Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 19 grudnia 2025 12:32
  • Data zakończenia: 19 grudnia 2025 13:04

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Terminologie takie jak Fullband, Twin, Quad, Monoblock odnoszą się do

A. rozgałęźników antenowych
B. filtrów
C. multiswitchów
D. konwerterów satelitarnych
Wybór odpowiedzi dotyczącej multiswitchów, filtrów lub rozgałęźników antenowych wskazuje na pewne nieporozumienie związane z terminologią i funkcjami tych urządzeń. Multiswitch to urządzenie, które pozwala na podłączenie wielu tunerów do jednego źródła sygnału satelitarnego. Nie jest to jednak konwerter, a raczej element, który dystrybuuje sygnał z konwertera do kilku odbiorników. Filtry są używane w systemach antenowych do eliminacji niepożądanych częstotliwości, a ich rola jest zupełnie inna niż konwertera, który ma za zadanie przekształcenie sygnału. Rozgałęźniki antenowe działają na podobnej zasadzie jak multiswitch, pozwalając na podział sygnału z jednego źródła na kilka urządzeń, ale nie mają zdolności przekształcania sygnału, co jest kluczową funkcją konwerterów. Wybierając niewłaściwy termin, można mylić funkcjonalności urządzeń, co prowadzi do błędnych decyzji przy projektowaniu systemów satelitarnych. Ważne jest, aby dokładnie zrozumieć rolę każdego z tych komponentów, aby prawidłowo skonfigurować system i zapewnić jego prawidłowe działanie. W kontekście projektowania i instalacji systemów satelitarnych, ignorowanie specyfiki poszczególnych urządzeń może prowadzić do poważnych problemów związanych z jakością sygnału oraz zadowoleniem klienta.

Pytanie 2

Materiał przedstawiony na ilustracji służy do

Ilustracja do pytania
A. wykonywania połączeń elastycznych.
B. naprawy ekranu w kablach koncentrycznych.
C. usuwania spoiwa lutowniczego.
D. wzmacniania ścieżek drukowanych.
Materiał przedstawiony na ilustracji to plecionka do desolderingu, znana również jako "SOLDER REMOVER", która jest kluczowym narzędziem w procesie lutowania i usuwania spoiw lutowniczych. Użycie tej plecionki polega na umieszczeniu jej na obszarze, z którego chcemy usunąć cynę, a następnie podgrzaniu za pomocą lutownicy. W wyniku tego procesu cyna wnika w plecionkę, co pozwala na jej efektywne usunięcie z płytki drukowanej. Stosowanie tej metody jest zgodne z najlepszymi praktykami w elektronice, jako że minimalizuje ryzyko uszkodzenia podzespołów. Oprócz usuwania nadmiaru cyny, plecionki do desolderingu są również stosowane w przypadku naprawy elementów, które zostały źle wlutowane. Warto również dodać, że istnieją różne rodzaje plecionek, które różnią się średnicą oraz materiałem, co pozwala na dostosowanie narzędzia do specyficznych potrzeb naprawczych. Znajomość technik usuwania spoiwa lutowniczego jest kluczowa dla każdego technika elektronika, gdyż skutkuje to lepszą jakością wykonania połączeń oraz dłuższą żywotnością urządzeń elektronicznych.

Pytanie 3

Jaką rolę w systemie antenowym TV-SAT odgrywa konwerter?

A. Zwiększa i przekształca częstotliwość sygnału z anteny.
B. Dostarcza antenie napięcie stałe.
C. Dostarcza antenie napięcie przemienne.
D. Tłumi i zmienia częstotliwość sygnału antenowego.
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji konwertera w instalacji antenowej. Przykładowo, zasilać antenę napięciem przemiennym jest niepoprawne, ponieważ konwerter zasilany jest napięciem stałym, co jest typowe dla technologii satelitarnych. Zasila go odbiornik, który przesyła odpowiednie napięcie zasilające przez kabel koncentryczny. Odpowiedzi dotyczące tłumienia sygnału są również mylące; konwerter nie tłumi sygnału, ale go wzmacnia. Tłumienie sygnału jest zjawiskiem negatywnym, które objawia się spadkiem jakości sygnału, co jest przeciwieństwem działania konwertera. W rzeczywistości konwerter powinien maksymalizować jakość sygnału, aby zapewnić wydajność odbioru. Właściwe zrozumienie funkcji konwertera jest ważne dla efektywnego zaprojektowania systemu antenowego. W praktyce, nieprawidłowe wybory komponentów lub ich nieodpowiednie instalacje mogą prowadzić do znacznego obniżenia jakości odbioru telewizji satelitarnej. Kluczowe jest zatem zaznajomienie się z zasadami działania konwertera oraz jego właściwościami, aby uniknąć typowych błędów w instalacjach satelitarnych.

Pytanie 4

Jak określa się poziom sygnału w gniazdku abonenckim telewizji naziemnej?

A. dBmA
B. dBµΩ
C. dBmW
D. dBµV
Poprawna odpowiedź to dBµV, co oznacza decybele mikrovoltów. Jest to jednostka miary, która pozwala na określenie poziomu sygnału w systemach telekomunikacyjnych, w tym w telewizji naziemnej. Wartość poziomu sygnału w dBµV jest kluczowa dla oceny jakości odbioru sygnału telewizyjnego, gdyż zbyt niski poziom może prowadzić do zakłóceń w odbiorze, a w rezultacie do utraty jakości obrazu i dźwięku. Z przeprowadzonych badań wynika, że optymalny poziom sygnału w gniazdku abonenckim powinien wynosić od 60 do 80 dBµV, co zapewnia stabilny odbiór sygnału bez zakłóceń. W praktyce, technicy często korzystają z mierników sygnału, które umożliwiają precyzyjne określenie poziomu sygnału w dBµV, co jest niezbędne podczas instalacji i konserwacji systemów antenowych. Zgodnie z normami branżowymi, monitorowanie poziomu sygnału w tej jednostce jest standardem w projektowaniu i eksploatacji infrastruktury telewizyjnej.

Pytanie 5

Skracający się czas działania urządzenia zasilanego przez UPS wskazuje na

A. konieczność wymiany akumulatora w zasilaczu awaryjnym UPS
B. awarię zabezpieczenia przeciążeniowego zasilacza awaryjnego UPS
C. nieprawidłowe podłączenie zasilacza awaryjnego UPS do urządzenia
D. utracenie pojemności kondensatorów w zasilaczu awaryjnym UPS
Zmniejszający się czas podtrzymywania pracy urządzenia przez zasilacz awaryjny UPS jest sygnałem, że akumulator wymaga wymiany. Akumulatory w zasilaczach UPS mają ograniczoną żywotność, która jest zazwyczaj określana na 3-5 lat, w zależności od warunków użytkowania i jakości samego akumulatora. Z czasem ich pojemność maleje, co prowadzi do krótszego czasu działania urządzenia przy zasilaniu awaryjnym. Przykładowo, jeśli system UPS, który wcześniej działał przez 30 minut, teraz działa tylko przez 10 minut, jest to wskazanie, że akumulator stracił swoją efektywność i powinien zostać wymieniony. Regularne testowanie akumulatorów i monitorowanie ich stanu jest zalecane w ramach dobrych praktyk zarządzania energią, w zgodzie z normami takimi jak IEC 62040. Wymiana akumulatorów na czas zapewnia nieprzerwaną ochronę przed przerwami w zasilaniu, co jest kluczowe w wielu zastosowaniach, zwłaszcza w centrach danych czy systemach krytycznych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Co należy zrobić, gdy pracownik omdleje w źle wentylowanej pracowni elektronicznej?

A. położyć poszkodowanego na plecach, umieścić zimny kompres na czole i monitorować tętno
B. wynieść poszkodowanego na świeże powietrze i ułożyć go na brzuchu
C. wynieść poszkodowanego na świeże powietrze, położyć na plecach i unieść kończyny w górę
D. ustawić poszkodowanego w pozycji siedzącej i dać mu wodę do picia
Odpowiedź sugerująca wyniesienie poszkodowanego na świeże powietrze, ułożenie go na plecach oraz uniesienie kończyn jest poprawna z kilku powodów. Omdlenie często jest wynikiem obniżonego ciśnienia krwi, co prowadzi do niedotlenienia mózgu. Dlatego kluczowe jest jak najszybsze zapewnienie dostępu świeżego powietrza, co zwiększa ilość tlenu dostarczanego do organizmu. Ułożenie poszkodowanego na plecach z uniesionymi nogami wspomaga krążenie krwi i przywraca prawidłowe ciśnienie w organizmie. W praktyce, tak postępowanie jest zgodne z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie pozycji leżącej w przypadku omdlenia. Ważne jest również monitorowanie stanu poszkodowanego, aby w razie potrzeby móc szybko zareagować. Przykładem może być sytuacja, w której pracownik w warsztacie elektronicznym doświadcza omdlenia z powodu wysokiej temperatury oraz braku wentylacji. W takich okolicznościach szybkie działanie może uratować życie.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Którego przyrządu należy użyć do sprawdzenia poprawności połączeń okablowania sieci komputerowej?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Odpowiedź B jest trafna, bo żeby sprawdzić, czy wszystko w sieci komputerowej chodzi jak należy, korzysta się z testera kabli. Taki tester pomaga zobaczyć, które przewody są połączone dobrze, a które mogą mieć jakieś przerwy czy zwarcia. Na przykład, jak podłączysz tester do kabla, to pokaże Ci, jakie żyły działają oraz czy sygnał przechodzi przez wszystkie potrzebne linie. Gdy mówimy o standardach jak TIA/EIA-568-A/B, to tester kabli jest mega ważny, bo dzięki niemu można być pewnym, że instalacja spełnia normy do przesyłu danych. W sumie dobrze jest mieć taki tester po każdym etapie instalacji, bo można wtedy wcześnie wyłapać błędy, co w przyszłości ułatwi życie i obniży koszty związane z naprawami. Z mojego doświadczenia, używanie testera pozwala zaoszczędzić sporo czasu i nerwów przy tworzeniu sieci.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Na podstawie dołączonej tabeli błędów testu POST BIOS-u firmy AMI określ, który element uniemożliwia uruchomienie komputera, jeżeli wydaje on 3 krótkie sygnały dźwiękowe.

Kod dźwiękowyZnaczenie
1 krótkibłąd odświeżania pamięci RAM
2 krótkiebłąd parzystości pamięci RAM
3 krótkiebłąd pierwszych 64 kB pamięci RAM
4 krótkiebłąd zegara systemowego
5 krótkichbłąd procesora
6 krótkichbłąd kontrolera klawiatury
7 krótkichbłąd trybu wirtualnego procesora
8 krótkichbłąd wejścia/wyjścia pamięci karty graficznej
9 krótkichbłąd sumy kontrolnej biosu
10 krótkichbłąd pamięci CMOS
11 krótkichbłąd pamięci podręcznej cache procesora
1 długi, 2 krótkiebłąd karty graficznej
1 długi, 3 krótkiebłąd pamięci RAM
1 długi, 8 krótkichproblem z wyświetlaniem obrazów przez kartę graficzną
ciągły sygnałbrak pamięci w bankach lub brak podłączonej karty graficznej
1 długizakończony pomyślnie test post
A. Karta sieciowa.
B. Pamięć operacyjna.
C. Zegar systemowy.
D. Karta graficzna.
Odpowiedź "Pamięć operacyjna" jest poprawna, ponieważ zgodnie z dokumentacją BIOS-u AMI, trzy krótkie sygnały dźwiękowe oznaczają problem z pamięcią RAM, konkretnie z pierwszymi 64 kB tej pamięci. To krytyczny obszar, który jest niezbędny do podstawowej funkcjonalności systemu operacyjnego oraz uruchomienia samego komputera. W praktyce, jeśli komputer nie może uzyskać dostępu do pamięci operacyjnej w tej części, nie jest w stanie zainicjować systemu ani wykonywać żadnych innych operacji. Diagnostyka błędów pamięci RAM jest istotnym krokiem przy uruchamianiu nowych systemów, a także przy naprawie istniejących. Dlatego ważne jest, aby regularnie monitorować stan pamięci RAM, stosując odpowiednie narzędzia diagnostyczne, które mogą pomóc w identyfikacji problemów przed ich eskalacją. Zrozumienie tego błędu jest kluczowe, aby uniknąć potencjalnych przestojów i kosztownych napraw.

Pytanie 12

Który z wymienionych parametrów nie odnosi się do odbiorników radiowych?

A. Moc wejściowa
B. Selektywność
C. Moc wyjściowa
D. Czułość
Moc wejściowa to parametr, który nie charakteryzuje odbiorników radiowych, ponieważ odnosi się do źródła sygnału, a nie do samego urządzenia odbiorczego. Odbiorniki radiowe są projektowane do przetwarzania sygnałów radiowych, a ich ważnymi parametrami są czułość, selektywność i moc wyjściowa. Czułość definiuje zdolność odbiornika do wykrywania słabych sygnałów, co jest kluczowe w przypadku odbioru stacji oddalonych od nadajnika. Selektywność odnosi się do zdolności odbiornika do rozróżniania różnych częstotliwości, co pozwala na odbieranie konkretnego sygnału w obecności szumów i innych sygnałów. Moc wyjściowa natomiast opisuje, jak mocny sygnał jest dostarczany do głośnika lub innego urządzenia wyjściowego. Każdy z tych parametrów jest istotny w kontekście jakości odbioru sygnału radiowego, a ich zrozumienie jest kluczowe dla inżynierów i techników zajmujących się projektowaniem i eksploatacją systemów radiowych.

Pytanie 13

Na rysunku przedstawiono

Ilustracja do pytania
A. wtórnik emiterowy.
B. układ wspólnej bazy.
C. układ Darlingtona.
D. wzmacniacz przeciwsobny.
W analizowanym pytaniu, niepoprawne odpowiedzi wskazują na powszechnie występujące nieporozumienia dotyczące różnych konfiguracji tranzystorów. Układ wspólnej bazy, mimo że również jest stosowany w układach wzmacniających, charakteryzuje się zupełnie innym schematem połączeń niż układ Darlingtona. W układzie wspólnej bazy, baza tranzystora jest wspólna dla obu sygnałów, co skutkuje mniejszym wzmocnieniem prądowym i innymi charakterystykami wejściowymi. Z kolei wtórnik emiterowy, znany z niskiego wzmocnienia napięciowego, nie jest odpowiedni w kontekście wymagania o dużym wzmocnieniu prądowym, które oferuje układ Darlingtona. Na koniec, wzmacniacz przeciwsobny, który bazuje na przeciwstawnych sygnałach na dwóch tranzystorach, działa na zupełnie innej zasadzie i nie jest stosowany w celu uzyskania wysokiego wzmocnienia prądowego. Błędem myślowym jest utożsamienie różnych konfiguracji tranzystorowych ze względu na ich ogólną funkcjonalność bez uwzględnienia różnic w połączeniach i charakterystyce działania. Zrozumienie różnic między tymi układami jest kluczowe dla prawidłowego stosowania ich w praktyce inżynieryjnej.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W celu wymiany wtyku kompresyjnego typu F należy zastosować narzędzie

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Jak wybierzesz coś innego niż C, to możesz się łatwo pogubić w tym, jakie narzędzia są potrzebne do wymiany wtyków kompresyjnych. Często ludzie myślą, że mogą używać narzędzi, które nie są do tego przeznaczone. Na przykład, jak weźmiesz jakieś ręczne narzędzia, które nie są przystosowane do wtyków F, to mogą być kłopoty z zaciskiem. To wszystko prowadzi do luźnych połączeń, a przez to sygnał się psuje i jakość przesyłu też spada. Co więcej, jeśli użyjesz złego narzędzia, to może nie dać mocej nacisku, a to jest kluczowe, żeby połączenie było solidne. No i wiesz, inne narzędzia mają zupełnie inną konstrukcję, więc w tym kontekście w ogóle się nie sprawdzą. Pamiętaj, że są określone standardy dotyczące narzędzi do konkretnych zadań, a ich ignorowanie może nastręczać problemów całym systemom telekomunikacyjnym. Dlatego lepiej mieć na uwadze, że zły wybór narzędzia może wpłynąć na jakość połączenia i na długoterminową niezawodność systemu.

Pytanie 16

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. pasty lutowniczej
B. ołowiu
C. kalafonii
D. cyny
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 17

Ochrona podstawowa (przed bezpośrednim kontaktem) w urządzeniach elektrycznych polega na użyciu

A. transformatora separującego
B. izolowania części czynnych
C. bezpieczników topikowych
D. wyłączników nadprądowych
Izolowanie części czynnych jest podstawowym środkiem ochrony przed dotykiem bezpośrednim w urządzeniach elektrycznych, co oznacza, że wszystkie elementy, które mogą być pod napięciem, są oddzielone od dostępnych powierzchni, które mogą być dotykane przez użytkowników. Taki sposób ochrony jest kluczowy, ponieważ minimalizuje ryzyko przypadkowego kontaktu z napięciem oraz potencjalne porażenie prądem. Zastosowanie izolacji w praktyce obejmuje np. użycie obudów wykonanych z materiałów dielektrycznych oraz odpowiedniego projektowania urządzeń, które uniemożliwiają dostęp do części czynnych. W kontekście norm, takich jak IEC 61140, izolacja jest podkreślona jako podstawowy aspekt bezpieczeństwa elektrycznego. Warto również dodać, że izolacja ma różne klasyfikacje, co pozwala na dostosowanie stopnia ochrony do specyficznych warunków pracy urządzenia, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 18

Zastosowanie uszkodzonych bezpieczników, zastępując je bezpiecznikami o większej wartości prądu znamionowego, może prowadzić do

A. większego zużycia energii
B. większego zużycia mocy
C. przeciążenia oraz zniszczenia instalacji
D. wzrostu napięcia źródła zasilania
Rozumiem, że zwiększony pobór energii, wzrost napięcia zasilającego oraz większy pobór mocy wydają się mieć sens, ale to nie do końca tak działa w przypadku zmiany bezpieczników. Bezpiecznik nie kontroluje poboru energii, a tylko ochrania obwód przed przeciążeniem. Kiedy wstawisz bezpiecznik o wyższej wartości, urządzenia mogą się kręcić z większym prądem, ale to nie zawsze oznacza, że pobór energii wzrośnie. Co do wzrostu napięcia zasilającego, to też nie jest efekt zmiany bezpiecznika – napięcie zasilające jest ustalone przez źródło. A to, że pobór mocy wzrasta przy wyższym prądzie, to już inna bajka, ale nie jest bezpośrednio związane z bezpiecznikiem. Pamiętaj, że niewłaściwy bezpiecznik może namieszać w systemie elektrycznym i dlatego tak ważne jest trzymanie się zasad doboru zabezpieczeń wedle ich wartości znamionowych. Zmiany w zabezpieczeniach powinny być dobrze przemyślane, bo chodzi o bezpieczeństwo ludzi i trwałość instalacji. Z doświadczenia wiem, że zawsze warto przestrzegać norm i zasad branżowych, żeby uniknąć problemów i zagrożeń.

Pytanie 19

Co należy zrobić jako pierwsze, gdy u pacjenta występuje zatrzymanie akcji serca oraz brak oddechu?

A. podać leki
B. wykonać sztuczne oddychanie oraz masaż serca
C. sprawdzić drożność dróg oddechowych
D. umożliwić położenie na boku
W sytuacji zatrzymania akcji serca oraz braku oddechu najważniejsze jest, aby w pierwszej kolejności sprawdzić drożność dróg oddechowych. Bez zapewnienia drożności dróg oddechowych, nie będzie możliwe skuteczne przeprowadzenie wentylacji ani masażu serca, ponieważ niewłaściwie ukierunkowane powietrze nie dotrze do płuc. W praktyce, podczas udzielania pierwszej pomocy, należy niezwłocznie unikać wszelkich przeszkód, które mogą blokować drogi oddechowe, takich jak język, wymioty czy inne ciała obce. W standardach resuscytacji, takich jak wytyczne American Heart Association (AHA), kluczowym krokiem jest ocena i otwarcie dróg oddechowych, co powinno być zrealizowane poprzez zastosowanie manewru uniesienia podbródka lub przechylenia głowy do tyłu. Przykładem zastosowania tej zasady jest sytuacja, w której ratownik wykonuje te czynności przed przystąpieniem do udzielania sztucznego oddychania, co może znacząco zwiększyć szanse na przeżycie osoby poszkodowanej.

Pytanie 20

Jakim urządzeniem należy się posłużyć, aby zmierzyć amplitudę sygnału z generatora taktującego mikroprocesorowy układ o częstotliwości f = 25 MHz?

A. Częstościomierzem o maksymalnym zakresie 50 MHz
B. Woltomierzem prądu zmiennego o wewnętrznej rezystancji 100 kOhm/V
C. Amperomierzem prądu zmiennego z rezystorem szeregowym 10 kOhm
D. Oscyloskopem o podstawie czasu 100 ns/cm
Pomiary amplitudy przebiegu sygnału z generatora taktującego o częstotliwości 25 MHz przy pomocy woltomierza prądu zmiennego o rezystancji wewnętrznej 100 kOhm/V nie są odpowiednie, ponieważ woltomierze nie są przeznaczone do pomiarów sygnałów o tak dużych częstotliwościach. Woltomierz może nie zarejestrować pełnej amplitudy sygnału, zwłaszcza w przypadku sygnałów o wysokiej częstotliwości, ze względu na swoje ograniczenia pasmowe, co prowadzi do znacznie zaniżonych wyników pomiarów. Podobnie, użycie amperomierza prądu zmiennego z szeregowym rezystorem 10 kOhm jest niewłaściwe, ponieważ amperomierze są zaprojektowane do pomiaru natężenia prądu, a nie napięcia, co w kontekście analizy sygnałów cyfrowych jest nieodpowiednie. Dodatkowo, szeregowe połączenie z rezystorem może wpływać na działanie układu, wprowadzając dodatkowe straty i zmieniając charakterystykę obwodu. Na koniec, częstościomierz o maksymalnym zakresie 50 MHz teoretycznie mógłby być użyty do określenia częstotliwości, lecz nie dostarczyłby żadnych informacji na temat amplitudy sygnału, co jest kluczowe w analizie sygnałów cyfrowych. Typowe błędy myślowe to przekonanie, że jakiekolwiek urządzenie do pomiarów elektrycznych nadaje się do pomiaru amplitudy sygnału o wysokiej częstotliwości, co jest niezgodne z zasadami inżynierii elektronicznej. Praktyką w takich sytuacjach jest zawsze wybór sprzętu dostosowanego do specyfikacji sygnału, co jest fundamentalne dla uzyskania rzetelnych wyników.

Pytanie 21

Przedstawione na zdjęciu narzędzie stosuje się do zaciskania

Ilustracja do pytania
A. wtyków BNC.
B. złączy RJ45.
C. złączy konektorowych.
D. końcówek cinch.
Wybór odpowiedzi dotyczący końcówek cinch, wtyków BNC czy złączy RJ45 wskazuje na pewne nieporozumienia dotyczące właściwego zastosowania narzędzi w elektronice. Każde z tych złączy wymaga nieco innego podejścia, co jest związane z ich konstrukcją oraz zasadą działania. Końcówki cinch, znane również jako RCA, wykorzystują mechanizmy wtykowe, które nie wymagają zaciskania, a jedynie połączenia wtyku z gniazdem. Z kolei wtyki BNC, popularne w systemach telewizyjnych i wideo, również korzystają z połączenia typu twist-lock, przez co nie wymagają zastosowania narzędzi zaciskowych. Złącza RJ45, używane w sieciach komputerowych, wymagają specyficznych narzędzi do zaciskania, które są przeznaczone do pracy z przewodami skrętkowymi, a nie z narzędziem przedstawionym na zdjęciu. Wybierając niewłaściwe narzędzie do zaciskania, można narazić się na nieprawidłowe połączenia, co prowadzi do problemów z jakością sygnału czy też awarii systemów. Zrozumienie specyfiki narzędzi i złączy jest kluczowe dla właściwego wykonywania prac w dziedzinie elektroniki i telekomunikacji.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

W regulatorze PID podwojono stałą czasową Ti (czas całkowania), co skutkuje

A. zmniejszeniem stabilności układu
B. wzrostem amplitudy oscylacji
C. brakiem zmian w czasie regulacji
D. wydłużeniem czasu regulacji
Zwiększenie stałej czasowej Ti, która odpowiada za czas całkowania w regulatorze PID, bezpośrednio wpływa na wydłużenie czasu regulacji. Stała Ti jest kluczowym parametrem, który określa, jak szybko regulator będzie integrował błąd w systemie. Kiedy Ti jest większe, to regulator będzie wolniej reagował na zmiany w błędzie, co prowadzi do dłuższego czasu odpowiedzi na zakłócenia. W praktyce oznacza to, że system będzie potrzebował więcej czasu na osiągnięcie zadanego poziomu, co jest szczególnie istotne w aplikacjach wymagających precyzyjnej kontroli, takich jak automatyka przemysłowa czy systemy HVAC. Wartości Ti powinny być dostosowywane zgodnie z wymaganiami procesu, a ich nadmierne zwiększenie może prowadzić do opóźnień w reakcji systemu, co jest niekorzystne. W kontekście projektowania systemów automatyki, należy stosować metody dostrajania parametrów PID, takie jak metoda Zieglera-Nicholsa, aby uzyskać optymalne wartości Ti, co pozwoli na efektywniejszą regulację.

Pytanie 24

W tabeli przedstawiono fragment danych technicznych kamery IP. W jakim maksymalnym zakresie temperatur może ona pracować?

Dane techniczne
Przetwornik1/3" 2 MP PS CMOS
Rozdzielczość2 Mpx, 1920 x 1080 pikseli
Czułość0,01 lux/F 1,2, 0 lux (IR LED ON)
Obiektyw3,6 mm
Oświetlacz35 diod ⌀5 IR LED (zasięg 20 m)
Stosunek sygnału do szumu>50 dB (AGC OFF)
Kompresja wideoH.264/MJPEG/MPEG4
Prędkość i rozdzielczość przetwarzania25 kl/s @ 1920×1080 (2 Mpx)
Strumienietransmisja strumienia głównego: 2 Mpx / 720 p (25 kl/s)
transmisja strumienia pomocniczego: D1/CIF (25 kl/s)
Bitrate32 K ~ 8192 Kbps (H.264), 32 K ~ 12288 Kbps (MJPEG)
UstawieniaAWB, ATW, AGC, BLC, DWDR, 3DNR, HLC, MIR
Dzień / NocICR
Ethernet10/100 Base-T PoE 802.3af
Wsparcie dla protokołówOnvif, PSIA, CGI
Obsługiwane protokołyIPv4/IPv6, HTTP, HTTPS, SSL, TCP/IP, UDP, UPnP, ICMP, IGMP, SNMP, RTSP, RTP, SMTP, NTP, DHCP, DNS, PPPOE, DDNS, FTP, IP Filter, QoS, Bonjour
Klasa szczelnościIP66
Zacisk przewodu ochronnegoTAK
ZasilanieDC 12 V (gniazdo 5,5/2,1) lub PoE 48 V (802.3af)
Wilgotność0 ~ 95%
Temperatura pracy-20°C ~ 60°C
Waga650 g
Wymiary70x66x160 mm
A. Od 0°C do +40°C
B. Od -30°C do +80°C
C. Od -20°C do +60°C
D. Od -10°C do +40°C
Odpowiedź "Od -20°C do +60°C" jest poprawna, ponieważ w tabeli danych technicznych kamery IP zawarto dokładny zakres temperatury, w jakim urządzenie może niezawodnie funkcjonować. Wartości te są kluczowe dla użytkowników, którzy planują zastosowanie kamery w różnorodnych warunkach środowiskowych. Na przykład, kamery pracujące w temperaturach poniżej zera, takie jak -20°C, są szczególnie przydatne w systemach monitoringu w rejonach o ostrym klimacie. Z kolei górny limit +60°C może być istotny w miejscach narażonych na intensywne nasłonecznienie. Przestrzeganie tych parametrów zapewnia nie tylko prawidłowe działanie, ale również wydłuża żywotność sprzętu, co jest zgodne z najlepszymi praktykami branżowymi, które sugerują, aby zawsze operować w zalecanych przez producenta zakresach temperatur. W przypadku przekroczenia tych wartości, ryzykujemy uszkodzenie podzespołów, co może prowadzić do awarii systemu monitoringu. Zrozumienie zakresu temperatury pracy jest więc kluczowe dla efektywności i niezawodności monitoringu w różnych warunkach zewnętrznych.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

W trakcie serwisowania, dotyczącego wylutowywania komponentów elektronicznych w wzmacniaczu dźwiękowym, pracownik powinien mieć

A. fartuch bawełniany
B. rękawice ochronne
C. okulary ochronne
D. buty na izolowanej podeszwie
Fartuch bawełniany jest kluczowym elementem odzieży ochronnej podczas prac serwisowych w elektronice, w tym wylutowywaniu podzespołów elektronicznych. Jego główną funkcją jest ochrona użytkownika przed zanieczyszczeniem, odpadami chemicznymi oraz drobnymi elementami, które mogą być uwolnione podczas prac serwisowych. Fartuch bawełniany jest wykonany z materiału, który jest odporny na wysoką temperaturę, co jest istotne, gdy używamy lutownicy lub innych narzędzi wymagających wysokiej temperatury. Dodatkowo, bawełna jest materiałem przewiewnym, co zapewnia komfort podczas długotrwałej pracy. Ponadto, zgodnie z normami BHP, fartuch powinien być odpowiednio zapinany oraz wystarczająco długi, aby chronić ciało przed potencjalnymi uszkodzeniami. W praktyce stosowanie fartucha bawełnianego jest zgodne z zaleceniami dotyczącymi zasad bezpieczeństwa w miejscu pracy, co znacząco zmniejsza ryzyko wystąpienia urazów.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Przedstawiony przyrząd służy do sprawdzania instalacji

Ilustracja do pytania
A. LAN
B. TV
C. WIFI
D. CCTV
Odpowiedź "LAN" jest poprawna, ponieważ przedstawiony przyrząd to tester kabli sieciowych, który jest niezbędny w kontekście instalacji lokalnych sieci komputerowych. Tester ten pozwala na sprawdzenie ciągłości połączeń oraz identyfikację ewentualnych uszkodzeń w kablach Ethernet, które są kluczowe dla funkcjonowania sieci LAN (Local Area Network). Przykładowo, w biurach lub domach, gdzie zainstalowane są różne urządzenia korzystające z internetu, tester LAN umożliwia szybkie zdiagnozowanie problemów z połączeniem, co jest istotne dla utrzymania efektywności pracy. Wykorzystanie takiego urządzenia jest zgodne z branżowymi standardami, które zalecają regularne sprawdzanie infrastruktury sieciowej w celu zapewnienia jej niezawodności. Tester kabli jest również przydatny podczas instalacji, gdyż pozwala na upewnienie się, że wszystkie połączenia są prawidłowe, co zapobiega przyszłym problemom z dostępem do sieci.

Pytanie 30

Który z poniższych czynników może powodować zakłócenia w odbiorze sygnału radiowego w pasmie fal UKF?

A. Wysokie ciśnienie powietrza
B. Niska temperatura otoczenia
C. Działający silnik elektryczny
D. Źródło promieniowania podczerwonego
Pracujący silnik elektryczny może być źródłem zakłóceń w odbiorze sygnału radiowego w zakresie fal UKF (Ultra Krótkich Fal). Dzieje się tak z powodu emisji elektromagnetycznych, które pojawiają się podczas pracy silnika. Silniki elektryczne, zwłaszcza te z komutatorem, generują zakłócenia w postaci szumów, które mogą interferować z sygnałami radiowymi. Przykładem zastosowania tego zjawiska jest konieczność stosowania filtrów przeciwzakłóceniowych w instalacjach radiowych, aby zminimalizować wpływ takich źródeł na odbiór sygnału. Zgodnie z normami ETSI (Europejski Instytut Norm Telekomunikacyjnych), urządzenia radiowe powinny spełniać określone wymagania dotyczące odporności na zakłócenia elektromagnetyczne, a także emisji własnej, co pozwala na zapewnienie wysokiej jakości sygnału. Dodatkowo, w praktyce inżynierskiej często zaleca się przeprowadzanie pomiarów zakłóceń w środowiskach, gdzie znajdują się silniki elektryczne, aby określić ich wpływ na systemy komunikacyjne oraz wprowadzić odpowiednie środki ochronne.

Pytanie 31

Aby zmierzyć współczynnik zawartości harmonicznych na wyjściu wzmacniacza audio, co należy wykorzystać?

A. wobuloskop
B. oscyloskop
C. miernik zniekształceń nieliniowych
D. rejestrator przebiegów elektrycznych
Wobuloskop, oscyloskop oraz rejestrator przebiegów elektrycznych to urządzenia, które mają swoje specyficzne zastosowania w pomiarach elektrycznych, jednak nie są one najlepszymi narzędziami do analizy zniekształceń nieliniowych w sygnałach audio. W przypadku wobuloskopu, jego główną funkcją jest analiza widmowa, co oznacza, że skupia się na częstotliwościach, a nie na szczegółowym pomiarze zniekształceń harmonicznych. Oscyloskop, mimo że potrafi wizualizować przebieg sygnału, nie jest w stanie dostarczyć precyzyjnych danych na temat zniekształceń, ponieważ jego zastosowanie koncentruje się na obserwacji czasu i amplitudy sygnału. Rejestrator przebiegów elektrycznych jest bardziej użyteczny w kontekście długoterminowego monitorowania sygnałów, ale brakuje mu funkcji analitycznych koniecznych do pomiaru zniekształceń. Często pojawia się mylna koncepcja, że ogólne pomiary sygnału wystarczą do oceny jakości audio, co prowadzi do nieprawidłowych wniosków. W rzeczywistości, aby dokładnie zmierzyć współczynnik zniekształceń w dźwięku, konieczne jest zastosowanie narzędzi, które zostały specjalnie zaprojektowane do tego celu, jak miernik zniekształceń nieliniowych, który oferuje szczegółową analizę i precyzyjny wgląd w jakość dźwięku.

Pytanie 32

System RDS (Radio Data System) pozwala na

A. odbiór cyfrowych danych poprzez emisję UKF FM
B. odsłuch z zaawansowanym efektem przestrzennym stereo
C. zdalne włączanie i wyłączanie odbiornika radiowego
D. transmisję informacji tekstowych przez emisję UKF FM
Odpowiedź dotycząca odbioru cyfrowych informacji za pośrednictwem emisji UKF FM jest prawidłowa, ponieważ system RDS (Radio Data System) został zaprojektowany do przesyłania dodatkowych informacji w formie cyfrowej, które mogą być odbierane przez radioodbiorniki wyposażone w tę funkcjonalność. RDS umożliwia nadawanie takich informacji jak nazwa stacji radiowej, tytuł utworu, informacje o ruchu drogowym (TP), a także inne usługi, takie jak Radio Text (RT). Dzięki RDS, słuchacze mogą cieszyć się bardziej interaktywnym doświadczeniem słuchania radia, na przykład widząc na wyświetlaczu radia tytuł piosenki oraz nazwisko wykonawcy. Zastosowanie RDS w standardzie UKF FM znacząco poprawia jakość doświadczeń radiofonicznych, co jest zgodne z ogólnymi trendami w branży mediów, w których wartość dodana dla użytkowników jest kluczowym czynnikiem konkurencyjności. RDS stał się standardem w nowoczesnych systemach radiowych, co podkreśla jego użyteczność i popularność wśród słuchaczy.

Pytanie 33

W systemie wykorzystano przetwornik o rozdzielczości 8-bitowej. Jaka jest wartość rozdzielczości napięciowej, gdy zakres pomiarowy wynosi od 0 V do 2,56 V?

A. 32 mV
B. 10 mV
C. 320 mV
D. 100 mV
Odpowiedź 10 mV jest poprawna, ponieważ rozdzielczość napięciowa przetwornika 8-bitowego można obliczyć, dzieląc zakres napięcia przez liczbę poziomów, które może wygenerować. Przetwornik 8-bitowy ma 2^8 = 256 poziomów, co oznacza, że może reprezentować 256 różnych wartości napięcia w zadanym zakresie. Zakres napięcia wynosi od 0 V do 2,56 V, co daje łączną różnicę równą 2,56 V. Dzieląc ten zakres przez 256 poziomów, otrzymujemy rozdzielczość napięciową równą 2,56 V / 256 ≈ 0,01 V, czyli 10 mV. Taka rozdzielczość jest istotna w aplikacjach wymagających precyzyjnego pomiaru, takich jak systemy pomiarowe, automatyka przemysłowa, czy urządzenia medyczne. Stosowanie przetworników o wysokiej rozdzielczości pozwala na dokładniejsze odwzorowanie sygnałów analogowych, co w praktyce przekłada się na lepszą jakość danych oraz większą efektywność procesów kontrolnych. W związku z tym, wybór odpowiedniego przetwornika, w tym jego rozdzielczości, jest kluczowym krokiem w projektowaniu systemów pomiarowych.

Pytanie 34

W jakiej jednostce mierzy się stosunek poziomu sygnału do szumu MER w systemach telewizyjnych?

A. dB
B. dBA
C. dBµV
D. dBmV
Stosunek poziomu sygnału do szumu (MER - Modulation Error Ratio) w instalacjach telewizyjnych określany jest w decybelach (dB), które stanowią jednostkę miary używaną do wyrażania stosunku dwóch wartości, w tym przypadku mocy sygnału do mocy szumu. Używanie dB jest standardem w telekomunikacji, ponieważ pozwala na wygodne porównywanie poziomów sygnału w różnych warunkach i systemach. Przykładowo, w instalacjach DVB-T (Digital Video Broadcasting - Terrestrial) poprawny MER jest kluczowy dla jakości odbioru sygnału - wartości powyżej 30 dB są zazwyczaj uznawane za satysfakcjonujące. W praktyce, aby osiągnąć odpowiednią jakość sygnału, technicy często korzystają z mierników sygnału, które wskazują wartości MER w dB, co umożliwia szybkie i efektywne diagnozowanie problemów z odbiorem. Dobre praktyki branżowe zalecają regularne monitorowanie tych wartości, co pozwala na wczesne wykrycie problemów z jakością sygnału i szumem, co jest kluczowe dla zapewnienia stabilnej i wysokiej jakości transmisji telewizyjnej.

Pytanie 35

Które z przedstawionych na fotografii narzędzi służy do zaciskania tulejek na końcówkach przewodów elektrycznych?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Odpowiedź A jest poprawna, ponieważ narzędzie przedstawione na fotografii to szczypce do zaciskania tulejek, które są kluczowym elementem w pracy z instalacjami elektrycznymi. Użycie tych szczypiec pozwala na pewne i trwałe połączenie przewodów z końcówkami, co jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności instalacji. Szczypce te są zaprojektowane tak, aby mogły zaciskać tulejki wykonane z różnych materiałów, takich jak miedź czy aluminium, i w różnych rozmiarach, co czyni je uniwersalnym narzędziem w pracy elektryka. W praktyce, aby uzyskać prawidłowe połączenie, najpierw należy odpowiednio przygotować przewód, usuwając izolację na odpowiednią długość, następnie umieścić tulejkę na jego końcu i użyć szczypiec do zaciskania, co zapewnia solidne połączenie, które jest w stanie wytrzymać różne obciążenia. Dobrą praktyką jest także regularne sprawdzanie narzędzi, aby zapewnić ich skuteczność i bezpieczeństwo użytkowania.

Pytanie 36

Na rysunku przedstawiono symbol

Ilustracja do pytania
A. zwrotnicy.
B. separatora.
C. rozgałęźnika.
D. odgałęźnika.
Wybór innej opcji zamiast rozgałęźnika wskazuje na nieporozumienie dotyczące znaczenia i funkcji symboli w schematach elektrycznych. Separator, choć brzmi podobnie, ma zupełnie inną rolę – jest używany do oddzielania różnych materiałów lub sygnałów, ale nie reprezentuje punktu rozgałęzienia przewodów. Odgałęźnik, będący terminem używanym głównie w kontekście sieci telekomunikacyjnych i energetycznych, również nie odnosi się do przedstawionego symbolu, ponieważ jego funkcja związana jest z kierowaniem sygnałów w ramach większej infrastruktury, a nie z rozdzielaniem przewodów w prostych obwodach elektrycznych. Z kolei zwrotnica, która jest urządzeniem stosowanym głównie w kolejnictwie, również nie pasuje do kontekstu elektrycznego, bowiem jej funkcja jest związana z kierowaniem pociągów na odpowiednie tory. Wybór tych odpowiedzi świadczy o typowych błędach myślowych, takich jak mylenie terminów lub brak zrozumienia podstawowych koncepcji związanych z symboliką w schematach. Kluczowe jest zrozumienie, że każdy symbol w schemacie ma swoje specyficzne znaczenie i rolę, co jest fundamentalne dla skutecznego projektowania oraz analizy systemów elektrycznych. W praktyce, niewłaściwe oznaczenie lub zrozumienie symboli może prowadzić do poważnych błędów w instalacji, co podkreśla znaczenie znajomości standardów i reguł stosowanych w branży.

Pytanie 37

Jakim stosunkiem uciśnięć klatki piersiowej do oddechów powinno się prowadzić resuscytację krążeniowo-oddechową u osoby nieprzytomnej, która została porażona prądem elektrycznym i nie oddycha?

A. 2:15
B. 2:30
C. 15:2
D. 30:2
Właściwy stosunek uciśnięć mostka do wentylacji podczas resuscytacji krążeniowo-oddechowej (RKO) dla osoby dorosłej wynosi 30:2. Oznacza to, że wykonujemy 30 uciśnięć klatki piersiowej, a następnie 2 wdechy. Ten protokół odzwierciedla standardy wytycznych opublikowanych przez Europejską Radę Resuscytacji oraz American Heart Association. Uciśnięcia klatki piersiowej mają na celu zapewnienie odpowiedniego przepływu krwi do najważniejszych narządów, w tym serca i mózgu. Prawidłowe tempo uciśnięć wynosi 100-120 na minutę, a ich głębokość powinna wynosić co najmniej 5 cm, co jest kluczowe dla efektywności resuscytacji. Włączenie wentylacji po 30 uciśnięciach jest istotne, aby dostarczyć tlen do płuc, co zwiększa szansę na powrót spontanicznego krążenia. W praktyce, podczas resuscytacji, ważne jest, aby osoba prowadząca RKO nie traciła rytmu i zachowała skupienie, co jest kluczowe dla skuteczności akcji ratunkowej. W sytuacjach, gdy jest więcej niż jedna osoba, warto rotować między wykonawcami, aby uniknąć zmęczenia, które może obniżyć jakość uciśnięć.

Pytanie 38

Przy inspekcji naprawianego urządzenia z aktywnym celownikiem laserowym technik serwisowy może być narażony na

A. krwawienie podskórne
B. wysuszenie skóry dłoni
C. uszkodzenie wzroku
D. poparzenie dłoni
Uszkodzenie wzroku to poważne zagrożenie w przypadku pracy z urządzeniami emitującymi lasery, które są powszechnie stosowane w serwisie technicznym. Promieniowanie laserowe o wysokiej intensywności może prowadzić do trwałych uszkodzeń siatkówki, co w wielu przypadkach kończy się utratą wzroku. Pracownicy serwisowi powinni stosować odpowiednie środki ochrony osobistej, takie jak okulary ochronne przystosowane do danych długości fal laserowych. Ważne jest również, aby przestrzegać standardów bezpieczeństwa, takich jak te określone przez Międzynarodową Organizację Normalizacyjną (ISO) oraz normy OSHA w zakresie bezpieczeństwa pracy z laserami. Użycie celowników laserowych powinno być zawsze poprzedzone oceną ryzyka oraz zapewnieniem odpowiednich warunków pracy, aby zminimalizować ryzyko uszkodzeń. Szkolenia z zakresu bezpieczeństwa pracy z laserami są kluczowe, aby pracownicy byli świadomi zagrożeń oraz umieli skutecznie reagować w sytuacjach awaryjnych. Przykłady zastosowań laserów w serwisie obejmują precyzyjne pomiary, spawanie i cięcie materiałów, gdzie bezpieczeństwo oczu powinno być priorytetem.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.