Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 10 lutego 2026 00:30
  • Data zakończenia: 10 lutego 2026 00:39

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Energia mechaniczna w silnikach cieplnych nie powstaje w wyniku procesu spalania

A. oleju silnikowego
B. gazu ziemnego
C. benzyny
D. oleju napędowego
Odpowiedzi takie jak "olej napędowy", "benzyna" oraz "gaz ziemny" mogą wprowadzać w błąd, gdyż sugerują, że to właśnie te paliwa są bezpośrednio odpowiedzialne za generowanie energii mechanicznej w silnikach cieplnych. W rzeczywistości są one źródłem energii, które przez proces spalania przekształcają chemiczną energię paliwa w energię mechaniczną. Jednakże olej napędowy i benzyna są specyficznymi rodzajami paliw stosowanych w silnikach spalinowych, a ich spalanie w silniku prowadzi do ruchu tłoków, który jest następnie konwertowany na energię mechaniczną. Gaz ziemny, jako paliwo gazowe, również wykorzystywany jest w silnikach spalinowych, jednak i w tym przypadku jego rola polega na dostarczaniu energii spalania. Istotnym błędem myślowym jest mylenie funkcji paliwa i oleju silnikowego. Olej silnikowy, jak wspomniano wcześniej, nie jest paliwem i nie uczestniczy w procesach energetycznych, lecz pełni funkcję smarną, co jest kluczowe dla optymalizacji pracy silnika oraz wydajności jego działania. Niepodważalnym standardem w branży jest podejście do smarowania jako nieodłącznego elementu zapewniającego długotrwałe i efektywne działanie silników, które muszą być odpowiednio eksploatowane z uwzględnieniem właściwych olejów oraz ich parametrów jakościowych.

Pytanie 2

Jaką jednostką wyrażamy moment obrotowy silnika?

A. KM
B. Nm
C. kW
D. N
Kiedy mówimy o jednostkach miary związanych z silnikami, warto zauważyć, że kW (kilowaty) są jednostką mocy, a nie momentu obrotowego. Moc to iloczyn momentu obrotowego i prędkości kątowej, co oznacza, że chociaż kW są istotne w kontekście wydajności silnika, nie można ich używać do bezpośredniego pomiaru momentu obrotowego. Często zdarza się, że osoby nieznające się na podstawowych zasadach fizyki mogą mylić te dwa pojęcia, co prowadzi do błędnych interpretacji dotyczących wydajności pojazdu. Z kolei KM (konie mechaniczne) to także jednostka mocy, a nie momentu obrotowego. Użytkownicy mogą sądzić, że większa moc konieczna jest do osiągnięcia większego momentu obrotowego, co nie jest prawdą. Tego rodzaju błędne założenia mogą prowadzić do nieporozumień w ocenie parametrów technicznych silników. Ostatnia odpowiedź, N (niutony), jest miarą siły, a moment obrotowy jest funkcją siły i odległości od osi obrotu. Dlatego też, choć niutony mogą odgrywać rolę w obliczeniach związanych z momentem obrotowym, nie są jednostką, która mogłaby być używana do jego bezpośredniego pomiaru. Często spotykane mylne interpretacje w tematyce silników mogą wynikać z braku podstawowej wiedzy technicznej, co skutkuje przekłamaniami w ocenie ich wydajności.

Pytanie 3

Zawsze powinno się zaczynać diagnostykę układu kontroli trakcji od

A. odczytania pamięci błędów sterownika
B. potwierdzenia ciśnienia w ogumieniu pojazdu
C. balansowania kół pojazdu
D. sprawdzenia poziomu płynu hamulcowego w zbiorniczku
Praktyka rozpoczynania diagnostyki układu kontroli trakcji od kontroli poziomu płynu hamulcowego, wyważenia kół lub ciśnienia w ogumieniu jest nieuzasadniona, gdyż te czynności nie dostarczają bezpośrednich informacji o stanie systemów elektronicznych pojazdu. Poziom płynu hamulcowego, choć ważny dla ogólnego bezpieczeństwa, nie ma bezpośredniego wpływu na funkcjonowanie systemu kontroli trakcji, który opiera się głównie na danych z czujników i algorytmach sterujących. W przypadku wyważenia kół, to działanie jest istotne dla stabilności pojazdu, ale nie wskazuje na ewentualne problemy z elektroniką, które mogą wpływać na kontrolę trakcji. Ciśnienie w ogumieniu jest równie ważne, gdyż niewłaściwe ciśnienie może wpłynąć na przyczepność, jednak również nie jest to informacja, która poprowadzi technika w stronę usterek w systemie elektronicznym. Typowe błędy w myśleniu polegają na braku zrozumienia różnicy między aspektami mechanicznymi a elektronicznymi, co prowadzi do niewłaściwego kierowania diagnostyki. Odpowiednie podejście diagnostyczne powinno być oparte na analizie elektronicznych danych i pamięci błędów, a nie na rutynowych kontrolach płynów czy ciśnienia, które mogą jedynie zakłócić proces diagnostyczny i wydłużyć czas usunięcia usterki.

Pytanie 4

Rękawice ochronne powinny być używane podczas prac

A. tokarsko - frezerskich.
B. przeładunkowych
C. w okolicy elementów obracających się
D. przy elementach wirujących
Rękawice ochronne są istotnym elementem wyposażenia w wielu dziedzinach pracy, jednak ich zastosowanie jest ściśle związane z rodzajem wykonywanych czynności. Odpowiedzi sugerujące użycie rękawic przy elementach obracających się, tokarsko-frezerskich czy wirujących mogą prowadzić do niewłaściwego zrozumienia ich funkcji. Prace przy elementach obracających się, takich jak maszyny i narzędzia mechaniczne, często wymagają innych form ochrony, takich jak osłony czy zabezpieczenia mechaniczne, które zapobiegają wciągnięciu rąk w ruchome części. W tych przypadkach, rękawice mogą stanowić dodatkowe ryzyko, ponieważ mogą zahaczać o elementy maszyny. Z kolei prace tokarsko-frezerskie, związane z obróbką metalu, wymagają rękawic o specyficznych właściwościach, które mogą nie być wystarczające do ochrony przed ostrymi narzędziami czy gorącymi materiałami. Ostatecznie, w kontekście pracy przy elementach wirujących, stosowanie rękawic również może być niebezpieczne, ponieważ mogą one zostać wciągnięte w mechanizmy, co prowadzi do poważnych obrażeń. Kluczowe jest zrozumienie, że ochrona rąk powinna być dostosowana do specyfiki wykonywanej pracy i ryzyka z nią związanego, a nie na zasadzie ogólnych założeń.

Pytanie 5

Na rysunku przedstawiono schemat układu chłodzenia

Ilustracja do pytania
A. powietrza doładowanego.
B. klimatyzacji.
C. silnika.
D. nagrzewnicy wnętrza pojazdu.
Wygląda na to, że w odpowiedziach pojawiło się kilka nieporozumień dotyczących układów chłodzenia w autach. Nagrzewnica to element ogrzewania i wykorzystuje ciepło z płynu chłodzącego, żeby podgrzać powietrze w kabinie. Klimatyzacja działa na innej zasadzie, bo chodzi o obieg czynnika chłodzącego, który schładza powietrze w środku. Natomiast układ chłodzenia silnika ma za zadanie utrzymywać odpowiednią temperaturę pracy silnika, odprowadzając nadmiar ciepła. Często te systemy są mylone, co prowadzi do niewłaściwych wniosków. Każdy z nich ma swoją rolę i funkcję, więc dobrze jest zrozumieć, co jak działa. Na pewno łatwiej będzie diagnozować problemy, jak się dobrze rozróżni te układy.

Pytanie 6

W hydraulicznej instalacji sterowania sprzęgłem znajduje się

A. olej ATF 220
B. olej silnikowy
C. płyn hamulcowy
D. płyn R134a
Wybór oleju silnikowego jako medium w hydraulicznych układach sterowania sprzęgłem jest błędny z kilku powodów. Po pierwsze, olej silnikowy nie spełnia wymagań dotyczących właściwości fizycznych i chemicznych, które są niezbędne w hydraulice. Posiada on inne charakterystyki lepkości, co może prowadzić do niewłaściwego działania układu i obniżenia efektywności przekazywania siły. Na przykład, przy niskich temperaturach olej silnikowy może gęstnieć, co skutkuje opóźnieniem w reakcji układu, a w skrajnych przypadkach może prowadzić do zacięcia się. Ponadto, olej silnikowy nie wykazuje odporności na wysoką temperaturę i może szybko ulegać degradacji. W kontekście płynu R134a, którym jest czynnik chłodniczy używany w układach klimatyzacji, jego zastosowanie w hydraulice sprzęgła jest całkowicie nieadekwatne. R134a nie jest płynem, który mógłby przenosić siłę mechaniczną. Dlatego wybór tego płynu prowadzi do niewłaściwego działania układu. Wreszcie, olej ATF 220, przeznaczony do przekładni automatycznych, również nie jest odpowiedni. Choć posiada lepsze właściwości niż olej silnikowy, jest zaprojektowany z myślą o zupełnie innych zastosowaniach, co czyni go niewłaściwym wyborem w systemach hydraulicznych sprzęgła. W przypadku układów hydraulicznych, kluczowe jest stosowanie płynów, które są zgodne z normami i standardami, zapewniającymi ich optymalne działanie.

Pytanie 7

Na podstawie informacji zawartych w tabeli określ koszt brutto wymiany ogumienia letniego na zimowewykonywane przez jednego pracownika. Stawka VAT wynosi 23%.

Lp.nazwa części/usługicena netto
1opona zimowa 1 szt.250,00 zł
2wymiana opony z wyważeniem 1 szt.25,00 zł
3wyważenie koła 1szt10,00 zł
A. 1 420,20 zł
B. 1 353,00 zł
C. 1 140,00 zł
D. 1 100,00 zł
Wybór jednej z niepoprawnych odpowiedzi może wynikać z nieprawidłowego zrozumienia kroków wymaganych do obliczenia kosztu wymiany ogumienia. Często popełnianym błędem jest pominięcie prawidłowego zsumowania wszystkich związanych z tym kosztów. Na przykład, niektórzy mogą skoncentrować się jedynie na kosztach zakupu opon zimowych, ignorując konieczność dodania kosztów robocizny oraz wyważenia kół. Koszt wymiany opony z wyważeniem powinien być wzięty pod uwagę jako istotny element całkowitego kosztu. Kolejnym częstym błędem jest niewłaściwe obliczenie stawki VAT. Użytkownicy mogą próbować dodać VAT do każdego elementu osobno, co prowadzi do zawyżania końcowego kosztu. Taki sposób myślenia jest niezgodny z zasadami rachunkowości, które nakładają obowiązek naliczania VAT jedynie na łączny koszt netto, a nie na poszczególne elementy. Ponadto, brak zrozumienia mechanizmu działania kosztów netto i brutto może prowadzić do nieprawidłowego oszacowania kosztów usług, co jest kluczowe dla konkurencyjności warsztatów samochodowych. W praktyce, znajomość szczegółowych zasad obliczania kosztów jest kluczowa dla efektywnego zarządzania finansami oraz planowania usług w branży motoryzacyjnej.

Pytanie 8

Zanim rozpoczniesz diagnostykę układu hamulcowego na stanowisku rolkowym, na początku należy zweryfikować

A. obciążenie pojazdu.
B. stan płynu hamulcowego.
C. szczelność układu.
D. ciśnienie w ogumieniu.
Ciśnienie w ogumieniu jest kluczowym czynnikiem wpływającym na efektywność układu hamulcowego. Przed przystąpieniem do diagnostyki układu hamulcowego na stanowisku rolkowym, ważne jest, aby upewnić się, że opony pojazdu są odpowiednio napompowane. Niskie ciśnienie w oponach może prowadzić do zwiększonego oporu toczenia, co z kolei wpłynie na obciążenie układu hamulcowego oraz jego skuteczność. Odpowiednie ciśnienie w oponach poprawia stabilność pojazdu, a także zapewnia równomierne rozłożenie sił hamowania na wszystkie koła. W praktyce, diagnostycy powinni korzystać z manometru do sprawdzenia ciśnienia w oponach przed przystąpieniem do jakichkolwiek testów hamulców. To nie tylko poprawia bezpieczeństwo, ale również zwiększa dokładność wyników testów. Ponadto, zgodność z normami producentów pojazdów oraz zaleceniami dotyczącymi ciśnienia w oponach stanowi standard w branży motoryzacyjnej, co powinno być integralną częścią procesu diagnostycznego.

Pytanie 9

Jaką konfigurację silnika oznacza skrót DOHC?

A. górnozaworowy z pojedynczym wałkiem rozrządu w kadłubie
B. górnozaworowy z jednym wałkiem rozrządu w głowicy
C. dolnozaworowy z pojedynczym wałkiem rozrządu w kadłubie
D. górnozaworowy z dwoma wałkami rozrządu w głowicy
Odpowiedź wskazująca na górnozaworowy układ z dwoma wałkami rozrządu w głowicy (DOHC) jest poprawna, ponieważ skrót ten pochodzi z angielskiego 'Double Overhead Camshaft'. Ta konstrukcja silnika zapewnia lepsze osiągi i wyższą efektywność pracy, co jest szczególnie istotne w nowoczesnych jednostkach napędowych. Dwa wałki rozrządu umożliwiają niezależne sterowanie zaworami ssącymi i wydechowymi, co przekłada się na lepsze parametry silnika, wyższe obroty oraz efektywne spalanie mieszanki paliwowo-powietrznej. W praktyce oznacza to zwiększenie mocy i momentu obrotowego, a także redukcję emisji spalin. Konstrukcje DOHC są powszechnie stosowane w silnikach sportowych oraz w nowoczesnych samochodach osobowych, co czyni je standardem w branży motoryzacyjnej. Zastosowanie systemu VVT (Variable Valve Timing) w połączeniu z DOHC może dodatkowo zwiększyć wydajność silnika w różnych warunkach pracy, co jest zgodne z trendami w inżynierii silników. Wysoka jakość wykonania i precyzyjne dopasowanie elementów są kluczowe w tej technologii.

Pytanie 10

Klucze przedstawione na ilustracji służą do demontażu i montażu

Ilustracja do pytania
A. przewodów hamulcowych.
B. sondy λ.
C. nakrętek felg ze stopów lekkich.
D. czujników ABS.
Klucze przedstawione na ilustracji, znane jako klucze płaskie, są szeroko stosowane w mechanice samochodowej, szczególnie do demontażu i montażu przewodów hamulcowych. Ich rozmiary (10, 11, 12, 13 mm) są standardowe dla wielu komponentów układu hamulcowego. Właściwe użycie kluczy o tych wymiarach zapewnia bezpieczeństwo i efektywność przy pracy z przewodami, które muszą być odpowiednio dokręcone, aby uniknąć wycieków płynów hamulcowych. W przypadku nieprawidłowego montażu można narazić się na poważne problemy z bezpieczeństwem pojazdu. Przewody hamulcowe są krytycznymi elementami wpływającymi na działanie układu hamulcowego, dlatego użycie właściwych narzędzi jest kluczowe w zgodności z normami branżowymi. Warto zwrócić uwagę, że klucze te nie są używane do demontażu czujników ABS czy sond λ, które wymagają innych narzędzi, często specjalistycznych. Zapewnienie prawidłowego montażu i demontażu przewodów hamulcowych to nie tylko kwestia zgodności z normami, ale przede wszystkim bezpieczeństwa użytkowników pojazdów.

Pytanie 11

Stan naładowania akumulatora ustalamy za pomocą pomiaru

A. gęstości elektrolitu
B. objętości elektrolitu
C. masy elektrolitu
D. lepkości elektrolitu
Pomiar objętości elektrolitu nie dostarcza informacji o stopniu naładowania akumulatora, ponieważ objętość pozostaje względnie stała, niezależnie od stanu naładowania. W przypadku akumulatorów kwasowo-ołowiowych, zmiany w ilości dostępnego elektrolitu mogą wynikać z odparowania lub wycieku, co nie jest bezpośrednio związane ze stanem naładowania. Lepkość elektrolitu oraz masa elektrolitu również nie są miarodajnymi wskaźnikami stanu naładowania. Lepkość może się zmieniać pod wpływem temperatury, ale nie wskazuje na ilość zgromadzonej energii. Masa elektrolitu, z kolei, jest stała dla danego akumulatora, a jej pomiar nie informuje o jakości czy efektywności akumulatora. Błędem w myśleniu jest założenie, że te parametry są w stanie zastąpić właściwy pomiar gęstości. Aby skutecznie ocenić stan akumulatora, należy kierować się sprawdzonymi metodami pomiarowymi, takimi jak wspomniany wcześniej pomiar gęstości elektrolitu, a nie polegać na parametrach, które nie są z nim bezpośrednio związane.

Pytanie 12

Termostat stanowi część systemu

A. dolotowego
B. wylotowego
C. chłodzenia
D. hamulcowego
Termostat to naprawdę ważna część układu chłodzenia w samochodach. Jego główne zadanie to regulowanie temperatury silnika, a robi to przez otwieranie i zamykanie przepływu płynu chłodzącego, w zależności od tego, jak gorąco jest w silniku. Jak jest zimno, termostat jest zamknięty, co pozwala silnikowi szybciej osiągnąć odpowiednią temperaturę pracy. Kiedy silnik się nagrzeje, termostat się otwiera i płyn chłodzący może przepływać, co utrzymuje temperaturę na odpowiednim poziomie. Używanie sprawnego termostatu ma duży wpływ na efektywność paliwową i zmniejsza emisję spalin. Warto regularnie sprawdzać termostat, bo to dobra praktyka, którą polecają producenci, żeby mieć pewność, że silnik działa jak należy.

Pytanie 13

Aby zweryfikować bicia czopów głównych wału korbowego, należy zastosować

A. średnicówki czujnikowej
B. średnicówki mikrometrycznej
C. czujnika zegarowego
D. mikrometru
Średnicówki mikrometryczne oraz czujnikowe i mikrometryczne są narzędziami pomiarowymi, które mają swoje zastosowanie w precyzyjnych pomiarach, jednak nie są odpowiednie do pomiaru bicia czopów głównych wału korbowego. Średnicówka mikrometryczna, na przykład, jest używana do pomiaru średnicy otworów, prętów i innych obiektów cylindrical, a jej zasada działania opiera się na pomiarze grubości lub średnicy przy użyciu skali milimetrowej i mikrometrycznej. Chociaż można by teoretycznie przystosować średnicówkę do pomiaru bicia, nie są to narzędzia zaprojektowane specjalnie do takiej aplikacji. Z kolei średnicówki czujnikowe są narzędziami, które również mierzą średnice, ale w inny sposób. Nie mają one zdolności do wykrywania niewielkich odchyleń od osi, co jest kluczowe w przypadku bicia czopów. Mikrometr, z kolei, jest doskonałym narzędziem do pomiarów grubości i średnic, jednak nie ma zastosowania w dynamicznych pomiarach, które są wymagane przy sprawdzaniu bicia. Użytkownicy mogą często popełniać błąd myślowy, myląc zastosowanie tych narzędzi, co prowadzi do niewłaściwych wniosków dotyczących ich funkcjonalności w kontekście pomiaru bicia czopów. Aby uniknąć takich pomyłek, ważne jest zrozumienie specyfiki narzędzi i ich przeznaczenia w mechanice maszyn, co jest kluczowe do poprawnych wyników i efektywności w pracy w warsztatach.

Pytanie 14

Współczesne bloki silników z zapłonem wewnętrznym przeważnie są produkowane z

A. stopowego żeliwa
B. stopów aluminium
C. węglowego staliwa
D. nierdzewnej stali
Wybór materiałów do produkcji bloków silników spalinowych jest kluczowym zagadnieniem inżynieryjnym i wymaga dokładnego zrozumienia właściwości różnych surowców. Stal węglowa, mimo że jest materiałem wytrzymałym, ma dużą masę, co negatywnie wpływa na efektywność energetyczną pojazdów. Intensywne dążenie do obniżania masy silników sprawia, że stal węglowa, ze względu na swoją ciężkość, nie jest preferowanym wyborem w nowoczesnym projektowaniu. Żeliwo stopowe, z drugiej strony, ma pewne korzystne właściwości, takie jak wysoka odporność na ścieranie, ale również jest cięższe od aluminium. W nowoczesnych zastosowaniach, gdzie liczy się każdy gram, jego użycie jest ograniczone. Stal nierdzewna, choć doskonała pod względem odporności na korozję, jest także znacznie cięższa i droższa, co czyni ją mniej praktyczną w kontekście masowej produkcji silników. Użycie tych materiałów może prowadzić do mylnych wniosków o ich przydatności w nowoczesnym przemysłowym zastosowaniu. Kluczem do zrozumienia wyboru materiałów w inżynierii silników spalinowych jest balans pomiędzy wytrzymałością, masą, a kosztami produkcji. Dlatego też, wybierając materiały do bloków silników, inżynierowie kierują się aktualnymi standardami, które preferują lżejsze i bardziej efektywne w kontekście energetycznym rozwiązania, takie jak stopy aluminium.

Pytanie 15

Kosztorys realizacji usługi serwisowej jest przygotowywany m.in. na podstawie

A. czasochłonności naprawy
B. liczby części wymienionych w ramach usługi
C. szacunkowego poziomu zużycia pojazdu
D. wartości rynkowej pojazdu
Odpowiedź dotycząca ilości czasu potrzebnej do naprawy jest kluczowym elementem w procesie tworzenia kosztorysu usługi serwisowej. W praktyce, szacowanie czasu naprawy opiera się na przemyślanej analizie zleceń oraz doświadczeniu technika. Czas naprawy jest bezpośrednio związany z kosztem robocizny, który stanowi znaczącą część całkowitego kosztu usługi. Standardy branżowe, takie jak normy czasowe określone przez producentów pojazdów, umożliwiają technikom dokładne oszacowanie, ile czasu zajmie im wykonanie danej naprawy. Na przykład, serwisanci często korzystają z tzw. 'czasów referencyjnych', które pomagają określić przeciętny czas potrzebny na wykonanie różnych rodzajów napraw. Dodatkowo, umiejętność dokładnego oszacowania czasu naprawy pozwala na lepsze zarządzanie zasobami w warsztacie oraz na zadowolenie klientów poprzez rzetelne informowanie ich o czasie realizacji usługi. Taka praktyka przyczynia się do zwiększenia efektywności operacyjnej serwisu oraz do budowy pozytywnego wizerunku w oczach klientów.

Pytanie 16

Aby przeprowadzić demontaż półosi napędowej z pojazdu, najpierw trzeba usunąć przegub

A. zewnętrzny z piasty koła
B. zewnętrzny z półosi napędowej
C. wewnętrzny z półosi napędowej
D. wewnętrzny z przekładni głównej
Zewnętrzny przegub półosi napędowej jest kluczowym elementem w układzie napędowym pojazdu, który łączy półosie z piastami kół. Aby przeprowadzić demontaż półosi, najpierw należy odłączyć ten przegub, co umożliwia swobodny dostęp do pozostałych komponentów. W praktyce, po odkręceniu nakrętek mocujących, przegub zewnętrzny można zdemontować bezpośrednio z piasty koła. To podejście jest zgodne z najlepszymi praktykami w mechanice pojazdowej, gdzie każdy etap demontażu jest zaplanowany i przeprowadzany w logice kolejności operacji, minimalizując ryzyko uszkodzenia elementów. W przypadku niektórych modeli pojazdów, zaniechanie demontażu zewnętrznego przegubu może prowadzić do trudności w dalszym demontażu półosi, co podkreśla znaczenie tej sekwencji. Dodatkowo, zwrócenie uwagi na zużycie przegubów zewnętrznych w trakcie rutynowych przeglądów może przyczynić się do poprawy bezpieczeństwa i wydajności pojazdu, co jest istotne w kontekście standardów motoryzacyjnych.

Pytanie 17

Do diagnostyki stosuje się lampę stroboskopową w przypadku

A. systemu zapłonowego
B. systemu kierowniczego
C. systemu hamulcowego
D. systemu napędowego
Wybór układu hamulcowego, kierowniczego lub napędowego jako obszaru diagnozy za pomocą lampy stroboskopowej jest błędny, ponieważ te układy nie są związane z funkcjonowaniem systemu zapłonowego silnika. Układ hamulcowy opiera się na mechanizmach hydraulicznych i pneumatycznych, a jego skuteczność można ocenić przez testy ciśnienia, zużycia klocków hamulcowych, a także poprzez wizualną inspekcję komponentów. Diagnoza układu kierowniczego polega głównie na ocenie luzy oraz stanu elementów takich jak drążki kierownicze czy przekładnie, co również nie ma związku z użyciem lampy stroboskopowej. Układ napędowy wymaga analizy zużycia elementów takich jak sprzęgło, skrzynia biegów czy półosie, co jest realizowane za pomocą innych narzędzi diagnostycznych. Wybierając odpowiednie metody, mechanicy muszą kierować się specyfiką każdego z układów, ponieważ każda metoda ma swoje miejsce i zastosowanie. Typowym błędem myślowym jest założenie, że lampa stroboskopowa może być używana w diagnostyce wszystkich układów pojazdu, co prowadzi do nieefektywnego wykorzystania narzędzi i nieprawidłowych diagnoz. Właściwe zrozumienie, jakie narzędzia są adekwatne do konkretnego układu, jest kluczowe w procesie diagnostycznym.

Pytanie 18

Jakim narzędziem dokonujemy pomiaru grubości zębów kół zębatych w skrzyni biegów?

A. czujnika zegarowego
B. suwmiarki modułowej
C. liniału
D. średnicówki mikrometrycznej
Suwmiarka modułowa jest narzędziem pomiarowym o dużej precyzji, które idealnie nadaje się do pomiaru grubości zębów kół zębatych w skrzyniach biegów. Dzięki swojej konstrukcji, suwmiarka pozwala na dokładne zmierzenie odległości w różnych płaszczyznach, co jest kluczowe przy ocenie geometrie elementów zębatych. Umożliwia pomiar wymiarów wewnętrznych i zewnętrznych, co jest istotne w kontekście montażu i synchronizacji zębatek w układzie napędowym. Przykładem zastosowania może być kontrola wymiarów kół zębatych w trakcie produkcji, gdzie tolerancje muszą być ściśle przestrzegane zgodnie z obowiązującymi normami, takimi jak ISO 1328 dla zębów kół zębatych. Użycie suwmiarki modułowej pozwala na szybkie i efektywne pomiary, co przyspiesza proces produkcyjny oraz zapewnia wysoką jakość elementów mechanicznych. Dodatkowo, w przypadku zdiagnozowania nieprawidłowości, suwmiarka umożliwia wprowadzenie korekt w procesie technologicznym, co przekłada się na oszczędności i lepszą wydajność produkcji.

Pytanie 19

Który płyn eksploatacyjny oznaczany jest symbolem 10W/40?

A. Olej silnikowy
B. Płyn do spryskiwaczy
C. Płyn chłodzący do silnika
D. Płyn do hamulców
Odpowiedź, że płyn eksploatacyjny oznaczany symbolem 10W/40 to olej silnikowy, jest poprawna. Symbol 10W/40 odnosi się do klasy lepkości oleju silnikowego, podlegającej normom SAE (Society of Automotive Engineers). Liczba '10W' wskazuje na lepkość oleju w niskich temperaturach (W oznacza 'winter'), co oznacza, że olej zachowuje odpowiednią płynność w zimnych warunkach, co jest kluczowe przy uruchamianiu silnika w niskich temperaturach. Druga liczba '40' odnosi się do lepkości w wysokich temperaturach, co czyni olej odpowiednim do użycia w wyższych temperaturach roboczych silnika. Dzięki tym właściwościom, olej 10W/40 zapewnia odpowiednią ochronę silnika, zmniejsza tarcie i zużycie komponentów, a także minimalizuje ryzyko przegrzania. Jest to jeden z najczęściej stosowanych rodzajów olejów silnikowych, szczególnie w pojazdach osobowych oraz dostawczych, co wynika z ich uniwersalności i efektywności w szerokim zakresie warunków eksploatacyjnych.

Pytanie 20

Do elementów mechanizmu kierowniczego w zawieszeniu samochodu z sztywną osią przednią zaliczamy

A. drążek podłużny
B. koła pojazdu
C. koło kierownicy
D. przekładnię kierowniczą
Drążek podłużny jest kluczowym elementem mechanizmu zwrotniczego w zawieszeniu pojazdu ze sztywną przednią osią. Jego główną funkcją jest przenoszenie sił i momentów z układu kierowniczego na koła pojazdu, co umożliwia precyzyjne sterowanie. Drążki podłużne są projektowane w taki sposób, aby zapewnić stabilność i kontrolę nad pojazdem, szczególnie w trudnych warunkach drogowych. W praktyce zastosowanie drążków podłużnych obejmuje pojazdy osobowe, ciężarowe oraz terenowe, gdzie istotna jest niezawodność i precyzja działania. Zgodnie z normami branżowymi, drążki podłużne powinny być wykonane z materiałów o wysokiej wytrzymałości, aby wytrzymały dynamiczne obciążenia i wibracje. Właściwe ustawienie drążków podłużnych ma kluczowe znaczenie dla geometrii zawieszenia, co wpływa na komfort jazdy oraz bezpieczeństwo. Ich regularna kontrola i serwisowanie są rekomendowane w celu zminimalizowania zużycia i zapewnienia optymalnej wydajności układu kierowniczego.

Pytanie 21

Oblicz pojemność skokową silnika trzycylindrowego, mając na uwadze, że pojemność skokowa jednego cylindra wynosi 173,4 cm3?

A. 520,2 cm3
B. 693,6 cm3
C. 173,4 cm3
D. 346,8 cm3
Pojemność skokowa silnika to całkowita objętość, jaką zajmują wszystkie cylindry podczas jednego cyklu pracy. Dla trzycylindrowego silnika, gdzie pojemność jednego cylindra wynosi 173,4 cm3, objętość skokowa oblicza się, mnożąc tę wartość przez liczbę cylindrów. Wzór na obliczenie pojemności skokowej silnika to: V = V_cylindrów * n, gdzie V_cylindrów to pojemność jednego cylindra, a n to liczba cylindrów. W tym przypadku mamy: V = 173,4 cm3 * 3 = 520,2 cm3. Zrozumienie pojemności skokowej jest kluczowe w projektowaniu silników, ponieważ wpływa na moc, moment obrotowy oraz efektywność paliwową. Wyższa pojemność skokowa zazwyczaj oznacza większą moc, ale również może wpłynąć na zużycie paliwa. Projektanci silników często dążą do optymalizacji pojemności skokowej w celu osiągnięcia najlepszej równowagi między wydajnością a emisjami. Przykładowo, w silnikach sportowych często stosuje się cylindry o większej pojemności, aby zwiększyć moc przy zachowaniu odpowiednich standardów emisji spalin.

Pytanie 22

Aby pojazd mógł zostać przyjęty do serwisu, konieczne jest okazanie

A. dowodu osobistego właściciela pojazdu
B. ważnego przeglądu badania technicznego
C. dowodu rejestracyjnego pojazdu
D. ważnego ubezpieczenia OC/AC
Posługiwanie się innymi dokumentami, takimi jak dowód osobisty właściciela pojazdu, ważne ubezpieczenie OC/AC czy ważny przegląd badania technicznego, nie stanowi wystarczającej podstawy do przyjęcia pojazdu do serwisu. Dowód osobisty, mimo że identyfikuje właściciela, nie dostarcza informacji o stanie prawnym pojazdu ani nie potwierdza jego zarejestrowania. Użycie tego dokumentu zamiast dowodu rejestracyjnego może prowadzić do sytuacji, w której serwis nie ma pewności co do legalności pojazdu. Ważne ubezpieczenie OC/AC oraz przegląd techniczny są istotnymi elementami użytkowania pojazdu, ale nie mogą zastąpić dowodu rejestracyjnego jako podstawowego dokumentu w procesie obsługi serwisowej. Ubezpieczenie OC/AC jest zazwyczaj wymagane przez prawo do poruszania się po drogach, natomiast przegląd techniczny zapewnia, że pojazd spełnia określone normy bezpieczeństwa, ale oba te dokumenty nie potwierdzają przynależności pojazdu do konkretnego właściciela ani jego legalności. W praktyce może to prowadzić do nieporozumień na etapie przyjęcia pojazdu do serwisu, ponieważ serwis mógłby zostać obciążony odpowiedzialnością w przypadku używania pojazdu, który nie jest zarejestrowany lub nielegalnie użytkowany. Właściwe podejście wymaga zatem posługiwania się kompletną dokumentacją, której kluczowym elementem jest dowód rejestracyjny.

Pytanie 23

Zanim rozpoczniesz badanie poprawności funkcjonowania układu hamulcowego w Stacji Kontroli Pojazdów, co należy zrobić w pierwszej kolejności?

A. sprawdzić zawartość wody w płynie hamulcowym
B. ocenić działanie serwomechanizmu
C. sprawdzić grubość klocków hamulcowych
D. zmierzyć ciśnienie w oponach
Patrząc na inne odpowiedzi, widać, że każde z tych działań ma swoje miejsce w diagnostyce pojazdu, ale żadne z nich nie powinno być pierwszym krokiem przed badaniem układu hamulcowego. Owszem, mierzenie grubości klocków hamulcowych jest ważne, ale działa to tylko wtedy, gdy opony są prawidłowo napompowane. Zresztą sprawdzenie serwomechanizmu też ma znaczenie, ale przy niskim ciśnieniu w oponach może nie zadziałać jak powinno. Jak opony są źle napompowane, to serwomechanizm nie będzie działał efektywnie, co wpłynie na cały układ hamulcowy. Z drugiej strony, kontrola zawartości wody w płynie hamulcowym jest ważna na dłuższą metę, ale to nie pomoże w momencie testu. Prawidłowe ciśnienie w oponach to baza dla wszystkich dalszych działań związanych z diagnostyką hamulców. Jak to zignorujemy, to możemy mieć złe wyniki testu i narazić się na niebezpieczne sytuacje na drodze.

Pytanie 24

Urządzenie do określania ciśnienia sprężania w silniku ZS powinno mieć zakres pomiarowy pozwalający na odczyt wyników do wartości minimalnej

A. 1,0 MPa
B. 5,0 MPa
C. 10,0 MPa
D. 2,5 MPa
Odpowiedzi 10,0 MPa, 2,5 MPa oraz 1,0 MPa nie spełniają wymagań dotyczących odpowiedniego zakresu ciśnienia sprężania w silnikach ZS. Odpowiedź 10,0 MPa jest zbyt wysoka i niepotrzebna, ponieważ typowe wartości ciśnienia sprężania w silnikach nie przekraczają 5,0 MPa. Przeznaczenie przyrządów do pomiaru ciśnienia polega na ich zastosowaniu w rzeczywistych warunkach operacyjnych, a zbyt wysoka wartość zakresu może prowadzić do niedokładnych pomiarów, a co za tym idzie, błędnych diagnoz. Z kolei odpowiedź 2,5 MPa jest zbyt niska dla silników o wysokim stopniu sprężania, które mogą osiągać wartości ciśnienia sięgające 4,5 MPa. Użycie takiego przyrządu mogłoby skutkować brakiem możliwości dokładnego pomiaru pełnego zakresu ciśnień, co jest istotne dla odpowiedniej diagnostyki. Natomiast odpowiedź 1,0 MPa jest niewystarczająca do skutecznego pomiaru w silnikach, które typowo sprężają powietrze do wyższych wartości, co mogłoby prowadzić do niedoszacowania ich kondycji. Niezrozumienie zakresów pomiarowych oraz wartości ciśnienia sprężania w silnikach może prowadzić do poważnych błędów diagnostycznych, które mogą wpływać na całkowitą wydajność silnika oraz koszty jego eksploatacji, dlatego tak ważne jest stosowanie odpowiednich przyrządów pomiarowych w diagnostyce silników.

Pytanie 25

Czas wymiany dwóch sworzni zwrotnic w pojeździe osobowym wynosi 2 godziny. Jakie będą koszty wymiany sworzni oraz ustawienia zbieżności przy założeniu, że:
- cena jednego sworznia to 60 zł brutto,
- stawka za roboczogodzinę wynosi 80 zł brutto,
- opłata za pomiar i ustawienie zbieżności wynosi 100 zł brutto?

A. 380 zł
B. 320 zł
C. 240 zł
D. 300 zł
Aby obliczyć całkowity koszt wymiany dwóch sworzni zwrotnic oraz regulacji zbieżności, należy uwzględnić wszystkie elementy kosztowe. Koszt sworzni wynosi 60 zł za sztukę, a ponieważ wymieniamy dwa, suma wynosi 120 zł (60 zł x 2). Następnie, czas pracy mechanika na wymianę sworzni wynosi 2 godziny. Przy stawce 80 zł za roboczogodzinę, koszt robocizny wynosi 160 zł (80 zł x 2). Ostatnim elementem jest koszt regulacji zbieżności, który wynosi 100 zł. Zatem całkowity koszt wynosi: 120 zł (sworznie) + 160 zł (robocizna) + 100 zł (regulacja) = 380 zł. W praktyce, poprawna regulacja zbieżności jest kluczowa dla prawidłowego zachowania się pojazdu na drodze, co przekłada się na bezpieczeństwo jazdy oraz komfort użytkowania. Warto zawsze korzystać z usług doświadczonych mechaników, którzy stosują się do standardów branżowych, aby zapewnić wysoką jakość wykonania usług.

Pytanie 26

W sytuacji, gdy na powierzchni tarcz hamulcowych osi kierowanej zauważono pęknięcia, jakie działania naprawcze należy podjąć?

A. szlifowanie powierzchni tarcz
B. spawanie tarcz
C. wymiana tarcz na nowe
D. splanowanie tarcz
Wymiana tarcz hamulcowych na nowe jest kluczowym krokiem w zapewnieniu bezpieczeństwa i efektywności pojazdu. Pęknięcia na powierzchni tarcz hamulcowych mogą prowadzić do poważnych problemów z hamowaniem, w tym do zmniejszenia skuteczności hamulców oraz ryzyka uszkodzenia innych elementów układu hamulcowego. Wymiana tarcz na nowe jest zgodna z zaleceniami producentów oraz normami bezpieczeństwa, które podkreślają, że uszkodzone tarcze powinny być natychmiast wymieniane. Nowe tarcze hamulcowe zapewniają optymalną powierzchnię cierną, co jest niezbędne do uzyskania odpowiedniej siły hamowania. Przykładowo, w przypadku pojazdów sportowych, gdzie wymagane są intensywne hamowania, zaniedbanie wymiany uszkodzonych tarcz może prowadzić do poważnych konsekwencji, w tym wypadków. Dlatego, w praktyce, nie tylko sama wymiana, ale również dobra jakość nowych tarcz ma kluczowe znaczenie, aby spełniały one standardy producenta i zapewniały bezpieczeństwo w ruchu drogowym.

Pytanie 27

Podczas serwisowania silnika wymieniono 4 wtryskiwacze o łącznym koszcie 1750,00 zł netto oraz turbinę w cenie 1900,00 zł netto. Całkowity czas serwisowania wyniósł 5,5 roboczogodziny, a stawka za jedną roboczogodzinę to 120,00 zł brutto. Części samochodowe podlegają opodatkowaniu VAT w wysokości 23%. Jaki jest całkowity koszt serwisowania brutto?

A. 4 489,50 zł
B. 5 301,30 zł
C. 4 310,00 zł
D. 5 149,50 zł
Wybór odpowiedzi, która nie jest zgodna z prawidłowymi obliczeniami, może wynikać z kilku typowych błędów myślowych związanych z kalkulacją kosztów. Przede wszystkim, należy pamiętać, że koszty części zamiennych oraz robocizny powinny być sumarycznie obliczane na poziomie netto, a następnie powiększane o podatek VAT. Niekiedy osoby obliczające mogą nie uwzględnić VAT na wszystkich elementach, co prowadzi do zaniżenia łącznego kosztu. Inną powszechną pomyłką jest nieuwzględnienie kosztów robocizny w całości, co prowadzi do niepełnych kalkulacji. Warto również zwrócić uwagę, że niektóre odpowiedzi mogą ignorować istotne zasady dotyczące obliczeń brutto, co może być wynikiem braku znajomości przepisów podatkowych. Dobrą praktyką w takich sytuacjach jest zawsze weryfikacja, czy wszystkie elementy kosztowe, w tym VAT, zostały uwzględnione w obliczeniach, aby uniknąć pomyłek. W kontekście branży motoryzacyjnej, właściwe zarządzanie kosztami oraz ich poprawna kalkulacja są kluczowe dla prowadzenia działalności oraz utrzymania przejrzystości finansowej.

Pytanie 28

Jaki jest minimalny wymagany wskaźnik efektywności hamowania hamulca awaryjnego w samochodzie osobowym, który został wyprodukowany po 1 stycznia 1994 roku?

A. 25%
B. 50%
C. 20%
D. 30%
Minimalny dopuszczalny wskaźnik skuteczności hamowania hamulca awaryjnego dla samochodów osobowych wyprodukowanych po 1 stycznia 1994 roku wynosi 25%. Wskaźnik ten jest zgodny z normami bezpieczeństwa określonymi przez regulacje Unii Europejskiej, które mają na celu zapewnienie minimalnych standardów dotyczących wydajności hamulców. Dobre praktyki branżowe podkreślają, jak kluczowe jest posiadanie sprawnego hamulca awaryjnego, ponieważ w sytuacji awaryjnej może on uratować życie. Przykładem zastosowania tego wskaźnika jest rutynowe badanie pojazdów, które odbywa się podczas okresowych przeglądów technicznych. W trakcie tych przeglądów zainteresowani mechanicy badają skuteczność hamulców awaryjnych, aby upewnić się, że spełniają one wymagane normy. Dodatkowo, warto pamiętać, że wskaźnik 25% oznacza, iż hamulec awaryjny powinien być w stanie zatrzymać pojazd o masie 1 tony na nachylonej drodze, co podkreśla znaczenie dobrego stanu technicznego systemu hamulcowego w codziennym użytkowaniu pojazdów.

Pytanie 29

Prawidłowy kierunek przepływu oleju w filtrze olejowym silnika, przedstawionym na rysunku, jest

Ilustracja do pytania
A. przeciwny do kierunku wskazywanego przez strzałki.
B. zależny od ciśnienia w układzie smarowania.
C. zgodny z kierunkiem wskazywanym przez strzałki.
D. zależny od natężenia przepływu w układzie smarowania.
Prawidłowy kierunek przepływu oleju w filtrze olejowym jest istotnym elementem układu smarowania silnika. Strzałki wskazujące kierunek na rysunku odzwierciedlają standardowe normy projektowe, które są powszechnie stosowane w przemyśle motoryzacyjnym. W filtrach olejowych zastosowane są z reguły technologie, które zapewniają odpowiedni przepływ oleju w kierunku zgodnym z tym, co pokazują strzałki. W efekcie, olej silnikowy, zanim trafi do silnika, przechodzi przez filtr, co pozwala na zatrzymanie zanieczyszczeń i poprawę jakości smarowania. Zgodność kierunku przepływu z oznaczeniami na filtrze jest kluczowa dla prawidłowego funkcjonowania silnika, ponieważ nieprawidłowy kierunek mógłby prowadzić do zatykania filtra, co w konsekwencji może skutkować awarią silnika. Przykładem zastosowania tej wiedzy jest regularna kontrola filtra olejowego podczas wymiany oleju, aby upewnić się, że został on zamontowany w prawidłowy sposób, co jest zalecane przez producentów pojazdów.

Pytanie 30

Jaki łączny koszt poniesiemy na wymianę świec zapłonowych w pojeździe z silnikiem sześciocylindrowym, jeśli cena jednej świecy wynosi 20,00 zł, a wymiana powinna zająć 45 minut, przy stawce jednego roboczogodziny równiej 120,00 zł?

A. 170,00 zł
B. 210,00 zł
C. 240,00 zł
D. 120,00 zł
Całkowity koszt wymiany świec zapłonowych w samochodzie z silnikiem sześciocylindrowym wynosi 210,00 zł, co jest wynikiem dokładnego obliczenia zarówno kosztu materiałów, jak i robocizny. Koszt jednej świecy zapłonowej wynosi 20,00 zł, a w silniku sześciocylindrowym potrzeba sześciu świec, co daje 20,00 zł x 6 = 120,00 zł za same świece. Dodatkowo, czas wymiany świec szacowany na 45 minut obliczamy w kontekście stawki robocizny. Ponieważ 45 minut to 0,75 godziny, koszt robocizny wynosi 120,00 zł (stawka za godzinę) x 0,75 = 90,00 zł. Zatem całkowity koszt wymiany świec zapłonowych to 120,00 zł (świece) + 90,00 zł (robocizna) = 210,00 zł. W kontekście praktycznym, regularna wymiana świec zapłonowych jest kluczowa dla utrzymania efektywności silnika, co wpływa na jego wydajność i zużycie paliwa. Zgodnie z zaleceniami producentów, wymianę świec należy przeprowadzać co określoną liczbę kilometrów lub co pewien czas, co przyczynia się do dłuższej żywotności silnika.

Pytanie 31

Układ przeniesienia napędu w klasycznej wersji składa się

A. ze sprzęgła, skrzyni biegów, półosi oraz piast kół
B. ze sprzęgła, skrzyni biegów, wału, przekładni głównej, mechanizmu różnicowego, półosi oraz piast kół
C. z silnika, skrzyni biegów, mechanizmu różnicowego
D. ze skrzyni biegów, wału, piast
Klasyczny układ przeniesienia napędu w autach to naprawdę ważny temat. W skrócie, to taki system, który przenosi moment obrotowy z silnika na koła. Składa się z paru kluczowych elementów, takich jak sprzęgło, skrzynia biegów, wał napędowy, przekładnia główna, mechanizm różnicowy, półosie i piasty kół. Sprzęgło to ten element, który pozwala na rozłączenie silnika, co jest szczególnie przydatne przy zmianie biegów. Skrzynia biegów z kolei dostosowuje prędkość silnika do prędkości jazdy, co jest mega ważne, żeby auto działało oszczędnie i miało dobre osiągi. Wał napędowy przenosi tę moc do kół – w autach z napędem tylnym do tylnych, a w 4x4 do wszystkich. Przekładnia główna i mechanizm różnicowy są kluczowe, żeby koła mogły obracać się w odpowiednich prędkościach, szczególnie w zakrętach. Półosie i piasty kół zamieniają ten moment obrotowy na ruch kół. W codziennej jeździe na pewno doceniasz, jak ważne jest, żeby każdy z tych elementów działał jak należy, bo to zapewnia bezpieczeństwo i komfort. Te układy są zgodne z normami ISO, co daje pewność ich niezawodności i efektywności.

Pytanie 32

Podczas wymiany wahacza poprzecznego wykonanego z lekkich stopów z nadmiernym luzem w przegubie kulistym, możliwe jest zastosowanie

A. zamiennika spełniającego normy producenta
B. części powypadkowej
C. tańszego stalowego zamiennika
D. wyłącznie elementu z logo producenta
Wymieniając wahacz poprzeczny, naprawdę ważne jest, żeby użyć zamiennika, który spełnia normy producenta. Wahacz to kluczowa część zawieszenia, ma wpływ na to, jak się jeździ i jak stabilny jest samochód. Gdy musisz wymienić część, najlepiej postawić na zamienniki, które są zgodne z tym, co mówi producent. Jeśli zamiennik jest z dobrych materiałów, które są wytrzymałe na różne warunki, to można liczyć na to, że wszystko będzie działać jak należy. Z tego co zauważyłem, dobrze jest też, jak takie zamienniki mają jakieś certyfikaty jakości, bo wtedy można mieć pewność, że są solidne. Generalnie, stosując odpowiednie części, nie tylko poprawiasz bezpieczeństwo jazdy, ale i zmniejszasz ryzyko kolejnych awarii, co w końcu przynosi oszczędności i większy komfort w korzystaniu z auta.

Pytanie 33

Aby uzupełnić czynnik chłodniczy w nowoczesnej klimatyzacji samochodowej, należy użyć czynnika o symbolu

A. R-1234yf
B. R-12
C. R-134a
D. R-22
Używanie czynników chłodniczych R-22, R-134a i R-12 w nowoczesnych systemach klimatyzacji jest nieodpowiednie i sprzeczne z aktualnymi normami ekologicznymi oraz wymaganiami technicznymi. R-22, znany jako freon, jest czynnikiem, który ze względu na swój wpływ na warstwę ozonową został wycofany z użytku w większości krajów w ramach protokołu montrealskiego. Czynnik R-134a, choć był powszechnie stosowany w przeszłości, ma znaczny potencjał cieplarniany, co powoduje, że nowe przepisy zmuszają producentów do przechodzenia na bardziej ekologiczne alternatywy, takie jak R-1234yf. R-12, również freon, był szeroko stosowany w klimatyzacji, jednak jego produkcja została zakończona przez wprowadzenie regulacji dotyczących substancji zubożających warstwę ozonową. Błędne przekonanie o możliwości stosowania tych starych czynników w nowych systemach może prowadzić do poważnych konsekwencji, takich jak utrata gwarancji, nieefektywność działania klimatyzacji oraz potencjalnie szkodliwe skutki dla środowiska. Dlatego kluczowe jest, aby technicy i użytkownicy samochodów byli świadomi aktualnych wymogów i norm, aby unikać stosowania przestarzałych i szkodliwych substancji.

Pytanie 34

Przed rozpoczęciem weryfikacji zbieżności kół konieczne jest

A. zdjąć obciążenie z pojazdu
B. unieruchomić pedał hamulca
C. zablokować kierownicę
D. sprawdzić ciśnienie w oponach
Sprawdzanie ciśnienia w oponach przed przystąpieniem do kontroli zbieżności kół jest kluczowym krokiem, ponieważ niewłaściwe ciśnienie w oponach może wpływać na geometrię zawieszenia oraz na zachowanie pojazdu podczas jazdy. Odpowiednie ciśnienie w oponach zapewnia równomierne zużycie bieżnika, a także poprawia stabilność i bezpieczeństwo pojazdu. Przykładowo, opony z niedostatecznym ciśnieniem będą się odkształcały, co może prowadzić do błędnych odczytów geometrii zawieszenia, a tym samym wpływać na zbieżność kół. W praktyce, zaleca się regularne sprawdzanie ciśnienia w oponach, najlepiej co miesiąc oraz przed dłuższymi podróżami. Standardy branżowe, takie jak te określone przez ECE (Europejska Komisja Gospodarcza), wskazują, że optymalne ciśnienie powinno być dostosowane do obciążenia pojazdu oraz warunków drogowych. Warto również pamiętać, że ciśnienie należy sprawdzać na zimnych oponach, aby uzyskać najdokładniejsze wyniki. Właściwe ciśnienie to fundament bezpieczeństwa i efektywności pojazdu, dlatego jest to niezbędny krok przed przystąpieniem do dalszych prac serwisowych.

Pytanie 35

Przedstawiony na rysunku przyrząd służy do pomiaru ciśnienia

Ilustracja do pytania
A. w oponie koła.
B. wtrysku paliwa.
C. w układzie chłodzenia.
D. oleju w układzie smarowania.
Odpowiedzi dotyczące pomiaru ciśnienia w oponach, układzie chłodzenia oraz wtrysku paliwa są niepoprawne z kilku powodów. Po pierwsze, manometr używany do pomiaru ciśnienia w oponach, chociaż również jest istotnym przyrządem, nie jest tym samym co manometr do pomiaru ciśnienia oleju, który charakteryzuje się innymi parametrami i zastosowaniami. W kontekście układu chłodzenia, ciśnienie jest monitorowane przy użyciu innych narzędzi, takich jak czujniki temperatury i ciśnienia, które są dostosowane do specyfiki płynów chłodzących i ich właściwości termodynamicznych. Ponadto, wtrysk paliwa wymaga precyzyjnego pomiaru ciśnienia i zastosowania specjalistycznych testerów, a manometry do pomiaru oleju nie są przeznaczone do tej funkcji. Często spotykanym błędem jest mylenie różnych typów manometrów oraz ich zastosowań w różnych układach pojazdu, co prowadzi do nieprawidłowych wniosków. Właściwe zrozumienie różnic między tymi przyrządami oraz ich zastosowaniami jest kluczowe dla diagnostyki i konserwacji mechanizmów samochodowych. W praktyce, niewłaściwe pomiary mogą prowadzić do awarii silnika, przez co warto zainwestować czas w naukę o odpowiednich narzędziach i ich zastosowaniach w kontekście konkretnego zadania.

Pytanie 36

Aby zredukować tarcie w mechanizmie różnicowym, stosuje się

A. olej przekładniowy
B. płyn hydrauliczny
C. smar stały
D. olej silnikowy
Płyn hydrauliczny, choć również stosowany w różnych systemach mechanicznych, nie jest odpowiedni do smarowania mechanizmów różnicowych. Jego główną rolą jest przenoszenie siły w układach hydraulicznych, takich jak hamulce czy wspomaganie kierownicy. Charakteryzuje się innymi właściwościami fizykochemicznymi, które nie są odpowiednie dla obciążeń występujących w przekładniach. Stosując płyn hydrauliczny w mechanizmie różnicowym, można napotkać poważne problemy, w tym nadmierne tarcie, co prowadzi do szybszego zużycia części. Porównując to do oleju silnikowego, który również nie nadaje się do tego celu, zauważamy, że jego główną funkcją jest smarowanie silnika spalinowego, a nie przekładni. Olej silnikowy nie zawiera odpowiednich dodatków zapewniających wysoką odporność na wysokie temperatury i ciśnienia występujące w mechanizmach różnicowych. Z kolei smar stały, mimo że skutecznie zmniejsza tarcie w zastosowaniach gdzie jest elementem stałym, nie jest odpowiedni do zastosowań w płynnych środowiskach, takich jak mechanizmy różnicowe, gdzie wymagane jest odpowiednie krążenie smaru. Zastosowanie niewłaściwych substancji smarnych prowadzi do nieefektywności, a w konsekwencji do awarii mechanizmu, co jest fundamentalnym błędem w podejściu do konserwacji i eksploatacji pojazdów.

Pytanie 37

Wskaźnik, który informuje o aktywacji systemu kontroli trakcji, świeci w kolorze

A. niebieskim
B. żółtym
C. czerwonym
D. zielonym
Żółta kontrolka sygnalizująca, że system kontroli trakcji jest włączony to coś, co widzimy w każdym normalnym samochodzie. Jak się świeci, to znaczy, że system działa, a kierowca powinien być tego świadomy, bo to ważne dla bezpieczeństwa na drodze. TCS, czyli systemy kontroli trakcji, mają za zadanie zapobiegać ślizganiu się kół, co jest mega istotne, zwłaszcza na mokrej czy zaśnieżonej nawierzchni. Na przykład, jak przyspieszasz na śliskiej drodze, to TCS się włącza, żeby lepiej zarządzać mocą silnika i zapobiec utracie kontroli nad autem. To wszystko ma sens, bo są różne normy, jak ISO 26262, które mówią o bezpieczeństwie w pojazdach. Wiedza o tym, co oznaczają te sygnały świetlne, jest kluczowa, bo dzięki temu można lepiej reagować na to, co dzieje się na drodze.

Pytanie 38

Co oznacza skrót LPG?

A. metanol
B. paliwo wodorowe
C. mieszanka gazu propan-butan
D. sprężony gaz ziemny
Odpowiedzi dotyczące paliwa wodorowego, sprężonego gazu ziemnego, oraz metanolu są nietrafione, bo dotyczą zupełnie innych rzeczy. Paliwo wodorowe to co innego niż LPG, mimo że ma potencjał jako źródło energii. Wodór to gaz, który potrzebuje specjalnych warunków do przechowywania i transportu, a cały czas się nad nim pracuje. Sprężony gaz ziemny, czyli CNG, to gaz, który w normalnych warunkach też jest gazem i trzeba go sprężać do przechowywania, co różni go od LPG, które w normalnych warunkach jest w płynie. Metanol to alkohol, więc też nie ma wiele wspólnego z LPG. Warto zrozumieć, że każde z tych paliw ma swoje cechy i zastosowania. Nieodpowiednia identyfikacja może prowadzić do nieefektywności i zagrożeń. W sumie, każdy z tych tematów jest dość skomplikowany i warto zgłębić je, by lepiej zrozumieć świat energii.

Pytanie 39

Klient zgłosił pojazd do serwisu z uszkodzonym systemem wydechowym. Pracownik serwisu określił potrzebę wymiany komponentów: kolektora wydechowego za 290 zł oraz tylnego tłumika wydechowego za 150 zł. Czas niezbędny do przeprowadzenia naprawy wynosi 240 minut, a stawka za roboczogodzinę to 80 zł. Jakie będą łączne koszty naprawy?

A. 632 zł
B. 760 zł
C. 520 zł
D. 440 zł
Obliczanie całkowitego kosztu naprawy pojazdu wymaga dokładnej analizy wydatków związanych z częściami oraz robocizną. Osoby, które mylnie szacują całkowity koszt, mogą popaść w błąd, ignorując istotne elementy wyceny. Na przykład, nie uwzględniając kosztu robocizny, można dojść do wniosku, że całkowity koszt naprawy wynosi jedynie suma cen części, co w tym przypadku daje 440 zł. Takie podejście jest nieprawidłowe, gdyż nie odzwierciedla rzeczywistych wydatków, jakie wiążą się z usługami serwisowymi. Ponadto, niektóre błędne odpowiedzi mogą sugerować ignorowanie czasu potrzebnego na wykonanie naprawy, co jest kluczowym czynnikiem w ustalaniu kosztów. Oczekiwanie na oszczędności związane z robocizną może także prowadzić do niedoszacowania wartości usługi. W branży motoryzacyjnej istotne jest stosowanie transparentnych i precyzyjnych metod wyceny, aby klienci mogli mieć pełne zaufanie do realizowanych usług. Znajomość standardów wyceny oraz umiejętność ich stosowania w praktyce to kluczowe elementy w zarządzaniu warsztatem samochodowym.

Pytanie 40

W mechanizmie silnika tłokowo-korbowego występują zmieniające się obciążenia, które prowadzą do uszkodzeń śrub korbowodowych na skutek

A. zmęczenia struktury materiałowej
B. starzenia się materiału
C. zużycia mechanicznego
D. zużycia w wyniku erozji
Starzenie materiału odnosi się do degradacji właściwości materiałów na skutek długotrwałego oddziaływania czynników środowiskowych, takich jak temperatura, wilgotność czy promieniowanie UV. Proces ten jest istotny w kontekście materiałów eksploatowanych w ekstremalnych warunkach, ale nie jest główną przyczyną uszkodzeń śrub korbowodowych w silnikach. Zużycie erozyjne to proces, w którym materiał jest usuwany poprzez ścieranie lub uderzenia cząstek. Jest to zjawisko zachodzące w elementach narażonych na przepływ mediów, jak w przypadku turbin czy sprężarek, ale w silnikach tłokowych nie jest to dominujący mechanizm uszkodzeń. Zużycie mechaniczne wiąże się z ogólnym procesem eksploatacji, ale nie wyjaśnia specyfiki uszkodzeń wynikających z cyklicznych obciążeń. Rozpoznanie głównych przyczyn uszkodzeń i stosowanie odpowiednich metod analizy, takich jak analiza przyczyn źródłowych (RCA), jest kluczowe, aby poprawnie zrozumieć mechanizm uszkodzeń i zapobiegać im. Zrozumienie tych procesów jest istotne dla inżynierów zajmujących się projektowaniem i utrzymaniem silników, aby mogli podejmować skuteczne decyzje dotyczące wyboru materiałów oraz technologii produkcji.