Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 19 grudnia 2025 01:06
  • Data zakończenia: 19 grudnia 2025 01:21

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie urządzenie pozwala na podłączenie wielu urządzeń sieciowych do jednej sieci LAN?

A. Modulator.
B. Wzmacniak.
C. Serwer.
D. Przełącznik.
Przełącznik, znany również jako switch, to urządzenie sieciowe, które umożliwia połączenie wielu urządzeń w jednej sieci LAN (Local Area Network). Jego główną funkcją jest inteligentne zarządzanie ruchem danych, co pozwala na przesyłanie informacji tylko między urządzeniami, które tego potrzebują, co zwiększa efektywność sieci. Przełączniki operują na warstwie drugiej modelu OSI, co oznacza, że wykorzystują adresy MAC do zidentyfikowania urządzeń w sieci. W praktyce, przełączniki pozwalają na połączenie komputerów, drukarek, serwerów oraz innych urządzeń w biurach czy domach. Dzięki technologii VLAN (Virtual Local Area Network), przełączniki umożliwiają także segmentację sieci, co poprawia bezpieczeństwo i wydajność. Współczesne przełączniki często oferują dodatkowe funkcje, takie jak PoE (Power over Ethernet), co pozwala na zasilanie urządzeń, takich jak kamery IP lub punkty dostępu, za pomocą tego samego kabla, który przesyła dane. W kontekście najlepszych praktyk, korzystanie z przełączników zamiast hubów jest standardem, ponieważ przełączniki znacznie redukują kolizje sieciowe i zwiększają przepustowość.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Liczba 364 w systemie dziesiętnym po przekształceniu na kod BCD (ang. Binary-Coded Decimal) przyjmie formę

A. 0011 0110 0100
B. 1101100
C. B3C6D4
D. 16C
Odpowiedź 0011 0110 0100 jest poprawna, ponieważ reprezentuje liczbę 364 w systemie BCD, znanym jako kod dziesiętny binarny. W BCD każda cyfra liczby dziesiętnej jest kodowana oddzielnie jako czterobitowa wartość binarna. Dla liczby 364, cyfry 3, 6 i 4 są konwertowane na ich odpowiedniki binarne: 3 to 0011, 6 to 0110, a 4 to 0100. Po złączeniu tych wartości otrzymujemy 0011 0110 0100. Stosowanie kodu BCD jest powszechne w systemach cyfrowych, takich jak w zegarach cyfrowych, kalkulatorach i różnych urządzeniach elektronicznych, gdzie istotne jest bezpośrednie wyświetlanie cyfr dziesiętnych. Dzięki BCD możliwe jest łatwe przetwarzanie i reprezentowanie danych numerycznych w formacie zrozumiałym dla użytkowników. Ponadto, z punktu widzenia standardów, BCD jest często stosowany w interfejsach i protokołach komunikacyjnych, gdzie precyzyjne odwzorowanie cyfr dziesiętnych jest kluczowe.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Który rysunek przedstawia złącze wykorzystywane w interfejsie RS232?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Rysunek B przedstawia złącze DB9, które jest powszechnie stosowane w interfejsie RS232, popularnym standardzie komunikacji szeregowej. Złącze to charakteryzuje się dziewięcioma pinami, które umożliwiają przesyłanie danych oraz sygnałów kontrolnych. Złącze DB9 jest wykorzystywane w wielu urządzeniach, takich jak komputery, modemy, drukarki i różnorodne urządzenia przemysłowe. Dzięki standardowi RS232, urządzenia mogą komunikować się za pomocą prostego interfejsu, co czyni go idealnym do zastosowań, gdzie niezbędna jest stabilna i niezawodna transmisja danych na krótkich dystansach. W branży inżynieryjnej i automatyce, RS232 jest często stosowane w systemach SCADA oraz w interfacingu urządzeń, co sprawia, że znajomość tego złącza jest kluczowa dla inżynierów i techników. Dodatkowo, standard ten pozwala na łatwe diagnozowanie problemów związanych z połączeniem, dzięki wyraźnie zdefiniowanym sygnałom kontrolnym, co zwiększa jego użyteczność w praktyce.

Pytanie 8

Parametr Vpp, który znajduje się w dokumentacji technicznej wzmacniacza mocy o niskiej częstotliwości, wskazuje na wartość

A. między szczytową sygnału
B. maksymalną sygnału
C. średnią sygnału
D. skuteczną sygnału
Parametr V<sub>pp</sub>, czyli napięcie między szczytowe, definiuje maksymalne napięcie sygnału, jakie wzmacniacz mocy może wygenerować pomiędzy dwoma szczytami. Sygnał ten jest kluczowy w analizie wydajności wzmacniaczy audio, ponieważ pozwala na ocenę ich zdolności do reprodukcji dynamicznych zakresów dźwięku. Przykładem zastosowania tego parametru jest projektowanie systemów audio, gdzie potrzebne jest określenie, czy wzmacniacz będzie w stanie obsłużyć sygnały o dużych amplitudach bez zniekształceń. W kontekście standardów branżowych, V<sub>pp</sub> jest często stosowany w dokumentacji technicznej, aby umożliwić inżynierom porównywanie różnych urządzeń. Dobrym przykładem może być sytuacja, w której inżynier projektujący system nagłośnienia wymaga wzmacniacza o określonym V<sub>pp</sub>, aby zapewnić odpowiednią moc wyjściową na poziomie, który zaspokoi wymagania konkretnego zastosowania, na przykład w sali koncertowej.

Pytanie 9

W dokumentacji serwisowej kamery znajduje się informacja: "kamerę zasilać napięciem stałym U = 12 V /15 W". Który zasilacz pozwoli na jednoczesne działanie czterech takich kamer?

A. 12 V DC/ 6 A
B. 12 V AC/ 4 A
C. 12 V DC/ 4 A
D. 12 V AC/ 6 A
Zasilacz 12 V DC/ 6 A jest odpowiedni, ponieważ kamera wymaga napięcia 12 V i mocy 15 W. Aby obliczyć, ile prądu potrzebuje jedna kamera, można użyć wzoru: moc (W) = napięcie (V) x prąd (A). Przekształcając wzór, otrzymujemy prąd = moc / napięcie, co daje 15 W / 12 V = 1,25 A na kamerę. W przypadku czterech kamer, potrzebujemy 4 x 1,25 A = 5 A. Zasilacz 12 V DC/ 6 A dostarcza wystarczającą moc, ponieważ jego wydajność przewyższa wymogi energetyczne kamer. Dobrą praktyką jest zawsze wybierać zasilacz o nieco większej wydajności, aby zapewnić stabilną pracę urządzeń. Takie zasilacze są powszechnie stosowane w systemach monitoringu, gdzie wiele urządzeń wymaga zasilania z jednego źródła. Wybór odpowiedniego zasilacza jest kluczowy dla niezawodności i bezpieczeństwa systemu.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Uchyb regulacji wynoszący 0 umożliwia działanie regulatora typu

A. ciągłym typu PD
B. ciągłym typu PI
C. nieciągłym, dwupołożeniowym
D. nieciągłym, trójpołożeniowym
Odpowiedź "ciągłym typu PI" jest prawidłowa, ponieważ regulator PI (proporcjonalno-całkujący) jest idealnym rozwiązaniem dla systemów, w których uchyb regulacji (czyli różnica między wartością zadaną a wartością rzeczywistą) równy 0 wskazuje na stabilność układu. Regulator PI działa poprzez wykorzystanie składowej proporcjonalnej oraz całkującej, co pozwala na efektywne eliminowanie uchybu ustalonego w systemach zamkniętej pętli. Przykładem zastosowania regulatorów PI może być kontrola temperatury w piecach przemysłowych, gdzie precyzyjne utrzymywanie zadanej temperatury jest kluczowe dla jakości produkcji. Regulatory PI są stosowane w branżach takich jak automatyka przemysłowa, procesy chemiczne oraz w systemach HVAC. Dzięki swojej prostocie i efektywności, są szeroko stosowane w praktyce inżynieryjnej, zgodnie z najlepszymi praktykami branżowymi, w tym normami IEC 61131 dla systemów automatyki. Warto również zauważyć, że regulacja PI jest często preferowana w układach o małej dynamice, gdzie szybkość reakcji nie jest kluczowym czynnikiem.

Pytanie 12

Jakiego interfejsu, z wymienionych, nie posiada widoczna na rysunku karta graficzna?

Ilustracja do pytania
A. Composit Video
B. DVI
C. D-SUB
D. S-Video
Każda z pozostałych odpowiedzi, czyli D-SUB, Composite Video oraz S-Video, odnosi się do interfejsów, które są obecne na analizowanej karcie graficznej, a ich zrozumienie jest kluczowe dla prawidłowego korzystania z technologii wideo. Interfejs D-SUB, znany również jako VGA, jest jednym z najstarszych standardów przesyłania sygnału wideo, wykorzystywany głównie w monitorach CRT oraz w niektórych nowoczesnych projektorach. Choć jego popularność spada na rzecz nowych technologii, wciąż jest obecny w wielu zastosowaniach. Composite Video to standard przesyłania sygnału wideo w formie analogowej, który łączy wszystkie informacje wideo w jednym sygnale. Jego zastosowanie jest szerokie, lecz jakość obrazu jest znacznie gorsza w porównaniu z sygnałami cyfrowymi. S-Video to nieco nowocześniejszy standard, który dzieli sygnał na dwa osobne kanały, co pozwala na uzyskanie lepszej jakości obrazu niż w przypadku Composite Video, ale wciąż nie dorównuje jakości sygnałom cyfrowym, takim jak DVI. Typowym błędem myślowym przy wyborze odpowiedzi jest mylenie analogowych i cyfrowych standardów przesyłania sygnału, co może prowadzić do niewłaściwego oszacowania możliwości sprzętowych karty graficznej. Zrozumienie różnic między tymi interfejsami i ich zastosowaniami w praktyce jest kluczowe dla każdego, kto chce efektywnie korzystać z technologii wizualnych.

Pytanie 13

Element, którego napięcie na wyjściu jest uzależnione od porównania dwóch napięć na wejściu, to

A. sumator.
B. układ całkujący.
C. komparator.
D. układ różniczkujący.
Komparator to kluczowy element w elektronice analogowej, który pozwala na porównywanie dwóch napięć wejściowych. Działa on na zasadzie analizy, które z napięć jest wyższe, co prowadzi do zmian stanu wyjściowego. W praktyce komparatory są szeroko stosowane w systemach automatyki, takich jak kontrola poziomu cieczy, gdzie mogą szybko zareagować na zmiany napięcia sygnalizujące zmiany w poziomie cieczy. Dodatkowo komparatory są fundamentem w konstrukcji układów takich jak odbiorniki sygnałów, przetworniki analogowo-cyfrowe oraz w systemach zabezpieczeń. Warto zwrócić uwagę, że komparator działa niezależnie od wartości napięć, koncentrując się jedynie na relacji między nimi, co czyni go niezwykle wszechstronnym narzędziem w inżynierii. W kontekście standardów, komparatory są często używane w układach zgodnych z normami przemysłowymi, co zapewnia ich niezawodność i efektywność w różnych aplikacjach.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Topologia sieci, w której wszystkie komponenty są podłączone do jednego głównego węzła (serwera) przez hub, nazywa się

A. pierścienia
B. magistrali
C. drzewa
D. gwiazdy
Topologia gwiazdy jest modelowym rozwiązaniem w projektowaniu sieci komputerowych, w której wszystkie urządzenia (węzły) są bezpośrednio połączone z centralnym punktem, najczęściej hubem lub przełącznikiem. To podejście zapewnia wysoką niezawodność, ponieważ awaria jednego urządzenia nie wpływa na działanie pozostałych. W przypadku topologii gwiazdy, łatwość dodawania lub usuwania węzłów sprawia, że jest to popularny wybór w wielu małych i średnich przedsiębiorstwach. Przykładem zastosowania topologii gwiazdy może być biuro, w którym wszystkie komputery pracowników są podłączone do centralnego switcha, co umożliwia efektywne zarządzanie siecią i monitorowanie ruchu. Warto również zaznaczyć, że ta topologia jest zgodna z normami IEEE 802.3 i 802.11, które reguluje standardy Ethernet i WLAN. Dobrą praktyką w implementacji topologii gwiazdy jest zapewnienie odpowiedniej jakości kabli oraz urządzeń sieciowych, aby zapewnić optymalne działanie całej infrastruktury.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Układ do pomiaru rezystancji metoda techniczną z poprawnie mierzonym prądem jest przedstawiony na rysunku

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Odpowiedź C jest prawidłowa, ponieważ poprawna metoda pomiaru rezystancji wymaga odpowiedniego podłączenia instrumentów pomiarowych. Woltomierz musi być podłączony równolegle do mierzonego rezystora, co pozwala na zmierzenie napięcia na tym rezystorze, a amperomierz musi być włączony szeregowo z rezystorem, aby zmierzyć przepływający przez niego prąd. Tylko w takim układzie możemy zastosować prawo Ohma, które stanowi podstawę dla obliczeń rezystancji (R = U/I, gdzie U to napięcie, a I to prąd). W praktyce, takie podejście jest szeroko stosowane w laboratoriach oraz w przemyśle, gdzie precyzyjny pomiar rezystancji jest kluczowy, na przykład w testowaniu komponentów elektronicznych, w układach zasilających czy w diagnostyce urządzeń. Warto również pamiętać, że zgodnie z normami IEC 61010, należy przestrzegać zasad bezpieczeństwa podczas pomiarów, co dodatkowo podkreśla znaczenie właściwego podłączenia urządzeń pomiarowych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Transformator, którego uzwojenie pierwotne składa się z 500 zwojów, jest zasilany z sieci o napięciu 230 V. Urządzenie to ma dwa uzwojenia wtórne. Ile zwojów musi mieć każde z tych uzwojeń, aby osiągnąć napięcie 2 x 23 V na zaciskach wtórnych transformatora?

A. 50
B. 100
C. 25
D. 250
Wybór innej liczby zwojów w uzwojeniach wtórnych jest błędny, ponieważ opiera się na niepoprawnym zrozumieniu zasady działania transformatora. Wiele osób mogłoby pomyśleć, że zmniejszenie napięcia na uzwojeniu wtórnym można osiągnąć poprzez różne kombinacje zwojów, jednak kluczowym aspektem jest to, że liczba zwojów jest ściśle związana z proporcjami napięcia. Na przykład, wybierając 250 lub 100 zwojów, można błędnie założyć, że uzyskane napięcia będą odpowiednie, jednak obliczenia pokazują, że przy takich wartościach uzwojenie wtórne nie dostarczy wymaganych 23 V. Typowy błąd to mylenie liczby zwojów z napięciem, co prowadzi do nieporozumień w obliczeniach. Ponadto, liczby takie jak 25 i 250 mogą wydawać się sensowne, ale nie uwzględniają proporcji między napięciem a zwojami, co jest kluczowe w pracy transformatora. W praktyce, podczas projektowania urządzeń elektrycznych, takie błędy mogą prowadzić do uszkodzenia sprzętu lub nieefektywności w działaniu systemu. Właściwe zrozumienie tej proporcjonalności jest niezbędne dla inżynierów i techników pracujących w dziedzinie elektryki i elektroniki, aby unikać problemów z bezpieczeństwem i wydajnością w projektowanych układach.

Pytanie 21

W urządzeniach do zdalnego sterowania wykorzystuje się diody do przesyłania danych

A. RGB
B. IR
C. mikrofalowe
D. Zenera
Dioda podczerwieni to mega ważny element w zdalnym sterowaniu. Działa tak, że emituje promieniowanie, którego ludzkie oko nie widzi, ale urządzenia potrafią to wykryć. Można to zobaczyć w pilotach do telewizorów czy audio, gdzie dioda IR wysyła sygnały w postaci impulsów świetlnych. Dzięki temu można wygodnie sterować różnymi sprzętami. Są różne standardy, jak RC5 czy NEC, które mówią, jak kodować te sygnały. Dobrze to widać na przykładzie pilota telewizyjnego, który sprawia, że korzystanie z telewizora jest o wiele prostsze i przyjemniejsze.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Układ do pomiaru, który umożliwia dokładne ustalanie małych i bardzo małych rezystancji, to mostek

A. Wheatstone’a
B. Thomsona
C. Wiena
D. Maxwella
Mostek Maxwella jest stosowany głównie do pomiarów indukcyjności, a jego zasada działania opiera się na równoważeniu impedancji w obwodzie prądu zmiennego. Stąd wynika, że nie nadaje się on do dokładnego pomiaru rezystancji, zwłaszcza tych bardzo małych. Mostek Wiena, z kolei, jest układem używanym głównie do pomiaru impedancji w obwodach prądu zmiennego, co sprawia, że jego zastosowanie do pomiarów rezystancji jest ograniczone i mniej precyzyjne niż w przypadku mostka Thomsona. Mostek Wheatstone’a, znany z prostoty i stosunkowo dobrej dokładności, jest odpowiedni do pomiaru rezystancji, ale jego skuteczność spada przy niskich wartościach rezystancji ze względu na wpływ szumów i błędów pomiarowych. W praktyce, błędne wybory pomiarowe wynikają często z nieznajomości specyfikacji i ograniczeń poszczególnych mostków, co prowadzi do niepoprawnych wniosków na temat ich zastosowania. Zrozumienie tych różnic jest kluczowe dla prawidłowego doboru narzędzi w pracach badawczych oraz przemysłowych.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakiego modułu dotyczy usterka w telewizorze, jeśli nie odbiera on sygnału z zewnętrznej anteny w transmisji naziemnej, a jednocześnie prawidłowo wyświetla obraz z podłączonego tunera satelitarnego przez przewód EUROSCART oraz z kamery VHS-C za pomocą przewodu S-Video?

A. Selektora i separatora
B. Wielkiej i pośredniej częstotliwości
C. Synchronizacji i odchylania
D. Wzmacniacza wizji
Odpowiedź "Wielkiej i pośredniej częstotliwości" jest poprawna, ponieważ to właśnie te moduły odpowiadają za odbiór sygnałów z anteny telewizyjnej. Moduł wielkiej częstotliwości (VHF/UHF) odbiera sygnały z anteny, a moduł pośredniej częstotliwości (IF) przetwarza te sygnały na format, który może być dalej przetwarzany przez telewizor. Kiedy telewizor nie odbiera sygnału z anteny, ale potrafi odtwarzać obraz z innych źródeł, jak tuner satelitarny czy kamera VHS-C, wskazuje to na problem z obiegiem sygnału w przedwzmacniaczu lub innym elemencie toru sygnałowego odbiornika. W praktyce, w takich sytuacjach, często zaleca się sprawdzenie zarówno anteny, jak i stanu technicznego modułów wielkiej i pośredniej częstotliwości, co jest zgodne z metodami diagnostyki stosowanymi w serwisach elektronicznych.

Pytanie 27

Serwisant otrzymał zgłoszenie od użytkownika tunera satelitarnego, który nie odbiera sygnału tylko na programach z polaryzacją V. Sygnał z anteny jest dostarczany do gniazda poprzez multiswitch. Jaką usterkę można podejrzewać?

A. Brak zasilania multiswitcha
B. Zniszczone gniazdo antenowe
C. Usterka w głowicy tunera
D. Uszkodzony multiswitch
Uszkodzony multiswitch to prawdopodobna przyczyna braku sygnału wyłącznie na programach z polaryzacją V. Multiswitch jest urządzeniem, które rozdziela sygnały z anteny satelitarnej na wiele wyjść, umożliwiając odbiór na różnych dekoderach. Każda polaryzacja (H i V) wymaga poprawnego działania multiswitcha, a jego uszkodzenie może prowadzić do sytuacji, w której jedna z polaryzacji nie jest właściwie przesyłana. W praktyce, przy uszkodzeniu multiswitcha, dekoder może odbierać sygnał z polaryzacji H, ale całkowicie tracić sygnał z polaryzacji V. Warto również sprawdzić, czy zasilanie multiswitcha jest prawidłowe i czy nie występują fizyczne uszkodzenia. Zgodnie z dobrymi praktykami serwisowymi, zaleca się regularne testowanie i konserwację sprzętu, aby uniknąć takich problemów. Ponadto, na etapie diagnostyki dobrze jest używać odpowiednich narzędzi, takich jak mierniki sygnału, aby dokładnie określić, gdzie leży problem z sygnałem.

Pytanie 28

Schemat blokowy którego układu pokazano na rysunku?

Ilustracja do pytania
A. Generatora sterowanego napięciem VCO.
B. Pętli synchronizacji fazy PLL.
C. Filtru aktywnego.
D. Generatora sterowanego prądem CCO.
Wydaje mi się, że wybrałeś niewłaściwą odpowiedź, bo nie do końca zrozumiałeś, jak działają układy synchronizacji. Generatory CCO i VCO mają swoje miejsca, ale nie mają tej samej budowy co pętla PLL. CCO opiera się na sterowaniu częstotliwości przez prąd, a PLL działa na zasadzie porównywania fazy, co jest zupełnie innym mechanizmem. VCO zmienia częstotliwość pod wpływem napięcia, ale brakuje mu detektora fazy, przez co nie może właściwie synchronizować faz. Mieszanie tych pojęć może prowadzić do błędów w projektach elektronicznych. W praktyce, nieznajomość różnic między tymi układami może skutkować problemami z implementacją i działaniem systemów, które wymagają precyzyjnego synchronizowania sygnałów. Lepiej by było, gdybyś przestudiował te definicje i ich funkcje, bo to pomoże ci zrozumieć, jak je wykorzystać w elektronice.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Na rysunku przedstawiono schemat multiwibratora

Ilustracja do pytania
A. monostabilnego.
B. bistabilnego.
C. astabilnego.
D. trój stabilnego.
Schemat, który przedstawia multiwibrator astabilny, jest układem o fundamentalnym znaczeniu w elektronice cyfrowej. Generuje on sygnał prostokątny, który jest istotny w różnych zastosowaniach, takich jak generatory zegarowe, modyfikatory sygnałów i układy synchronizacyjne. Multiwibrator astabilny nie wymaga zewnętrznego sygnału zegarowego do działania, ponieważ automatycznie przechodzi pomiędzy dwoma stanami niestabilnymi, co pozwala na ciągłe generowanie impulsów. Przykładem zastosowania multiwibratora astabilnego jest generowanie sygnałów dla układów czasowych w aplikacjach takich jak migające diody LED, gdzie kontrola czasowa jest kluczowa. W kontekście standardów branżowych, multiwibratory astabilne są szeroko stosowane w układach TTL (Transistor-Transistor Logic) oraz CMOS (Complementary Metal-Oxide-Semiconductor), co potwierdza ich znaczenie i wszechstronność w projektowaniu układów elektronicznych.

Pytanie 32

Uziemiająca opaska na nadgarstku osoby zajmującej się montażem lub wymianą układów scalonych chroni przed

A. poparzeniem spoiwem o wysokiej temperaturze
B. uszkodzeniem narzędzi montażowych
C. porażeniem przez wysokie napięcie
D. uszkodzeniem układów scalonych
Opaska uziemiająca na przegubie ręki pracownika montującego lub wymieniającego układy scalone pełni kluczową rolę w ochronie wrażliwych komponentów elektronicznych przed uszkodzeniem. Uziemienie pozwala na odprowadzenie ładunków statycznych, które mogą gromadzić się na ciele pracownika, co jest szczególnie istotne w kontekście pracy z układami scalonymi. Stanowią one elementy o małych wymiarach i dużej wrażliwości na zmiany potencjału elektrycznego. Niekontrolowane wyładowania elektrostatyczne (ESD) mogą prowadzić do uszkodzenia delikatnych struktur wewnętrznych układów, co często skutkuje ich całkowitą awarią. W praktyce, stosowanie opasek uziemiających jest szeroko rekomendowane przez organizacje standaryzacyjne, takie jak IPC (Institute for Printed Circuits) oraz ANSI/ESD S20.20, które definiują najlepsze praktyki w zakresie ochrony ESD. Regularne używanie takich rozwiązań w środowiskach montażowych oraz serwisowych jest niezbędne dla zapewnienia długotrwałej funkcjonalności i niezawodności układów scalonych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Do skonstruowania głośnika dynamicznego należy zastosować magnes wykonany z

A. ferromagnetyka miękkiego
B. materiału paramagnetycznego
C. ferromagnetyka twardego
D. materiału diamagnetycznego
Wybór magnesów w budowie głośników dynamicznych ma kluczowe znaczenie dla ich funkcjonowania. Materiały paramagnetyczne, ferromagnetyki twarde i diamagnetyki nie są odpowiednie do zastosowań w głośnikach dynamicznych z kilku powodów. Materiały paramagnetyczne, takie jak aluminium czy platyna, mają bardzo słabe właściwości magnetyczne i nie są w stanie stworzyć wystarczająco silnego pola magnetycznego, co skutkuje niewystarczającą mocą akustyczną i niską wydajnością. W zastosowaniach audio najważniejszymi cechami magnesu są jego siła i efektywność w oddziaływaniu na cewkę głośnika. Ferromagnetyki twarde, takie jak stal, mają z kolei wysoką retencję magnetyczną, co oznacza, że po namagnesowaniu pozostają magnesami przez długi czas. To utrudnia ich użycie w głośnikach, gdzie konieczne są szybkie zmiany pola magnetycznego. Ponadto, materiały diamagnetyczne, jak miedź czy bizmut, są w stanie generować pole magnetyczne przeciwnie do zewnętrznego, co również nie wspiera efektywności głośnika. W praktyce, wybór niewłaściwego materiału może prowadzić do zniekształceń dźwięku, obniżenia jakości odtwarzania oraz ograniczenia pasma przenoszenia, co jest sprzeczne z zasadami projektowania głośników. Dlatego istotne jest, aby projektanci głośników kierowali się sprawdzonymi praktykami branżowymi oraz korzystali z ferromagnetyków miękkich, co pozwala na uzyskanie wysokiej jakości dźwięku i lepszej dynamiki.

Pytanie 37

Na rysunku przedstawiono podstawowy schemat blokowy układu automatycznej regulacji. Znakiem X oznaczono

Ilustracja do pytania
A. obiekt regulacji.
B. wzmacniacz w. cz.
C. układ korekcyjny.
D. obwód wejściowy.
Na schemacie blokowym układu automatycznej regulacji znak X rzeczywiście oznacza obiekt regulacji. Obiekt regulacji to kluczowy element w systemach automatyki, odpowiadający za realizację procesu, który ma być kontrolowany. W praktyce może to być na przykład silnik elektryczny, piec, układ hydrauliczny, czy jakikolwiek inny system, którego parametry chcemy utrzymać w określonym zakresie. Wprowadzenie zakłóceń, które definiowane są jako z(t), pozwala na zrozumienie, jak układ reaguje na zmiany w otoczeniu oraz jak skutecznie wykonuje swoją funkcję regulacyjną. Wyjście obiektu, y(t), to wartość, która jest mierzona i na podstawie której podejmowane są decyzje w układzie regulacji. Zrozumienie roli obiektu regulacji jest fundamentalne w projektowaniu i analizie systemów automatyki, co jest potwierdzone w normach ISO 9001 dotyczących jakości i efektywności procesów. Przykładowo, w przemysłowej automatyce obiekty regulacji są często analizowane przy użyciu metod PID, które pozwalają na precyzyjne dostosowanie odpowiedzi systemu do zmian w zakłóceniach.

Pytanie 38

Jak wygląda poziom sygnału w.cz. po przejściu przez tłumik o tłumieniu -20 dB, jeżeli poziom sygnału na wejściu wynosi 40 dBmV?

A. 60 dB
B. 20 dBmV
C. 20 dB
D. 70 dBmV
W przypadku odpowiedzi 60 dBmV występuje podstawowy błąd w interpretacji tłumienia sygnału. Tłumik nie wzmacnia sygnału, a wręcz przeciwnie, osłabia jego poziom. Przyjęcie, że po zastosowaniu tłumika poziom sygnału zwiększa się, jest fundamentalnym nieporozumieniem. Dodatkowo, wybór 20 dB jako odpowiedzi opiera się na mylnym założeniu, że dB można traktować jako jednostkę absolutną, podczas gdy w rzeczywistości jest to jednostka logarytmiczna odnosząca się do stosunku mocy. Rezygnacja z przeliczenia jednostek i właściwego zrozumienia, że dB nie jest bezpośrednio porównywalne do dBmV, prowadzi do dalszych nieprawidłowości w ocenie poziomu sygnału. Odpowiedź 60 dB również jest błędna, ponieważ nie odnosi się do zmierzonego poziomu sygnału, lecz do jednostki tłumienia. Kluczowe jest rozróżnienie między różnymi jednostkami miary oraz ich kontekstem w telekomunikacji. Podstawowym błędem myślowym jest zatem brak uwzględnienia fundamentalnych zasad dotyczących tłumienia sygnału, co może mieć poważne konsekwencje w praktycznych zastosowaniach, takich jak projektowanie systemów transmisji czy określanie parametrów sygnału w sieciach telekomunikacyjnych.

Pytanie 39

Do detektorów gazów nie wlicza się detektor

A. dymu i ciepła
B. gazów usypiających
C. gaz ziemny
D. tlenku węgla
Czujki gazów są urządzeniami zaprojektowanymi do wykrywania obecności różnych gazów, które mogą stanowić zagrożenie dla zdrowia lub życia ludzi. Wśród typowych czujek gazów wymienia się czujki tlenku węgla, które ostrzegają przed jego niebezpiecznym stężeniem, oraz czujki gazu ziemnego (metanu), które informują o jego obecności w powietrzu. Czujki gazów usypiających również pełnią ważną rolę w zapewnieniu bezpieczeństwa, zwłaszcza w pomieszczeniach, gdzie stosowane są substancje mogące powodować utratę świadomości. W przeciwieństwie do tych urządzeń, czujki dymu i ciepła są przeznaczone do detekcji pożaru, a nie gazów. Dzięki odpowiednim normom, takim jak EN 14604 dla czujek dymu, oraz EN 50291 dla czujek tlenku węgla, można zapewnić skuteczność oraz bezpieczeństwo tych urządzeń w codziennym użytkowaniu. Dlatego kluczowe jest stosowanie odpowiednich czujek, zgodnych z ich przeznaczeniem w celu minimalizacji ryzyka wystąpienia niebezpiecznych sytuacji w domach i miejscach pracy.

Pytanie 40

Jakie są komponenty sprzętowe sieci komputerowych?

A. sterowniki urządzeń
B. protokoły
C. oprogramowanie komunikacyjne
D. urządzenia dostępu
Urządzenia dostępu stanowią kluczowy element infrastruktury sieci komputerowych, ponieważ umożliwiają użytkownikom oraz urządzeniom podłączenie się do sieci. Do najpopularniejszych urządzeń dostępu należą modemy, routery oraz punkty dostępu (access points). Modem łączy sieć domową z Internetem, router rozdziela połączenie internetowe na wiele urządzeń, a punkty dostępu rozszerzają zasięg sieci bezprzewodowej. W kontekście standardów, przykładami mogą być urządzenia zgodne z protokołami IEEE 802.11, które definiują normy dla sieci WLAN, oraz urządzenia obsługujące IPv4 i IPv6, które są niezbędne do komunikacji w Internecie. W praktyce, wybór odpowiednich urządzeń dostępu wpływa na efektywność i bezpieczeństwo sieci, co czyni je fundamentem każdej infrastruktury komputerowej.