Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 10:46
  • Data zakończenia: 8 grudnia 2025 11:04

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Obniżenie błędu statycznego, skrócenie czasu odpowiedzi, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów z przetwornika pomiarowego charakteryzuje działanie regulatora

A. PD
B. I
C. PID
D. P
Wybór nieodpowiednich typów regulatorów, takich jak P, I czy PID, wskazuje na pewne nieporozumienia dotyczące ich zastosowania i charakterystyki. Regulator P (proporcjonalny) nie jest w stanie eliminować błędu statycznego, co oznacza, że może prowadzić do stałego odchylenia od wartości docelowej. Taki regulator reaguje jedynie proporcjonalnie do błędu, nie biorąc pod uwagę jego zmiany w czasie, co czyni go niewystarczającym w zastosowaniach wymagających szybkiej regulacji. Regulator I (integralny) z kolei skupia się na eliminacji błędu statycznego, ale może prowadzić do opóźnień w reakcji systemu, co jest szczególnie problematyczne w systemach, gdzie czas reakcji jest kluczowy. Regulator PID (proporcjonalno-całkująco-derywacyjny) łączy w sobie cechy regulatorów P, I oraz D, jednak w niektórych przypadkach może wprowadzać dodatkowe złożoności i opóźnienia, co nie jest pożądane w systemach o dynamice zmiany. Wybór regulatora powinien być dostosowany do specyfiki danego systemu oraz jego wymagań, co oznacza, że warto znać nie tylko ich teoretyczne podstawy, ale także praktyczne implikacje ich stosowania.

Pytanie 2

Jakie oznaczenie literowe dotyczy manipulatora wyposażonego w dwa obrotowe napędy oraz jeden liniowy?

A. TTT
B. RRR
C. RRT
D. RTT
Odpowiedź 'RRT' jest poprawna, ponieważ oznaczenie to odnosi się do manipulatora charakteryzującego się dwoma napędami obrotowymi oraz jednym liniowym. W kontekście robotyki, napędy obrotowe (oznaczane literą 'R') umożliwiają manipulatorowi ruch w płaszczyznach kątowych, co jest kluczowe w wielu zastosowaniach, takich jak montaż, spawanie czy paletyzacja. Napęd liniowy (oznaczany literą 'T') dodaje możliwość ruchu wzdłuż prostej linii, co zwiększa wszechstronność robota. Przykłady zastosowania takiego manipulatora obejmują roboty przemysłowe w liniach produkcyjnych, gdzie precyzyjne ruchy obrotowe są wymagane do umiejscowienia elementów w określonych pozycjach, a także do manipulacji ciężkimi przedmiotami w ograniczonej przestrzeni. Dodatkowo, stosowanie standardów takich jak ISO 9409-1, które definiują interfejsy dla manipulatorów, umożliwia łatwą integrację z różnymi systemami automatyki. W branży robotycznej, zrozumienie tych oznaczeń jest kluczowe dla efektywnego projektowania i aplikacji systemów robotycznych.

Pytanie 3

Aby dokładnie ustalić kątową pozycję, przemieszczenie oraz zliczyć obroty silnika w systemie mechatronicznym, używa się

A. licznik
B. czujnik ultradźwiękowy
C. enkoder
D. akcelerometr
Enkoder jest urządzeniem, które odgrywa kluczową rolę w pomiarze pozycji kątowej oraz zliczaniu obrotów silników w systemach mechatronicznych. Działa na zasadzie konwersji ruchu mechanicznego na sygnał elektryczny, który może być interpretowany przez systemy sterujące. Przykładem zastosowania enkoderów jest w automatyce przemysłowej, gdzie precyzyjne pozycjonowanie elementów roboczych jest niezbędne, na przykład w robotach przemysłowych czy maszynach CNC. Enkodery można podzielić na inkrementalne i absolutne, z których każdy typ ma swoje unikalne zastosowania. Standardy takie jak IEC 61131-2 definiują wymagania dla urządzeń pomiarowych, w tym enkoderów, co zapewnia ich interoperacyjność i niezawodność w systemach automatyki. Dobrą praktyką jest regularne kalibrowanie enkoderów, aby zapewnić ich dokładność i stabilność działania w długoterminowych zastosowaniach. Warto również zwrócić uwagę na dobór odpowiednich enkoderów w zależności od wymagań aplikacji, co może znacząco wpłynąć na wydajność całego układu.

Pytanie 4

Jakiego komponentu należy użyć w opracowywanym systemie hydraulicznym, aby zapewnić niezmienną prędkość wysuwu tłoczyska siłownika w przypadku zmiennego obciążenia?

A. Regulator natężenia przepływu
B. Zawór redukcyjny
C. Zawór dławiąco-zwrotny
D. Zawór zwrotny sterowany
Wybór zaworu redukcyjnego, dławiąco-zwrotnego czy zwrotnego sterowanego w celu uzyskania stałej prędkości wysuwu tłoczyska siłownika w układzie hydraulicznym jest niewłaściwy, ponieważ te elementy nie są zaprojektowane do regulacji przepływu w kontekście zmieniającego się obciążenia. Zawór redukcyjny ma na celu utrzymanie stałego ciśnienia w określonym obszarze układu, co może być przydatne w niektórych zastosowaniach, jednak nie zapewnia on kontrolowanej prędkości ruchu tłoczyska w zmiennych warunkach. Zawór dławiąco-zwrotny, z kolei, ogranicza przepływ, ale nie reguluje go w sposób automatyczny, co oznacza, że w przypadku wzrostu oporu, prędkość tłoczyska zmniejszy się, co nie jest pożądane w wielu zastosowaniach. Zawór zwrotny sterowany zatrzymuje przepływ w jednym kierunku, co również nie adresuje potrzeby utrzymania stałej prędkości w obliczu zmiennych obciążeń. Te błędne podejścia mogą wynikać z niepełnego zrozumienia, jak różne elementy hydrauliczne wpływają na parametry pracy siłowników. Kluczowe jest zrozumienie, że dobrą praktyką w hydraulice jest stosowanie komponentów, które są odpowiednio zaprojektowane do regulacji przepływu, co zapewnia zarówno efektywność, jak i bezpieczeństwo operacyjne.

Pytanie 5

Z jakiego układu zasilania powinna być zasilana maszyna mechatroniczna, skoro na schemacie sieć zasilającą oznaczono symbolem 400 V ~ 3/N/PE?

A. TT
B. TI
C. TN – C
D. TN – S
Wybór innych układów zasilających, takich jak TT, TI czy TN-C, wiąże się z różnymi ograniczeniami i zagrożeniami, które negatywnie wpływają na bezpieczeństwo oraz funkcjonalność urządzeń mechatronicznych. W układzie TT, na przykład, przewód neutralny i przewód ochronny są oddzielne, co może prowadzić do wyższych napięć na obudowach urządzeń w przypadku awarii. Ten układ, mimo że stosowany w niektórych konfiguracjach, nie zapewnia optymalnej ochrony w warunkach przemysłowych, gdzie stabilność i niskie ryzyko porażenia prądem są priorytetowe. Układ TI, z kolei, nie jest powszechnie stosowany i często wykorzystywany jest w sytuacjach specjalnych, jednakże jego implementacja może wprowadzać dodatkowe ryzyko związane z brakiem odpowiedniej ochrony. Z kolei w układzie TN-C przewód neutralny i ochronny są połączone, co narusza zasady ochrony przeciwporażeniowej i może prowadzić do niebezpiecznych sytuacji w przypadku uszkodzenia instalacji. Błędne podejście do klasyfikacji układów zasilających może doprowadzić do zastosowania niewłaściwych rozwiązań, co w efekcie zwiększa ryzyko awarii oraz zagraża bezpieczeństwu użytkowników. Dlatego istotne jest, aby dokładnie rozumieć różnice pomiędzy tymi układami oraz ich wpływ na bezpieczeństwo i funkcjonowanie sprzętu.

Pytanie 6

Co opisuje pojęcie 'histereza' w kontekście przetworników ciśnienia?

A. Różnica między wartościami mierzonego sygnału przy zwiększaniu i zmniejszaniu ciśnienia
B. Minimalna wartość ciśnienia, jaką może zmierzyć przetwornik
C. Czas reakcji przetwornika na zmianę ciśnienia
D. Maksymalne ciśnienie robocze przetwornika
W kontekście przetworników ciśnienia, błędne rozumienie parametrów takich jak maksymalne ciśnienie robocze, minimalna wartość ciśnienia czy czas reakcji, może prowadzić do błędnych wniosków. Maksymalne ciśnienie robocze odnosi się do największej wartości ciśnienia, jaką dany przetwornik może bezpiecznie obsłużyć bez ryzyka uszkodzenia. Jest to kluczowy parametr dla bezpieczeństwa i trwałości urządzenia, jednak nie ma bezpośredniego związku z pojęciem histerezy. Minimalna wartość ciśnienia, jaką może zmierzyć przetwornik, określa jego czułość i zdolność do detekcji bardzo niskich wartości ciśnienia. Choć istotne dla kalibracji i dokładności pomiarów, nie odnosi się do różnic w sygnale wyjściowym przy zmianach ciśnienia. Czas reakcji z kolei to miara szybkości, z jaką przetwornik reaguje na zmiany ciśnienia. Szybki czas reakcji jest pożądany w dynamicznych aplikacjach, ale nie dotyczy charakterystyki histerezy, która jest związana z nieliniowością i pamięcią materiałową przetwornika. Zrozumienie tych różnic pozwala na lepsze projektowanie i dobór przetworników do specyficznych zastosowań, unikając potencjalnych problemów z dokładnością i żywotnością systemu.

Pytanie 7

Której z poniższych czynności projektowych nie można zrealizować w oprogramowaniu CAM?

A. Opracowania instrukcji (G-CODE) dla urządzeń Rapid Prototyping
B. Symulowania procesu obróbczy w wirtualnej przestrzeni
C. Przygotowania dokumentacji technologicznej produktu
D. Generowania kodu dla maszyny CNC
Wybór odpowiedzi dotyczącej generowania kodu dla obrabiarki CNC, symulowania obróbki obiektu w wirtualnym środowisku lub opracowania instrukcji G-CODE dla maszyn typu Rapid Prototyping może prowadzić do mylnych wniosków dotyczących funkcji oprogramowania CAM. Oprogramowanie CAM jest rzeczywiście zaangażowane w generowanie kodu, a także w symulacje procesów obróbczych, co jest zgodne z jego podstawową rolą w przemyśle. Jednakże, kluczowym błędem jest niezrozumienie zakresu działania tego oprogramowania. CAM nie jest odpowiedzialne za tworzenie dokumentacji technologicznej, która wymaga szerszego podejścia do projektowania i produkcji. Dokumentacja ta obejmuje analizy procesu produkcji, dobór technologii oraz materiałów, co wykracza poza możliwości CAM. Często występuje nieporozumienie, że CAM i CAD są jedynie dwoma różnymi funkcjami tego samego oprogramowania, podczas gdy w rzeczywistości pełnią one odrębne role i są uzupełniającymi się narzędziami w procesie projektowania i produkcji. Właściwe zrozumienie różnicy między CAM a CAD jest kluczowe dla efektywnego planowania i realizacji zadań inżynieryjnych, co w konsekwencji wpływa na jakość i efektywność procesów produkcyjnych.

Pytanie 8

W systemie mechatronicznym planowane jest użycie sieci polowej AS-i w wersji 2.0. Jaką maksymalną ilość urządzeń podrzędnych jedno urządzenie główne (master) może obsługiwać?

A. 32 urządzenia
B. 24 urządzenia
C. 31 urządzeń
D. 64 urządzenia
Wybór liczby 24, 32 lub 64 urządzeń jest nieprawidłowy i opiera się na nieporozumieniach dotyczących specyfikacji technicznych sieci AS-i. Standard AS-i 2.0 wyraźnie określa maksymalną liczbę urządzeń podporządkowanych na poziomie 31. Wybierając 24, można sądzić, że jest to mniejsza liczba, jednak nie odnosi się to do rzeczywistych możliwości systemu AS-i. Użytkownicy mogą myśleć, że niższe liczby są łatwiejsze w zarządzaniu, co jest błędnym założeniem, ponieważ sieć AS-i jest zaprojektowana do obsługi dużych ilości urządzeń w sposób wydajny i zorganizowany. Z kolei wybór 32 lub 64 urządzeń wskazuje na niedopasowanie do specyfikacji standardu, co może prowadzić do przekroczenia możliwości, co w praktyce skutkuje awariami, błędami komunikacyjnymi i znacznymi opóźnieniami w operacjach. Takie błędne podejście często wynika z niewłaściwego zrozumienia koncepcji architektury sieci oraz jej ograniczeń, co jest kluczowe w kontekście projektowania i implementacji systemów automatyzacji. Wiedza na temat tych ograniczeń jest niezbędna dla inżynierów, aby unikać nieefektywnych rozwiązań i zapewnić zgodność z najlepszymi praktykami w branży.

Pytanie 9

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnikamocy w układach napędów elektrycznych, o danych znamionowychzamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A
A. 400 V DC
B. 230 V AC
C. 230 V DC
D. 400 V AC
Wybór niewłaściwego napięcia zasilania, jak 230 V AC, 230 V DC lub 400 V DC, świadczy o niepełnym zrozumieniu specyfiki zasilania urządzeń przemysłowych. Napięcie 230 V AC to standard stosowany w instalacjach domowych i nie odpowiada wymaganiom regulatorów takich jak DCRK 12, które są zaprojektowane do działania w wyższych zakresach napięcia, typowych dla aplikacji przemysłowych. Zastosowanie napięcia 230 V w tych warunkach mogłoby prowadzić do niewystarczającej mocy do odpowiedniej pracy regulatora, co z kolei skutkowałoby niesatysfakcjonującą kompensacją współczynnika mocy oraz obniżeniem efektywności systemu. Napięcie 400 V DC również nie jest odpowiednie, ponieważ regulator DCRK 12 działa na prądzie przemiennym (AC) i nie może funkcjonować przy prądzie stałym (DC), co prowadziłoby do uszkodzenia urządzenia. Zrozumienie różnicy między zasilaniem AC a DC jest kluczowe w kontekście projektowania i eksploatacji systemów elektrycznych, w przeciwnym razie istnieje ryzyko poważnych uszkodzeń sprzętu oraz strat energetycznych. W branży przemysłowej, gdzie bezpieczeństwo i niezawodność są kluczowe, niezwykle istotne jest, aby stosować się do norm i standardów dotyczących napięcia zasilania, aby zapewnić prawidłowe funkcjonowanie i trwałość urządzeń.

Pytanie 10

Który z literowych identyfikatorów powinien być wykorzystany w poleceniu odnoszącym się do analogowych wyjść?

A. SM
B. AQ
C. AI
D. MW
Odpowiedzi, które wybrałeś, odzwierciedlają powszechnie występujące mylne rozumienia identyfikatorów literowych w kontekście wyjść analogowych. Na przykład, "AI" oznacza "Analog Input", czyli wejście analogowe, co jest zupełnie innym typem sygnału. W systemach automatyki, wejścia analogowe służą do przetwarzania sygnałów z czujników, a nie do generowania sygnałów wyjściowych. Ponadto, odpowiedź "MW" odnosi się do "Memory Word", co odnosi się do danych przechowywanych w pamięci, a nie do fizycznych sygnałów wyjściowych. Użycie tego identyfikatora w kontekście wyjść analogowych zdradza brak zrozumienia podstawowych zasad działania systemów sterowania. Ostatnia z odpowiedzi, "SM", oznacza „Special Memory”, co również nie ma zastosowania w kontekście wyjść analogowych. Zrozumienie różnicy pomiędzy tymi typami identyfikatorów jest kluczowe dla skutecznej pracy w automatyce. Typowym błędem myślowym jest zamiana pojęć związanych z wejściami i wyjściami, co prowadzi do nieporozumień i błędów w projektowaniu systemów. Wiedza na temat zastosowania odpowiednich identyfikatorów literowych w kontekście wyjść analogowych jest niezbędna dla każdego specjalisty zajmującego się automatyką, aby uniknąć nieporozumień i zapewnić prawidłowe działanie systemów.

Pytanie 11

Na schematach systemów pneumatycznych, siłowniki powinny mieć oznaczenie składające się z cyfry oraz litery

A. V
B. A
C. P
D. Z
Odpowiedź "A." jest poprawna, ponieważ w schematach układów pneumatycznych siłowniki są oznaczane symbolem literowym "A" oraz dodatkową liczbą, co jest zgodne z normami, takimi jak ISO 1219, które regulują oznaczanie elementów w schematach hydraulicznych i pneumatycznych. Oznaczenia te są istotne dla zrozumienia funkcji poszczególnych komponentów oraz ich właściwej identyfikacji w dokumentacji technicznej. Użycie liter i cyfr w taki sposób zapewnia jednoznaczność i ułatwia komunikację między inżynierami, technikami i innymi specjalistami. Przykładowo, siłownik pneumatyczny oznaczony jako A1 może wskazywać na specyfikę danego modelu oraz jego parametry, co jest kluczowe podczas projektowania układów automatyki przemysłowej. Właściwe oznaczenie komponentów wpływa na efektywność i bezpieczeństwo pracy systemów pneumatycznych oraz przyczynia się do ich dłuższej żywotności, co jest niezwykle istotne w kontekście nowoczesnej produkcji. Zatem, zrozumienie zasadności takiego oznaczenia jest fundamentem dla każdego inżyniera zajmującego się projektowaniem układów automatyki.

Pytanie 12

Jakie urządzenie powinno być użyte, aby zredukować natężenie prądu rozruchowego silnika indukcyjnego, który napędza systemy mechatroniczne?

A. Układ miękkiego startu
B. Włącznik z opóźnieniem
C. Sterownik PLC
D. Ochrona przed przeciążeniem
Układ miękkiego startu to kluczowe urządzenie stosowane w systemach napędowych, które znacząco redukuje prąd rozruchowy silników indukcyjnych. Jego działanie polega na stopniowym zwiększaniu napięcia, co pozwala na kontrolowane uruchamianie silnika. Dzięki temu unika się nagłych skoków prądu, które mogą prowadzić do uszkodzeń zarówno samego silnika, jak i pozostałych elementów instalacji elektrycznej. W praktyce, układ miękkiego startu jest często stosowany w aplikacjach wymagających dużej mocy, takich jak pompy, wentylatory czy prasy hydrauliczne. Wprowadzenie tego rozwiązania przyczynia się nie tylko do przedłużenia żywotności silnika, ale także do obniżenia kosztów eksploatacji związanych z awariami. Dodatkowo, zastosowanie układów miękkiego startu wpisuje się w standardy efektywności energetycznej, co jest kluczowe w dobie zwracania uwagi na oszczędność energii. Warto podkreślić, że w przypadku silników z napędem mechatronicznym, układ ten umożliwia lepszą synchronizację z pozostałymi komponentami systemu, co przyczynia się do zwiększenia ich wydajności.

Pytanie 13

W sprężarce pneumatycznej nie ma możliwości regulacji ciśnienia powietrza. Jakie jest najbardziej prawdopodobne źródło awarii?

A. Zabrudzenie zaworu zasysającego powietrze
B. Przerwanie obwodu elektrycznego, który zasila silnik sprężarki.
C. Uszkodzenie membrany w reduktorze sprężarki.
D. Uszkodzenie uszczelki w zaworze zwrotnym łączącym zbiornik z rurą tłoczącą.
Uszkodzenie membrany w reduktorze sprężarki jest jedną z najczęstszych przyczyn problemów z regulowaniem ciśnienia powietrza. Membrana pełni istotną rolę w kontrolowaniu przepływu powietrza oraz jego ciśnienia w systemie pneumatycznym. W przypadku jej uszkodzenia może dojść do nieprawidłowego działania reduktora, co prowadzi do braku możliwości regulacji ciśnienia. W praktyce, jeśli membrana jest nieszczelna lub pęknięta, powietrze może uciekać, a użytkownik nie będzie w stanie osiągnąć wymaganych parametrów roboczych. W branży pneumatycznej standardem jest regularne sprawdzanie oraz konserwacja elementów reduktora, aby zapobiec takim awariom. Warto także pamiętać, że nieprawidłowe ciśnienie może prowadzić do uszkodzeń innych komponentów systemu, takich jak narzędzia pneumatyczne, co może generować dodatkowe koszty eksploatacyjne.

Pytanie 14

Które polecenie umożliwi przeniesienie programu z komputera do sterownika PLC?

A. Erase Memory
B. Upload
C. Download
D. Write
W kontekście programowania sterowników PLC, wybór operacji, które nie są związane z przesyłaniem programu z komputera do PLC, może prowadzić do poważnych nieporozumień. Opcja 'Upload' oznacza pobranie programu z PLC do komputera, co jest odwrotnością operacji, która jest wymagana w tym przypadku. Operatorzy często mylą te dwa terminy, co może skutkować utratą danych oraz niezamierzonymi zmianami w programie sterującym. Z kolei wybór 'Write' może być mylący, ponieważ nie precyzuje, że chodzi o przesyłanie kodu do PLC; w praktyce 'Write' może odnosić się do różnych typów operacji zapisu, zarówno w kontekście pamięci, jak i konfigurowania parametrów. Co więcej, operacja 'Erase Memory' to całkowite usunięcie danych z pamięci sterownika PLC i jest zupełnie nieodpowiednia w tym kontekście, ponieważ nie tylko nie przesyła programów, ale może prowadzić do poważnych konsekwencji, takich jak utrata krytycznych danych operacyjnych. Typowym błędem w podejściu do tego zagadnienia jest zrozumienie, że wszystkie te operacje są związane z przesyłaniem danych, podczas gdy każde z nich ma swoje specyficzne zastosowanie i konsekwencje. Zrozumienie różnicy między tymi operacjami jest kluczowe dla skutecznego programowania i zarządzania systemami automatyzacji.

Pytanie 15

Który z poniższych kwalifikatorów działań w metodzie SFC odnosi się do uzależnień czasowych?

A. R
B. N
C. L
D. S
Kwalifikator 'L' w metodzie SFC (Sequential Function Chart) odnosi się do opóźnienia czasowego, co jest kluczowym mechanizmem w programowaniu sterowników PLC. Umożliwia on wprowadzenie zaplanowanego opóźnienia przed przejściem do następnego kroku w sekwencji działań. Jest to niezwykle istotne w aplikacjach, gdzie synchronizacja i czas reakcji mają krytyczne znaczenie, na przykład w systemach automatyki przemysłowej. W praktyce, zastosowanie opóźnienia może być użyte do zapewnienia, że sprzęt wykonawczy ma wystarczająco dużo czasu na zakończenie jednego zadania przed rozpoczęciem kolejnego, co minimalizuje ryzyko błędów i kolizji. Na przykład, w systemie linii produkcyjnej, może być niezbędne, aby roboty miały czas na przeniesienie komponentów, zanim uruchomi się kolejny proces. Użycie kwalifikatora 'L' jest zgodne z najlepszymi praktykami projektowania systemów automatyki, gdzie czas i synchronizacja działań są kluczowe dla efektywności i bezpieczeństwa operacji.

Pytanie 16

Jaką rolę odgrywa zawór przelewowy w hydraulicznej prasie?

A. Umożliwia regulację wartości siły wytwarzanej przez prasę.
B. Filtruje zanieczyszczenia z oleju.
C. Chroni przed powrotem oleju z rozdzielacza do pompy.
D. Zrzuca olej z siłownika do zbiornika.
Istnieje wiele błędnych przekonań dotyczących funkcji zaworu przelewowego w prasie hydraulicznej, które mogą prowadzić do mylnych wniosków. Nieprawdziwe jest stwierdzenie, że zawór ten odprowadza olej z siłownika do zbiornika, ponieważ jego podstawowym zadaniem nie jest transport oleju, lecz regulacja ciśnienia w systemie. W praktyce, odprowadzanie oleju z siłownika realizowane jest przez inne elementy układu hydraulicznego, np. przez zawory sterujące. Również stwierdzenie, że zawór przelewowy zapobiega cofaniu oleju z rozdzielacza do pompy, jest mylne. Choć zawory mogą pełnić funkcję zabezpieczającą, to ich główną rolą nie jest zapobieganie cofaniu, ale raczej utrzymanie optymalnego ciśnienia. Kolejna niepoprawna koncepcja sugeruje, że zawór przelewowy odfiltrowuje zanieczyszczenia z oleju. W rzeczywistości filtracja oleju to zadanie innych elementów, takich jak filtry hydrauliczne, które są projektowane specjalnie do usuwania zanieczyszczeń. Zrozumienie rzeczywistej roli zaworu przelewowego jest kluczowe dla prawidłowego funkcjonowania układów hydraulicznych oraz zapewnienia ich efektywności i bezpieczeństwa. Wiedza na temat rzeczywistych funkcji poszczególnych komponentów systemu hydraulicznego jest niezbędna do dokonywania świadomych wyborów projektowych oraz eksploatacyjnych.

Pytanie 17

W podręczniku obsługi silnika zasilanego napięciem 400 V i kontrolowanego przez PLC powinna być zawarta informacja: Przed rozpoczęciem prac konserwacyjnych należy odłączyć wszystkie obwody zasilające.

A. zabezpieczyć je przed uruchomieniem i sprawdzić, czy nie ma napięcia
B. zabezpieczyć je przed uruchomieniem oraz zewrzeć obudowę silnika z uziemieniem
C. uziemić silnik oraz uziemić sterownik przy użyciu urządzenia do uziemiania
D. sprawdzić, czy nie ma napięcia i zewrzeć złącza silnika
Wybór odpowiedzi, które sugerują zabezpieczenie obwodów w sposób niezgodny z normami, może prowadzić do poważnych konsekwencji. Odpowiedzi takie jak "uziemić silnik" czy "zewrzeć zaciski silnika" wprowadzają niepoprawne i potencjalnie niebezpieczne praktyki. Uziemienie silnika jest techniką, która powinna być stosowana tylko w określonych sytuacjach, gdyż niewłaściwe jej zastosowanie może prowadzić do porażenia prądem lub uszkodzenia urządzenia. Procedura zewrzenia zacisków silnika również nie jest standardowym wymaganiem i może prowadzić do uszkodzeń, jeśli nie jest przeprowadzana przez wykwalifikowany personel. Ponadto, wiele osób może błędnie interpretować potrzebę uziemienia jako wystarczające zabezpieczenie, co jest nieprawidłowe. Z kolei sprawdzanie braku napięcia powinno być zawsze obligatoryjne, jednak nie może być jedynym środkiem ostrożności. Ignorowanie tych zasad prowadzi do typowych błędów myślowych, takich jak niedocenianie ryzyka przy pracy z urządzeniami elektrycznymi, co może mieć tragiczne skutki. Właściwe zrozumienie i stosowanie zasad bezpieczeństwa jest kluczowe, aby uniknąć wypadków i zapewnić bezpieczeństwo własne oraz innych pracowników w środowisku przemysłowym.

Pytanie 18

Jaki symbol literowy, zgodny z normą IEC 61131, wykorzystywany jest w oprogramowaniu sterującym dla PLC do identyfikacji jego fizycznych wejść dyskretnych?

A. |
B. R
C. S
D. Q
Symbol literowy "|" jest kluczowym elementem w standardzie IEC 61131, który definiuje sposób programowania sterowników PLC. W kontekście adresowania fizycznych wejść dyskretnych, ten symbol pełni rolę prefiksu przed numerem wejścia, co umożliwia jednoznaczne wskazanie, które z cyfrowych wejść jest używane w danym programie. Przykładowo, zapis "|X0" odnosi się do pierwszego wejścia dyskretnego, co jest zgodne z najlepszymi praktykami w branży automatyki. Taki system adresowania ułatwia programistom pracę, ponieważ pozwala na łatwe rozpoznanie, które urządzenie jest połączone z danym wejściem. Ponadto, posługiwanie się tym standardem sprzyja lepszej organizacji kodu oraz jego późniejszej konserwacji, co jest szczególnie istotne w długoterminowych projektach automatyzacji. Zrozumienie i umiejętność stosowania tego symbolu jest podstawą efektywnego programowania w kontekście automatyki przemysłowej.

Pytanie 19

Jaki symbol literowy zgodny z normą IEC 61131 jest używany w oprogramowaniu sterującym dla PLC do wskazywania jego fizycznych dyskretnych wejść?

A. I
B. R
C. S
D. Q
Odpowiedź "I" jest poprawna, ponieważ zgodnie z normą IEC 61131, symbol "I" reprezentuje fizyczne wejścia dyskretne w programach sterujących PLC. Norma ta definiuje standardy dla programowalnych kontrolerów logicznych, a użycie odpowiednich symboli jest kluczowe dla zrozumienia i utrzymania systemów automatyki. Przykładowo, w praktyce inżynieryjnej, aby oznaczyć sensory, które generują sygnały cyfrowe, takie jak przyciski czy przełączniki, wykorzystuje się symbol "I". To pozwala na skuteczne adresowanie tych wejść w programie, co ma fundamentalne znaczenie dla poprawnego działania systemu. Używanie standardów IEC 61131 zapewnia spójność w projektowaniu i dokumentacji systemów automatyki, co jest niezbędne do prawidłowej integracji różnych urządzeń i komponentów w złożonych instalacjach przemysłowych. Przykładem może być system automatyzacji w fabryce, gdzie różne sensory są podłączone do PLC, a ich identyfikacja poprzez symbol "I" umożliwia łatwe śledzenie i diagnostykę w przypadku awarii.

Pytanie 20

Do czego służy magistrala danych w systemach mechatronicznych?

A. Chłodzenia komponentów
B. Mocowania elementów mechanicznych
C. Przesyłania sygnałów między komponentami
D. Zasilania urządzeń
Pozostałe odpowiedzi sugerują inne funkcje, które magistrala mogłaby potencjalnie pełnić, ale są one niepoprawne w kontekście jej rzeczywistego zastosowania. Magistrala danych nie służy do zasilania urządzeń. Zasilanie to proces dostarczania energii elektrycznej do komponentów systemu, który zazwyczaj realizowany jest przez dedykowane przewody zasilające i nie jest związany z przesyłem danych. Również chłodzenie komponentów nie jest funkcją magistrali danych. Chłodzenie odbywa się przez systemy mechaniczne, takie jak wentylatory czy radiatory, które odprowadzają ciepło z elementów elektronicznych. Jest to kluczowe dla utrzymania stabilnych warunków pracy, ale nie ma związku z funkcją komunikacji danych. Mocowanie elementów mechanicznych to z kolei proces związany z fizycznym łączeniem części systemu, co realizowane jest za pomocą śrub, zacisków czy innych mechanicznych uchwytów, a nie przez magistralę danych. Takie myślenie może wynikać z błędnego zrozumienia roli magistrali jako centralnego punktu komunikacyjnego, co może być mylnie interpretowane jako centralny punkt zasilania czy chłodzenia. Tego typu błędne interpretacje można jednak z łatwością wyeliminować poprzez odpowiednie zrozumienie podstawowych funkcji każdego z systemów wchodzących w skład mechatroniki.

Pytanie 21

Przegląd konserwacji napędów elektrycznych nie uwzględnia

A. wymiany zabrudzonego komutatora wirnika
B. sprawdzania połączeń elektrycznych
C. sprawdzania napięć silnika
D. czyszczenia żeber radiatorów
Wybrana przez Ciebie odpowiedź sugerująca, że przegląd konserwacyjny obejmuje wymianę zabrudzonego komutatora wirnika, pokazuje pewne nieporozumienie. Przegląd konserwacyjny ma na celu zapewnienie, że wszystko działa w optymalnych warunkach, a nie robienie dużych napraw, jak wymiana kluczowych części. Wymiana komutatora to proces dość skomplikowany, wymaga demontażu silnika, a nie prostej czynności jak czyszczenie radiatorów czy sprawdzanie napięć. Często można się spotkać z sytuacją, że osoby zajmujące się konserwacją mylnie myślą, że wymiana zużytych części powinna być częścią ich rutynowych zadań, co może prowadzić do marnotrawstwa czasu i zasobów. Dlatego warto dobrze wiedzieć, co naprawdę powinno się robić w ramach rutynowych przeglądów, a które zadania wymagają więcej przygotowania i specjalistycznej wiedzy.

Pytanie 22

Jaki blok powinien być użyty w systemie sterującym do zliczania impulsów, które występują w odstępach krótszych niż czas jednego cyklu programu sterownika?

A. Dzielnik częstotliwości
B. Szybki licznika (HSC)
C. Czasowy TOF (o opóźnionym wyłączaniu)
D. Czasowy TON (o opóźnionym załączaniu)
Szybki licznik (HSC) jest idealnym rozwiązaniem w sytuacjach, gdy konieczne jest zliczanie impulsów, które występują w odstępach krótszych niż cykl programowy sterownika. Blok HSC wykorzystuje sprzętowy licznik zegara, co pozwala na rejestrację impulsów z dużą częstotliwością bez straty danych. W praktyce, zastosowanie HSC można zauważyć w systemach automatyki, gdzie monitorowane są sygnały z czujników, takich jak enkodery czy czujniki przepływu. Dzięki temu, HSC umożliwia szybkie reagowanie na zmiany w procesie, co jest niezbędne w aplikacjach wymagających precyzyjnego zarządzania czasem. Warto również zaznaczyć, że wykorzystanie HSC jest zgodne z najlepszymi praktykami w inżynierii, które zalecają stosowanie rozwiązań sprzętowych do zadań czasowo krytycznych dla maksymalizacji wydajności i niezawodności systemu. Użycie HSC pozwala także na optymalizację obciążenia CPU sterownika, co jest kluczowe w bardziej złożonych aplikacjach, gdzie liczne operacje wymagają precyzyjnego zarządzania cyklem programowym.

Pytanie 23

Aby zmienić skok gwintu należy zmienić wartość liczbową przy literze adresowej

N100 G00 X55 Z5
N110 T3 S80 M03
N120 G31 X50 Z-30 D-2 F3 Q3
A. Q (promień wodzący)
B. T (wybór narzędzia)
C. F (prędkość posuwu)
D. D (korektor narzędzia)
Odpowiedzi takie jak "Q" (promień wodzący), "D" (korektor narzędzia) oraz "T" (wybór narzędzia) są błędne, ponieważ nie odnoszą się one do zmiany skoku gwintu, a ich zastosowanie w kontekście obrabiarek CNC jest inne. Promień wodzący, oznaczany literą "Q", ma na celu definiowanie promienia narzędzia przy obróbce, a jego zmiana nie wpływa na parametry związane z gwintowaniem. Korektor narzędzia, oznaczany literą "D", jest używany do kompensacji błędów w długości narzędzi skrawających, co oznacza, że nie ma bezpośredniego związku ze skokiem gwintu. Wybór narzędzia, oznaczany literą "T", pozwala na zmiany w używanym narzędziu, co nie wpływa na parametry skoku gwintu. Zmiana skoku gwintu odbywa się za pomocą odpowiednich kodów G, a zrozumienie, które parametry odpowiadają za konkretne aspekty procesu obróbczy, jest kluczowe dla efektywności pracy. Operatorzy muszą dobrze znać funkcje poszczególnych liter adresowych oraz ich zastosowanie, aby uniknąć nieporozumień i błędów w programowaniu obrabiarek CNC. Błąd w przypisaniu liter adresowych lub niewłaściwe zrozumienie ich funkcji może prowadzić do nieprawidłowej obróbki, co w konsekwencji może skutkować nieodwracalnymi błędami w produkcie końcowym.

Pytanie 24

Jakie działania regulacyjne w systemie mechatronicznym opartym na falowniku i silniku indukcyjnym należy podjąć, aby obniżyć prędkość obrotową silnika bez zmiany wartości poślizgu?

A. Zwiększyć proporcjonalnie częstotliwość i wartość napięcia zasilającego
B. Zwiększyć wartość napięcia zasilającego
C. Obniżyć proporcjonalnie częstotliwość oraz wartość napięcia zasilającego
D. Zmniejszyć częstotliwość napięcia zasilającego
Analizując inne dostępne odpowiedzi, należy zauważyć, że zmniejszenie tylko częstotliwości napięcia zasilającego doprowadzi do obniżenia prędkości wirowania, jednak bez jednoczesnego zmniejszenia napięcia może to skutkować niepożądanym efektem w postaci zwiększenia poślizgu, co nie jest zgodne z wymogami zadania. Wzrost wartości napięcia zasilającego nie tylko nie przyczyni się do redukcji prędkości, ale także może spowodować przegrzewanie się silnika oraz jego uszkodzenie. Zwiększenie zarówno częstotliwości, jak i wartości napięcia prowadzi natomiast do zwiększenia prędkości obrotowej wirnika, co również jest sprzeczne z celem pytania. Typowe błędy myślowe, które mogą prowadzić do takich nieprawidłowych wniosków, obejmują pomylenie relacji między częstotliwością a prędkością obrotową silnika oraz brak zrozumienia, jak zmiany w napięciu wpływają na parametry pracy silnika indukcyjnego. W kontekście systemów napędowych, w którym kluczowe jest jednolite podejście do regulacji, należy pamiętać o zasadzie proporcjonalności pomiędzy częstotliwością a napięciem, co jest fundamentalną zasadą w inżynierii mechatronicznej. Zrozumienie tych zasad jest niezbędne dla skutecznego projektowania i eksploatacji systemów napędowych.

Pytanie 25

Który kabel w sieci elektrycznej zasilającej silnik trójfazowy jest oznaczony izolacją w kolorze żółto-zielonym?

A. Ochronny
B. Neutralny
C. Sterujący
D. Fazowy
Przewód z izolacją w kolorach żółto-zielonym jest klasycznym przewodem ochronnym, co jest zgodne z normą PN-EN 60446, która określa zasady oznaczania przewodów elektrycznych. Ochrona przed porażeniem prądem elektrycznym jest kluczowym aspektem bezpieczeństwa w instalacjach elektrycznych, zwłaszcza w kontekście urządzeń przemysłowych, takich jak silniki trójfazowe. Przewód ochronny jest odpowiedzialny za uziemienie urządzenia, co minimalizuje ryzyko porażenia w przypadku awarii izolacji. Przykładowo, w przypadku uszkodzenia silnika, przewód ochronny prowadzi niebezpieczny prąd do ziemi, zapobiegając poważnym wypadkom. Stosowanie przewodów ochronnych zgodnie z przyjętymi normami, takimi jak norma IEC 60364, jest niezbędne dla bezpieczeństwa pracowników oraz użytkowników urządzeń elektrycznych. Warto również zwrócić uwagę, że przewody ochronne powinny być regularnie kontrolowane oraz, w miarę potrzeby, wymieniane, by zapewnić ich skuteczność.

Pytanie 26

Jaką metodę czyszczenia powinno się zastosować podczas montażu elementów hydraulicznych na końcowym etapie?

A. Przedmuchania sprężonym powietrzem
B. Przemycia wodą
C. Osuszenia w wysokiej temperaturze
D. Przetarcia rozpuszczalnikiem
Wybór metody oczyszczania elementów hydraulicznych jest kluczowy dla zapewnienia ich prawidłowego funkcjonowania, a niektóre podejścia mogą prowadzić do poważnych problemów. Osuszanie w wysokiej temperaturze, choć może wydawać się skuteczne w eliminacji wilgoci, niesie ze sobą ryzyko uszkodzenia delikatnych materiałów użytych w elementach hydraulicznych. Zbyt wysoka temperatura może powodować deformacje lub osłabienie strukturalne, które w dłuższej perspektywie mogą prowadzić do awarii. Przemywanie wodą z kolei, mimo że efektywnie usuwa większe cząstki, często nie jest wystarczające w kontekście usuwania drobnych zanieczyszczeń, takich jak pył czy resztki smarów. Woda może także pozostawiać osady, które po wyschnięciu mogą działać jak dodatkowe zanieczyszczenia. Zastosowanie rozpuszczalników ma swoje ograniczenia, ponieważ niektóre materiały mogą reagować negatywnie na ich działanie, co może prowadzić do uszkodzeń. Wybór niewłaściwej metody może wynikać z błędnego podejścia do procesu oczyszczania, gdzie priorytetem staje się szybkość, a nie jakość. W rezultacie, zarówno zanieczyszczenia, jak i błędne metody oczyszczania mogą prowadzić do skrócenia żywotności elementów hydraulicznych oraz zwiększenia kosztów związanych z ich naprawą i konserwacją.

Pytanie 27

Która z podanych funkcji programowych w sterownikach PLC jest przeznaczona do realizacji operacji dodawania?

A. ADD
B. SUB
C. MOVE
D. DIV
Każda z wymienionych odpowiedzi wprowadza w błąd, co może prowadzić do nieprawidłowego zrozumienia funkcji podstawowych w kontekście programowania PLC. Funkcja SUB, która oznacza odejmowanie, ma zupełnie inne zastosowanie niż dodawanie. Użycie SUB może prowadzić do błędnych wyników w sytuacjach, gdzie zamiast odejmować, potrzeba dodawać, co w praktyce może skutkować niepoprawnymi danymi wyjściowymi. Funkcja DIV, służąca do dzielenia, również nie ma żadnego związku z dodawaniem. Oprócz tego, przy wykorzystywaniu DIV, inżynierowie muszą być świadomi możliwości wystąpienia błędów dzielenia przez zero, co może całkowicie zablokować działanie programu. Funkcja MOVE jest używana do przenoszenia wartości między rejestrami, co również nie ma zastosowania w kontekście dodawania. Zrozumienie różnic między tymi funkcjami jest kluczowe, aby uniknąć typowych nieporozumień i błędów w programowaniu. Podstawowe błędy myślowe związane z wyborem tych odpowiedzi wynikają z nieporozumienia co do podstawowych operacji arytmetycznych oraz ich zastosowań w kontekście automatyki i programowania PLC. Właściwe rozróżnienie między tymi funkcjami oraz ich zastosowaniem jest niezbędne dla skutecznego programowania i operacyjnego zarządzania systemami automatyki.

Pytanie 28

Podwyższenie częstotliwości napięcia zasilającego silnik indukcyjny klatkowy o 20 Hz spowoduje

A. zatrzymanie działania silnika
B. wzrost prędkości obrotowej wirnika silnika
C. niestabilną pracę silnika
D. spadek prędkości obrotowej wirnika silnika
Zwiększenie częstotliwości napięcia zasilającego silnik indukcyjny klatkowy prowadzi do zwiększenia prędkości obrotowej wirnika. Wynika to z zasady, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio związana z częstotliwością zasilania, określaną przez równanie: n = (120 * f) / p, gdzie n to prędkość w obrotach na minutę, f to częstotliwość zasilania, a p to liczba par biegunów. Wzrost częstotliwości o 20 Hz zwiększa liczbę zmian pola magnetycznego, co z kolei przyspiesza ruch wirnika. Przykładowo, w aplikacjach przemysłowych, takich jak napędy elektryczne w dźwigach lub taśmach produkcyjnych, odpowiednia regulacja częstotliwości zasilania pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymagań procesu technologicznego. Ponadto, w praktyce stosuje się inwertery, które umożliwiają płynną regulację częstotliwości, pozwalając na oszczędności energii oraz zwiększenie efektywności pracy silników. Warto również zauważyć, że zmiany te są zgodne z normami IEC dotyczących napędów elektrycznych, które podkreślają znaczenie optymalizacji i efektywności energetycznej.

Pytanie 29

Na rysunkach technicznych cienką linią dwupunktową oznacza się

A. przejścia pomiędzy jedną powierzchnią a drugą w miejscach delikatnie zaokrąglonych
B. widoczne krawędzie oraz wyraźne kontury obiektów w widokach i przekrojach
C. powierzchnie elementów, które są poddawane obróbce powierzchniowej
D. linie gięcia przedmiotów ukazanych w rozwinięciu
Linie dwupunktowe cienkie na rysunkach technicznych mają kluczowe znaczenie w procesie projektowania oraz produkcji elementów mechanicznych. Oznaczają one miejsca gięcia w przedmiotach przedstawionych w rozwinięciu, co pozwala na precyzyjne określenie kierunków oraz miejsc, w których materiał powinien być zginany. Przykładowo, w procesie produkcji blacharskiej, stosowanie tych linii jest niezwykle istotne, ponieważ umożliwia wykonanie elementów o zamierzonym kształcie oraz zapewnia ich prawidłowy montaż. Współczesne standardy branżowe, takie jak ISO 128-23, podkreślają znaczenie odpowiedniego oznaczania linii gięcia w dokumentacji technicznej. Dzięki temu możliwe jest uniknięcie błędów w obróbce oraz zapewnienie zgodności z wymaganiami technicznymi. W rezultacie, zrozumienie roli linii dwupunktowych cienkich w rysunkach technicznych jest niezbędne dla każdego inżyniera i technika, co przyczynia się do efektywności procesów produkcyjnych oraz jakości finalnych wyrobów.

Pytanie 30

Jaki sterownik powinien być wykorzystany do zarządzania 5 pompami napełniającymi 5 zbiorników, gdy włączanie i wyłączanie poszczególnych pomp opiera się na sygnałach z czujników binarnych, które wykrywają niski oraz wysoki poziom cieczy, a także system uruchamiany jest ręcznie przyciskiem zwiernym i wyłączany przyciskiem rozwiernym?

A. Posiadający co najmniej 8 wejść i 4 wyjścia cyfrowe
B. Posiadający co najmniej 16 wejść i 8 wyjść analogowych
C. Posiadający co najmniej 16 wejść i 8 wyjść cyfrowych
D. Posiadający co najmniej 8 wejść i 4 wyjścia analogowe
Odpowiedzi, które nie mają 16 wejść i 8 wyjść, są po prostu za małe, żeby obsłużyć 5 pomp i 5 czujników. Takie jak 8 wejść i 4 wyjścia to za mało, bo nie da się wtedy podłączyć wszystkich potrzebnych elementów. W automatyce ważne jest, żeby komponenty działały obok siebie, co jest konieczne w bardziej skomplikowanych systemach z wieloma pompami. Ta odpowiedź dotycząca wyjść analogowych jest też myląca. Wyjścia analogowe są dla sygnałów ciągłych, jak temperatura czy ciśnienie, a nie dla czujników binarnych, które działają w trybie włącz/wyłącz. Z mojego doświadczenia wynika, że to pokazuje brak zrozumienia podstaw automatyki, no bo musisz wiedzieć, jak to działa. Jak wybierzesz zły sterownik, to możesz poważnie skomplikować działanie systemu – np. nie będziesz w stanie monitorować poziomu cieczy, a to prowadzi do awarii i zniszczeń. Dlatego ważne jest, żeby wybierać sprzęt na podstawie dokładnej analizy wymagań systemu, żeby mieć pewność, że wszystko będzie działać jak należy.

Pytanie 31

Według zasad rysowania schematów układów pneumatycznych, symbolem składającym się z litery A oraz cyfr oznacza się

A. zawory pneumatyczne
B. pompy
C. siłowniki
D. elementy sygnalizacyjne
Odpowiedź "siłowniki" jest poprawna, ponieważ zgodnie z międzynarodowymi standardami rysowania schematów układów pneumatycznych, litera A w symbolach literowo-cyfrowych odnosi się do elementów wykonawczych, jakimi są siłowniki. Siłowniki pneumatyczne przekształcają energię sprężonego powietrza w ruch mechaniczny, co jest kluczowe w automatyzacji procesów przemysłowych. Mogą występować w różnych formach, takich jak siłowniki liniowe, które poruszają się w linii prostej, oraz siłowniki obrotowe, które wykonują ruch obrotowy. W praktyce siłowniki są wykorzystywane w takich zastosowaniach jak podnoszenie, przesuwanie lub obracanie elementów w maszynach przemysłowych. Zrozumienie i umiejętność prawidłowego oznaczania tych komponentów jest niezbędna dla inżynierów i techników pracujących w dziedzinie pneumatyki, aby zapewnić efektywne projektowanie i eksploatację systemów pneumatycznych, zgodnie z normami ISO 1219 oraz PN-EN 982, które określają zasady rysowania schematów oraz oznaczeń dla takich układów.

Pytanie 32

W systemie mechatronicznym konieczne jest zastosowanie regulacji temperatury w dwóch stanach. Który z regulatorów odpowiada tym wymaganiom?

A. PID
B. PI
C. Proporcjonalny
D. Dwustawny
Regulator dwustawny, znany również jako regulator on/off, jest idealnym rozwiązaniem dla systemów wymagających dwupołożeniowej regulacji temperatury. Jego działanie polega na przełączaniu pomiędzy dwoma stanami - włączonym i wyłączonym - co zapewnia prostotę i efektywność. Taki regulator jest powszechnie stosowany w systemach grzewczych, klimatyzacyjnych oraz w urządzeniach przemysłowych, gdzie precyzyjne utrzymanie temperatury nie jest kluczowe. Przykładem może być termostat w piecu, który włącza się, gdy temperatura spada poniżej ustawionej wartości, i wyłącza, gdy ją przekracza. Dzięki swojej prostocie, regulator dwustawny jest łatwy do implementacji oraz konfiguracji, co czyni go preferowanym wyborem w wielu aplikacjach. Warto również zauważyć, że takie rozwiązanie spełnia standardy efektywności energetycznej, minimalizując zużycie energii poprzez unikanie niepotrzebnego działania grzałek czy chłodnic.

Pytanie 33

Zakład produkcyjny zlecił unowocześnienie automatu wiertarskiego, który jest napędzany silnikiem indukcyjnym z czterostopniową przekładnią pasową, służącą do regulacji prędkości obrotowej wrzeciona wiertarki. Unowocześnienie ma na celu zamianę przekładni mechanicznej na urządzenie elektroniczne. Który z poniższych elementów powinien być użyty do realizacji tego przedsięwzięcia?

A. Przemiennik częstotliwości
B. Przetwornicę napięcia
C. Prostownik jednopołówkowy niesterowany
D. Przetwornik analogowo-cyfrowy
Przemiennik częstotliwości to naprawdę ważne urządzenie, które pozwala na regulację prędkości silnika indukcyjnego w sposób elektroniczny. Dzięki niemu możemy dokładniej dopasować prędkość obrotową wrzeciona wiertarki, co jest kluczowe w produkcji, gdzie różne prędkości wiertzenia są na porządku dziennym. Widzisz, w przemyśle korzysta się z takich rozwiązań, bo to pozwala zaoszczędzić energię i zwiększyć efektywność maszyn. W przeciwieństwie do tradycyjnych przekładni mechanicznych, które mają kilka stałych prędkości, przemienniki umożliwiają płynne przechodzenie między różnymi zakresami prędkości. To jest super przydatne w sytuacjach, gdzie elastyczność jest niezbędna. Nowoczesne przemienniki mają też fajne funkcje, na przykład chronią silnik przed przeciążeniem, co sprawia, że cały system jest bardziej niezawodny. Warto także wspomnieć, że używanie tych urządzeń jest zgodne z normą IEC 60034 dotyczącą maszyn elektrycznych, co gwarantuje ich jakość i bezpieczeństwo.

Pytanie 34

Wskaż, jaka czynność powinna zostać zrealizowana przed przystąpieniem do konserwacji instalacji sprężonego powietrza, zaraz po wyłączeniu i odpowietrzeniu sprężarki oraz opróżnieniu zbiorników powietrza?

A. Oczyścić części odpowiednimi środkami chemicznymi
B. Otworzyć zawory odwadniaczy spustowych i upewnić się o braku ciśnienia w instalacji
C. Zakryć części i otwory czystą szmatką lub taśmą klejącą
D. Wymienić uszkodzone elementy instalacji oraz wszystkie uszczelki
Wymiana uszkodzonych części w instalacji czy czyszczenie chemikaliami to ważne rzeczy, ale nigdy nie powinny być pierwszym krokiem po wyłączeniu sprężarki. Zanim zaczniemy jakiekolwiek prace konserwacyjne, musimy upewnić się, że system nie ma ciśnienia. W przeciwnym razie może się zdarzyć coś niebezpiecznego, jak niekontrolowane uwolnienie powietrza, co może prowadzić do poważnych obrażeń. Choć może być konieczna wymiana uszkodzonych elementów, robienie tego bez weryfikacji bezpieczeństwa to popełnienie błędu. Czynności czyszczenia chemikaliami także muszą być robione z ostrożnością, gdy instalacja jest już bez ciśnienia. A zakrywanie części instalacji nie ma sensu, jeżeli nie upewnimy się, że wszystkie ryzyka zostały zniwelowane. Również nie można myśleć, że te czynności można robić w dowolnej kolejności. Dobre praktyki w konserwacji instalacji sprężonego powietrza kładą duży nacisk na to, jak ważna jest systematyczność i trzymanie się ustalonych procedur, co naprawdę wpływa na bezpieczeństwo operatorów i efektywność samej instalacji.

Pytanie 35

Jakie środki ochrony osobistej powinien założyć pracownik przy uruchamianiu prasy pneumatycznej przeznaczonej do nitowania?

A. Obuwie izolacyjne
B. Szelki bezpieczeństwa
C. Hełm ochronny
D. Okulary ochronne
Okulary ochronne są niezbędnym środkiem ochrony indywidualnej podczas pracy z prasą pneumatyczną do nitowania, ponieważ odpowiednio chronią oczy pracownika przed potencjalnymi zagrożeniami, takimi jak odpryski materiałów, pył czy metalowe drobiny. W przypadku pracy w środowiskach przemysłowych, gdzie odbywają się operacje związane z obróbką metali, użycie okularów ochronnych zgodnych z normami EN 166 jest kluczowe. Te normy określają wymagania dotyczące odporności na uderzenia, a także właściwości optyczne soczewek. Pracownicy powinni również zwracać uwagę na odpowiednią konserwację okularów, aby zapewnić ich skuteczność. Ponadto, w kontekście bezpieczeństwa, stosowanie okularów ochronnych w połączeniu z innymi środkami ochrony, takimi jak hełmy czy rękawice, staje się podstawą bezpiecznego środowiska pracy. Przykłady zastosowania obejmują prace w warsztatach, fabrykach czy na placach budowy, gdzie ryzyko uszkodzenia wzroku jest znaczne. Dlatego też, w każdej sytuacji potencjalnego zagrożenia dla oczu, użycie okularów ochronnych powinno być standardem.

Pytanie 36

Który z poniższych elementów jest niezbędny do prawidłowego działania układu pneumatycznego?

A. Rezystor
B. Sprężarka
C. Transformator
D. Akumulator
Sprężarka jest kluczowym elementem w układzie pneumatycznym, ponieważ to ona wytwarza i dostarcza sprężone powietrze, które jest medium roboczym w takich systemach. Bez sprężarki nie byłoby możliwe generowanie ciśnienia potrzebnego do działania siłowników, zaworów czy innych elementów pneumatycznych. W praktyce sprężone powietrze jest używane w wielu gałęziach przemysłu, takich jak motoryzacja, produkcja czy budownictwo. Na przykład, w warsztatach samochodowych sprężone powietrze napędza narzędzia pneumatyczne, które są bardziej wydajne i trwałe niż ich elektryczne odpowiedniki. W przemyśle produkcyjnym sprężarki są używane do zasilania linii produkcyjnych, gdzie szybkość i precyzja działania urządzeń pneumatycznych mają kluczowe znaczenie. Dobrze zaprojektowany układ pneumatyczny, oparty na odpowiednio dobranej sprężarce, jest nie tylko efektywny, ale również energooszczędny, co przekłada się na niższe koszty eksploatacji. Sprężarki są zgodne z różnymi standardami i normami, które zapewniają ich bezpieczne i efektywne działanie, co jest istotne w kontekście ich szerokiego zastosowania w przemyśle.

Pytanie 37

Zespół odpowiedzialny za obsługę systemu mechtronicznego zauważył nagły spadek efektywności sprężarki tłokowej oraz to, że w czasie jej pracy powietrze wydostaje się z cylindra przez filtr ssawny do atmosfery. Jakie jest prawdopodobne źródło nieprawidłowego działania tego urządzenia?

A. Wytarcie jednego z pierścieni uszczelniających tłok
B. Niewłaściwie ustawiony wyłącznik ciśnieniowy
C. Awaria zaworu zwrotnego ssącego
D. Nieprawidłowy kierunek obrotów silnika
Zespół nieprawidłowych odpowiedzi sugeruje różne koncepcje, które nie są związane z opisaną sytuacją. Źle wyregulowany wyłącznik ciśnieniowy, choć może wpływać na ogólną wydajność systemu, nie jest bezpośrednią przyczyną wydmuchiwania powietrza z cylindra sprężarki. Jego niewłaściwe ustawienie może skutkować wyłączaniem urządzenia w nieodpowiednich momentach, ale nie prowadzi do opisanego zjawiska. Zły kierunek wirowania silnika jest kolejnym błędnym podejściem, które może powodować problemy z pracą całego systemu, ale nie wyjaśnia wydmuchiwania powietrza z cylindra. Tego typu sytuacje mogą prowadzić do poważnych uszkodzeń, jednak nie mają związku z bezpośrednim uszkodzeniem zaworu zwrotnego. Zużycie jednego z pierścieni uszczelniających tłok jest z pewnością istotnym czynnikiem, jednak jego wpływ na wydajność sprężarki objawia się w inny sposób, głównie poprzez spadek ciśnienia i wzrost zużycia energii, a nie przez wydmuchiwanie powietrza do atmosfery. Zrozumienie tych różnic jest kluczowe dla prawidłowej diagnostyki i utrzymania systemów mechatronicznych, gdzie precyzyjne określenie przyczyny problemu ma kluczowe znaczenie dla dalszej pracy urządzenia.

Pytanie 38

Jedną z metod umożliwiających identyfikację nieprawidłowości w pracy urządzeń oraz instalacji mechatronicznych o dużej mocy jest technologia obrazowania w podczerwieni. Który z wymienionych instrumentów jest stosowany w takich badaniach?

A. Kamera termograficzna
B. Tester kabli
C. Termometr elektroniczny
D. Oscyloskop cyfrowy
Kamera termowizyjna to zaawansowane narzędzie, które wykorzystuje technologię obrazowania w podczerwieni do analizy rozkładu temperatury na powierzchniach obiektów. Dzięki temu możliwe jest wykrywanie nieprawidłowości w działaniu urządzeń mechatronicznych dużej mocy, takich jak silniki, transformatory czy układy chłodzenia. Przykładowo, w przemyśle energetycznym kamery termowizyjne są wykorzystywane do monitorowania stanu transformatorów, co pozwala na wczesne wykrycie przegrzewania się komponentów i tym samym zapobiegnięcie awariom. Technologia ta znajduje zastosowanie również w diagnostyce budynków, gdzie pozwala na identyfikację strat ciepła i nieszczelności. Warto podkreślić, że zgodnie z normami branżowymi, regularne używanie kamer termograficznych powinno być częścią strategii zarządzania utrzymaniem ruchu, co znacząco podnosi efektywność operacyjną oraz bezpieczeństwo systemów mechatronicznych.

Pytanie 39

Jakie urządzenie powinno być użyte do uruchomienia silnika trójfazowego o dużej mocy?

A. Przetwornicę częstotliwości
B. Przełącznik gwiazda-trójkąt
C. Wyłącznik przeciwporażeniowy
D. Transformator obniżający napięcie
Przełącznik gwiazda-trójkąt jest kluczowym urządzeniem stosowanym do rozruchu silników trójfazowych dużej mocy. Jego działanie opiera się na technice zmniejszania prądu rozruchowego poprzez początkowe połączenie silnika w układzie gwiazdy, co prowadzi do ograniczenia napięcia na uzwojeniach i redukcji prądu. Po krótkim czasie silnik przestawia się na tryb trójkątowy, co pozwala na pełne wykorzystanie jego mocy znamionowej. Dzięki temu, można uniknąć skokowych obciążeń na sieci oraz zminimalizować ryzyko uszkodzenia silnika oraz innych elementów systemu elektrycznego. Stosowanie przełącznika gwiazda-trójkąt jest zgodne z normami dotyczącymi ochrony silników elektrycznych (np. IEC 60034), a także z najlepszymi praktykami w branży, które zalecają jego użycie w aplikacjach, gdzie silniki muszą być uruchamiane z rozruchem o wysokim momencie obrotowym, jak to ma miejsce w przemyśle ciężkim.

Pytanie 40

Modulacja PWM (Pulse-Width Modulation), wykorzystywana w elektrycznych impulsowych systemach sterowania i regulacji, polega na modyfikacji

A. fazy sygnału.
B. szerokości sygnału.
C. amplitudy sygnału.
D. częstotliwości sygnału.
Wybór odpowiedzi dotyczącej amplitudy impulsu, częstotliwości impulsu lub fazy impulsu odzwierciedla pewne nieporozumienia dotyczące zasad działania modulacji PWM. Modulacja amplitudy polega na zmianie wysokości impulsów w sygnale, co jest zupełnie inną techniką, która nie zapewnia taką samą efektywność w regulacji mocy. Z kolei modulacja częstotliwości polega na zmianie liczby impulsów w jednostce czasu, co również nie odpowiada idei PWM, gdzie kluczowe jest zachowanie stałej częstotliwości i zmiana szerokości impulsów. Wybór fazy impulsu mógłby sugerować, że modulacja polega na synchronizacji impulsów, co w kontekście PWM również jest błędne. Zrozumienie różnicy między tymi koncepcjami jest kluczowe: PWM polega na regulacji wypełnienia impulsów, a nie ich amplitudy, częstotliwości czy fazy. Te błędne odpowiedzi mogą wynikać z mylnego utożsamiania różnych technik modulacji, co jest częstym problemem w nauce o elektronice. Aby unikać takich błędów, warto zwrócić uwagę na konkretne definicje i zastosowania każdej z tych metod w praktyce.