarowego używa się do weryfikacji ciągłości przewodu PE w systemie elektrycznym?

A. Miernika z funkcją pomiaru rezystancji
B. Miernika z funkcją pomiaru pojemności
C. Amperomierza
D. Woltomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Miernik z funkcją pomiaru rezystancji jest narzędziem, które niezwykle skutecznie pozwala na sprawdzenie ciągłości przewodu ochronnego (PE) w instalacji elektrycznej. Pomiar rezystancji jest kluczowy, ponieważ ciągłość przewodu ochronnego jest niezbędna dla zapewnienia bezpieczeństwa w przypadku wystąpienia awarii. W praktyce, aby przeprowadzić taki pomiar, należy zastosować miernik, który wysyła prąd przez przewód PE i mierzy opór, jaki napotyka. Zgodnie z normami PN-IEC 60364 i PN-EN 61557, rezystancja ciągłości przewodu ochronnego powinna wynosić mniej niż 1 Ω. Przykładowo, w instalacjach zasilających urządzenia o dużym poborze mocy, takich jak silniki elektryczne, zapewnienie niskiej rezystancji przewodu PE jest kluczowe dla minimalizacji ryzyka porażenia prądem. Używając miernika rezystancji, technik może również identyfikować potencjalne uszkodzenia mechaniczne lub korozję w instalacji, co zwiększa niezawodność całego systemu elektrycznego.

Pytanie 40

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. L1 i L3
B. N i L3
C. N i PE
D. L1 i PE

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź N i PE jest poprawna, ponieważ analizując wyniki pomiarów rezystancji, stwierdzamy, że rezystancja wynosi 0 Ω, co jednoznacznie wskazuje na zwarcie między tymi przewodami. W standardach elektrycznych, takich jak PN-IEC 60364, ważne jest, aby prawidłowo identyfikować różne żyły, zwłaszcza w kontekście ochrony przed porażeniem elektrycznym. W przypadku przewodu neutralnego (N) i przewodu ochronnego (PE) ich zwarcie może wskazywać na nieprawidłowości w instalacji, które mogą prowadzić do niebezpiecznych sytuacji. Wiedza na temat pomiarów rezystancji jest kluczowa w utrzymaniu bezpieczeństwa systemów elektrycznych, a także w diagnostyce awarii. W praktyce, przed przystąpieniem do pracy przy instalacjach elektrycznych, zaleca się przeprowadzanie dokładnych pomiarów, aby upewnić się, że nie występuje żadne zwarcie, co jest zgodne z najlepszymi praktykami w branży, takimi jak regularne kontrole i inspekcje instalacji.