Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 17:23
  • Data zakończenia: 19 grudnia 2025 17:57

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką czynność należy wykonać podczas konserwacji instalacji elektrycznej w biurze?

A. Sprawdzić średnicę wszystkich przewodów w instalacji
B. Zamienić przewody w rurach winidurowych
C. Wymienić wszystkie gniazda elektryczne
D. Zweryfikować działanie wyłącznika różnicowoprądowego za pomocą przycisku testowego
Sprawdzanie wyłącznika różnicowoprądowego przyciskiem testowym jest kluczowym etapem okresowej konserwacji instalacji elektrycznej. Wyłączniki różnicowoprądowe (RCD) mają za zadanie zabezpieczenie przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym upływem prądu. Użycie przycisku testowego pozwala na symulację sytuacji, w której RCD powinien zareagować, co potwierdza jego sprawność. Regularne testowanie tych urządzeń jest zgodne z normą PN-EN 61008-1, która zaleca, aby RCD były testowane co najmniej raz na 3 miesiące. W praktyce, jeżeli wyłącznik nie wyłącza obwodu po naciśnięciu przycisku testowego, oznacza to, że wymaga on natychmiastowej wymiany lub naprawy, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. W przypadku biura, gdzie pracuje wiele osób, poziom bezpieczeństwa elektrycznego powinien być szczególnie priorytetowy. Dodatkowo, zaleca się prowadzenie dokumentacji wykonanych testów.

Pytanie 2

Kto jest uprawniony do przeprowadzenia konserwacji silnika tokarki TUE-35 w zakładzie elektromechanicznym?

A. Operator tej maszyny
B. Każdy pracownik na pisemne zlecenie pracodawcy
C. Osoba, która posiada odpowiednie przeszkolenie i uprawnienia
D. Kierownik grupy mechaników
Odpowiedź, że konserwację silnika tokarki TUE-35 może przeprowadzić osoba przeszkolona i uprawniona, jest prawidłowa ze względu na konieczność przestrzegania standardów bezpieczeństwa oraz eksploatacji maszyn. W branży mechanicznej i elektromechanicznej, konserwacja urządzeń mechanicznych, takich jak tokarki, wymaga specjalistycznej wiedzy oraz umiejętności, które zdobywa się podczas szkoleń. Tylko wykwalifikowany personel ma odpowiednie kompetencje do zdiagnozowania potencjalnych problemów, dokonywania niezbędnych napraw oraz przeprowadzania regularnych przeglądów technicznych, co zapobiega dalszym uszkodzeniom maszyny. Przykładem może być sytuacja, w której nieprzeszkolona osoba próbuje wymienić uszczelnienia w silniku, co może prowadzić do jego awarii lub nawet zagrożenia dla zdrowia pracowników. Warto zauważyć, że w wielu zakładach przemysłowych obowiązują określone normy, takie jak ISO 9001, które wymagają, aby wszystkie prace konserwacyjne były przeprowadzane przez wykwalifikowany personel, co podkreśla znaczenie odpowiednich uprawnień.

Pytanie 3

Zidentyfikuj uszkodzenie jednofazowego transformatora redukującego napięcie, jeśli jego znamionowa przekładnia napięciowa wynosi 5, a zmierzone w trybie jałowym napięcia na uzwojeniu pierwotnym i wtórnym wyniosły odpowiednio 230 V oraz 460 V?

A. Zwarcie w uzwojeniu pierwotnym
B. Przerwa w uzwojeniu pierwotnym
C. Zwarcie w uzwojeniu wtórnym
D. Przerwa w uzwojeniu wtórnym
Zwarcie w uzwojeniu pierwotnym transformatora obniżającego napięcie powoduje, że przy braku obciążenia (stan jałowy) napięcie na uzwojeniu pierwotnym nie może osiągnąć wartości znamionowej. W przypadku transformatora o przekładni napięciowej wynoszącej 5, napięcie wtórne powinno wynosić pięć razy mniejsze niż pierwotne, czyli przy napięciu 230 V na uzwojeniu pierwotnym, napięcie wtórne powinno wynosić 46 V. Jednak w omawianym przypadku zmierzono napięcia 230 V i 460 V, co sugeruje, że doszło do zwarcia w uzwojeniu pierwotnym. Takie uszkodzenie może prowadzić do znacznego wzrostu prądu, co jest niebezpieczne dla transformatora, a także dla sieci zasilającej. W praktyce, w celu weryfikacji stanu uzwojeń, stosuje się pomiary impedancji oraz testy napięciowe, które są zgodne z normami IEC i ANSI. W przypadku stwierdzenia zwarcia, konieczne jest szybkie odłączenie zasilania i przeprowadzenie naprawy oraz wymiany uszkodzonych elementów, aby przywrócić prawidłowe funkcjonowanie transformatora.

Pytanie 4

Podczas pracy młotowiertarki udarowej zaobserwowano intensywne iskrzenie na komutatorze. Co należy zrobić, aby uniknąć uszkodzenia narzędzia?

A. Po zakończeniu pracy należy skontrolować połączenie uzwojenia twornika z uzwojeniem wzbudzenia
B. Trzeba wstrzymać pracę i wymienić łącznik zasilający
C. Należy zatrzymać pracę i dokręcić połączenia kabli wewnątrz obudowy
D. Wstrzymać pracę i wymienić szczotki
Wymiana szczotek w młotowiertarce udarowej jest kluczowym krokiem, gdy zauważamy nadmierne iskrzenie na komutatorze. Iskrzenie to może być wynikiem zużycia szczotek, które są odpowiedzialne za przewodzenie prądu do wirnika silnika. W miarę eksploatacji, szczotki ulegają ścieraniu, co prowadzi do zwiększenia oporu elektrycznego, a w konsekwencji do iskrzenia. Wymiana szczotek powinna być przeprowadzana zgodnie z zaleceniami producenta, co często wiąże się z regularnymi inspekcjami technicznymi, aby zapobiec poważniejszym uszkodzeniom narzędzia. Przykładowo, w przypadku firmy produkującej młotowiertarki, regularne serwisowanie i monitorowanie stanu szczotek mogą znacząco wydłużyć żywotność narzędzia oraz zapewnić jego optymalne działanie. Praktyka ta nie tylko przyczynia się do bezpieczeństwa użytkownika, ale także utrzymuje wysoką wydajność pracy, co jest niezmiernie ważne w środowisku budowlanym czy remontowym. W ten sposób można uniknąć kosztownych napraw oraz przedłużyć okres użytkowania urządzenia.

Pytanie 5

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. izolacji żłobkowej
B. pierścienia zwierającego
C. drutu nawojowego
D. lakieru izolacyjnego
Pierścień zwierający nie jest stosowany w przezwojeniu stojana trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego konstrukcja opiera się na rdzeniu stalowym, w którym uzwojenia są umieszczone w żłobkach. Pierścienie zwierające są używane głównie w silnikach z wirnikami klatkowym, gdzie zapewniają zamknięcie obwodu wirnika. W przypadku silników indukcyjnych z uzwojeniem stojana, kluczowe komponenty to drut nawojowy, izolacja żłobkowa oraz lakier izolacyjny. Drut nawojowy, wykonany z miedzi, jest niezbędny do utworzenia uzwojeń, które generują pole magnetyczne. Izolacja żłobkowa oraz lakier izolacyjny chronią drut przed zwarciem oraz uszkodzeniami mechanicznymi, a także zapewniają odpowiednią wydajność cieplną. Dobrze przeprowadzone przezwojenie zwiększa efektywność silnika, co jest istotne w kontekście obciążenia i żywotności maszyny.

Pytanie 6

Grzałka jednofazowa o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm2. W jaki sposób zmienią się straty mocy w przewodzie zasilającym, jeśli jego przekrój zostanie zwiększony do 2,5 mm2?

A. Spadną o 100%
B. Spadną o 40%
C. Wzrosną o 40%
D. Wzrosną o 100%
Odpowiedź, że straty mocy w przewodzie zmniejszą się o 40%, jest prawidłowa z kilku powodów związanych z zasadami działania prądów elektrycznych i strat energii. Straty mocy w przewodach elektrycznych są związane z oporem przewodnika, który można obliczyć z wykorzystaniem wzoru: P = I²R, gdzie P to moc strat, I to natężenie prądu, a R to opór przewodu. Przy zwiększeniu przekroju przewodu z 1,5 mm2 do 2,5 mm2, opór przewodu maleje, co prowadzi do zmniejszenia strat mocy. W praktyce, stosowanie przewodów o większym przekroju jest zalecane w celu minimalizacji strat energii, co jest zgodne z normami i zasadami efektywności energetycznej. Na przykład, w instalacjach przemysłowych oraz budowlanych, dobór odpowiednich przewodów elektrycznych wpływa na bezpieczeństwo, efektywność operacyjną oraz oszczędności w kosztach energii. To podejście jest zgodne z dobrymi praktykami branżowymi, które promują zwiększenie efektywności energetycznej, a tym samym ograniczenie emisji CO2. Zmniejszenie strat mocy o 40% przy zastosowaniu przewodu o większym przekroju jest wymiernym zyskiem, który powinien być brany pod uwagę na etapie projektowania instalacji. Warto pamiętać, że zastosowanie odpowiednich przekrojów przewodów ma również wpływ na ich temperaturę roboczą, co poprawia bezpieczeństwo całego systemu.

Pytanie 7

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Całkowite zniszczenie wirnika silnika
B. Spadek prędkości obrotowej wirnika silnika
C. Nawrót wirnika silnika
D. Wzrost prędkości obrotowej wirnika silnika
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 8

Wybierz odpowiedni wyłącznik nadprądowy do ochrony przed przeciążeniem w obwodzie jednofazowym o napięciu znamionowym 230 V, z którego jednocześnie będą zasilane grzejnik oporowy o mocy nominalnej 2 kW oraz chłodziarka o mocy nominalnej 560 W i współczynniku mocy cos ? = 0,7?

A. C20
B. B10
C. C10
D. B16
Wybranie wyłącznika nadprądowego B16 jest prawidłowe, ponieważ zapewnia on odpowiednią ochronę dla obwodu jednofazowego o napięciu znamionowym 230 V, w którym zasilane są grzejnik oporowy o mocy 2 kW oraz chłodziarka o mocy 560 W. Łączna moc obciążenia wynosi 2 kW + 0,56 kW = 2,56 kW. Aby obliczyć prąd, możemy skorzystać z wzoru I = P / U, gdzie P to moc, a U to napięcie. Prąd obliczamy: I = 2560 W / 230 V = 11,13 A. Wobec powyższego, wyłącznik B16, który ma nominalny prąd 16 A, jest odpowiedni, ponieważ pozostawia wystarczający margines na przypadkowe przeciążenia. Zastosowanie wyłącznika z wyższym prądem, jak C20, może prowadzić do braku ochrony przed przeciążeniem, co z kolei naraża instalację na uszkodzenia. W praktyce, wyłącznik B16 jest standardowo stosowany w obwodach z urządzeniami o podobnych parametrach, co potwierdzają normy PN-EN 60898, które precyzują zasady doboru zabezpieczeń. Zastosowanie wyłącznika o zbyt wysokim prądzie znamionowym mogłoby prowadzić do uszkodzeń urządzeń zasilanych w wyniku braku odpowiedniej ochrony w przypadku zwarcia lub przeciążenia.

Pytanie 9

Element przedstawiony na ilustracji, zabezpieczający olejowy transformator energetyczny o danych znamionowych 15/0,4 kV, 2 500 kVA, nie chroni przed skutkami

Ilustracja do pytania
A. rozkładu termicznego izolacji stałej.
B. przerw w uziemieniu.
C. obniżenia poziomu oleju w kadzi.
D. zwarć międzyzwojowych.
Odpowiedź "przerw w uziemieniu" jest poprawna, ponieważ element przedstawiony na ilustracji to przekaźnik Buchholza, który odgrywa kluczową rolę w monitorowaniu stanu transformatorów olejowych. Buchholz relay jest zaprojektowany do wykrywania nieprawidłowości, takich jak obniżenie poziomu oleju w kadzi, co może wskazywać na wycieki lub inne uszkodzenia, oraz zwarcia międzyzwojowe, które mogłyby prowadzić do poważnych awarii. Działa on na zasadzie detekcji gazów, które powstają w wyniku wewnętrznych uszkodzeń, co pozwala na wczesne wykrycie problemów, zanim dojdzie do poważnych konsekwencji. W praktyce, przekaźnik Buchholza jest istotnym elementem systemu ochrony transformatora, który zgodnie z normą IEC 60076-1 powinien być stosowany w każdym transformatorze olejowym o większej mocy. Dzięki jego działaniu, można nie tylko wcześnie wykrywać uszkodzenia, ale również minimalizować ryzyko pożarów i wybuchów, co jest kluczowe dla bezpieczeństwa operacji energetycznych.

Pytanie 10

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Zmniejszenie prędkości obrotowej wirnika silnika
B. Nawrót wirnika silnika
C. Uszkodzenie wirnika silnika
D. Zwiększenie prędkości obrotowej wirnika silnika
Zwiększenie prędkości obrotowej wirnika silnika asynchronicznego zasilanego napięciem o częstotliwości 60 Hz w porównaniu do znamionowej częstotliwości 50 Hz jest wynikiem zjawiska zwanego poślizgiem. W przypadku silników asynchronicznych prędkość obrotowa wirnika jest zawsze niższa od prędkości synchronicznej, która zależy od częstotliwości zasilania oraz liczby par biegunów. Wzór na prędkość synchroniczną jest następujący: n_s = (120 * f) / P, gdzie n_s to prędkość synchroniczna w obrotach na minutę (RPM), f to częstotliwość zasilania w hercach, a P to liczba par biegunów. W przypadku zasilania 60 Hz, prędkość synchroniczna wzrośnie, co skutkuje wzrostem prędkości obrotowej wirnika. Praktycznie, dla silnika z dwiema parami biegunów zasilanego z sieci 50 Hz, prędkość będzie wynosić 1200 RPM, natomiast przy 60 Hz wzrośnie do 1440 RPM. Takie zjawisko może być wykorzystywane w aplikacjach, gdzie wymagana jest większa prędkość obrotowa, jednak należy pamiętać o możliwych konsekwencjach, takich jak zwiększone straty cieplne i ryzyko uszkodzenia silnika. W przemyśle standardem jest dostosowywanie zasilania do znamionowych parametrów silnika w celu zapewnienia jego długowieczności i efektywności.

Pytanie 11

Który z poniższych elementów nie jest częścią transformatora energetycznego?

A. Rdzeń magnetyczny
B. Uchwyty do podłączenia przewodów
C. Izolatory ceramiczne
D. Silnik synchroniczny
Transformator energetyczny jest urządzeniem, które służy do zamiany napięcia elektrycznego przy pomocy zjawiska indukcji elektromagnetycznej. Kluczowymi częściami transformatora są rdzeń magnetyczny, uzwojenia oraz izolacja. Rdzeń magnetyczny wykonany z cienkich blach stalowych umożliwia efektywne przenoszenie strumienia magnetycznego. Uzwojenia, które są nawinięte na rdzeń, są wykonane z przewodników miedzianych lub aluminiowych i służą do przenoszenia prądu. Izolacja natomiast zabezpiecza przed zwarciami i przepięciami. Silnik synchroniczny, który jest urządzeniem przetwarzającym energię elektryczną na mechaniczną, nie jest częścią transformatora. Transformator nie posiada elementów ruchomych ani nie generuje momentu obrotowego, co jest charakterystyczne dla silników. Wiedza o różnicach między tymi urządzeniami jest kluczowa dla zrozumienia ich działania i zastosowania w przemyśle energetycznym. Transformator jako urządzenie statyczne jest bardziej efektywny w aplikacjach wymagających zmiany napięcia, podczas gdy silniki synchroniczne są używane do napędzania maszyn.

Pytanie 12

Dodatkowy przewód ochronny w instalacji wykonanej przewodem LYd 750 4x2,5 zamocowanej na uchwytach na ścianie piwnicy powinien być oznaczony symbolem

A. YDY 450/750 1x2,5
B. Dyd 750 1x4
C. LYc 300/500 1x6
D. ADY 750 1x2,5
Wybór innych oznaczeń przewodów, takich jak YDY 450/750 1x2,5, ADY 750 1x2,5 czy LYc 300/500 1x6, wskazuje na nieporozumienie w zakresie doboru przewodów ochronnych w instalacjach elektrycznych. Przewód YDY 450/750 1x2,5 charakteryzuje się niższą klasą napięciową, co sprawia, że nie jest odpowiedni do zastosowań, gdzie występują napięcia do 750V. Podobnie przewód ADY 750 1x2,5, mimo że oznaczenie sugeruje, iż jest przystosowany do napięcia 750V, nie spełnia wymogów dotyczących ochrony, które są kluczowe w instalacjach z przewodami LYd. Z kolei przewód LYc 300/500 1x6 ma oznaczenie wskazujące na jeszcze niższe napięcie i nieodpowiednią średnicę, co czyni go nieodpowiednim do warunków wymagających solidnej ochrony. Typowym błędem myślowym, prowadzącym do wyboru tych przewodów, jest skupienie się wyłącznie na oznaczeniu napięcia, bez uwzględnienia ich rzeczywistej charakterystyki oraz przeznaczenia. Kluczowe jest, aby przy doborze przewodów nie tylko kierować się wartościami napięcia, ale również odpowiednimi normami bezpieczeństwa, jak PN-IEC 60364, które określają wymagania dla instalacji elektrycznych. W praktyce, stosowanie niewłaściwych przewodów może prowadzić do poważnych skutków, takich jak uszkodzenia sprzętu, a co gorsza, zagrożenia dla życia użytkowników.

Pytanie 13

Jakie przyrządy można zastosować do pomiaru mocy czynnej?

A. Woltomierz oraz omomierz
B. Waromierz oraz amperomierz
C. Amperomierz oraz licznik
D. Woltomierz i amperomierz
Woltomierz i amperomierz są kluczowymi przyrządami do pomiaru mocy czynnej w obwodach elektrycznych. Moc czynna, zwana również mocą rzeczywistą, wyrażana jest w watach (W) i można ją obliczyć jako iloczyn napięcia (V) i natężenia prądu (I), pomnożony przez cosinus kąta fazowego między prądem a napięciem (P = V * I * cos(φ)). Woltomierz służy do pomiaru napięcia w obwodzie, podczas gdy amperomierz mierzy natężenie prądu, co pozwala na efektywne obliczenie mocy czynnej. W praktyce, aby uzyskać dokładny pomiar mocy, niezbędne jest także uwzględnienie współczynnika mocy, zwłaszcza w obwodach z obciążeniem indukcyjnym lub pojemnościowym. Ponadto, w przypadku systemów przemysłowych, pomiary mocy czynnej są fundamentalne dla oceny efektywności energetycznej, co jest zgodne z normami ISO 50001, które koncentrują się na zarządzaniu energią. Dobrą praktyką jest regularna kalibracja tych przyrządów, aby zapewnić dokładność pomiarów.

Pytanie 14

Który z podanych przewodów elektrycznych powinno się zastosować do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z napowietrzną linią 230/400 V?

A. AAFLwsXSn 50
B. AsXS 4×70
C. YAKY 4×10
D. AFL 6 120
Wybór przewodu YAKY 4×10 jako odpowiedniego do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z linią napowietrzną 230/400 V jest właściwy z kilku powodów. Przewód YAKY to przewód aluminiowy, który charakteryzuje się wysoką odpornością na czynniki zewnętrzne oraz niską wagą, co ułatwia jego montaż. Zastosowanie przewodu 4×10 oznacza, że ma on cztery żyły, z czego trzy są fazowe, a jedna to żyła neutralna, co jest standardem w instalacjach jednofazowych i trójfazowych. W przypadku przyłącza ziemnego, przewód ten powinien być również osłonięty, co zapewnia bezpieczeństwo użytkowania. YAKY 4×10 spełnia normy PN-EN 60502-1, co czyni go odpowiednim wyborem z punktu widzenia przepisów i dobrych praktyk. Przykładem zastosowania YAKY 4×10 jest przyłącze do domów jednorodzinnych, gdzie przewód ten może być układany w ziemi, zapewniając odpowiednią odporność na uszkodzenia i długowieczność. Warto również zauważyć, że ze względu na stosunkowo niską wartość oporu przewodzenia, przewód ten pozwala na efektywne przesyłanie energii elektrycznej przy minimalnych stratach.

Pytanie 15

Do którego z wymienionych pomieszczeń przeznaczona jest oprawa oświetleniowa przedstawiona na ilustracji?

Ilustracja do pytania
A. Do magazynu spożywczego.
B. Do serwerowni.
C. Do hali sportowej.
D. Do młyna zbożowego.
Oprawa oświetleniowa przedstawiona na ilustracji jest idealnie przystosowana do zastosowania w młynie zbożowym, co wynika z jej konstrukcji oraz materiałów, z których została wykonana. Młyny zbożowe charakteryzują się obecnością dużych ilości pyłu, co stawia wyzwania dla standardowego oświetlenia, które może być narażone na uszkodzenia lub ma mniejszą wydajność w trudnych warunkach. Oprawy odporne na pył, a także na potencjalne uszkodzenia mechaniczne są kluczowe w takich miejscach, aby zapewnić bezpieczeństwo i efektywność pracy. Dodatkowo, zgodnie z normami dotyczącymi oświetlenia przemysłowego, takimi jak PN-EN 12464-1, ważne jest, aby oświetlenie w miejscach o dużym zanieczyszczeniu pyłem miało odpowiednią klasę ochrony IP, co zapewnia długotrwałość i niezawodność. Przykłady zastosowania takich opraw można znaleźć w przemyśle spożywczym, gdzie wymagane są odpowiednie warunki sanitarno-epidemiologiczne. Dlatego też, wybór oprawy oświetleniowej dostosowanej do młyna zbożowego nie tylko zwiększa bezpieczeństwo, ale także przyczynia się do efektywności procesu produkcyjnego.

Pytanie 16

Jakie prace są dozwolone w instalacjach elektrycznych, które nie są wyłączone spod napięcia w sieci TN?

A. Wymiana wkładek bezpiecznikowych.
B. Wykonywanie pomiaru rezystancji izolacji instalacji.
C. Zamiana gniazdek.
D. Dokręcanie przewodów w złączach.
Wymiana wkładek bezpiecznikowych w instalacjach elektrycznych niewyłączonych spod napięcia w układzie sieciowym TN jest dozwolona, ponieważ ta czynność nie wiąże się z bezpośrednim narażeniem pracownika na kontakt z elementami pod napięciem. Wkładki bezpiecznikowe są elementami, które można wymieniać bez rozłączania obwodu, co jest zgodne z zasadami bezpieczeństwa określonymi w normach PN-IEC 60364. W praktyce, wymiana wkładek bezpiecznikowych jest powszechnie stosowaną procedurą, która może być przeprowadzana przez przeszkolonych pracowników elektrycznych, co pozwala na kontynuowanie pracy urządzeń w przypadku awarii. W kontekście dobrych praktyk, istotne jest, aby personel posiadał odpowiednie kwalifikacje oraz znał zasady BHP, co zapewnia bezpieczeństwo podczas takich operacji. Zastosowanie odpowiednich narzędzi oraz przestrzeganie procedur operacyjnych pozwala na zminimalizowanie ryzyka i zapewnienie ciągłości zasilania w instalacjach elektrycznych.

Pytanie 17

Na której fotografii pokazany jest miernik prędkości obrotowej wału silnika elektrycznego?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Na zdjęciu C widzimy tachometr, który jest naprawdę ważnym narzędziem do sprawdzania prędkości obrotowej silników elektrycznych. Dzięki niemu można zmierzyć, jak szybko kręci się wał silnika, co jest istotne, żeby maszyna działała prawidłowo i była wydajna. W inżynierii dobre monitorowanie prędkości obrotowej pomaga nam w zauważeniu problemów, jak np. przeciążenie czy zły poziom smarowania, które mogą uszkodzić silnik. W przemyśle tachometry są wykorzystywane do automatyzacji procesów, bo ustawienie odpowiedniej prędkości jest kluczowe dla jakości produktów. Regularne kalibracje tych urządzeń, zgodnie z normami, są niezbędne, żeby utrzymać wysoką wydajność i bezpieczeństwo podczas pracy.

Pytanie 18

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli:
Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
B. pierwszy i drugi działają prawidłowo.
C. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
D. pierwszy i drugi działają nieprawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa jak należy, bo jego prąd wyzwalający to 20 mA. Mieści się to w akceptowalnym zakresie, bo prąd nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego. Dla wyłącznika 30 mA to oznacza, że musi być minimalnie 15 mA. Działanie takiego wyłącznika ocenia się pod kątem ochrony przed porażeniem prądem, co jest naprawdę ważne. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, bo zapewniają bezpieczeństwo wszystkich użytkowników. Regularne kontrolowanie i testowanie tych urządzeń to podstawa, żeby mieć pewność, że działają zgodnie z normami, na przykład PN-EN 61008-1, która określa wymagania dla tych wyłączników. Warto też prowadzić dokumentację pomiarów i regularnie je kalibrować, bo to zapewnia, że systemy ochrony przed porażeniem są niezawodne.

Pytanie 19

Zamieszczone w tabeli wyniki pomiarów rezystancji izolacji uzwojeń trójfazowego silnika asynchronicznego o napięciu Un = 400 V i prądzie In = 20 A świadczą o uszkodzeniu izolacji

UzwojenieRezystancja izolacji między uzwojeniem a obudową
U1-U24 000
V1-V26 000
W1-W28 000
A. uzwojeń U1-U2 i W1-W2.
B. uzwojenia V1-V2.
C. uzwojenia U1-U2.
D. uzwojeń U1-U2 i V1-V2.
Odpowiedź dotycząca uzwojenia U1-U2 jest poprawna, ponieważ pomiar rezystancji izolacji wykazuje, że wartość ta wynosi 4000 kΩ, co jest najniższą wartością spośród wszystkich analizowanych uzwojeń. W kontekście norm dotyczących izolacji w silnikach asynchronicznych, taka rezystancja jest nieprzystosowana do bezpiecznego użytkowania. Zgodnie z normami, rezystancja izolacji powinna być jak najwyższa, aby zminimalizować ryzyko przebicia izolacji i zapewnić właściwe działanie silnika. W praktyce, w przypadku stwierdzenia niskiej rezystancji, konieczne jest przeprowadzenie dodatkowych badań, w tym testów wytrzymałościowych lub wymiany uszkodzonego uzwojenia. Przykładowo, w silnikach przemysłowych często stosuje się procedury rutynowej konserwacji, które obejmują regularne pomiary rezystancji izolacji, aby zapewnić, że silnik działa w optymalnych warunkach. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się eksploatacją i utrzymaniem maszyn, co pozwala unikać kosztownych przestojów oraz awarii.

Pytanie 20

Jaka przyczyna powoduje rozbieżność w działaniu silnika bocznikowego prądu stałego?

A. Przerwa w uzwojeniu wzbudzenia
B. Brak obciążenia
C. Luzy w łożyskach
D. Przerwa w uzwojeniu twornika
Jak masz przerwę w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego, to silnik zaczyna się rozbiegać. Dlaczego? No bo to uzwojenie odpowiada za wytwarzanie pola magnetycznego, które jest potrzebne, żeby silnik działał. Bez tego pola, silnik nie ma żadnego oporu, a to skutkuje tym, że kręci się bez kontroli. To może być naprawdę niebezpieczne, bo prowadzi do uszkodzeń. Żeby tego uniknąć, ważne są regularne kontrole i konserwacje. W przemyśle, według norm IEC 60034, trzeba monitorować stan uzwojeń i mieć systemy ochrony, które coś wykryją, gdy coś się popsuje. W silnikach używanych w różnych sprzętach, jak taśmociągi, warto też pomyśleć o dodatkowych zabezpieczeniach, żeby nie było niekontrolowanego działania silnika, gdy uzwojenie zawiedzie.

Pytanie 21

Jakiego z wymienionych przyrządów należy użyć wraz z watomierzem, aby obliczyć współczynnik mocy urządzenia elektrycznego zasilanego prądem sinusoidalnym?

A. Częstościomierza
B. Amperomierza
C. Waromierza
D. Woltomierza
Amperomierz, woltomierz i częstościomierz to urządzenia pomiarowe, które, choć mają swoje zastosowania, nie są wystarczające do precyzyjnego określenia współczynnika mocy w obwodach prądu sinusoidalnego. Amperomierz mierzy natężenie prądu w obwodzie, co jest ważne, ale samodzielny pomiar nie dostarcza informacji o fazie prądu w stosunku do napięcia. W przypadku pomiaru mocy, kluczowe znaczenie ma określenie nie tylko wartości prądu, ale również jego relacji do napięcia, co nie jest możliwe bez urządzenia mierzącego różnicę fazową, jakim jest waromierz. Woltomierz, z kolei, mierzy napięcie w obwodzie, co także jest istotne, ale jego zastosowanie w obliczeniach mocy wymaga dodatkowego kontekstu fazowego. Częstościomierz mierzy częstotliwość sygnału, co nie ma bezpośredniego wpływu na obliczanie mocy czynnej czy współczynnika mocy. Typowym błędem w myśleniu o pomiarach mocy jest przekonanie, że wystarczy znać wartości prądu i napięcia, aby obliczyć moc, ignorując istotne aspekty związane z fazą sygnałów. Dlatego, aby uzyskać dokładne dane dotyczące współczynnika mocy, konieczne jest użycie waromierza w parze z watomierzem, co pozwala na pełne zrozumienie efektywności energetycznej danego urządzenia elektrycznego.

Pytanie 22

Na podstawie informacji przedstawionych na zamieszczonym na rysunku ekranie urządzenia pomiarowego ocen stan techniczny wyłącznika różnicowoprądowego 40 A/0,03 A.

Ilustracja do pytania
A. Aparat jest uszkodzony, zbyt duża wartość rezystancji przewodu ochronnego RE.
B. Aparat jest sprawny, właściwa wartość prądu zadziałania.
C. Aparat jest uszkodzony, niewłaściwa wartość prądu zadziałania.
D. Aparat jest sprawny, miernik ustawiono w nieodpowiedni dla badanego RCD tryb.
Odpowiedź "Aparat jest uszkodzony, niewłaściwa wartość prądu zadziałania" jest całkiem na miejscu. Problem z wyłącznikiem różnicowoprądowym, czyli RCD, może być poważny. Mamy tu na ekranie miernika 9,0 mA, co wyraźnie jest poniżej wymaganych 30 mA. Zgodnie z normami IEC 61008, te urządzenia powinny działać przy prądzie różnicowym, który nie przekracza określonej wartości. Kiedy widzimy taką niską wartość, to może sugerować, że coś w środku wyłącznika nie działa tak, jak powinno. I tu pojawia się duże ryzyko, bo jeśli RCD nie działa, to może nas nie ochronić przed porażeniem prądem w krytycznych momentach. W praktyce, testowanie działania RCD jest bardzo ważne, zwłaszcza tam, gdzie jest wilgoć albo mamy do czynienia z instalacjami elektrycznymi. Regularne sprawdzanie RCD według wskazówek producenta i standardów to klucz do bezpieczeństwa użytkowników.

Pytanie 23

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. pirometr
B. induktor
C. przekładnik napięciowy
D. prądnicę tachometryczną
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.

Pytanie 24

Przedstawiony amperomierz jest przygotowany do pomiaru prądu

Ilustracja do pytania
A. rozruchu silnika szeregowego prądu stałego.
B. pobieranego z sieci przez spawarkę transformatorową.
C. sterującego tyrystorem mocy.
D. wyjściowego prądnicy synchronicznej.
Amperomierz cęgowy, przedstawiony w pytaniu, nie jest przeznaczony do pomiarów prądu pobieranego z sieci przez spawarkę transformatorową. W takich zastosowaniach, gdzie prąd często osiąga wyższe wartości niż nominalne, zaleca się stosowanie bardziej zaawansowanych mierników, które umożliwiają pomiar prądu o wysokiej częstotliwości i dużych wartościach. Spawarki transformatorowe wymagają użycia sprzętu, który potrafi obsłużyć skoki prądu, a amperomierze cęgowe często nie są dostosowane do takich warunków. Również pomiar prądu wyjściowego prądnicy synchronicznej wymaga specjalistycznych narzędzi, które mogą mierzyć zarówno prąd stały, jak i zmienny. Prądnice synchroniczne operują na różnych poziomach obciążenia, co może powodować fluktuacje w prądzie, które są trudne do uchwycenia za pomocą standardowego amperomierza. Z drugiej strony, pomiar prądu sterującego tyrystorem mocy jest niezwykle ważny, ale wymaga użycia bardziej skomplikowanych urządzeń, które mogą analizować sygnały w czasie rzeczywistym. W przypadku silnika szeregowego prądu stałego, jego rozruch generuje duży prąd, co sprawia, że pomiar z wykorzystaniem amperomierza cęgowego jest bardziej odpowiedni, jednak niektóre z wcześniej wymienionych metod są mniej precyzyjne i mogą prowadzić do błędnych interpretacji wyników. Takie nieporozumienia są często wynikiem braku zrozumienia specyfiki pracy różnych urządzeń oraz ich wymogów pomiarowych.

Pytanie 25

Jaką liczbę należy użyć do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na jego zabezpieczeniu termicznym?

A. 0,8
B. 1,4
C. 2,2
D. 1,1
Odpowiedź 1,1 jest poprawna, ponieważ przy obliczaniu maksymalnej dopuszczalnej wartości nastawy prądu na zabezpieczeniu termicznym silników trójfazowych, stosuje się współczynnik 1,1. Ten współczynnik uwzględnia zwiększone obciążenie silnika w przypadku jego rozruchu oraz wpływ na jego pracę w warunkach długotrwałego obciążenia. Przyjmuje się, że silniki trójfazowe mogą być obciążane do wartości 10% powyżej znamionowej przez krótki czas, co jest kluczowe dla ochrony silnika oraz zapewnienia jego efektywności. W praktyce oznacza to, że jeżeli znamionowy prąd silnika wynosi na przykład 10 A, to maksymalna wartość nastawy na zabezpieczeniu termicznym powinna wynosić 11 A. Zastosowanie tego współczynnika jest zgodne z normami IEC 60034 oraz wytycznymi producentów urządzeń, co jest kluczowe dla zabezpieczenia silników i zapewnienia ich prawidłowej pracy.

Pytanie 26

Podczas przeglądu silnika elektrycznego stwierdzono nieprawidłowe działanie łożysk. Jakie mogą być tego skutki?

A. Zmniejszenie częstotliwości prądu
B. Zwiększenie poziomu hałasu
C. Zmniejszenie napięcia zasilania
D. Zmniejszenie momentu obrotowego
Nieprawidłowe działanie łożysk w silniku elektrycznym często prowadzi do zwiększenia poziomu hałasu. W praktyce, kiedy łożyska są uszkodzone lub zużyte, mogą generować dźwięki takie jak szumy, stukoty czy metaliczne odgłosy. Hałas ten jest wynikiem zwiększonego tarcia oraz nieprawidłowego ruchu elementów łożyska, co jest bezpośrednim skutkiem mechanicznych nieprawidłowości. W branży technicznej powszechnie uznaje się, że regularne monitorowanie poziomu hałasu jest istotnym elementem diagnostyki stanu technicznego łożysk. Moim zdaniem, to zwiększenie hałasu jest jednym z najbardziej oczywistych sygnałów, że coś niedobrego dzieje się z łożyskami. Dlatego też, standardy utrzymania maszyn, takie jak TPM (Total Productive Maintenance), kładą duży nacisk na regularne przeglądy i konserwację łożysk, by zapobiec poważniejszym awariom. Uwzględniając te praktyki, można znacznie wydłużyć żywotność maszyn i uniknąć kosztownych napraw czy przestojów produkcyjnych.

Pytanie 27

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Separacja elektryczna
B. Izolowanie stanowiska
C. Obwody SELV
D. Obwody PELV
Izolowanie stanowiska jako środek ochrony przed porażeniem prądem elektrycznym nie jest zalecane w pomieszczeniach z zainstalowaną wanną lub prysznicem, ponieważ takie miejsca są szczególnie narażone na kontakt z wodą, a tym samym zwiększone ryzyko porażenia. Praktyka izolowania stanowiska polega na tworzeniu fizycznych barier, które mają na celu zminimalizowanie ryzyka kontaktu z żywymi częściami. W kontekście pomieszczeń mokrych, jednak, kluczowe jest stosowanie bardziej zaawansowanych środków ochrony, które są zgodne z przepisami zawartymi w normach IEC 60364 oraz PN-EN 61140. Przykładem zabezpieczenia, które może być stosowane w takich warunkach, są obwody SELV, które zapewniają niskie napięcie bezpieczeństwa. W takich miejscach, gdzie ryzyko kontaktu z wodą jest wysokie, istotne jest również, aby instalacje były odpowiednio zabezpieczone i aby stosować osprzęt o podwyższonym stopniu ochrony, na przykład z klasą IP44 lub wyższą.

Pytanie 28

Jakie skutki spowoduje podłączenie baterii kondensatorów równolegle do końcówek silnika asynchronicznego?

A. Napięcie na końcówkach silnika się zmniejszy
B. Pobór mocy biernej z sieci będzie mniejszy
C. Pobór mocy czynnej z sieci ulegnie zwiększeniu
D. Częstotliwość prądu w silniku wzrośnie
Włączenie baterii kondensatorów równolegle do zacisków silnika asynchronicznego prowadzi do zmniejszenia poboru mocy biernej z sieci. Kondensatory wprowadzają do obwodu moc czynną, co kompensuje ubytek mocy biernej generowanej przez silnik. Silniki asynchroniczne, zwłaszcza te o dużych mocach, często wykazują znaczny pobór mocy biernej, co powoduje obciążenie sieci elektroenergetycznej. Dlatego wprowadzenie baterii kondensatorów nie tylko poprawia współczynnik mocy, ale także zwiększa efektywność energetyczną całego systemu. W praktyce zastosowanie kondensatorów do kompensacji mocy biernej jest szeroko stosowane w przemyśle, gdzie obciążenia są zmienne, a ich odpowiednia konfiguracja pozwala na znaczące oszczędności kosztów związanych z energią elektryczną oraz redukcję strat w sieci. Ponadto, zgodnie z normami IEC 61000, stabilizacja współczynnika mocy jest kluczowym elementem w celu poprawy jakości energii w systemach elektroenergetycznych.

Pytanie 29

Który z podanych materiałów przewodzących jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje właściwości?

A. Aluminium
B. Nikiel
C. Stal
D. Miedź
Miedź to materiał przewodzący, który jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje wyjątkowe właściwości. Przede wszystkim charakteryzuje się bardzo dobrą przewodnością elektryczną, co oznacza, że opór stawiany przepływającemu prądowi jest minimalny. Dzięki temu straty energii są zredukowane, co jest kluczowe w efektywnym przesyle energii. Ponadto, miedź jest materiałem relatywnie łatwym do formowania, co ułatwia produkcję przewodów o różnych kształtach i rozmiarach. Jest również odporny na korozję, co przedłuża żywotność instalacji. Zastosowanie miedzi w kablach i przewodach elektrycznych jest standardem w branży, a jej właściwości mechaniczne pozwalają na utrzymanie wysokiej wytrzymałości oraz elastyczności przewodów. Warto również zauważyć, że miedź jest stosowana w różnych gałęziach przemysłu elektrotechnicznego, w tym w transformatorach, silnikach elektrycznych i generatorach, co świadczy o jej wszechstronności i niezawodności. Standardy branżowe i normy międzynarodowe, takie jak IEC i ANSI, często rekomendują użycie miedzi w instalacjach ze względu na jej doskonałe właściwości przewodzące i mechaniczne.

Pytanie 30

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów podtynkowej instalacji elektrycznej?

A. Przekroczenie maksymalnego czasu reakcji RCD
B. Pogorszenie jakości izolacji przewodów instalacji
C. Uszkodzenia mechaniczne obudów oraz osłon urządzeń elektrycznych
D. Zerwanie w układzie przewodów ochronnych
Uszkodzenia mechaniczne obudów i osłon urządzeń elektrycznych są jednymi z najłatwiejszych do zidentyfikowania podczas oględzin podtynkowej instalacji elektrycznej. Obejmują one widoczne wgniecenia, pęknięcia oraz inne defekty zewnętrzne, które mogą negatywnie wpłynąć na bezpieczeństwo i funkcjonowanie instalacji. Obudowy urządzeń elektrycznych, takie jak skrzynki rozdzielcze czy osłony gniazdek, pełnią kluczową rolę w ochronie przed uszkodzeniami mechanicznymi oraz zapewnieniu bezpieczeństwa użytkowników. Regularne oględziny tych elementów są zalecane w ramach przeglądów okresowych, zgodnie z normami PN-EN 60204-1 dotyczącymi bezpieczeństwa maszyn oraz obowiązującymi przepisami prawa budowlanego. Przykładowo, w przypadku pękniętej obudowy gniazdka, istnieje ryzyko kontaktu z elementami przewodzącymi prąd, co może prowadzić do porażenia elektrycznego. Dlatego kluczowym jest, aby wszelkie uszkodzenia były niezwłocznie naprawiane, co podkreśla znaczenie systematycznych kontroli i odpowiednich działań prewencyjnych w zakresie utrzymania instalacji elektrycznych w dobrym stanie.

Pytanie 31

Podczas intensywnych opadów śniegu w jednym z rejonów napowietrznej linii niskiego napięcia zaobserwowano zanik napięcia w jednej fazie. Monterzy wymienili uszkodzony bezpiecznik w stacji transformatorowej na słupie, ale po ponownym uruchomieniu zasilania bezpiecznik natychmiast znowu uległ awarii. Jakie mogą być najprawdopodobniejsze przyczyny tej usterki?

A. Przeciążenie obwodu linii spowodowane dogrzewaniem elektrycznym mieszkań
B. Zawilgocenie izolacji przewodów AFL do odbiorców
C. Zwarcie doziemne jednej fazy
D. Zbyt duża asymetria obciążenia odbiornikami u jednego z odbiorców
Zwarcie doziemne jednej fazy jest najprawdopodobniejszą przyczyną opisanego problemu. W przypadku gęstych opadów śniegu, woda może gromadzić się na izolacji przewodów, co prowadzi do obniżenia ich właściwości izolacyjnych. Jeżeli następuje kontakt przewodu fazowego z ziemią lub innym przewodem o potencjale ziemi, tworzy się obwód, przez który może płynąć prąd, co skutkuje zadziałaniem zabezpieczeń, takich jak bezpieczniki. Wymiana uszkodzonego bezpiecznika w tym przypadku nie rozwiązuje problemu, ponieważ zwarcie doziemne nadal występuje. Aby zapobiec takim sytuacjom, ważne jest regularne sprawdzanie stanu technicznego linii oraz ich ochrony przed warunkami atmosferycznymi. W praktyce, stosowanie odpowiednich zabezpieczeń nadprądowych oraz regularne inspekcje mogą znacznie zmniejszyć ryzyko wystąpienia takich awarii. Dobrą praktyką jest również zapewnienie odpowiedniej odległości między przewodami a ziemią oraz stosowanie odpowiednich systemów uziemiających, co zwiększa bezpieczeństwo systemów elektrycznych.

Pytanie 32

Jeżeli silnik prądu stałego z komutatorem po włączeniu zasilania nie zaczyna pracować, to możliwą przyczyną tej sytuacji może być

A. zaśmiecenie komutatora pyłem węglowym
B. umiejscowienie szczotek poza obszarem neutralnym
C. zbyt mocny nacisk szczotek na komutator
D. brak kontaktu szczotek z komutatorem
Brak przylegania szczotek do komutatora jest kluczowym problemem w silnikach komutatorowych prądu stałego. Gdy szczotki nie mają odpowiedniego kontaktu z komutatorem, nie dochodzi do przekazywania prądu do wirnika, co skutkuje brakiem obrotów silnika. Regularne kontrole stanu szczotek oraz komutatora są częścią dobrej praktyki w konserwacji tych urządzeń. W przypadku, gdy szczotki są zbyt zużyte, mogą nie przylegać wystarczająco, co uniemożliwia silnikowi uruchomienie. Właściwe ciśnienie szczotek na komutatorze oraz ich właściwe ustawienie w odpowiedniej strefie neutralnej są istotne dla efektywności działania silnika. Przykładem zastosowania tej wiedzy jest rutynowe serwisowanie silników w aplikacjach przemysłowych, gdzie ich awaria może prowadzić do znacznych przestojów. Zgodnie z normami branżowymi, regularne czyszczenie komutatora i kontrola stanu szczotek powinny być częścią harmonogramu konserwacji, aby zapewnić niezawodność i długowieczność urządzeń."

Pytanie 33

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 230 V AC
B. 50 V AC
C. 110 V DC
D. 12 V AC
Zasilanie lampy oświetleniowej w łazience, szczególnie w strefie 0, musi być zgodne z zasadami bezpieczeństwa, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym. Maksymalna wartość napięcia, która jest bezpieczna do zastosowania w tym obszarze, wynosi 12 V AC. Tego rodzaju zasilanie jest skuteczne w eliminacji ryzyka niebezpiecznych sytuacji, jakie mogą wystąpić w wilgotnym środowisku. Przykładem zastosowania 12 V AC może być instalacja oświetlenia LED w kabinie prysznicowej lub nad wanną, gdzie bezpośredni kontakt z wodą stwarza dodatkowe zagrożenie. Zgodnie z normami IEC 60364, stosowanie niskiego napięcia, takiego jak 12 V, w obszarach o podwyższonym ryzyku, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, systemy oświetleniowe zasilane niskim napięciem są często bardziej energooszczędne i umożliwiają zastosowanie rozwiązań z zakresu inteligentnego budownictwa, takich jak zdalne sterowanie oświetleniem.

Pytanie 34

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. gB
B. aM
C. gR
D. aL
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 35

Jakie rozwiązania powinny być wdrożone, aby zapewnić ochronę przed porażeniem elektrycznym w przypadku uszkodzenia pracowników obsługujących maszynę roboczą, która jest napędzana silnikiem trójfazowym o napięciu 230/400 V, podłączonym do sieci TN-S i zabezpieczonym wyłącznikiem różnicowoprądowym?

A. Wykorzystać zasilanie w systemie PELV
B. Podłączyć obudowę silnika do przewodu N
C. Wprowadzić zasilanie w systemie SELV
D. Podłączyć obudowę silnika do przewodu PE
Prawidłowe połączenie korpusu silnika z przewodem PE (ochronnym) jest kluczowe dla zapewnienia efektywnej ochrony przeciwporażeniowej w układach zasilania trójfazowego. W systemie TN-S, przewód PE jest oddzielony od przewodu neutralnego (N), co zwiększa bezpieczeństwo użytkowania. Połączenie to zabezpiecza przed niebezpiecznymi napięciami, które mogą wystąpić wskutek uszkodzenia izolacji lub innych awarii. Przykładowo, jeśli izolacja przewodu fazowego ulegnie uszkodzeniu, prąd może przepływać do korpusu maszyny. Dzięki połączeniu z przewodem PE, prąd zostanie skierowany do ziemi, co pozwoli na szybkie zadziałanie wyłącznika różnicowoprądowego, minimalizując ryzyko porażenia prądem. Takie podejście jest zgodne z normami IEC 60364 oraz PN-EN 61140, które podkreślają znaczenie zastosowania ochrony przed dotykiem bezpośrednim oraz pośrednim, a także wskazują na konieczność odpowiedniego uziemienia elementów metalowych. W praktyce, stosowanie przewodów o odpowiednim przekroju oraz regularne kontrole instalacji są kluczowe dla utrzymania bezpieczeństwa w środowisku pracy.

Pytanie 36

Silnik, o parametrach znamionowych zamieszczonych w ramce, wbudowany jest na stałe do nawijarki. Jak często należy przeprowadzać przegląd techniczny tego silnika?

PSBg 100L-6
Un = 400 VPn = 1,8 kWIn = 4,5 A
nn = 925 obr/minS1cosφ = 0,80
A. Nie rzadziej niż raz na rok.
B. Nie rzadziej niż raz na trzy lata.
C. W terminach planowanych postojów technologicznych nawijalni.
D. W terminach przewidzianych dla przeglądu nawijarki.
Odpowiedź "W terminach przewidzianych dla przeglądu nawijarki." jest poprawna, ponieważ przegląd techniczny silnika wbudowanego w nawijarkę powinien być synchronizowany z harmonogramem przeglądów całej maszyny. Zgodnie z przepisami prawa oraz normami branżowymi, wszystkie elementy maszyny, w tym silniki, muszą być regularnie sprawdzane w celu zapewnienia ich niezawodności i bezpieczeństwa. Przykładowo, w przemyśle produkcyjnym, przeprowadzanie przeglądów w zgodzie z harmonogramem dla całej maszyny pomaga nie tylko w identyfikacji potencjalnych usterek, ale także w planowaniu przestojów, co wpływa na efektywność procesów produkcyjnych. Dobre praktyki w zakresie utrzymania ruchu sugerują, że wszelkie działania konserwacyjne powinny być skoordynowane z przeglądami nawijarki, aby zminimalizować czas przestoju i koszty eksploatacji. W rezultacie, regularne przeglądy techniczne zwiększają trwałość maszyny oraz bezpieczeństwo jej użytkowania.

Pytanie 37

W tabeli zestawiono wyniki pomiarów rezystancji izolacji różnych instalacji elektrycznych, przeprowadzonych podczas prób odbiorczych. Która z instalacji znajduje się w złym stanie technicznym, wykluczającym jej eksploatację?

InstalacjaRezystancja izolacji, MΩ
A.SELV0,9
B.FELV0,9
C.230 V/400 V1,5
D.400 V/ 690 V1,2
A. C.
B. B.
C. A.
D. D.
Wybór innej odpowiedzi niż B może wynikać z niedostatecznego zrozumienia kryteriów oceny stanu technicznego instalacji elektrycznych. Wiele osób przypuszcza, że wszystkie wartości rezystancji izolacji są akceptowalne, jeśli mieszczą się w pewnym zakresie, co jest błędnym podejściem. Każda instalacja elektryczna ma określone normy, które muszą być przestrzegane, aby zapewnić bezpieczeństwo i niezawodność. W przypadku instalacji elektrycznych, normy takie jak IEC 60364 wyraźnie wskazują, że rezystancja izolacji poniżej 1 MΩ jest niebezpieczna. Przypuszczenie, że wartości takie jak 1 MΩ są jedynie orientacyjne, ignoruje poważne zagrożenia związane z niską rezystancją, takie jak ryzyko pożaru lub porażenia prądem. Odpowiedzi inne niż B mogą również wskazywać na mylne zrozumienie pojęcia rezystancji izolacji, gdzie sądzono, że im wyższa wartość, tym lepiej, ale bez odniesienia do kontekstu użytkowego. Ignorowanie wpływu rezystancji na bezpieczeństwo eksploatacji prowadzi do poważnych konsekwencji, dlatego tak istotne jest stosowanie się do standardów i dobrych praktyk w każdej instalacji elektrycznej. W kontekście praktycznym, brak regularnych pomiarów i konserwacji instalacji, co może być przyczyną niskiej rezystancji, jest kolejnym typowym błędem, który może prowadzić do tragedii. Utrzymanie właściwych wartości rezystancji nie tylko chroni użytkowników, ale również zapewnia długowieczność samej instalacji.

Pytanie 38

Jakie przyrządy należy zastosować do określenia rezystancji uzwojeń w transformatorze średniej mocy metodą techniczną?

A. Amperomierz oraz watomierz
B. Woltomierz oraz omomierz
C. Woltomierz oraz watomierz
D. Amperomierz oraz woltomierz
Aby wyznaczyć rezystancję uzwojeń transformatora średniej mocy, kluczowe jest zastosowanie amperomierza i woltomierza. Amperomierz służy do pomiaru prądu płynącego przez uzwojenie, natomiast woltomierz mierzy napięcie na tym uzwojeniu. Zgodnie z prawem Ohma, rezystancję można obliczyć, dzieląc zmierzone napięcie przez zmierzony prąd (R = U/I). Takie podejście jest nie tylko zgodne z dobrymi praktykami inżynieryjnymi, ale również spełnia standardy zawarte w normach IEC dotyczących testowania transformatorów. W praktyce, w trakcie pomiarów, należy upewnić się, że wszystkie urządzenia są odpowiednio skalibrowane i przystosowane do zakresu mocy transformatora, co zapewni dokładność wyników. Ponadto, pomiary powinny być przeprowadzane w warunkach stabilnych, aby uniknąć zakłóceń mogących wpływać na dokładność odczytów. Takie procedury mogą być kluczowe dla oceny stanu technicznego transformatora oraz jego efektywności energetycznej.

Pytanie 39

Jakim rodzajem wyłączników nadprądowych powinien być zabezpieczony obwód zasilania silnika klatkowego trójfazowego, którego parametry znamionowe to: PN = 11 kW, UN = 400 V, cos φ = 0,73, η = 80%?

A. S303 C20
B. S303 C40
C. S303 C25
D. S303 C32
Poprawna odpowiedź to S303 C32, ponieważ w przypadku obwodu zasilania trójfazowego silnika klatkowego o mocach znamionowych 11 kW i napięciu 400 V, należy obliczyć prąd roboczy silnika. Prąd ten można wyznaczyć ze wzoru: I = P / (√3 * U * cos φ), co daje wartość około 18,5 A. Z uwagi na istotne zmiany w obciążeniu oraz do ochrony przed przeciążeniem i zwarciem, stosuje się wyłączniki nadprądowe, które powinny mieć wartość znamionową prądu nie niższą niż 125% prądu roboczego silnika. W tym przypadku 125% z 18,5 A to 23,125 A, co wskazuje na to, że wyłącznik S303 C25 (25 A) byłby niewystarczający. Wyłącznik S303 C32 z wartością 32 A jest odpowiedni, ponieważ zapewnia odpowiedni margines bezpieczeństwa. Tego typu wyłączniki są szeroko stosowane w przemyśle i są zgodne z normami EN 60947-2, co zapewnia ich wysoką jakość i niezawodność.

Pytanie 40

Jakim przyrządem należy przeprowadzić bezpośredni pomiar mocy biernej?

A. Częstościomierza
B. Watomierza
C. Waromierza
D. Fazomierza
Waromierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy biernej w obwodach prądu zmiennego. Działa na zasadzie pomiaru wartości mocy w układzie, w którym występuje przesunięcie fazowe między napięciem a prądem. Odpowiednią wartość mocy biernej można określić, wykorzystując wzór P = V * I * cos(ϕ), gdzie P to moc pozorna, a ϕ to kąt przesunięcia fazowego. Waromierz jest szczególnie przydatny w zastosowaniach przemysłowych, gdzie występują silniki elektryczne i inne urządzenia indukcyjne, które generują moc bierną. W praktyce, pomiar mocy biernej jest kluczowy dla optymalizacji efektywności energetycznej oraz dla zapobiegania nadmiernym kosztom związanym z opłatami za moc bierną. Przykładem zastosowania waromierza może być analiza obciążeń w zakładzie produkcyjnym, gdzie identyfikacja mocy biernej pozwala na odpowiednie dostosowanie charakterystyk urządzeń do potrzeb sieci energetycznej.