Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 lutego 2026 08:10
  • Data zakończenia: 19 lutego 2026 08:37

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z przedstawionych oprawek jest oprawką źródła światła dużej mocy, nagrzewającego się do temperatur rzędu 300°C?

Ilustracja do pytania
A. Oprawka III.
B. Oprawka II.
C. Oprawka IV.
D. Oprawka I.
Poprawnie wskazana została oprawka IV, bo jest to ceramiczna oprawka gwintowa przystosowana do pracy z wysokotemperaturowymi źródłami światła dużej mocy. W praktyce chodzi głównie o klasyczne żarówki dużej mocy, halogeny z trzonkiem E27/E40 czy specjalne lampy przemysłowe, które podczas pracy nagrzewają się nawet do około 300°C w strefie trzonka. Korpus tej oprawki wykonany jest z ceramiki (najczęściej porcelany technicznej), która ma bardzo dobrą odporność cieplną, nie ulega deformacji jak tworzywo sztuczne i dobrze znosi długotrwałe nagrzewanie oraz cykle załącz/wyłącz. Zgodnie z dobrymi praktykami i wymaganiami norm PN-EN dotyczących opraw oświetleniowych, do źródeł wysokotemperaturowych nie stosuje się oprawek z tworzyw termoplastycznych, bo te przy takich temperaturach mogłyby się rozmiękczyć, zdeformować, a nawet zwęglić. Ceramiczna oprawka IV ma odpowiednio dobraną izolację, konstrukcję gwintu i styków, żeby zapewnić stabilne połączenie elektryczne oraz odpowiedni odstęp i pełzanie między częściami czynnymi a obudową. Z mojego doświadczenia takie oprawki spotyka się w oprawach warsztatowych, lampach przemysłowych, ogrzewaczach promiennikowych, a także w starych instalacjach z żarówkami 150–200 W, gdzie temperatura klosza i trzonka jest naprawdę spora. W praktyce przy doborze osprzętu zawsze patrzy się na maksymalną temperaturę pracy podaną przez producenta (np. 250°C, 300°C) oraz klasę temperaturową materiału izolacyjnego. Moim zdaniem warto zapamiętać prostą zasadę: tam, gdzie spodziewasz się dużego nagrzewania źródła światła – wybierasz oprawkę ceramiczną o odpowiedniej klasie temperaturowej, taką właśnie jak pokazana na zdjęciu jako oprawka IV.

Pytanie 2

Aby wymienić wadliwy łącznik w instalacji, należy wykonać następujące kroki:

A. wyłączyć napięcie, usunąć uszkodzony łącznik, zweryfikować ciągłość połączeń
B. usunąć uszkodzony łącznik, odłączyć napięcie, sprawdzić ciągłość połączeń
C. wyłączyć napięcie, upewnić się o braku napięcia, wyjąć uszkodzony łącznik
D. podłączyć napięcie, zweryfikować ciągłość połączeń, wyjąć uszkodzony łącznik
Odpowiedź odłączająca napięcie, sprawdzająca brak napięcia, a następnie wymontowująca uszkodzony łącznik jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Odłączenie napięcia przed przystąpieniem do jakiejkolwiek pracy na instalacji elektrycznej jest kluczowe, aby zminimalizować ryzyko porażenia prądem. Sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak tester napięcia, jest niezbędne, aby potwierdzić, że instalacja jest bezpieczna do pracy. Po wykonaniu tych dwóch kroków można bezpiecznie wymontować uszkodzony łącznik. Przykładem praktycznym może być sytuacja, w której technik serwisowy wymienia łącznik w oświetleniu sufitowym. Stosując powyższe kroki, zapewnia sobie bezpieczeństwo oraz minimalizuje ryzyko uszkodzeń innych elementów instalacji. Zgodnie z normami IEC i PN-EN, przestrzeganie tych zasad jest obligatoryjne, aby utrzymać wysokie standardy bezpieczeństwa w pracy z instalacjami elektrycznymi.

Pytanie 3

Którą z wymienionych czynności należy wykonać podczas oględzin instalacji elektrycznej?

A. Wymienić wyłącznik różnicowoprądowy w rozdzielnicy.
B. Sprawdzić wizualnie osprzęt, zabezpieczenia i środki ochrony przeciwporażeniowej.
C. Zmierzyć rezystancję izolacji przewodów.
D. Poprawić mocowanie przewodów w urządzeniach elektrycznych.
Prawidłowo wybrana czynność dotyczy oględzin, czyli podstawowego, wstępnego etapu sprawdzania instalacji elektrycznej. Oględziny zgodnie z dobrą praktyką i normami (np. PN-HD 60364) polegają właśnie na wizualnym sprawdzeniu osprzętu, zabezpieczeń oraz środków ochrony przeciwporażeniowej, bez wykonywania jeszcze jakichkolwiek prac montażowych czy pomiarowych. Chodzi o to, żeby najpierw „rzucić okiem” na całość: czy gniazda, łączniki, obudowy rozdzielnic, przewody, listwy zaciskowe, wyłączniki nadprądowe i różnicowoprądowe są dobrze zamontowane, nieuszkodzone mechanicznie, bez śladów przegrzania, nadpaleń, pęknięć, luzów, prowizorek itp. Moim zdaniem to jest taki etap, na którym doświadczony elektryk już bardzo dużo widzi, zanim w ogóle podłączy miernik. Podczas oględzin sprawdza się też, czy zostały zastosowane właściwe środki ochrony przeciwporażeniowej: czy są odpowiednie przekroje przewodów ochronnych, czy przewody PE i PEN są prawidłowo oznaczone kolorystycznie, czy zaciski ochronne są dokręcone i dostępne, czy obudowy urządzeń klasy I są połączone z przewodem ochronnym, czy zastosowane wyłączniki RCD odpowiadają wymaganiom danej instalacji (prąd znamionowy, prąd różnicowy, typ AC/A/B). Patrzy się również, czy osprzęt ma odpowiedni stopień ochrony IP do miejsca montażu, np. w łazienkach, na zewnątrz, w pomieszczeniach wilgotnych, bo to jest bardzo ważne z punktu widzenia bezpieczeństwa. W praktyce oględziny wykonuje się zawsze przed pomiarami, bo jeżeli coś jest ewidentnie źle zamontowane, uszkodzone albo niezgodne z dokumentacją, to nie ma sensu od razu mierzyć – najpierw trzeba usunąć widoczne usterki. Dobrą praktyką jest też porównanie stanu faktycznego z dokumentacją techniczną i schematami: czy zabezpieczenia są takie, jak wpisano w projekcie, czy obwody są prawidłowo opisane w rozdzielnicy, czy nie ma „samowolek” i dziwnych przeróbek. Takie sumienne oględziny bardzo często pozwalają uniknąć późniejszych problemów eksploatacyjnych, a przede wszystkim zwiększają bezpieczeństwo użytkowników instalacji.

Pytanie 4

Złącze wtykowe przedstawione na rysunku przeznaczone jest do zastosowań w obszarach zagrożonych

Ilustracja do pytania
A. nadmierną wilgotnością.
B. wyziewami żrącymi.
C. wybuchem pyłu.
D. wzrostem temperatury.
Wybór odpowiedzi dotyczący wzrostu temperatury, wyziewów żrących czy nadmiernej wilgotności wskazuje na nieporozumienie dotyczące zastosowania technologii o oznaczeniu "Ex". Złącza wtykowe z tym oznaczeniem nie są projektowane do ochrony przed skutkami wzrostu temperatury, co może dotyczyć innego rodzaju zabezpieczeń, takich jak elementy chłodzące lub izolacje termiczne. Wyziewy żrące, np. kwasy czy inne substancje chemiczne, mogą w rzeczywistości wymagać złączy odpornych na korozję, co jest innym aspektem niż ochronne właściwości oznaczenia Ex. Nadmierna wilgotność to zjawisko, które również nie odnosi się do zagrożeń wybuchowych, lecz może prowadzić do problemów z korozją, co wymaga użycia złączy odpornych na działanie wilgoci. Kluczowym błędem w myśleniu jest utożsamienie złączy Ex z innymi zagrożeniami, które nie są związane z atmosferami wybuchowymi. W kontekście norm i regulacji, należy zrozumieć, że złącza Ex są certyfikowane wyłącznie dla specyficznych warunków pracy, co nie obejmuje pozostałych wymienionych zagrożeń, dlatego ich wybór powinien być ściśle powiązany z rzeczywistymi warunkami panującymi w danym środowisku pracy.

Pytanie 5

Niszczenie części metalowych silnika wskutek zetknięcia się ich z roztworem, mogącym stanowić elektrolit przewodzący prąd między lokalnymi ogniwami znajdującymi się na powierzchni metalu, jest uszkodzeniem spowodowanym

A. korozją elektrochemiczną.
B. korozją chemiczną.
C. przyczyną mechaniczną.
D. przyczyną termiczną.
Opis w pytaniu jednoznacznie wskazuje na zjawisko korozji elektrochemicznej, ale wiele osób myli tu kilka pojęć, bo wszystkie w jakiś sposób kojarzą się z niszczeniem materiału. Korozja chemiczna zachodzi bez udziału przepływu prądu elektrycznego i bez tworzenia się lokalnych ogniw. To są typowe reakcje chemiczne między metalem a suchymi gazami lub cieczami, np. utlenianie w wysokiej temperaturze w piecu, działanie agresywnych chemikaliów w środowisku przemysłowym, ale bez roli elektrolitu przewodzącego prąd. W pytaniu natomiast wprost jest mowa o roztworze, który przewodzi prąd między lokalnymi ogniwami – a to już czysta elektrochemia, nie zwykła korozja chemiczna. Mylenie tych dwóch rodzajów korozji wynika często z tego, że wizualny efekt bywa podobny: nalot, wżery, ubytek materiału. Różnica jest w mechanizmie. Przyczyna termiczna kojarzy się z przegrzaniem, rozszerzalnością cieplną, zmianą struktury materiału pod wpływem temperatury, pęknięciami cieplnymi, przypaleniem izolacji uzwojeń czy deformacją elementów. Owszem, wysoka temperatura może przyspieszyć korozję, ale sama w sobie nie tworzy lokalnych ogniw i nie wymaga elektrolitu. W silnikach elektrycznych uszkodzenia termiczne to np. przegrzane uzwojenia, zmiana barwy lakieru, deformacja obudów z tworzyw – to zupełnie inna kategoria usterek niż korozja opisania w pytaniu. Z kolei przyczyna mechaniczna to różnego rodzaju uszkodzenia wynikające z sił fizycznych: uderzenia, wibracje, ścieranie, kawitacja, zmęczenie materiału, pęknięcia od przeciążenia. Można tu zaliczyć np. wytarte gniazda łożysk, pęknięte wały, uszkodzone łopatki wentylatora. W takich przypadkach nie potrzebujemy żadnego elektrolitu ani reakcji redoks – materiał jest niszczony przez siły, tarcie czy zmęczenie, a nie przez przepływ prądu w lokalnych ogniwach. Typowy błąd myślowy polega na tym, że jeśli widzimy zniszczony element, to szukamy najprostszej etykietki: mechaniczne albo termiczne. Tymczasem w technice, szczególnie przy silnikach i urządzeniach elektrycznych, trzeba patrzeć na mechanizm zjawiska. Jeżeli w opisie pojawia się elektrolit i lokalne ogniwa na powierzchni metalu, to od razu powinna się zapalić lampka: to jest korozja elektrochemiczna, czyli proces ściśle związany z przepływem prądu w środowisku wilgotnym lub przewodzącym.

Pytanie 6

Wskaż właściwą kolejność prac przy wymianie uszkodzonego wyłącznika schodowego.

A. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż wyłącznika, montaż wyłącznika, włączenie napięcia, sprawdzenie prawidłowości działania.
B. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż wyłącznika, montaż wyłącznika, wyłączenie napięcia.
C. Stwierdzenie braku napięcia, wyłączenie napięcia, montaż wyłącznika, demontaż wyłącznika, sprawdzenie prawidłowości działania, włączenie napięcia.
D. Wyłączenie napięcia, demontaż wyłącznika, montaż wyłącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia.
Prawidłowa kolejność prac, którą wybrałeś, dokładnie odzwierciedla podstawową zasadę w elektroenergetyce: najpierw bezpieczeństwo, potem praca, na końcu uruchomienie i test. Najpierw musi być wyłączenie napięcia – czyli odłączenie obwodu od zasilania odpowiednim łącznikiem, wyłącznikiem nadprądowym albo rozłącznikiem. Sama pozycja dźwigni w rozdzielnicy to za mało, ale jest to pierwszy krok. Następnie konieczne jest stwierdzenie braku napięcia, czyli sprawdzenie przy pomocy odpowiedniego wskaźnika napięcia, czy na przewodach naprawdę nie ma potencjału. W dobrych praktykach zawsze mówi się: nie ufaj tylko pozycji wyłącznika, zawsze weryfikuj przyrządem. Dopiero po potwierdzeniu braku napięcia można bezpiecznie przystąpić do demontażu uszkodzonego wyłącznika schodowego – odkręcenie osprzętu, odłączenie przewodów, oznaczenie ich, żeby nie pomylić przy ponownym podłączeniu. Potem następuje montaż nowego wyłącznika: prawidłowe podłączenie przewodu fazowego na zacisk wspólny (L, COM) i przewodów korespondencyjnych na pozostałe zaciski, solidne dokręcenie śrub, poprawne ułożenie przewodów w puszce. Po zakończeniu prac montażowych można dopiero włączyć napięcie w rozdzielnicy. Ostatni krok to sprawdzenie prawidłowości działania – czyli kilka razy przełączenie obu wyłączników schodowych, sprawdzenie czy światło reaguje prawidłowo z każdego miejsca. Moim zdaniem to właśnie ten etap wiele osób bagatelizuje, a jest on kluczowy: pozwala wychwycić złe podłączenie korespondencji, pomylenie przewodu fazowego z neutralnym albo z ochronnym, co byłoby poważnym błędem. Cała ta sekwencja jest zgodna z ogólnymi zasadami BHP, wymaganiami norm PN-HD 60364 oraz typowymi procedurami LOTO (Lock Out/Tag Out) stosowanymi w energetyce i instalacjach elektrycznych. W praktyce, przy każdej pracy w puszce czy oprawie oświetleniowej, warto mentalnie powtarzać sobie ten schemat: odłącz – sprawdź – wykonaj – uruchom – przetestuj. To bardzo ogranicza ryzyko porażenia i uszkodzenia instalacji.

Pytanie 7

Którego z przedstawionych narzędzi należy użyć do potwierdzenia obecności napięcia elektrycznego w przewodzie?

Ilustracja do pytania
A. Narzędzia 1.
B. Narzędzia 3.
C. Narzędzia 2.
D. Narzędzia 4.
Poprawnie wskazane zostało narzędzie 2, czyli próbnik / wskaźnik napięcia. To właśnie tego typu przyrząd służy do bezpośredniego potwierdzenia obecności napięcia elektrycznego w przewodzie. W praktyce elektrycznej mówi się wręcz, że zanim czegokolwiek dotkniesz, najpierw sprawdź, czy jest tam napięcie – i robi się to właśnie wskaźnikiem napięcia. Narzędzie 2 jest zaprojektowane specjalnie do pracy na instalacjach elektrycznych: ma odpowiednią izolację, najczęściej oznaczenie zakresu napięć (np. 12–690 V AC/DC), klasę bezpieczeństwa CAT oraz spełnia wymagania norm, np. PN-EN 61243 dotyczącej wskaźników napięcia. Z mojego doświadczenia to jedno z podstawowych narzędzi w kieszeni elektryka, zaraz obok miernika uniwersalnego. Taki wskaźnik pozwala szybko sprawdzić, czy przewód fazowy jest pod napięciem, czy obwód został poprawnie wyłączony, a także czy nie ma przypadkowego zasilania zwrotnego z innego obwodu. Używa się go np. przy wymianie gniazda, łącznika oświetleniowego, przy pracach w rozdzielnicy, przy sprawdzaniu, który przewód jest fazowy, a który neutralny. Co ważne, profesjonalne wskaźniki napięcia często mają funkcję detekcji napięcia bezdotykowo lub z niewielkim dotykiem, co dodatkowo zwiększa bezpieczeństwo. Dobre praktyki branżowe mówią też o zasadzie: sprawdź – wyłącz – zabezpiecz – ponownie sprawdź. Ten drugi etap sprawdzenia wykonuje się właśnie takim narzędziem jak nr 2, bo zwykły śrubokręt czy inne przyrządy nie dają wiarygodnej informacji o obecności napięcia. Dlatego wybór narzędzia 2 jest jak najbardziej zgodny z praktyką zawodową i przepisami BHP dotyczącymi pracy pod napięciem i w pobliżu napięcia.

Pytanie 8

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. stanu obudów wszystkich elementów instalacji
B. nastaw urządzeń zabezpieczających w instalacji
C. poprawności działania wyłącznika różnicowoprądowego
D. wartości rezystancji izolacji przewodów
Wiesz, przy ocenie bezpieczeństwa instalacji elektrycznej często pojawiają się nieporozumienia co do tego, co trzeba sprawdzać. Więc jeśli myślisz, że stan obudów, wyłączniki różnicowoprądowe czy urządzenia zabezpieczające nie są ważne, to musisz to przemyśleć. Sprawdzanie stanu obudów jest mega istotne, żeby nie zdarzył się przypadkowy kontakt z prądem. Jak wyłączniki różnicowoprądowe nie działają, to może być niebezpiecznie. Regularne weryfikowanie ich działania to polecana praktyka. Do tego ustawienia urządzeń zabezpieczających też są kluczowe, bo jak są źle ustawione, to może to doprowadzić do problemów. Ignorowanie takich rzeczy jest ryzykowne, zresztą to może prowadzić do poważnych sytuacji, jak pożary czy porażenia. Każdy z tych elementów to część systemu ochrony, który ma na celu bezpieczne użytkowanie instalacji elektrycznej. Wiedza na ten temat to podstawa dla każdego, kto zajmuje się elektryką.

Pytanie 9

Wskaż skutek bezpośredni porażenia pracownika prądem przemiennym.

A. Uszkodzenie mechaniczne ciała w wyniku upadku.
B. Migotanie komór sercowych.
C. Naświetlenie oczu łukiem elektrycznym.
D. Uszkodzenie narządów słuchu.
Prawidłowo wskazany skutek to migotanie komór sercowych. Przy porażeniu prądem przemiennym, szczególnie o częstotliwości sieciowej 50 Hz, serce jest bardzo wrażliwe na przepływ prądu przez klatkę piersiową. Już prąd rzędu kilkudziesięciu miliamperów, przechodzący drogą „ręka–ręka” albo „ręka–stopy”, może zaburzyć pracę układu bodźcoprzewodzącego serca i doprowadzić właśnie do migotania komór. To jest stan bezpośrednio zagrażający życiu, bo serce wtedy nie pompuje efektywnie krwi, tylko wykonuje chaotyczne skurcze. W normach, np. PN-EN 60479, opisane są strefy oddziaływania prądu na organizm i tam wyraźnie pokazano, że dla prądu przemiennego jednym z głównych skutków jest ryzyko migotania serca. Z praktycznego punktu widzenia właśnie dlatego w ochronie przeciwporażeniowej tak podkreśla się szybkie wyłączenie zasilania (wyłączniki różnicowoprądowe, samoczynne wyłączenie zasilania w sieciach TN, TT) oraz ograniczanie prądu rażeniowego i czasu jego przepływu. Moim zdaniem każdy elektryk powinien mieć w głowie prostą zależność: im dłużej prąd płynie przez klatkę piersiową i im jest większy, tym większa szansa na migotanie komór. W praktyce na budowie czy w zakładzie oznacza to obowiązek stosowania sprawnych środków ochrony, właściwego doboru przekrojów przewodów ochronnych, prawidłowego uziemienia oraz okresowego sprawdzania skuteczności ochrony przeciwporażeniowej. W szkoleniach BHP nie bez powodu kładzie się też nacisk na znajomość resuscytacji krążeniowo-oddechowej – bo przy migotaniu komór kluczowe jest szybkie rozpoczęcie RKO i użycie AED, jeśli jest dostępny. To jest ten krytyczny, bezpośredni skutek, którego chcemy uniknąć, projektując i eksploatując instalacje elektryczne zgodnie z normami i dobrą praktyką.

Pytanie 10

Jakiego urządzenia dotyczy przedstawiony opis przeglądu?
Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem:
1. oceny stanu ochrony przed porażeniem prądem,
2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego,
3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala,
4. pomiaru czasu wyłączenia,
5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.

A. Ochronnika przepięć
B. Wyłącznika różnicowoprądowego
C. Wyłącznika nadprądowego
D. Elektronicznego przekaźnika czasowego
Wyłącznik różnicowoprądowy jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć. Opisane w pytaniu działania, takie jak badanie stanu ochrony przeciwporażeniowej, kontrolne sprawdzenie działania wyłącznika oraz pomiar czasu wyłączania, to podstawowe procedury diagnostyczne dla tego typu urządzeń. Standardy, takie jak IEC 61008 oraz IEC 61009, definiują wymogi dotyczące wyłączników różnicowoprądowych, w tym jak powinny być testowane i monitorowane. Przykładowo, regularne pomiary wartości prądu zadziałania oraz sprawdzanie napięcia dotykowego przy prądzie wyzwalającym są niezbędne, aby upewnić się, że wyłącznik działa prawidłowo w sytuacji awaryjnej. Dbanie o sprawność wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa w obiektach użyteczności publicznej i mieszkalnych, gdzie występuje ryzyko porażenia prądem. W praktyce każdy wyłącznik różnicowoprądowy powinien być testowany przynajmniej raz na pół roku, co jest zgodne z wytycznymi zawartymi w normach branżowych.

Pytanie 11

Działanie którego środka ochrony przeciwporażeniowej w instalacji elektrycznej o napięciu znamionowym 230 V, pozwala ocenić miernik przedstawiony na rysunku?

Ilustracja do pytania
A. Zasilania napięciem bezpiecznym.
B. Izolacji roboczej.
C. Samoczynnego wyłączenia zasilania.
D. Połączeń wyrównawczych.
Izolacja robocza jest kluczowym elementem w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Miernik izolacji, przedstawiony na rysunku, służy do oceny stanu tej izolacji poprzez pomiar rezystancji. Wysoka rezystancja izolacji wskazuje na dobrą kondycję izolacji, co zapobiega przebiciu prądu do ziemi i potencjalnemu porażeniu elektrycznemu. W kontekście standardów, zgodnie z normą PN-EN 60204-1, regularne pomiary izolacji są wymagane w celu zapewnienia bezpieczeństwa urządzeń elektrycznych. W praktyce, miernik ten jest szczególnie użyteczny w okresowych przeglądach instalacji oraz w przypadku napraw i modyfikacji, aby upewnić się, że izolacja zachowuje odpowiednie właściwości, co jest niezbędne w każdej instalacji elektrycznej. Prawidłowe przeprowadzanie takich pomiarów jest elementem dobrych praktyk w branży elektroinstalacyjnej, co na pewno podnosi poziom bezpieczeństwa użytkowania instalacji.

Pytanie 12

Które z wymienionych zaleceń nie dotyczy wykonywania nowych instalacji elektrycznych w pomieszczeniach mieszkalnych?

A. Gniazda wtyczkowe w kuchni zasilać z osobnego obwodu.
B. Gniazda wtyczkowe każdego pomieszczenia zasilać z osobnego obwodu.
C. Odbiorniki dużej mocy zasilać z wydzielonych obwodów.
D. Rozdzielić obwody oświetleniowe od gniazd wtyczkowych.
W nowych instalacjach mieszkaniowych bardzo łatwo pomylić to, co jest realnym wymaganiem norm i dobrej praktyki, z tym co tylko brzmi „logicznie” lub „bezpieczniej”. Wiele osób myśli na przykład, że skoro podział na obwody jest korzystny, to najlepiej byłoby zrobić osobny obwód gniazd dla każdego pomieszczenia. Brzmi to na pierwszy rzut oka rozsądnie, ale z punktu widzenia projektowego i normowego nie ma takiego wymagania, a w typowym mieszkaniu byłoby to po prostu przewymiarowane i mało praktyczne. Normy instalacyjne (jak PN‑HD 60364) oraz zalecenia SEP mówią raczej o konieczności wydzielania pewnych grup odbiorników niż o sztywnym przypisaniu obwodu do każdego pokoju. Bardzo ważnym zaleceniem jest na przykład zasilanie gniazd wtyczkowych w kuchni z osobnego obwodu. Kuchnia jest jednym z najbardziej „prądopożernych” miejsc w mieszkaniu: czajnik, mikrofalówka, ekspres do kawy, zmywarka, lodówka, często piekarnik czy płyta – to wszystko generuje duże obciążenia. Jeden wspólny obwód z innymi pomieszczeniami szybko byłby przeciążony, co groziłoby częstym wybijaniem zabezpieczeń i przegrzewaniem przewodów. Podział obwodów oświetleniowych i gniazd wtyczkowych to też nie jest fanaberia, tylko standardowa zasada. Przy awarii obwodu gniazd (np. zwarcie w jakimś odbiorniku) chcemy, żeby oświetlenie dalej działało, bo zapewnia to bezpieczeństwo poruszania się i umożliwia spokojne zlokalizowanie i usunięcie usterki. Łączenie wszystkiego na jednym obwodzie z punktu widzenia użytkownika i serwisanta jest po prostu niewygodne i mniej bezpieczne. Osobną kwestią są odbiorniki dużej mocy. Płyta indukcyjna, piekarnik elektryczny, pralka, suszarka, klimatyzator – to są urządzenia, które według dobrych praktyk zasila się z wydzielonych obwodów, często z osobnymi zabezpieczeniami i odpowiednio dobranym przekrojem przewodów. Gdyby takie urządzenia „powiesić” na obwodzie ogólnym kilku pomieszczeń, bardzo łatwo o przeciążenie, spadki napięcia, a nawet przegrzanie żył. Typowy błąd myślowy polega na tym, że ktoś chce „maksymalnie rozbić” instalację na obwody, zakładając, że im więcej, tym lepiej i bezpieczniej. W praktyce projektant musi znaleźć rozsądny kompromis: wydzielić kuchnię, oświetlenie, obwody gniazd ogólnych, obwody dla dużych odbiorników, ale nie ma potrzeby tworzenia osobnego obwodu gniazd dla każdego pojedynczego pokoju. To właśnie to ostatnie zalecenie nie jest standardem dla nowych instalacji mieszkaniowych.

Pytanie 13

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. trzy lata
B. rok
C. pięć lat
D. dwa lata
Regularne przeglądy przeciwpożarowe wyłączników prądu są kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. Zgodnie z przepisami i zaleceniami producentów, przegląd powinien być przeprowadzany nie rzadziej niż raz do roku, co pozwala na wykrycie i naprawę ewentualnych usterek, które mogą prowadzić do poważnych zagrożeń. Przykładowo, niewłaściwe działanie wyłącznika może skutkować brakiem ochrony przed przeciążeniem lub zwarciem, co w skrajnych przypadkach prowadzi do pożaru. Warto również pamiętać, że w obiektach o wysokim ryzyku pożarowym, takich jak zakłady przemysłowe czy magazyny, częstotliwość przeglądów może być jeszcze wyższa, aby zapewnić maksymalne bezpieczeństwo. Współczesne normy i standardy branżowe, takie jak norma PN-EN 61439, podkreślają znaczenie regularnych inspekcji i konserwacji urządzeń elektrycznych w kontekście ochrony przeciwpożarowej. Praktyka ta nie tylko chroni mienie, ale również życie ludzi, co czyni ją niezbędnym elementem zarządzania bezpieczeństwem w każdym przedsiębiorstwie.

Pytanie 14

Jakie oznaczenia oraz jaka wartość minimalnego prądu znamionowego powinna mieć wkładka topikowa, służąca do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o danych znamionowych: PN = 3 kW, UN = 230 V?

A. gB 20 A
B. aM 20 A
C. aR 16 A
D. gG 16 A
Inne oznaczenia, takie jak aR 16 A, aM 20 A oraz gB 20 A, nie spełniają wymogów dotyczących ochrony przed przeciążeniami i zwarciami w obwodzie bojlera. Wkładki aR są przeznaczone przede wszystkim do ochrony w przypadku zwarć, ale nie są zalecane do obwodów, gdzie mogą występować znaczne przeciążenia, co czyni je niewłaściwym wyborem dla bojlera. Ponadto, wkładki aM, które są używane głównie w obwodach silnikowych, charakteryzują się zdolnością do znoszenia długotrwałych przeciążeń, ale ich zastosowanie w obwodach grzewczych, takich jak bojler, nie jest optymalne. Wkładki gB 20 A są przystosowane do pracy w obwodach elektrycznych, ale ich wartość prądu znamionowego jest wyższa od obliczonego prądu roboczego, co może prowadzić do nieskutecznej ochrony w razie wystąpienia zwarcia. Niezrozumienie różnic pomiędzy tymi klasami wkładek może skutkować nieodpowiednim doborem zabezpieczeń, co z kolei zwiększa ryzyko wystąpienia uszkodzeń instalacji, a nawet pożarów. Kluczowe jest, aby na etapie projektowania instalacji elektrycznych świadomie dobierać odpowiednie zabezpieczenia, kierując się ich właściwościami oraz normami branżowymi, co pozwala na zminimalizowanie potencjalnych zagrożeń i zapewnienie zgodności z przepisami bezpieczeństwa.

Pytanie 15

Wystąpienie prądu doziemienia o wartości 2,5 A w fazie L3 obwodu jednofazowych gniazd wtyczkowych przedstawionej instalacji spowoduje zadziałanie wyłącznika oznaczonego symbolem

Ilustracja do pytania
A. S304 C25
B. S301 B16
C. P301 40A
D. P301 25A
Wybór innej odpowiedzi może wynikać z niepełnego zrozumienia roli wyłączników w instalacjach elektrycznych. Wyłącznik P301 25A oraz P301 40A to urządzenia delikatnie różniące się w zakresie wartości prądowych, jednak nie są one odpowiednie do rozwiązywania problemu prądu doziemienia. Odpowiedź P301 25A byłaby niewłaściwa, ponieważ przy prądzie 2,5 A wyłącznik różnicowoprądowy zadziałałby, ale jedynie w kontekście ochrony przed porażeniem, co nie jest wystarczające w przypadku większych wartości prądu. Wartości prądów znamionowych, takie jak 16A (S301 B16) czy 25A (S304 C25), dotyczą wyłączników nadprądowych, które innego rodzaju sytuacjach mogą być przydatne, lecz nie oferują odpowiedniej ochrony przed prądem różnicowym. W przypadku prądów doziemnych, kluczowe jest korzystanie z wyłączników różnicowoprądowych, które działają na zasadzie monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Wybór wyłącznika różnicowoprądowego zgodnie z odpowiednią normą, taką jak PN-EN 61008, jest kluczowy dla zapewnienia bezpieczeństwa elektrycznego. Ważne jest, aby nie mylić tych dwóch rodzajów wyłączników i ich zastosowania w praktyce, ponieważ prowadzi to do potencjalnych zagrożeń dla użytkowników instalacji elektrycznej.

Pytanie 16

Przygotowując się do wymiany uszkodzonego gniazda siłowego w instalacji elektrycznej, po odłączeniu zasilania w obwodzie tego gniazda, należy przede wszystkim

A. oznaczyć obszar roboczy
B. poinformować dostawcę energii
C. zabezpieczyć obwód przed przypadkowym włączeniem zasilania
D. rozłożyć dywanik izolacyjny w rejonie pracy
Rozłożenie dywanika elektroizolacyjnego w miejscu pracy, powiadomienie dostawcy energii oraz oznaczenie miejsca pracy, choć mogą wydawać się logicznymi krokami, nie odnoszą się bezpośrednio do kluczowego aspektu bezpieczeństwa, jakim jest zapobieganie przypadkowemu załączeniu napięcia. Dywanik elektroizolacyjny może pomóc w zapewnieniu dodatkowej izolacji, ale nie eliminuje ryzyka, jeśli obwód nie jest odpowiednio zabezpieczony przed możliwością załączenia. Powiadomienie dostawcy energii jest praktyką, która może być przydatna w przypadku większych prac lub modernizacji, ale nie ma bezpośredniego wpływu na bezpieczeństwo konkretnego obwodu, który ma być naprawiony. Oznaczenie miejsca pracy jest istotne w kontekście informowania innych osób o prowadzonych pracach, jednak nie stanowi skutecznej ochrony przed nieautoryzowanym włączeniem zasilania. Kluczowym błędem w myśleniu jest przekonanie, że jakiekolwiek działanie związane z bezpieczeństwem w miejscu pracy jest wystarczające, podczas gdy najważniejsze jest usunięcie ryzyka związane z ponownym załączeniem napięcia w obwodzie, który jest w trakcie naprawy. W związku z tym, podejście skoncentrowane na zabezpieczeniu obwodu powinno być zawsze priorytetem, a inne działania traktowane jako dodatkowe, a nie podstawowe. Poprawne podejście do kwestii bezpieczeństwa w instalacjach elektrycznych wymaga wieloaspektowego myślenia i stosowania procedur, które są zgodne z obowiązującymi normami i dobrymi praktykami branżowymi.

Pytanie 17

Które z podanych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Odbiorniki o dużej mocy powinny być zasilane z osobnych obwodów
B. Obwody oświetleniowe należy oddzielić od gniazd wtykowych
C. Gniazda wtykowe w kuchni powinny być podłączane do oddzielnego obwodu
D. Gniazda wtykowe w każdym pomieszczeniu powinny pochodzić z wydzielonego obwodu
Odpowiedź dotycząca zasilania gniazd wtykowych każdego pomieszczenia z osobnego obwodu jest poprawna, ponieważ zgodnie z aktualnymi normami i zaleceniami dotyczącymi instalacji elektrycznych, zapewnia to większe bezpieczeństwo i funkcjonalność. Zasilanie każdego pomieszczenia z osobnego obwodu umożliwia lepsze zarządzanie obciążeniem elektrycznym oraz minimalizuje ryzyko przeciążenia instalacji. Przykładowo, w przypadku awarii jednego z obwodów, pozostałe pomieszczenia mogą nadal być zasilane, co zwiększa komfort użytkowania. Dodatkowo, takie podejście ułatwia lokalizację ewentualnych usterek i ich naprawę, co jest szczególnie ważne w przypadku pomieszczeń takich jak kuchnia czy łazienka, gdzie używa się wielu urządzeń elektrycznych jednocześnie. Warto również zauważyć, że zgodnie z normą PN-IEC 60364, zaleca się stosowanie osobnych obwodów dla urządzeń o dużym poborze mocy, co podkreśla znaczenie wydzielenia obwodów w celu zapewnienia bezpieczeństwa i efektywności instalacji elektrycznej.

Pytanie 18

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Instalacja nowych punktów świetlnych
B. Wymiana uszkodzonych gniazd wtyczkowych
C. Zamiana zużytych urządzeń na nowe
D. Przesunięcie miejsc montażu opraw oświetleniowych
Zmiana miejsc zamontowania opraw oświetleniowych, montaż nowych wypustów oświetleniowych oraz wymiana odbiorników energii elektrycznej na nowe to czynności, które nie należą do prac konserwacyjnych, lecz do prac instalacyjnych i modernizacyjnych. Prace konserwacyjne koncentrują się na utrzymaniu istniejącej instalacji w dobrym stanie, co obejmuje m.in. naprawy, wymianę uszkodzonych elementów czy przeglądy techniczne. Zmiana lokalizacji opraw oświetleniowych czy montaż nowych wypustów wiąże się z modyfikacją struktury instalacji, co wymaga zupełnie innego podejścia i często jest związane z koniecznością uzyskania odpowiednich zezwoleń oraz wykonania projektu technicznego. Podobnie, wymiana odbiorników energii elektrycznej na nowe wiąże się z ich odpowiednim doborem oraz z zapewnieniem, że instalacja elektryczna jest przystosowana do nowych wymagań. Często mylnie przyjmuje się, że każda czynność związana z elektrycznością należy do prac konserwacyjnych, jednakże zgodnie z najlepszymi praktykami branżowymi należy dbać o wyraźne rozgraniczenie tych dwóch rodzajów aktywności, aby zapewnić bezpieczeństwo oraz prawidłowe funkcjonowanie systemów elektrycznych.

Pytanie 19

Podczas oględzin nowo wykonanej instalacji elektrycznej nie jest wymagane sprawdzenie

A. rozmieszczenia tablic ostrzegawczych i informacyjnych.
B. wartości natężenia oświetlenia na stanowiskach pracy.
C. doboru i oznaczenia przewodów.
D. doboru zabezpieczeń i aparatury.
Prawidłowo wskazana została odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy. Podczas oględzin nowo wykonanej instalacji elektrycznej koncentrujemy się przede wszystkim na samej instalacji: jej budowie, poprawności montażu, zgodności z dokumentacją oraz wymaganiami norm, np. PN-HD 60364. Oględziny mają potwierdzić, że instalacja jest wykonana bezpiecznie i zgodnie ze sztuką, zanim jeszcze zaczniemy robić szczegółowe pomiary czy eksploatować obiekt. Sprawdzanie natężenia oświetlenia na stanowiskach pracy to już inny zakres – to wchodzi bardziej w tematykę oceny warunków pracy, ergonomii i wymagań BHP, powiązanych np. z normą PN-EN 12464-1 dotyczącą oświetlenia miejsc pracy. Takie pomiary wykonuje się zwykle luksomierzem, ale nie są one elementem podstawowych oględzin instalacji elektrycznej jako takiej. Moim zdaniem warto to rozróżniać: co jest oceną instalacji, a co oceną środowiska pracy. Podczas oględzin instalacji elektrycznej elektryk sprawdza m.in. dobór i oznaczenie przewodów, przekroje, kolory żył, zgodność z dokumentacją techniczną, sprawdza dobór zabezpieczeń i aparatury (charakterystyki wyłączników nadprądowych, zastosowanie wyłączników różnicowoprądowych, dobór rozłączników, styczników itp.), a także obecność i rozmieszczenie tablic ostrzegawczych i informacyjnych, jak tablice „Uwaga! Urządzenie elektryczne”, oznaczenia rozdzielnic, pola, obwodów. To wszystko jest bezpośrednio związane z bezpieczeństwem eksploatacji instalacji i ochroną przeciwporażeniową. Natężenie oświetlenia oczywiście jest ważne, ale dotyczy głównie komfortu i bezpieczeństwa pracy od strony BHP, a nie samej poprawności wykonania instalacji elektrycznej jako układu przewodów, aparatów i ochrony. W praktyce w nowym budynku można mieć instalację wykonaną wzorowo, a jednocześnie zbyt słabe oświetlenie do danego rodzaju stanowiska – to będzie problem projektu oświetlenia, a nie oględzin instalacji elektrycznej w sensie stricte. Dlatego właśnie ta odpowiedź jest tutaj jedyną, która nie jest wymagana w ramach podstawowych oględzin nowej instalacji.

Pytanie 20

Która z poniższych czynności ocenia efektywność ochrony uzupełniającej przed porażeniem prądem elektrycznym?

A. Pomiar impedancji pętli zwarciowej
B. Badanie wyłącznika różnicowoprądowego
C. Badanie stanu izolacji podłóg
D. Pomiar rezystancji izolacji przewodów
Pomiar impedancji pętli zwarciowej, pomiar rezystancji izolacji przewodów oraz badanie stanu izolacji podłóg są istotnymi elementami oceny instalacji elektrycznych, jednak nie są bezpośrednimi metodami oceny skuteczności ochrony uzupełniającej przed porażeniem prądem elektrycznym. Pomiar impedancji pętli zwarciowej informuje o zdolności instalacji do ograniczenia prądu zwarciowego, co jest istotne, ale nie odnosi się bezpośrednio do ochrony przed porażeniem. Z kolei pomiar rezystancji izolacji przewodów ocenia stan izolacji, ale nie wskazuje na skuteczność zabezpieczeń przed prądem upływowym, które są kluczowe w sytuacjach zagrożenia. Badanie stanu izolacji podłóg, mimo że może mieć znaczenie w kontekście bezpieczeństwa, nie ocenia funkcjonalności wyłączników różnicowoprądowych i ich zdolności do natychmiastowego reagowania na pojawiające się zagrożenia. Typowym błędem myślowym jest zakładanie, że wszystkie te pomiary są równoważne w kontekście ochrony przed porażeniem. W rzeczywistości, skuteczna ochrona wymaga skoncentrowania się na elementach, które bezpośrednio przeciwdziałają zagrożeniom elektrycznym, takich jak wyłączniki różnicowoprądowe, które są fundamentalnym elementem systemów bezpieczeństwa elektrycznego, a ich regularne testowanie jest kluczowe dla zapewnienia bezpieczeństwa użytkowników.

Pytanie 21

Który z wymienionych elementów nie ma wpływu na konieczną częstotliwość przeprowadzania przeglądów okresowych instalacji elektrycznej?

A. Typ instalacji
B. Liczba odbiorników zasilanych z instalacji
C. Warunki atmosferyczne, którym podlega instalacja
D. Funkcja budynku
Warunki zewnętrzne, przeznaczenie budynku oraz rodzaj instalacji mają istotny wpływ na częstotliwość sprawdzeń okresowych instalacji elektrycznej. Użytkownicy często mylą te aspekty z liczbą zainstalowanych odbiorników, co jest błędnym podejściem. Warunki zewnętrzne, takie jak wilgotność, temperatura czy zanieczyszczenia, mogą znacznie wpłynąć na stan techniczny instalacji. Na przykład, w obiektach narażonych na wysoką wilgotność, takich jak baseny czy obiekty przemysłowe, instalacje elektryczne powinny być poddawane bardziej skrupulatnym inspekcjom. Przeznaczenie budynku także odgrywa kluczową rolę; budynki użyteczności publicznej muszą spełniać wyższe standardy bezpieczeństwa, co wiąże się z koniecznością częstszych przeglądów. Rodzaj instalacji również wpływa na wymagania dotyczące częstotliwości badań. Na przykład, instalacje wykonane w trudnych warunkach, takie jak w przemyśle chemicznym, wymagają regularnych sprawdzeń z uwagi na ryzyko uszkodzenia. Powszechne jest myślenie, że im więcej odbiorników, tym większe ryzyko, co w rzeczywistości nie jest głównym czynnikiem determinującym potrzebę przeglądów. Kluczowe jest zrozumienie, że bezpieczeństwo elektryczne powinno opierać się na analizie ryzyka, a nie tylko na liczbie odbiorników w instalacji.

Pytanie 22

Który z przedstawionych przyrządów jest przeznaczony do wykrywania pod obciążeniem wadliwych połączeń elektrycznych w torach wielkoprądowych?

Ilustracja do pytania
A. Przyrząd 2.
B. Przyrząd 4.
C. Przyrząd 3.
D. Przyrząd 1.
Wybór przyrządu niezgodnego z funkcją wykrywania wadliwych połączeń elektrycznych pod obciążeniem może prowadzić do poważnych konsekwencji operacyjnych. Przyrządy, które nie są zaprojektowane do pomiaru temperatury, takie jak multimetry czy oscyloskopy, nie są w stanie wykryć problemów związanych z nadmiernym nagrzewaniem, które często występują w przypadku wadliwych połączeń. Wiele osób może błędnie zakładać, że tradycyjne metody pomiarowe są wystarczające do diagnozowania problemów w torach elektrycznych. Niemniej jednak, nie uwzględniają one krytycznego aspektu, jakim jest temperatura operacyjna, która może z łatwością umknąć w standardowych pomiarach elektrycznych. Dodatkowo, niezrozumienie zasad termowizji prowadzi do zaniedbań w utrzymaniu infrastruktury, co może skutkować poważnymi awariami i dużymi kosztami napraw. Dlatego coraz ważniejsze staje się stosowanie nowoczesnych technologii, takich jak termowizja, które dostarczają nie tylko precyzyjnych danych, ale również umożliwiają przewidywanie i zapobieganie awariom jeszcze przed ich wystąpieniem.

Pytanie 23

Przygotowując się do wymiany uszkodzonego gniazda trójfazowego w systemie elektrycznym, po odłączeniu napięcia w obwodzie tego gniazda, należy przede wszystkim

A. zabezpieczyć obwód przed niezamierzonym włączeniem napięcia
B. oznaczyć miejsce pracy
C. rozłożyć dywanik elektroizolacyjny w obszarze roboczym
D. poinformować dostawcę energii o zamiarze przeprowadzenia naprawy
Zabezpieczenie obwodu przed przypadkowym załączeniem napięcia jest kluczowym krokiem w procesie wymiany gniazda trójfazowego, co wynika z podstawowych zasad bezpieczeństwa w pracy z instalacjami elektrycznymi. Po wyłączeniu napięcia, warto zastosować wyłącznik rozłączający lub blokadę, aby uniemożliwić przypadkowe włączenie zasilania. Dobrym przykładem praktycznym jest użycie blokady w systemach, w których dostęp do urządzeń jest wspólny, co minimalizuje ryzyko niebezpiecznych sytuacji. Dodatkowo, zgodnie z normami PN-IEC 60364, należy stosować odpowiednie procedury bezpieczeństwa, w tym oznaczenie obszaru pracy oraz zapewnienie, że osoba pracująca ma odpowiednie kwalifikacje. Takie działania nie tylko chronią pracowników, ale również klientów i innych osób znajdujących się w pobliżu. Warto również pamiętać o stosowaniu odpowiednich środków ochrony osobistej, takich jak rękawice izolacyjne oraz okulary ochronne, aby dodatkowo zminimalizować ryzyko wystąpienia wypadków.

Pytanie 24

Na którym rysunku przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Prawidłowe wykonanie połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Na rysunku B, drut jest odpowiednio zagięty i umieszczony pod główką śruby, co pozwala na skuteczne zaciskanie i zapobiega jego wypadnięciu. W praktyce, ważne jest, aby drut był zagięty w odpowiedni sposób, co zapewnia pełne przyleganie do powierzchni styku, co z kolei minimalizuje ryzyko powstawania iskrzenia oraz przegrzewania połączenia. Zgodnie z normami PN-IEC 60947-7-1, zaleca się, aby połączenia były wykonywane w sposób, który zapewnia ich trwałość oraz odporność na wibracje. Dobrze wykonane połączenie zwiększa efektywność przesyłania energii elektrycznej oraz zmniejsza ryzyko awarii, co jest kluczowe w kontekście użytkowania złożonych systemów elektrycznych.

Pytanie 25

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
B. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
C. Sprawdzenie stanu izolacji oraz powłok przewodów
D. Zamiana wszystkich źródeł oświetlenia w oprawach
Sprawdzenie stanu izolacji i powłok przewodów jest kluczowym elementem konserwacji instalacji elektrycznych w mieszkaniach. Izolacja przewodów jest niezbędna do zapewnienia bezpieczeństwa użytkowania, ponieważ uszkodzona lub niewłaściwa izolacja może prowadzić do zwarć, pożarów, a także porażenia prądem. Regularne inspekcje stanu izolacji powinny być przeprowadzane zgodnie z obowiązującymi standardami, takimi jak norma PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych w obiektach budowlanych. Przykładowe metody oceny stanu izolacji obejmują pomiar rezystancji przy użyciu megomierza. Zastosowanie odpowiednich technik, takich jak testy izolacji, pozwala na wczesne wykrycie problemów i ich naprawę, co przekłada się na dłuższą żywotność instalacji oraz zwiększa bezpieczeństwo mieszkańców. Dbanie o stan izolacji to nie tylko spełnienie wymogów prawnych, ale także odpowiedzialność za bezpieczeństwo domowników i ich majątek.

Pytanie 26

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
B. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
C. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
D. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
Dobra robota z odpowiedzią! To, co napisałeś, dobrze pokazuje, jakie kroki warto podjąć przed pomiarem rezystancji izolacji w instalacji elektrycznej. Najpierw trzeba wymontować źródła światła z opraw – to naprawdę ważne, żeby nie ryzykować porażeniem prądem w trakcie pomiarów. Poza tym, wyłączenie jednofazowych odbiorników i silników trójfazowych jest konieczne, żeby nie zakłócały one wyników i nie zostały uszkodzone przez niewłaściwe napięcie. Te zasady są zgodne z przepisami, jak PN-EN 50110-1, które mówią, że trzeba wyłączyć zasilanie przed przeprowadzeniem testów izolacji. To, że stosujesz te procedury, nie tylko zwiększa bezpieczeństwo, ale też sprawia, że pomiary są dokładniejsze. A to jest bardzo istotne, żeby dobrze ocenić stan izolacji i upewnić się, że instalacja jest w dobrym stanie.

Pytanie 27

Które z wymienionych czynności należy wykonać po próbnym uruchomieniu silnika indukcyjnego klatkowego (kierunek obrotów silnika jest prawidłowy), podczas jego pracy w warunkach znamionowego zasilania i obciążenia?

A. Zmierzyć wartość napięcia zasilania, ocenić poprawność doboru typu silnika do maszyny napędzanej.
B. Zmierzyć wartość pobieranego prądu, sprawdzić stan sprzężenia z maszyną napędzaną i poprawność pracy łożysk.
C. Sprawdzić stan izolacji uzwojeń silnika, sprawdzić zapewnienie swobodnego dopływu powietrza do przewietrznika.
D. Ocenić stan urządzeń do przeprowadzenia rozruchu, aparatury sterującej i zabezpieczającej.
W tym zadaniu chodzi o etap po próbnym uruchomieniu silnika, kiedy silnik już pracuje pod znamionowym napięciem i obciążeniem, a kierunek obrotów jest potwierdzony jako prawidłowy. To jest bardzo ważne, bo wiele osób myli ten moment z wcześniejszym etapem montażu, badań odbiorczych albo pierwszym krótkim załączeniem „na pusto”. Na tym późniejszym etapie nie wykonuje się już badań typowo montażowych czy laboratoryjnych, tylko kontrolę eksploatacyjną pod obciążeniem. Czynności typu ocena stanu urządzeń rozruchowych, aparatury sterującej i zabezpieczającej są oczywiście potrzebne, ale zwykle robi się je przed właściwym rozruchem, w ramach przeglądu instalacji i układu zasilania. Sprawdza się wtedy styczniki, wyłączniki, przekaźniki, przewody, zaciski, żeby w ogóle móc bezpiecznie uruchomić silnik. Po osiągnięciu warunków znamionowych te elementy nie są głównym punktem zainteresowania, bo albo działają, albo rozruch by się nie udał. Podobnie z pomiarem napięcia zasilania i oceną poprawności doboru typu silnika do maszyny. Dobór mocy, prędkości synchronicznej, klasy izolacji czy sposobu chłodzenia wykonuje się na etapie projektu i doboru urządzeń, a nie po próbnym uruchomieniu. Oczywiście napięcie zasilania warto znać, ale jego pomiar nie jest kluczową czynnością „po rozruchu” – jest raczej elementem wcześniejszej diagnostyki instalacji. Kolejny typowy błąd to mylenie pomiaru izolacji uzwojeń z kontrolą po uruchomieniu pod obciążeniem. Stan izolacji bada się miernikiem rezystancji izolacji (megometrem) przed przyłożeniem napięcia roboczego, ewentualnie po dłuższej przerwie w eksploatacji czy po remoncie. W czasie normalnej pracy przy napięciu znamionowym takiego pomiaru się nie wykonuje, bo jest to po prostu niebezpieczne i technicznie niewłaściwe. Sprawdzenie swobodnego dopływu powietrza do przewietrznika to też ważna rzecz, ale znowu – robi się to przy odbiorze i przeglądzie, zanim silnik zacznie pracować w docelowych warunkach. Kluczową kontrolą po próbnym uruchomieniu w warunkach znamionowych jest to, jak silnik zachowuje się elektrycznie i mechanicznie pod faktycznym obciążeniem. Stąd nacisk na pomiar prądu roboczego, obserwację sprzężenia mechanicznego z maszyną napędzaną oraz ocenę pracy łożysk. Typowy błąd myślowy polega tu na skupieniu się wyłącznie na „papierologii” i badaniach wstępnych, a pomijaniu tego, że ostatecznie liczy się stabilna, bezawaryjna praca całego układu napędowego w realnych warunkach, a nie tylko sama poprawność instalacji i izolacji.

Pytanie 28

Przy wykonywaniu oględzin układu pracy silnika trójfazowego pracującego w obrabiarce należy sprawdzić

A. rezystancję izolacji uzwojeń silnika. 
B. czas zadziałania zabezpieczenia zwarciowego. 
C. stan osłon części wirujących.
D. impedancję pętli zwarcia.
W tym pytaniu haczyk polega na tym, że mowa jest o „oględzinach” układu pracy silnika trójfazowego w obrabiarce. W praktyce zawodowej oględziny oznaczają prostą, ale bardzo ważną czynność: ocenę wzrokową, czasem z lekkim dotykiem, bez używania mierników i bez ingerencji w obwód. Typowy błąd myślowy polega na tym, że skoro mamy silnik trójfazowy i układ jego pracy, to od razu kojarzymy to z pomiarami elektrycznymi: impedancją pętli zwarcia, rezystancją izolacji czy czasem zadziałania zabezpieczeń. To są oczywiście bardzo ważne parametry, ale one nie należą do zakresu samych oględzin, tylko do badań pomiarowych i prób eksploatacyjnych. Impedancja pętli zwarcia jest badana przyrządem pomiarowym w celu sprawdzenia skuteczności ochrony przeciwporażeniowej i doboru zabezpieczeń; nie da się jej ocenić „na oko”. Podobnie rezystancja izolacji uzwojeń silnika – mierzy się ją induktorem lub miernikiem typu megomierz, zwykle przy napięciu pomiarowym 500 V lub wyższym, zgodnie z odpowiednimi normami. To jest już pełnoprawny pomiar elektryczny, nie element zwykłej wizualnej kontroli. Czas zadziałania zabezpieczenia zwarciowego też wymaga specjalnych testerów i wykonywany jest w ramach pomiarów instalacji lub prób rozruchowych, a nie podczas szybkich oględzin przed uruchomieniem obrabiarki. W oględzinach skupiamy się na rzeczach, które widać: kompletność i stan osłon, czy nie ma uszkodzeń mechanicznych, obluzowanych przewodów, śladów przegrzania, zacieków oleju na zaciskach, czy tabliczki znamionowe są czytelne. Z mojego doświadczenia wynika, że wielu uczniów „przestrzeliwuje” poziom szczegółowości – wybierają odpowiedzi pomiarowe, bo brzmią bardziej profesjonalnie, a zapominają, że pierwszym i podstawowym etapem każdej diagnostyki są zwykłe, rzetelnie przeprowadzone oględziny. Pomiary typu impedancja pętli zwarcia, rezystancja izolacji czy czasy zadziałania zabezpieczeń są konieczne, ale wykonuje się je w innym etapie przeglądu, przy użyciu odpowiednich mierników i procedur, a nie w trakcie samej wizualnej oceny układu pracy silnika.

Pytanie 29

Jakie zadania związane z utrzymaniem instalacji elektrycznych zgodnie z przepisami BHP powinny być realizowane przez co najmniej dwuosobowy zespół?

A. Wykonywane na wysokości przekraczającej 2 m w sytuacjach, gdy konieczne jest zastosowanie środków ochrony indywidualnej przed upadkiem z wysokości
B. Przeprowadzane regularnie przez upoważnione osoby w określonych lokalizacjach w czasie testów i pomiarów urządzeń znajdujących się pod napięciem
C. Wykonywane w pobliżu urządzeń elektroenergetycznych wyłączonych z napięcia oraz uziemionych w widoczny sposób
D. Przeprowadzane w wykopach o głębokości do 2 m podczas modernizacji lub konserwacji kabli
Odpowiedź w sprawie prac na wysokości powyżej 2 metrów jest jak najbardziej trafiona. Przepisy BHP jasno mówią, że takie zadania powinny być wykonywane przez co najmniej dwie osoby. Dlaczego? Bo ryzyko upadku jest po prostu za duże. Nie wyobrażam sobie, żeby jedna osoba mogła w pełni zareagować, jeśli na przykład straci równowagę, zwłaszcza przy czymś takim jak montaż lamp na wysokich budynkach. Gdy jedna osoba zajmuje się np. sprzętem, to druga powinna mieć oko na bezpieczeństwo. Również zgodnie z normą PN-EN 50110-1 trzeba dobrze zaplanować takie prace i wyposażyć się w odpowiednie zabezpieczenia, jak uprzęże czy liny. Gdy obie osoby pracują razem, to zwiększa to bezpieczeństwo i sprawia, że wszystko idzie sprawniej. Bez tego można narazić się na niebezpieczeństwo, a zdrowie i życie zawsze powinno być na pierwszym miejscu.

Pytanie 30

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Wyważanie
B. Pomiar rezystancji izolacji
C. Weryfikacja braku zwarć międzyzwojowych
D. Sprawdzenie kondycji wycinków komutatora
Sprawdzenie stanu wycinków komutatora jest kluczowym działaniem podczas oględzin wirnika silnika komutatorowego, ponieważ komutator pełni istotną rolę w zapewnieniu właściwego funkcjonowania silnika. Wycinki komutatora, będące elementami stykowymi, muszą mieć odpowiednią jakość powierzchni, aby zapewnić dobre połączenie elektryczne z węglowymi szczotkami. Ich zużycie, pęknięcia czy zanieczyszczenia mogą prowadzić do zwiększonego oporu elektrycznego, co w efekcie może powodować przegrzewanie się silnika oraz obniżenie jego wydajności. Kontrola stanu wycinków powinna obejmować ocenę ich grubości, stanu powierzchni oraz ewentualnych uszkodzeń. W przypadku stwierdzenia jakichkolwiek nieprawidłowości, zaleca się wymianę wycinków komutatora, co jest zgodne z dobrymi praktykami branżowymi. Działania te pomagają utrzymać silnik w dobrej kondycji i wydłużają jego żywotność, dlatego regularne przeglądy są niezwykle istotne w kontekście konserwacji maszyn elektrycznych.

Pytanie 31

Podczas realizacji instalacji elektrycznej w obiektach przemysłowych z wydzielinami korozyjnymi powinno się zastosować sprzęt hermetyczny oraz wykorzystać przewody z żyłami

A. aluminiowymi umieszczonymi na tynku
B. aluminiowymi umieszczonymi pod tynkiem
C. miedzianymi umieszczonymi na tynku
D. miedzianymi umieszczonymi pod tynkiem
Odpowiedzi, które sugerują użycie przewodów aluminiowych w instalacjach elektrycznych w pomieszczeniach przemysłowych z wyziewami żrącymi, są niewłaściwe. Aluminium, choć jest tańszym materiałem i ma swoje zalety, takich jak lekkość, ma znacznie gorsze właściwości w zakresie odporności na korozję w porównaniu do miedzi. W środowiskach z agresywnymi substancjami chemicznymi, aluminiowe przewody mogą szybko ulegać degradacji, co może prowadzić do przerwy w obwodzie elektrycznym, a tym samym zwiększać ryzyko pożaru i uszkodzeń sprzętu. Ponadto, przewody aluminiowe wymagają szczególnej staranności w montażu, aby uniknąć problemów z połączeniami, które mogą prowadzić do przegrzewania. Ułożenie przewodów pod tynkiem, zwłaszcza w warunkach przemysłowych, może być problematyczne ze względu na trudności w naprawach i kontroli stanu technicznego instalacji. Używanie przewodów aluminiowych na tynku również nie jest zalecane, ponieważ naraża je na uszkodzenia mechaniczne oraz niekorzystne działanie czynników atmosferycznych. W kontekście dobrych praktyk branżowych oraz norm, takich jak PN-IEC 60364, instalacje elektryczne w środowiskach przemysłowych powinny być projektowane z myślą o maksymalnej trwałości i bezpieczeństwie. Dlatego wybór materiałów i metod zastosowania przewodów elektrycznych powinien być starannie przemyślany, aby uniknąć błędów, które mogą prowadzić do poważnych konsekwencji.

Pytanie 32

Kiedy należy dokonać przeglądu instalacji elektrycznej w obiekcie przemysłowym?

A. Tylko przed uruchomieniem nowych maszyn
B. Co najmniej raz na rok
C. Co pięć lat
D. Po każdej naprawie maszyn
Przegląd instalacji elektrycznej w obiektach przemysłowych powinien być dokonywany co najmniej raz na rok. Częstotliwość ta jest zgodna z normami i przepisami dotyczącymi bezpieczeństwa w przemyśle, które wymagają regularnych przeglądów w celu zapewnienia bezpiecznego i efektywnego działania instalacji. Przykładowo, roczne przeglądy pozwalają na wczesne wykrycie potencjalnych uszkodzeń, które mogą prowadzić do awarii lub zagrożeń dla bezpieczeństwa pracowników. Dodatkowo, regularne przeglądy umożliwiają identyfikację zużycia podzespołów i przewodów, co jest kluczowe w kontekście ich konserwacji i wymiany. W praktyce, podczas takiego przeglądu sprawdza się m.in. stan izolacji przewodów, działanie zabezpieczeń oraz poprawność połączeń, co ma na celu zminimalizowanie ryzyka porażenia prądem czy pożaru. Ponadto, zgodnie z dobrymi praktykami branżowymi, przeglądy roczne są uznawane za minimalny standard dla utrzymania optymalnego stanu technicznego instalacji w intensywnie eksploatowanych środowiskach przemysłowych.

Pytanie 33

Który skutek dla organizmu pracownika może spowodować utrzymywanie się mgły olejowej w słabo wentylowanym pomieszczeniu?

A. Zmęczenie i obciążenie wzroku.
B. Podrażnienie skóry, oczu, gardła i płuc.
C. Zaburzenia w układzie krążenia.
D. Zakłócenia w układzie kostno-stawowym.
Prawidłowo wskazana odpowiedź „podrażnienie skóry, oczu, gardła i płuc” bardzo dobrze oddaje realne skutki zdrowotne długotrwałego przebywania w pomieszczeniu z mgłą olejową i słabą wentylacją. Mgła olejowa to drobne aerozole, czyli mikroskopijne kropelki oleju unoszące się w powietrzu. Powstają np. przy obróbce skrawaniem, smarowaniu, chłodzeniu narzędzi, w sprężarkach, niektórych układach pneumatycznych. Te drobinki osiadają na skórze, błonach śluzowych oczu i dróg oddechowych, co prowadzi do mechanicznego i chemicznego podrażnienia. W praktyce pracownik odczuwa pieczenie oczu, łzawienie, swędzenie skóry, kaszel, drapanie w gardle, czasem ucisk w klatce piersiowej. Przy dłuższej ekspozycji może dojść do stanów zapalnych skóry (dermatozy), przewlekłego zapalenia oskrzeli czy pogorszenia wydolności oddechowej. Zgodnie z zasadami BHP i wymaganiami norm (np. ogólne przepisy bezpieczeństwa i higieny pracy, rozporządzenia w sprawie NDS/NDN dla czynników szkodliwych) mgła olejowa jest traktowana jako szkodliwy czynnik chemiczny i należy ograniczać jej stężenie w powietrzu. Stosuje się wentylację mechaniczną, wyciągi miejscowe przy maszynach, osłony, a także środki ochrony indywidualnej – okulary ochronne, półmaski filtrujące, rękawice i odzież roboczą. Moim zdaniem kluczowe w praktyce jest to, żeby nie bagatelizować pierwszych objawów podrażnienia, bo ludzie często myślą „przyzwyczaję się”, a organizm się nie przyzwyczaja, tylko stopniowo uszkadza. W dobrze zarządzonym zakładzie utrzymywanie mgły olejowej powyżej dopuszczalnych stężeń jest traktowane jako poważne naruszenie zasad bezpieczeństwa i wymaga natychmiastowej reakcji: przeglądu instalacji, poprawy wentylacji, czasem nawet chwilowego wstrzymania pracy maszyn.

Pytanie 34

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
B. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
C. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
D. Instrukcja obsługi urządzenia
Rysunek ogólny urządzenia wraz ze schematami obwodów zasilania, szczegółowe rysunki techniczne poszczególnych elementów urządzenia oraz instrukcja obsługi są kluczowymi komponentami dokumentacji technicznej, ale nie wszystkie odpowiadają wymogom formalnym. Rysunek ogólny ma na celu przedstawienie całości urządzenia, uwzględniając jego główne komponenty. Schematy obwodów zasilania są niezbędne dla zrozumienia, jak energia elektryczna jest dostarczana i przetwarzana w urządzeniu, co jest istotne dla diagnostyki i napraw. Instrukcja obsługi z kolei dostarcza użytkownikom informacji nie tylko o obsludze, ale także o wymaganiach bezpieczeństwa oraz wskazówkach dotyczących eksploatacji. Opis metod zastosowanych do wyeliminowania zagrożeń stwarzanych przez urządzenie podkreśla znaczenie bezpieczeństwa w projektowaniu urządzeń elektrycznych, co jest zgodne z normami ISO 12100 i IEC 61508, które koncentrują się na ocenie ryzyka. Wiele osób mylnie uważa, że szczegółowe rysunki techniczne są konieczne do pełnej dokumentacji, jednak w kontekście ogólnej dokumentacji technicznej, najważniejsze jest, aby skupić się na aspektach ogólnych i bezpieczeństwie, które są bardziej istotne dla użytkowników i serwisantów. Dlatego istotne jest, aby zrozumieć, które elementy są kluczowe dla dokumentacji w kontekście przepisów i praktyk inżynieryjnych.

Pytanie 35

Jakie oznaczenie powinna posiadać wkładka topikowa do ochrony przewodów przed skutkami zwarć i przeciążeń w obwodzie jednofazowego elektrycznego bojlera o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aM 20 A
B. gG 16 A
C. aM 16 A
D. gG 20 A
Odpowiedź gG 16 A jest prawidłowa, ponieważ wkładki topikowe oznaczone jako gG są przeznaczone do zabezpieczania obwodów przed przeciążeniami oraz zwarciami, a ich charakterystyka czasowa i prądowa jest dostosowana do zastosowań w instalacjach elektrycznych, takich jak obwody zasilające urządzenia elektryczne, w tym bojlery. W przypadku bojlera o mocy 3 kW oraz napięciu znamionowym 230 V, maksymalny prąd roboczy można obliczyć według wzoru: P = U × I, co daje prąd I równy około 13 A. Wybór wkładki gG 16 A zapewnia odpowiedni margines bezpieczeństwa, umożliwiając prawidłowe działanie urządzenia w warunkach normalnych, jednocześnie chroniąc przed skutkami zwarć. W praktyce wkładki gG są używane w sytuacjach, gdzie mogą wystąpić różne rodzaje przeciążeń, co czyni je bardziej elastycznymi i bezpiecznymi w użyciu. Oprócz tego, przy zastosowaniu wkładki gG 16 A, spełnione są normy dotyczące zabezpieczeń elektrycznych, co jest istotne dla bezpieczeństwa użytkowników i zgodności z przepisami budowlanymi.

Pytanie 36

Jak często powinny być wykonywane konserwacje urządzeń w instalacji elektrycznej w budynkach mieszkalnych?

A. Przed każdym uruchomieniem urządzenia
B. Zgodnie z instrukcją obsługi danego odbiornika
C. Każdorazowo podczas badań okresowych instalacji
D. Co najmniej raz na dwa lata
Częstość przeprowadzania konserwacji odbiorników elektrycznych w mieszkaniach nie może być uogólniana na podstawie arbitralnych okresów czasu, jak sugerują inne odpowiedzi. Odpowiedź wskazująca na przeprowadzanie konserwacji 'co najmniej raz na dwa lata' może prowadzić do niebezpiecznych sytuacji, ponieważ nie uwzględnia specyfiki danego odbiornika oraz jego warunków pracy. Odbiorniki mogą być narażone na różnorodne czynniki, takie jak temperatura, wilgotność, obecność zanieczyszczeń czy intensywność użytkowania, które wpływają na ich stan techniczny i bezpieczeństwo. Ponadto, odpowiedź sugerująca, że konserwacja powinna się odbywać 'przed każdorazowym uruchomieniem odbiornika' jest niepraktyczna, ponieważ wiele odbiorników, jak np. sprzęt AGD, nie wymaga codziennych kontroli przed użyciem. Wprowadza to błąd myślowy, że wszystkie urządzenia wymagają takiej samej uwagi. Argument zakładający, że konserwacja powinna się odbywać 'każdorazowo w czasie badań okresowych instalacji' ignoruje fakt, że badania okresowe dotyczą całej instalacji, a nie pojedynczych odbiorników. Takie podejście może prowadzić do zaniedbań, gdyż niektóre odbiorniki mogą nie być objęte przeglądami w odpowiednich interwałach. Dlatego kluczowe jest, aby użytkownicy odbiorników kierowali się instrukcjami producentów, co pozwala na odpowiednią i bezpieczną eksploatację urządzeń.

Pytanie 37

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Zmniejszenie zużycia energii
B. Zdalne sterowanie obwodami elektrycznymi
C. Ochrona przed przeciążeniami
D. Kontrola temperatury przewodów
W instalacjach elektrycznych przekaźniki nie służą jako ochrona przed przeciążeniami. Funkcję tę pełnią zabezpieczenia nadprądowe, takie jak wyłączniki nadprądowe czy bezpieczniki, które są specjalnie zaprojektowane do wykrywania przeciążeń i zwarć, odłączając zasilanie, aby zapobiec uszkodzeniom sprzętu i instalacji. Zmniejszenie zużycia energii to również nie jest główna funkcja przekaźników. Choć użycie przekaźników może pośrednio wpływać na efektywność energetyczną poprzez optymalizację pracy urządzeń, ich podstawowa rola związana jest z funkcjami sterowania, a nie z ograniczaniem zużycia energii. Kontrola temperatury przewodów to kolejna niepoprawna odpowiedź. Przekaźniki nie są używane do monitorowania temperatury przewodów – tę funkcję mogą pełnić inne urządzenia, takie jak termostaty czy czujniki temperatury, które bezpośrednio mierzą i reagują na zmiany temperatury. Błędne przypisanie tych funkcji przekaźnikowi może wynikać z niepełnego zrozumienia zasad działania różnych komponentów w instalacjach elektrycznych. Zrozumienie konkretnej roli każdego elementu systemu jest kluczowe dla skutecznego projektowania i eksploatacji instalacji elektrycznych.

Pytanie 38

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Sprawdzenie układów rozruchowych i regulacyjnych
B. Pomiar rezystancji izolacji i próbne uruchomienie
C. Impregnację uzwojeń i wyważenie wirnika
D. Sprawdzenie układów sterowania i sygnalizacji
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 39

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Wymiana uszkodzonych źródeł światła
B. Instalacja dodatkowego gniazda elektrycznego
C. Modernizacja rozdzielnicy instalacji elektrycznej
D. Zmiana rodzaju zastosowanych przewodów
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.

Pytanie 40

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Kontroli stanu osłon elementów wirujących
B. Sprawdzenia szczotek i szczotkotrzymaczy
C. Oceny stanu przewodów ochronnych oraz ich podłączenia
D. Sprawdzenia działania systemów chłodzenia
Odpowiedź dotycząca sprawdzenia szczotek i szczotkotrzymaczy jako czynności, której nie wykonuje się podczas oględzin urządzenia napędowego z silnikiem elektrycznym w czasie ruchu, jest poprawna. Podczas pracy silnika elektrycznego, szczegóły takie jak szczotki i szczotkotrzymacze nie mogą być skutecznie oceniane, ponieważ wymagają one zatrzymania silnika, aby móc przeprowadzić dokładne wizualne i techniczne badania. Szczotki są kluczowymi elementami, które przekazują prąd do wirnika i ich stan ma istotny wpływ na wydajność silnika. W praktyce, regularne kontrole tych komponentów powinny być przeprowadzane w warunkach postoju, aby uniknąć uszkodzeń i zapewnić długotrwałe, bezproblemowe funkcjonowanie napędu. Zaleca się stosowanie standardów takich jak PN-EN 60034, które określają wymagania dotyczące silników elektrycznych, oraz dokumentacji producentów, aby przestrzegać najlepszych praktyk obsługi i konserwacji urządzeń. Wnioskując, ocena stanu szczotek i szczotkotrzymaczy w czasie ruchu nie jest możliwa, co czyni tę odpowiedź prawidłową.