Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 9 grudnia 2025 14:54
  • Data zakończenia: 9 grudnia 2025 15:14

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Rysunek przedstawia mury i ściany

Ilustracja do pytania
A. wyburzone.
B. istniejące.
C. przeznaczone do wyburzenia.
D. projektowane.
Odpowiedź "przeznaczone do wyburzenia" jest prawidłowa, ponieważ na rysunku znajdują się krzyżyki na linii, co zgodnie z normą PN-70/B-01025 "Oznaczenia graficzne na rysunkach architektoniczno-budowlanych" jednoznacznie wskazuje na elementy, które mają być usunięte. Tego typu oznaczenia są kluczowe w procesie projektowania i realizacji budowy, ponieważ pozwalają na odpowiednie planowanie prac budowlanych i zabezpieczenie pozostałych elementów konstrukcyjnych. Zastosowanie takich standardów ułatwia komunikację pomiędzy projektantami, wykonawcami a inwestorami. Przykładowo, podczas prac remontowych w obiektach zabytkowych, precyzyjne oznaczenie elementów do usunięcia jest niezbędne, aby uniknąć uszkodzeń cennych struktur. Umiejętność prawidłowego interpretowania rysunków architektonicznych jest istotna dla każdego profesjonalisty w branży budowlanej, co bezpośrednio wpływa na efektywność całego procesu budowlanego.

Pytanie 2

Jaką ilość mieszanki betonowej wykorzystano do stworzenia 3 stóp fundamentowych o rozmiarach 1,4 x 1,4 m i wysokości 0,5 m, jeśli norma zużycia mieszanki betonowej do uzyskania 1 m3 betonu wynosi 1,015 m3?

A. 2,940 m3
B. 0,995 m3
C. 5,880 m3
D. 2,984 m3
W przypadku obliczeń dotyczących ilości mieszanki betonowej, kluczowe jest zrozumienie, że błędne wartości mogą wynikać z nieprawidłowej interpretacji objętości betonu i norm zużycia. Pomijanie normatywów może prowadzić do niedoszacowania potrzebnych materiałów, co jest często spotykane w praktyce budowlanej. Przyjmując, że objętości fundamentów są obliczane poprawnie, nie uwzględnienie współczynnika 1,015 m3 do wykonania 1 m3 betonu, może skutkować nieodpowiednią ilością mieszanki. Odpowiedzi takie jak 2,940 m3 i 0,995 m3 wynikają z mylnych założeń o całkowitej objętości lub pominięcia normy, co prowadzi do niewłaściwych kalkulacji. W budownictwie, precyzyjne obliczenia są istotne, ponieważ każdy błąd może wpłynąć na strukturę, bezpieczeństwo i stabilność całego projektu. Dlatego stosowanie norm zużycia odgrywa kluczową rolę w planowaniu i wykonawstwie budowli. Specjalistyczne zalecenia i standardy, takie jak te zawarte w dokumentach normatywnych i branżowych, powinny być zawsze przestrzegane, aby uniknąć problemów związanych z jakością i kosztami materiałów budowlanych.

Pytanie 3

Jaką wytrzymałość ma klasa zaprawy na

A. ściśnięcie
B. przesuwanie
C. rozciąganie
D. ugięcie
Klasa zaprawy rzeczywiście odnosi się do jej wytrzymałości na ściskanie. Wytrzymałość na ściskanie jest kluczowym parametrem, który określa zdolność materiału do przenoszenia obciążeń działających w kierunku osiowym, co jest szczególnie istotne w budownictwie i inżynierii lądowej. W praktyce, zaprawy murarskie są stosowane do łączenia elementów budowlanych, takich jak cegły czy bloczki, a ich wytrzymałość na ściskanie wpływa na trwałość całej konstrukcji. Zgodnie z normami PN-EN 1015-11, wytrzymałość na ściskanie zaprawy może być klasyfikowana według różnych klas, co pozwala inżynierom na dobór odpowiedniego materiału do danego zastosowania, np. w budynkach mieszkalnych czy obiektach użyteczności publicznej. Wytrzymałość na ściskanie zaprawy jest zatem kluczowym wskaźnikiem jakości, którego pomiar przeprowadza się w warunkach laboratoryjnych, a jej znajomość pozwala na optymalizację kosztów oraz zapewnienie bezpieczeństwa konstrukcji.

Pytanie 4

Na rysunku przedstawiono

Ilustracja do pytania
A. widok elewacji budynku.
B. przekrój pionowy budynku.
C. przekrój poprzeczny.
D. widok z góry.
Widok elewacji budynku to obraz przedstawiający zewnętrzną stronę ściany budynku z określonego punktu widzenia. W kontekście architektury, elewacja jest kluczowym elementem projektowania, gdyż to ona w pierwszej kolejności wpływa na postrzeganie budynku przez użytkowników oraz przechodniów. Odpowiednia prezentacja elewacji jest istotna nie tylko z perspektywy estetyki, ale również funkcjonalności. Przykładowo, elewacje mogą być projektowane z uwzględnieniem efektywności energetycznej, co jest istotne w kontekście zrównoważonego budownictwa. Normy budowlane, takie jak te zawarte w Ustawie Prawo budowlane, podkreślają znaczenie odpowiedniego projektowania elewacji, aby budynki były zarówno atrakcyjne, jak i zgodne z zasadami bezpieczeństwa oraz ochrony środowiska. W praktyce, architekci często przygotowują wizualizacje elewacji, aby dokładnie oddać koncepcję projektową jeszcze przed rozpoczęciem budowy, co pozwala na wczesne zauważenie potencjalnych problemów z designem i funkcjonalnością.

Pytanie 5

Jaką grubość powinny mieć spoiny wsporcze (poziome) w tradycyjnych murach wykonanych z cegły ceramicznej?

A. 3 - 5 mm
B. 10 - 17 mm
C. 15 - 20 mm
D. 6 - 9 mm
Spoiny wsporne w murach tradycyjnych z cegły ceramicznej powinny mieć grubość od 10 do 17 mm, co wynika z różnych standardów budowlanych oraz praktycznych aspektów konstrukcyjnych. Grubość spoiny ma kluczowe znaczenie dla właściwego łączenia elementów murarskich, co wpływa na stabilność i wytrzymałość całej konstrukcji. Między innymi, każda spoiny powinny być wystarczająco szerokie, aby umożliwić odpowiednią aplikację zaprawy, co z kolei zapewnia solidne połączenie pomiędzy cegłami. W praktyce, zbyt wąskie spoiny mogą prowadzić do nieprawidłowego wypełnienia, co skutkuje słabszą jakością murów oraz zwiększoną podatnością na uszkodzenia. Standardy branżowe, takie jak PN-EN 1996-1-1 dotyczący projektowania murów, wskazują, że optymalna grubość spoiny wspornych zapewnia nie tylko funkcjonalność, ale także estetykę, co jest istotne w kontekście końcowego wykończenia budynków. W związku z tym, należy przestrzegać zalecanych wartości, aby uzyskać odpowiednią jakość i trwałość konstrukcji.

Pytanie 6

W jakiej lokalizacji należy umieścić izolację cieplną przegrody w budynku mieszkalnym?

A. po każdej stronie przegrody
B. na tej stronie przegrody, gdzie przeważa wyższa temperatura
C. na tej stronie przegrody, gdzie przeważa niższa temperatura
D. na obydwu stronach przegrody
Umieszczanie izolacji cieplnej przegrody budowlanej po stronie, gdzie panuje wyższa temperatura, jest podejściem, które nie tylko łamie zasady fizyki, ale także prowadzi do poważnych konsekwencji w kontekście efektywności energetycznej budynku. Izolacja ma na celu ograniczenie transferu ciepła, a umieszczanie jej w miejscu, gdzie temperatura jest wyższa, po prostu nie spełnia tego zadania. Tego rodzaju podejście wynika z nieporozumienia dotyczącego dynamiki cieplnej. Mylne jest przekonanie, że izolacja powinna być umieszczona tam, gdzie wydaje się, że ciepło jest „przechwytywane”; w rzeczywistości ciepło zawsze przepływa z obszaru o wyższej temperaturze do obszaru o niższej temperaturze. Umieszczając izolację w niewłaściwym miejscu, ryzykujemy nie tylko straty ciepła, ale także wzrost ryzyka kondensacji pary wodnej wewnątrz przegrody, co może prowadzić do powstawania pleśni oraz uszkodzeń konstrukcyjnych. Ponadto, zgodnie z normami budowlanymi, takim jak PN-EN 13370, istotne jest, aby izolacja była stosowana w sposób, który zapewnia optymalny komfort cieplny i minimalizuje zużycie energii. W rezultacie, umieszczanie izolacji w nieodpowiednich lokalizacjach, takich jak strona z wyższą temperaturą, jest nie tylko technicznie błędne, ale również ekonomicznie niekorzystne w dłuższej perspektywie.

Pytanie 7

Izolację poziomą w budynku bez piwnicy powinno się wykonać

A. pod fundamentem i na górnej powierzchni ściany fundamentowej
B. pod fundamentem i na poziomie podłogi na gruncie
C. na górnej powierzchni fundamentu i na poziomie terenu
D. na górnej powierzchni fundamentu i na górnej powierzchni ściany fundamentowej
Realizacja izolacji na poziomie ławy fundamentowej jest kluczowym elementem zapewnienia właściwej ochrony budynku przed skutkami działania wód gruntowych. Wybór niewłaściwego miejsca dla wykonania izolacji, tak jak sugeruje pierwsza odpowiedź, może prowadzić do nieefektywnej ochrony. Izolacja pod ławą fundamentową nie jest wystarczająca, aby zablokować przenikanie wilgoci, ponieważ woda może gromadzić się w innych obszarach fundamentu, co prowadzi do zjawisk takich jak podsiąkanie wody. Z kolei umiejscowienie izolacji na wysokości poziomu terenu, jak w przypadku trzeciej odpowiedzi, stwarza ryzyko, że woda opadowa lub gruntowa z łatwością przedostanie się do wnętrza budynku, powodując uszkodzenia konstrukcji i problemy z wilgocią. Odpowiedź dotycząca izolacji na wysokości podłogi na gruncie jest również błędna, ponieważ nie uwzględnia praktyczne aspekty zarządzania wodami gruntowymi w danym miejscu. Właściwe podejście powinno opierać się na zasadach hydroizolacji fundamentów, które wskazują na konieczność zabezpieczenia zarówno ławy, jak i ścian fundamentowych w celu stworzenia skutecznej bariery przed wodą. Zrozumienie tych zasad jest kluczowe dla zachowania trwałości budynku oraz bezpieczeństwa jego użytkowników.

Pytanie 8

Na ilustracji przedstawiono materiał izolacyjny przeznaczony do wykonywania izolacji

Ilustracja do pytania
A. przeciwwodnej i przeciwwilgociowej.
B. przeciwwilgociowej i paroprzepuszczalnej.
C. termicznej i akustycznej.
D. akustycznej i przeciwwodnej.
Na ilustracji przedstawiono materiał izolacyjny, który najprawdopodobniej jest wełną mineralną. Wełna mineralna jest materiałem o znakomitych właściwościach termicznych, co czyni ją idealnym wyborem do izolacji cieplnej budynków. Dzięki swojej strukturze, skutecznie ogranicza straty ciepła, co wpływa na poprawę efektywności energetycznej budynków, a tym samym na obniżenie kosztów ogrzewania. Dodatkowo, wełna mineralna posiada również właściwości akustyczne, co jest istotne w kontekście wytłumiania dźwięków, zarówno wewnątrz pomieszczeń, jak i między nimi. Tego typu materiały są często stosowane w budownictwie zgodnie z normami PN-EN 13162 i PN-EN 13964, które określają wymagania dotyczące materiałów izolacyjnych. Przykłady zastosowania to izolacja ścian, dachów, oraz stropów, co wpływa na komfort użytkowników oraz trwałość budynku.

Pytanie 9

Która zaprawa charakteryzuje się najlepszymi właściwościami plastycznymi?

A. Wapienna
B. Gipsowa
C. Cementowo-gliniana
D. Cementowo-wapienna
Wybór gipsowej zaprawy jako materiału budowlanego może wydawać się atrakcyjny ze względu na jej szybkie wiązanie i łatwość aplikacji, jednak jej właściwości plastyczne są znacznie gorsze w porównaniu do zaprawy wapiennej. Gips ma tendencję do szybkiego twardnienia, co ogranicza czas pracy z materiałem i sprawia, że jest mniej elastyczny. Z tego powodu, w przypadku ruchów konstrukcji, gipsowe zaprawy mogą pękać, co prowadzi do uszkodzeń. Z kolei zaprawy cementowo-wapienne, choć oferują lepsze właściwości mechaniczne, również nie osiągają poziomu plastyczności zapraw wapiennych. Cement może tworzyć bardzo twarde połączenia, ale jego sztywność jest wadą, gdyż nie pozwala na elastyczne dostosowanie się do zmian w strukturze. Ponadto, zaprawy cementowo-gliniane, mimo że mają swoje zastosowanie, nie dorównują plastycznością tradycyjnym zaprawom wapiennym. Typowe błędy myślowe polegają na myleniu wytrzymałości z plastycznością – wiele osób przyjmuje, że silniejsze materiały będą lepsze w każdej sytuacji, co nie zawsze jest prawdą. Właściwy wybór zaprawy powinien być uzależniony od specyficznych warunków budowy, a nie ogólnych założeń dotyczących materiałów. Dlatego, aby osiągnąć najlepsze rezultaty w budownictwie, kluczowe jest zrozumienie właściwości różnych zapraw oraz ich praktycznego zastosowania.

Pytanie 10

Tynk klasy 0, znany jako tynk rapowany, jest zaliczany do tynków

A. dwuwarstwowych
B. jednowarstwowych
C. trójwarstwowych
D. cienkowarstwowych
Wybór tynków dwuwarstwowych, cienkowarstwowych lub trójwarstwowych jako odpowiedzi na pytanie o tynk rapowany mógłby wynikać z nieporozumienia co do ich charakterystyki oraz zastosowania. Tynki dwuwarstwowe składają się z dwóch oddzielnych warstw, co często jest stosowane w bardziej wymagających aplikacjach, gdzie wymagana jest większa stabilność i ochrona przed uszkodzeniami. Przykładowo, tynki tego typu mogą być stosowane na powierzchniach, które muszą wytrzymać podwyższone obciążenia mechaniczne. Z kolei tynki cienkowarstwowe są aplikowane w bardzo cienkiej warstwie, co może być mylące, ponieważ ich technologia różni się znacznie od tynków jednowarstwowych. Tynki trójwarstwowe, które obejmują podłoże, warstwę izolacyjną i warstwę wierzchnią, są używane w bardziej skomplikowanych systemach ociepleń, gdzie kluczowe jest połączenie kilku funkcji, takich jak termika, akustyka, a także estetyka. Typowym błędem w rozumieniu tych kategorii jest mylenie ich w kontekście prostej aplikacji tynków jednowarstwowych, co prowadzi do nadmiernej komplikacji procesu oraz zwiększenia kosztów. Znajomość różnic pomiędzy tymi kategoriami i ich zastosowaniem jest kluczowa dla efektywnego planowania i realizacji projektów budowlanych.

Pytanie 11

Na podstawie fragmentu instrukcji producenta oblicz, ile palet pustaków potrzeba do wymurowania dwóch ścian wysokości 4 m, długości 8,5 m i grubości 19 cm każda.

Fragment instrukcji producenta
Wymiary pustaka250×188×220 mm
Masa pustakaok. 8,5 kg
Zużyciegrubość ściany - 25 cm22 szt/m²
grubość ściany - 19 cm17 szt./m²
Liczba pustaków na palecie120 szt.
A. 9 palet
B. 12 palet
C. 13 palet
D. 10 palet
Odpowiedź 10 palet jest poprawna, ponieważ wymagała od nas precyzyjnego obliczenia całkowitej powierzchni dwóch ścian, co stanowi kluczowy element w procesie budowlanym. Obliczając powierzchnię jednej ściany o wysokości 4 m i długości 8,5 m, otrzymujemy 34 m². Dla dwóch ścian daje to łącznie 68 m². Następnie, biorąc pod uwagę, że grubość każdej ściany wynosi 19 cm, musimy uwzględnić odpowiednią ilość pustaków, które potrzebujemy na każdy metr kwadratowy. Przyjmując standardową wartość zużycia pustaków, powinniśmy obliczyć całkowitą liczbę pustaków potrzebnych do wymurowania ścian. Po podzieleniu tej liczby przez ilość pustaków na palecie (zwykle około 6-7 pustaków na paletę), otrzymujemy wynik około 9,63 palety, który zaokrąglamy do 10. Takie podejście zgodne jest z praktykami branżowymi, które podkreślają znaczenie precyzyjnych obliczeń w planowaniu materiałów budowlanych, co pozwala uniknąć niedoborów i opóźnień w realizacji projektu budowlanego.

Pytanie 12

Przed nałożeniem tynku na stalowe belki dwuteowe należy

A. odtłuścić rozpuszczalnikiem organicznym
B. owinąć stalową siatką
C. zmyć wodą z dodatkiem mydła
D. oczyścić z rdzy metalową szczotką
Zarówno zmywanie stalowych belek wodą z dodatkiem mydła, jak i odtłuszczanie ich rozpuszczalnikami organicznymi to nieefektywne metody ochrony stali przed korozją. Zmywanie wodą z mydłem może przyczynić się do chwilowego oczyszczenia powierzchni, jednak nie eliminując zagrożenia korozją, a także nie tworzy żadnej formy ochrony, co jest kluczowe w przypadku konstrukcji stalowych. Stal w warunkach budowlanych jest narażona na różnorodne czynniki, w tym na zmiany temperatury, wilgotność oraz działanie substancji chemicznych, które mogą prowadzić do powstawania rdzy. Zastosowanie rozpuszczalników organicznych w celu odtłuszczenia nie rozwiązuje problemu korozji, a wręcz może prowadzić do usunięcia jedynie powierzchniowego zanieczyszczenia, co nie jest wystarczające w kontekście długotrwałej ochrony stali. Co więcej, metoda oczyszczania z rdzy metalową szczotką może powodować uszkodzenia powierzchni stali i prowadzić do jej osłabienia, co jest niepożądane w konstrukcjach nośnych. Niewłaściwe podejście do konserwacji i zabezpieczania stali może skutkować nie tylko obniżeniem jej trwałości, ale także poważnymi problemami w przyszłości, dlatego tak ważne jest przestrzeganie standardów budowlanych i dobrych praktyk, jakie zalecają stosowanie odpowiednich metod ochrony, takich jak owijanie stalową siatką.

Pytanie 13

Ścianę nośną w piwnicy powinno się wymurować z

A. cegieł kratówek
B. bloczków z betonu komórkowego
C. cegieł dziurawek
D. bloczków z betonu zwykłego
Wybór materiałów do budowy ścian nośnych kondygnacji piwnicznej jest kluczowy dla stabilności i bezpieczeństwa całej konstrukcji. Cegły kratówek, choć stosowane w niektórych budowach, nie mają wystarczającej nośności, aby pełnić funkcję ściany nośnej w piwnicy. Ich lekka konstrukcja może być niewystarczająca do przenoszenia obciążeń, co naraża budynek na deformacje i uszkodzenia. Cegły dziurawki, mimo że lepiej izolują termicznie, również nie są optymalnym wyborem, ponieważ ich właściwości mechaniczne nie są dostateczne dla ścian nośnych w piwnicach. Użycie bloczków z betonu komórkowego w piwnicach często prowadzi do problemów z wilgocią, ponieważ te materiały mają tendencję do wchłaniania wody, co może prowadzić do degradacji struktury. Wybierając odpowiedni materiał, należy kierować się normami budowlanymi oraz praktykami inżynieryjnymi, które zalecają stosowanie betonowych bloczków, gwarantujących nie tylko odpowiednią nośność, ale również trwałość i odporność na wilgoć. Niewłaściwy dobór materiałów może prowadzić do znacznych kosztów napraw i renowacji w przyszłości, co czyni ten wybór kluczowym z perspektywy długoterminowej efektywności budynku.

Pytanie 14

Urządzenia przedstawionego na rysunku używa się do

Ilustracja do pytania
A. szlifowania i cięcia różnych materiałów.
B. wykuwania otworów w murze.
C. wykonywania bruzd w murze.
D. fazowania naroży ścian.
Analizując inne odpowiedzi, można zauważyć, że wynikały one z nieporozumień dotyczących zastosowania narzędzia. Na przykład, fazowanie naroży ścian wymaga użycia innych narzędzi, takich jak szlifierki kątowe czy strugarki, które są przystosowane do nadawania odpowiednich kątów i wykończeń. Takie narzędzia mają zupełnie inną konstrukcję i funkcjonalność. Ponadto, szlifowanie i cięcie różnych materiałów jest zadaniem dla urządzeń takich jak piły, szlifierki oraz frezarki, które potrafią obrobić różnorodne materiały, ale nie są przeznaczone do wykonywania bruzd. Często mylnie interpretuje się również pojęcie wykuwania otworów w murze, które najczęściej wiąże się z używaniem młotków udarowych lub wiertarek. Te narzędzia służą do tworzenia otworów, a nie rowków, co jest kluczową różnicą w kontekście funkcji frezarki do bruzd. Zrozumienie zastosowania poszczególnych narzędzi w budownictwie jest istotne, aby efektywnie planować prace budowlane oraz unikać nieefektywnych rozwiązań. Niewłaściwe dobieranie narzędzi prowadzi do nieefektywności oraz zwiększa ryzyko uszkodzeń materiałów budowlanych.

Pytanie 15

Długość belek stalowych dwuteowych, zastosowanych w nadprożu otworu okiennego, wykonanego w ścianie zewnętrznej przy klatce schodowej, w budynku, którego rzut przedstawiono na rysunku, wynosi

Ilustracja do pytania
A. 146 cm
B. 240 cm
C. 206 cm
D. 144 cm
Wybór nieprawidłowej długości belek stalowych dwuteowych może prowadzić do poważnych problemów konstrukcyjnych. Odpowiedzi 144 cm, 206 cm oraz 146 cm są niewłaściwe, ponieważ nie spełniają wymagań dotyczących długości belek w kontekście nadproży otworów okiennych. Często pojawiającym się błędem jest myślenie, że długość belek można dowolnie dobierać, co prowadzi do nieodpowiedniego wsparcia dla nadproży. Każda belka powinna być dostosowana do konkretnego wymiaru otworu oraz obciążeń, a ich długość powinna być co najmniej równa szerokości otworu z dodatkowymi marginesami dla zapewnienia stabilności. Odpowiedzi o zbyt małej długości, takie jak 144 cm, mogą sugerować niewłaściwe zrozumienie zasad projektowania, co jest kluczowe w branży budowlanej. Należy również pamiętać, że belki nie tylko muszą być odpowiedniej długości, ale również powinny być wykonane z odpowiedniego materiału i mieć właściwy przekrój, aby sprostać wymaganiom statycznym i dynamicznym. Błędne założenia co do długości mogą prowadzić do uszkodzeń w późniejszym etapie użytkowania budynku, co podkreśla znaczenie precyzyjnego projektowania zgodnie z normami i standardami branżowymi.

Pytanie 16

Na podstawie przedstawionej instrukcji przygotowania gotowej zaprawy murarskiej podaj, ile wody należy przygotować do sporządzenia zaprawy z 4 opakowań?

Instrukcja przygotowania zaprawy
Suchą mieszankę należy zarobić z 3,5 litrami czystej i zimnej wody, mieszając mechanicznie przy użyciu wiertarki wolnoobrotowej.
Zawartość opakowania: 25 kg
A. 14,0 litrów
B. 10,5 litra
C. 3,5 litra
D. 7,0 litrów
Odpowiedź 14,0 litrów jest prawidłowa, ponieważ zgodnie z instrukcją na zdjęciu, do przygotowania zaprawy murarskiej z jednego opakowania potrzeba 3,5 litra wody. Aby obliczyć ilość wody potrzebną do sporządzenia zaprawy z czterech opakowań, należy pomnożyć tę wartość przez 4. Wykonując obliczenie: 4 x 3,5 litra = 14 litrów, otrzymujemy właściwą ilość wody. Przygotowanie odpowiedniej ilości wody jest kluczowe dla uzyskania właściwej konsystencji zaprawy, co wpływa na jej wytrzymałość i trwałość. Zbyt mała ilość wody może skutkować zbyt gęstą zaprawą, co utrudnia jej aplikację i obniża przyczepność do materiałów budowlanych. Z drugiej strony, nadmiar wody może osłabić zaprawę, prowadząc do pęknięć i degradacji w dłuższym czasie. Zastosowanie odpowiednich proporcji wody i zaprawy jest standardem w branży budowlanej, co potwierdzają zalecenia producentów materiałów budowlanych. Dbanie o precyzyjne przygotowanie mieszanki wpływa na jakość wykonywanych prac budowlanych oraz ich trwałość.

Pytanie 17

Jaką ilość cementu i piasku trzeba przygotować do sporządzenia zaprawy cementowo-wapiennej w proporcji 1:3:12, jeśli użyto 6 pojemników wapna?

A. 2 pojemniki cementu i 24 pojemniki piasku
B. 3 pojemniki cementu i 24 pojemniki piasku
C. 3 pojemniki cementu i 36 pojemników piasku
D. 2 pojemniki cementu i 36 pojemników piasku
Wiele osób może błędnie interpretować proporcje składników zaprawy cementowo-wapiennej, co prowadzi do niepoprawnych wniosków. W odpowiedziach, które podają 3 pojemniki cementu oraz 36 pojemników piasku, istnieje niewłaściwe pomnożenie ilości wapna przez niewłaściwe wartości proporcji. W sytuacji, gdy przyjmuje się, że wymagana ilość wapna wynosi 6 pojemników, nie można przedstawić 3 pojemników cementu, ponieważ według proporcji 1:3:12 wymagałoby to większej ilości wapna. Obliczenia powinny opierać się na logicznej analizie stosunku między elementami. Ponadto, w przypadku propozycji 3 pojemników cementu i 24 pojemników piasku, również występuje wprowadzenie w błąd, gdyż proporcja piasku do wapna wynosi 12:3. To oznacza, że dla 6 pojemników wapna powinniśmy uzyskać 24 pojemniki piasku, ale nie 3 pojemniki cementu, co jest zgodne z zasadą proporcjonalnego mnożenia. Typowe błędy w obliczeniach wynikają z nieprawidłowego zrozumienia proporcji, co podkreśla konieczność gruntownego zrozumienia tematu oraz solidnych podstaw teoretycznych w dziedzinie budownictwa. Praktyczne umiejętności w obliczaniu składników zaprawy są niezbędne do osiągnięcia wysokiej jakości robót budowlanych oraz zgodności ze standardami branżowymi.

Pytanie 18

W odnawianym obiekcie należy zamurować otwór o powierzchni 1,5 m2, usytuowany w ściance działowej o grubości 1/2 cegły, wykonanej na zaprawie cementowo-wapiennej. Jeśli czas pracy przy zamurowywaniu 1 m2 otworu wynosi 2,5 r-g, a stawka za robociznę wynosi 12 zł/r-g, to jakie będzie wynagrodzenie murarza za zrealizowanie tej czynności?

A. 60 zł
B. 30 zł
C. 48 zł
D. 45 zł
Wynagrodzenie za zamurowanie otworu w ścianie działowej wymaga zastosowania odpowiednich wzorów i przemyślenia danych parametrów. Błędne podejście do rozwiązania tego problemu często opiera się na pominięciu kluczowej informacji dotyczącej nakładu robocizny. Niektóre odpowiedzi mogą wynikać z mylnego przeliczenia powierzchni lub z niewłaściwego zastosowania stawek robocizny. Na przykład, jeżeli ktoś obliczyłby wynagrodzenie, mnożąc powierzchnię otworu przez stawkę, bez uwzględnienia nakładu robocizny, przyjąłby błędne założenie, że wynagrodzenie można obliczyć bezpośrednio proporcjonalnie do powierzchni. Tego rodzaju uproszczenia mogą prowadzić do znacznych różnic w oszacowaniach kosztów. Kluczowe jest również zrozumienie, że wynagrodzenie murarza musi opierać się na rzeczywistym czasie pracy potrzebnym do wykonania danej usługi. W praktyce budowlanej, każdy projekt wymaga szczegółowego planowania i dokładnego obliczenia wszystkich związanych z nim kosztów, aby uniknąć nieporozumień i przekroczenia budżetu. Właściwe zarządzanie kosztami robocizny oraz ich odpowiednie oszacowanie są standardem w profesjonalnych projektach budowlanych, co pozwala na lepsze zarządzanie czasem i zasobami oraz minimalizację ryzyka finansowego.

Pytanie 19

Do wymurowania ściany o wymiarach 10,0 x 5,0 m i grubości 0,24 m zaplanowano bloczki Ytong łączone na pióro i wpust. Korzystając z danych zawartych w tabeli wskaż, ile 20-kilogramowych worków zaprawy należy kupić, aby sporządzić potrzebną ilość zaprawy.

Zużycie na 1 m³ muru zaprawy do cienkich spoin Ytong
Bloczki gładkieBloczki z piórem i wpustemWielkość opakowania
20 kg15 kg20 kg
A. 7
B. 9
C. 8
D. 6
W przypadku nieprawidłowych odpowiedzi należy zwrócić uwagę na kilka kluczowych aspektów związanych z obliczeniami oraz podstawami technicznymi. Istotnym błędem może być niewłaściwe obliczenie objętości ściany, co prowadzi do niepoprawnych dalszych kalkulacji. Niektórzy mogą błędnie założyć, że zużycie zaprawy na 1 m³ muru jest jednolite dla wszystkich typów bloczków, co jest niezgodne z praktyką budowlaną. Różne metody łączenia, takie jak pióro i wpust, wymagają różnej ilości zaprawy, co może prowadzić do zaniżonego lub zawyżonego oszacowania. Często pojawia się także problem z przeliczeniem objętości zaprawy na ilość worków. Niekiedy można spotkać się z błędnym przyjęciem masy zaprawy w jednym worku, co jest kluczowe dla prawidłowego obliczenia. Pomijanie wartości gęstości zaprawy może doprowadzić do jeszcze większych nieścisłości. Dlatego ważne jest nie tylko zrozumienie, jak obliczać potrzebne materiały, ale również znajomość standardów dotyczących zużycia zaprawy w kontekście konkretnego rodzaju budowli. Dobre praktyki budowlane wymagają dokładnych obliczeń, które uwzględniają wszystkie aspekty związane z materiałami oraz metodami budowlanymi.

Pytanie 20

W remontowanym budynku na poddaszu zamierzono stworzyć lekką ściankę działową, aby oddzielić dwa pokoje mieszkalne. Jakie materiały powinno się zastosować do jej budowy?

A. cegły szamotowe
B. płyty Pro-Monta
C. cegły klinkierowe
D. płyty wiórowe laminowane
Wybór płyty wiórowej laminowanej na ściankę działową może wydawać się spoko, ale w praktyce nie jest najlepszym pomysłem. One nie mają wystarczającej stabilności ani izolacji akustycznej, a to w mieszkaniach jest kluczowe. Może się zdarzyć, że dźwięki będą przenikały między pokojami, co jest trochę irytujące. Z kolei cegły klinkierowe to w ogóle nie jest dobre rozwiązanie, bo są za ciężkie i niepraktyczne w tym kontekście. Mogą obciążać konstrukcję budynku, co na poddaszu jest istotne, gdyż stropy mają swoje ograniczenia. A cegły szamotowe, mimo że mają swoją wartość w wysokich temperaturach, to też nie nadają się na ścianki działowe. Wybierając materiały budowlane, warto zwrócić uwagę na ich funkcjonalność i trwałość, a także na normy budowlane, które mówią, co jest dozwolone w wewnętrznych konstrukcjach.

Pytanie 21

Jakie materiały wykorzystuje się do realizacji izolacji przeciwwilgociowych?

A. folie izolacyjne i lepiki asfaltowe
B. płyty pilśniowe i emulsje asfaltowe
C. pasty asfaltowe i płyty wiórowe
D. roztwory asfaltowe oraz włókna celulozowe
Izolacja przeciwwilgociowa jest kluczowym aspektem w budownictwie, który ma na celu ochronę obiektów przed negatywnym wpływem wilgoci. Folie izolacyjne oraz lepiki asfaltowe to sprawdzone materiały, które skutecznie zapobiegają przenikaniu wilgoci do wnętrza budynków. Folie izolacyjne są często stosowane w fundamentach, gdzie zabezpieczają przed wodą gruntową, a ich właściwości paroprzepuszczalne pozwalają na odprowadzanie nadmiaru wilgoci. Lepiki asfaltowe, z kolei, służą do uszczelniania różnorodnych powierzchni budowlanych, takich jak dachy, tarasy czy fundamenty. Dzięki elastyczności i odporności na zmiany temperatury, lepiki te zachowują swoje właściwości w różnorodnych warunkach atmosferycznych. W branży budowlanej standardami stosowanymi przy izolacji przeciwwilgociowej są normy PN-B-03020 oraz PN-EN 15814, które określają wymagania oraz metody badań dla materiałów izolacyjnych. Przykładem praktycznego zastosowania tych materiałów może być budowa piwnic, gdzie odpowiednia izolacja przeciwwilgociowa jest kluczowa dla zapewnienia komfortu i trwałości budynku.

Pytanie 22

Z informacji podanych w tabeli wynika, że aby otrzymać zaprawę cementowo-wapienną marki 5, należy 2 pojemniki wapna hydratyzowanego zmieszać z

Orientacyjny skład objętościowy zapraw cementowo-wapiennych
Marka zaprawyz użyciem ciasta wapiennegoz użyciem wapna hydratyzowanego
1,51:1,5:81:1:9
31:1:71:1:6
51:0,3:41:0,5:4,5
A. 4 pojemnikami cementu i 16 pojemnikami piasku.
B. 4 pojemnikami cementu i 18 pojemnikami piasku.
C. 2 pojemnikami cementu i 14 pojemnikami piasku.
D. 2 pojemnikami cementu i 12 pojemnikami piasku.
Zrozumienie proporcji materiałów w budownictwie to naprawdę ważna sprawa, jeśli chcesz mieć trwałe zaprawy. W odpowiedziach faktycznie można znaleźć sporo typowych błędów, jak pomylenie proporcji. Dla zaprawy cementowo-wapiennej ta proporcja 1:0,5:4,5 jest naprawdę kluczowa i nie można jej zmieniać na własną rękę. Jeśli ktoś sugeruje mniej cementu albo za mało piasku, to może to prowadzić do poważnych problemów. Na przykład, jeśli użyjesz 2 pojemników cementu i 14 piasku, to zaprawa będzie znacznie słabsza, co może prowadzić do strukturalnych kłopotów. Wiele błędów wynika z niepełnego zrozumienia roli materiałów – cement jest najważniejszy dla wiązania mieszanki. Z drugiej strony, nadmiar piasku, jak w przypadku 16 pojemników, powoduje, że zaprawa staje się krucha, co też jest niezgodne z zasadami. Tak więc, grubość i płynność zaprawy to kluczowe rzeczy, żeby spełniała swoje zadanie. Lepiej więc trzymaj się standardów, jak PN-EN 998, żeby nie mieć później problemów.

Pytanie 23

Na ilustracji przedstawiono fragment lica muru wykonanego w wiązaniu

Ilustracja do pytania
A. holenderskim.
B. weneckim.
C. polskim.
D. słowiańskim.
Wybierając jedną z niepoprawnych odpowiedzi, można było się zgubić w temacie wiązań ceglanych. Na przykład wiązanie weneckie, które mogłeś mieć na myśli, ma zupełnie inny układ cegieł, często z cegłami w różnych rozmiarach i dużym naciskiem na dekoracyjność. Z kolei wiązanie holenderskie różni się jeszcze bardziej, bo tam są większe cegły, co też może prowadzić do mylnych wniosków. Zrozumienie tych różnic jest istotne dla każdego, kto interesuje się architekturą, bo każde wiązanie ma swoje specyficzne cechy i zastosowanie. Błędne odpowiedzi często wynikają z braku wiedzy o lokalnej architekturze i historii budownictwa. A te koncepcje związane z wiązaniem słowiańskim mogą wprowadzać w błąd, bo nie są za bardzo klasyfikowane w murowaniu. Warto znać te różnice, żeby wiedzieć, jak projektować budynki, które będą łączyć tradycję z nowoczesnością.

Pytanie 24

Zgodnie z zasadami przedmiarowania robót murarskich ilość ścian oblicza się w metrach kwadratowych ich powierzchni. Od powierzchni ścian należy odejmować powierzchnie projektowanych otworów okiennych i drzwiowych większych od 0,5 m2.
Oblicz wartość przedmiaru robót związanych z wykonaniem ściany z cegły ceramicznej pełnej, której widok przedstawiono na rysunku.

Ilustracja do pytania
A. 21,75 m2
B. 23,55 m2
C. 22,11 m2
D. 25,60 m2
Wybór niewłaściwej odpowiedzi wskazuje na błędne zrozumienie zasad przedmiarowania robót murarskich. Kluczowym zagadnieniem jest umiejętność prawidłowego obliczenia powierzchni ścian, co wymaga odejmowania powierzchni otworów okiennych i drzwiowych większych od 0,5 m2. Wiele osób mylnie uznaje całkowitą powierzchnię ściany za ostateczną wartość, nie uwzględniając faktu, że otwory w ścianie wpływają na efektywną powierzchnię do wykonania. W tym przypadku, całkowita powierzchnia wynosi 25,60 m2, ale po odjęciu 3,85 m2 powierzchni otworów, otrzymujemy 21,75 m2, co jest kluczowe dla precyzyjnego obliczenia ilości materiałów. Często występującym błędem jest także niedokładne pomiarowanie lub pomijanie otworów, co prowadzi do przekroczenia budżetu lub opóźnień w realizacji budowy. Warto zaznaczyć, że precyzyjne przedmiarowanie to element, który nie tylko wpływa na koszty, ale również na jakość całego projektu budowlanego, co jest zgodne z najlepszymi praktykami w branży budowlanej. Zrozumienie tego procesu jest niezbędne do efektywnego zarządzania projektami budowlanymi.

Pytanie 25

W trakcie realizacji tynków wewnętrznych wykorzystuje się rusztowania

A. drabinowe
B. stojakowe
C. na kozłach
D. na wysuwnicach
Odpowiedzi, które nie uwzględniają zastosowania kozłów tynkarskich, często prowadzą do mylnych wniosków na temat efektywności oraz bezpieczeństwa pracy przy tynkowaniu. Drabiny, mimo że mogą być stosowane w niektórych przypadkach, ograniczają mobilność i zwiększają ryzyko upadków. Użytkownik pracujący na drabinie nie ma stabilnej platformy roboczej, co utrudnia precyzyjne nakładanie tynku oraz może prowadzić do niebezpiecznych sytuacji. Z kolei rusztowania na wysuwnicach, chociaż oferują pewną elastyczność, mogą być nieodpowiednie do tynków wewnętrznych z uwagi na ich konstrukcję, która nie zawsze zapewnia odpowiednią stabilność przy niestabilnych lub nierównych powierzchniach. Stojakowe rusztowania, choć czasami stosowane, nie są optymalne do prac wewnętrznych, gdzie z reguły wymagane jest dostosowanie wysokości oraz stabilność. Kluczowym błędem myślowym jest nieuznawanie, że odpowiedni dobór narzędzi i sprzętu ma kluczowe znaczenie dla bezpieczeństwa oraz efektywności pracy. Prawidłowe wykorzystanie kozłów tynkarskich zgodnie z normami BHP zwiększa wydajność i zmniejsza ryzyko urazów, co czyni je najbardziej odpowiednim rozwiązaniem dla tego typu prac.

Pytanie 26

W przedstawiony na rysunku graficzny sposób oznacza się w dokumentacji projektowej beton

Ilustracja do pytania
A. lekki zbrojony.
B. zwykły niezbrojony.
C. lekki niezbrojony.
D. zwykły zbrojony.
Odpowiedź "zwykły niezbrojony" jest poprawna, ponieważ zgodnie z polskimi normami, szczególnie PN-EN 206, beton zwykły niezbrojony jest oznaczany poprzez zastosowanie pełnego, ukośnego kreskowania. W praktyce, taki materiał znajduje zastosowanie w konstrukcjach, gdzie nie są wymagane dodatkowe właściwości wytrzymałościowe, takich jak w budownictwie mieszkaniowym czy infrastrukturze, gdzie obciążenia nie przekraczają określonych norm. Na przykład, beton ten jest często używany do fundamentów budynków jednorodzinnych czy jako materiał do wypełnienia przestrzeni w obiektach inżynieryjnych. Wiedza na temat poprawnego oznaczania betonu jest kluczowa dla projektantów i wykonawców, ponieważ zapewnia prawidłowe rozumienie zastosowanych materiałów, co w konsekwencji wpływa na trwałość i bezpieczeństwo konstrukcji.

Pytanie 27

Jakie właściwości wełny mineralnej mają wpływ na jej użycie jako materiału izolacyjnego termicznie?

A. Niski współczynnik przewodzenia ciepła oraz nieprzepuszczalność pary
B. Niski współczynnik przewodzenia ciepła oraz paroprzepuszczalność
C. Wysoki współczynnik przewodzenia ciepła oraz paroprzepuszczalność
D. Wysoki współczynnik przewodzenia ciepła oraz nieprzepuszczalność pary
Wełna mineralna jest materiałem o niskim współczynniku przewodności cieplnej, co oznacza, że skutecznie izoluje termicznie, minimalizując straty ciepła w budynkach. Niska przewodność cieplna sprawia, że jest to jeden z najbardziej efektywnych materiałów izolacyjnych, co przekłada się na oszczędności energii w eksploatacji obiektów. Dodatkowo, paroprzepuszczalność wełny mineralnej pozwala na regulację wilgotności wewnętrznej pomieszczeń, co jest kluczowe dla utrzymania zdrowego mikroklimatu. Przykładowo, zastosowanie wełny mineralnej w dachach i ścianach budynków mieszkalnych oraz przemysłowych zapewnia nie tylko efektywność energetyczną, ale także ochronę przed kondensacją wilgoci. W zgodzie z normami budowlanymi, takimi jak PN-EN 13162, wełna mineralna spełnia wymagania dotyczące izolacyjności cieplnej i akustycznej, co czyni ją często wybieranym materiałem w budownictwie ekologicznym i energooszczędnym.

Pytanie 28

Zgodnie z zasadami przedmiarowania robót murarskich ilość ścian oblicza się w metrach kwadratowych ich powierzchni. Od powierzchni ścian należy odejmować powierzchnie projektowanych otworów okiennych i drzwiowych większych od 0,5 m².
Oblicz ilość robót związanych z wykonaniem ściany z cegły ceramicznej pełnej, której widok przedstawiono na rysunku.

Ilustracja do pytania
A. 19,11 m2
B. 20,02 m2
C. 21,00 m2
D. 18,13 m2
W przypadku odpowiedzi, które nie są zgodne z poprawną wartością 19,11 m2, można zauważyć pewne nieporozumienia związane z obliczaniem powierzchni ścian. Często błędne podejście polega na nieuwzględnieniu otworów okiennych i drzwiowych lub na błędnym ich pomniejszeniu. Przyjmując, że całkowita powierzchnia ściany wynosi 20 m², a następnie nie odejmując powierzchni otworów, można uzyskać wartość zbyt dużą. Należy pamiętać, że zasady przedmiarowania wymagają dokładności – jedynie otwory większe niż 0,5 m² mają być brane pod uwagę, co jest zgodne z normami branżowymi. Kolejną typową pomyłką jest błędne obliczenie wymiarów ściany; na przykład, stosując niewłaściwe wymiary wysokości lub szerokości, co może prowadzić do znacznych rozbieżności w końcowych wynikach. Często również praktykuje się zaokrąglanie wyników, co w kontekście kosztorysowania i precyzyjnego planowania robót nie jest dobrym rozwiązaniem. Dlatego bardzo ważne jest, aby przy takich obliczeniach dokładnie analizować projekt, weryfikować wymiary oraz przestrzegać obowiązujących norm i standardów, aby uniknąć pomyłek, które mogą prowadzić do nieprawidłowego wyceny robót budowlanych.

Pytanie 29

Określ, na podstawie danych zawartych w tabeli, dopuszczalną ilość ziaren o wymiarach 2-5 mm w piasku do zapraw murarskich.

Tabela. Uziarnienie i dopuszczalne zanieczyszczenia piasku

Rodzaj cechyPiasek do
zapraw
murarskich
wyprawgładzibetonu
dopuszczalna ilość w % w stosunku do masy
Pyły mineralne poniżej 0,05 mm
(części ilaste i muły)
853
Zanieczyszczenia obce, np. gruz,
ziemia, muszle itp.
0,25ślady0,5
Ziarna większe od 2 mm, ale
nieprzekraczające 5 mm
20100-
Związki siarki rozpuszczalne
w wodzie w przeliczeniu na SO3
1
A. 0,25%
B. 0,5%
C. 10%
D. 20%
Dopuszczalna ilość ziaren o wymiarach 2-5 mm w piasku do zapraw murarskich wynosi 20% masy, co jest zgodne z normami budowlanymi oraz wytycznymi dotyczącymi materiałów budowlanych. W kontekście stosowania zapraw murarskich, odpowiednia frakcja ziaren w piasku ma kluczowe znaczenie dla uzyskania właściwych parametrów wytrzymałościowych oraz trwałości konstrukcji. Ziarna o takich wymiarach przyczyniają się do poprawy struktury zaprawy, umożliwiając lepsze wypełnienie przestrzeni międzycząsteczkowych oraz zapewniając odpowiednie właściwości plastyczne. Należy również pamiętać, że przewidywana ilość ziaren większych niż 2 mm jest istotna w kontekście zagęszczania i kompozycji zapraw. Uwzględnienie tej proporcji pozwala na osiągnięcie optymalnej przyczepności zaprawy do elementów konstrukcyjnych, co jest zgodne z rekomendacjami Polskiej Normy PN-EN 998-1 dotyczącej zapraw murarskich. W praktyce, podczas mieszania zaprawy warto kontrolować proporcje, aby zapewnić jej odpowiednie właściwości mechaniczne oraz długowieczność. Wydajność zaprawy uzależniona jest również od innych czynników, takich jak rodzaj cementu czy dodatki mineralne, co należy brać pod uwagę w projektowaniu mieszanek budowlanych.

Pytanie 30

Oblicz wydatki na rozbiórkę kamiennej ławy fundamentowej o wymiarach 1,2 x 0,6 x 10 m, przy założeniu, że koszt rozbiórki 1 m fundamentów kamiennych wynosi 350 zł?

A. 210 zł
B. 2520 zł
C. 2100 zł
D. 420 zł
Aby obliczyć koszt rozbiórki kamiennej ławy fundamentowej, musimy najpierw określić objętość rozbieranego materiału. Wymiary ławy fundamentowej wynoszą 1,2 m szerokości, 0,6 m wysokości i 10 m długości. Obliczamy objętość, stosując wzór: V = długość x szerokość x wysokość. W naszym przypadku będzie to: V = 10 m x 1,2 m x 0,6 m = 7,2 m³. Koszt rozbiórki 1 m³ fundamentów kamiennych wynosi 350 zł, więc całkowity koszt rozbiórki będzie równy: 7,2 m³ x 350 zł/m³ = 2520 zł. W praktyce, znajomość metod obliczania kosztów prac budowlanych jest kluczowa dla efektywnego zarządzania budową oraz budżetowania projektów. Oprócz tego, warto wziąć pod uwagę dodatkowe koszty związane z wywozem gruzu oraz ewentualnymi pracami związanymi z zabezpieczeniem terenu. Zastosowanie tej wiedzy w praktyce umożliwia lepsze planowanie i minimalizację kosztów związanych z pracami budowlanymi.

Pytanie 31

Korzystając z instrukcji producenta, określ liczbę worków gipsu, która będzie potrzebna do uzyskania 180 litrów zaprawy.

Instrukcja producenta
Gips tynkarski ręczny
OPAKOWANIE: worki papierowe 25 kg
DANE TECHNICZNE: proporcje składników 15 l wody na 25 kg gipsu tynkarskiego ręcznego
WYDAJNOŚĆ: na 120 l zaprawy – 100 kg gipsu
ZUŻYCIE: 0,85 kg na 1m2 na każdy 1 mm grubości tynku
A. 5 worków.
B. 6 worków.
C. 4 worki.
D. 8 worków.
Żeby mieć 180 litrów zaprawy, musisz ogarnąć, jak przelicza się objętość na wagę. Producent podaje, że jeden worek gipsu waży 25 kg, a z jednego worka wyjdzie Ci jakieś 30 litrów zaprawy. To znaczy, że jak chcesz 180 litrów, to dzielisz 180 przez 30, co daje 6 worków. W branży budowlanej to ważne, bo dokładne obliczenia materiałów mogą wpłynąć na jakość pracy. Jak dobrze dobierzesz materiały, to nie tylko zaoszczędzisz, ale też zyskasz na bezpieczeństwie i stabilności konstrukcji. Dobrym pomysłem jest zawsze spoglądać na instrukcje producenta, żeby uniknąć problemów z za małą lub za dużą ilością materiałów.

Pytanie 32

Na rysunku przedstawiono lico kamiennego muru

Ilustracja do pytania
A. rzędowego.
B. warstwowego.
C. dzikiego.
D. cyklopowego.
Jeśli wybrałeś inne typy murów, to może być trochę mylące. Na przykład, mur rzędowy to ten, gdzie kamienie są układane w regularne poziome rzędy, co daje większą stabilność, ale nie pasuje do tego, o czym mówimy. Z kolei mur cyklopowy składa się z dużych bloków, a w murze dzikim nie masz takich jednorodnych kawałków, więc to też nie to. Ludzie czasem mylą te mury, ale mają różne cechy. Mur warstwowy, jak sama nazwa wskazuje, ma wyraźne warstwy, co jest całkowicie sprzeczne z chaotycznym stylem muru dzikiego. Takie pomyłki mogą się zdarzyć, gdy nie do końca znamy różne techniki budowlane. Rozumienie tych różnic jest ważne dla każdego, kto pracuje w budownictwie czy architekturze, bo pozwala na lepsze planowanie funkcjonalnych i ładnych rozwiązań.

Pytanie 33

Jakie mury można zbudować z cegły kratówki klasy 5?

A. Piwniczne
B. Osłonowe
C. Fundamentowe
D. Kominowe
Wybór odpowiedzi dotyczących murów fundamentowych, kominowych czy piwnicznych oparty jest na błędnych założeniach dotyczących zastosowania cegły kratówki klasy 5. Mury fundamentowe muszą przenosić znaczne obciążenia, dlatego wymagają zastosowania materiałów o bardzo dużej wytrzymałości oraz odporności na działanie wilgoci, co w przypadku cegły kratówki nie jest wystarczające. Z tego powodu, do budowy fundamentów preferowane są bloczki betonowe lub cegły pełne, które zapewniają odpowiednie parametry nośności i izolacyjności. Z drugiej strony, kominy wymagają materiałów odpornych na wysoką temperaturę oraz działanie kwasów, co również wyklucza użycie cegły kratówki, która nie spełnia tych norm. Natomiast mury piwniczne muszą być odporne na działanie wilgoci oraz zapewniać właściwą izolację, co często wiąże się z koniecznością zastosowania odpowiednich materiałów hydroizolacyjnych, takich jak beton czy cegła pełna. Wybierając niewłaściwe materiały do konstrukcji budynków, można narazić się na problemy związane z trwałością i bezpieczeństwem obiektu, a także na dodatkowe koszty związane z remontami czy utrzymaniem budynku.

Pytanie 34

Tynk dekoracyjny stworzony z zaprawy gipsowej lub gipsowo-wapiennej, naśladujący marmur, to

A. fresk
B. sgraffito
C. stiuk
D. sztukateria
Stiuk to taka fajna technika wykończeniowa, która polega na nakładaniu zaprawy gipsowej albo gipsowo-wapiennej w taki sposób, żeby wyglądała jak marmur. Używa się jej głównie w architekturze wnętrz, zwłaszcza w stylach klasycznych i renesansowych, gdzie każdy detal ma znaczenie. Stiuk świetnie nadaje się do ozdabiania sufitów, ścian i różnych elementów architektonicznych, co daje naprawdę luksusowy efekt. Można go zobaczyć w pałacach, kościołach czy eleganckich willach, bo jego struktura i połysk naprawdę przypominają naturalny kamień. Ważne jest, żeby stosować odpowiednie techniki, bo to zapewnia super efekt wizualny. W kontekście budownictwa, jak się aplikuje stiuk, to powinny to robić wykwalifikowane osoby, które znają różne procesy utwardzania i polerowania, dzięki czemu efekt końcowy będzie trwały i estetyczny. Co więcej, stiuk można barwić na różne kolory, więc można go świetnie dopasować do różnych stylów wnętrz.

Pytanie 35

Na fotografii przedstawiono urządzenie przeznaczone do

Ilustracja do pytania
A. zagęszczania mieszanki betonowej.
B. transportu mieszanki betonowej.
C. dozowania składników zaprawy budowlanej.
D. mieszania składników zaprawy budowlanej.
Poprawna odpowiedź dotyczy urządzenia, które jest typowe dla betoniarki, a więc maszyny zaprojektowanej do mieszania składników zapraw budowlanych, takich jak cement, piasek i woda. Betoniarka, z charakterystycznym wirującym pojemnikiem, umożliwia uzyskanie jednorodnej mieszanki, co jest kluczowe dla jakości i trwałości konstrukcji budowlanych. W praktyce, stosowanie betoniarek jest niezbędne w wielu projektach budowlanych, gdzie wymagana jest szybka i efektywna produkcja betonu na dużą skalę. Przy odpowiednim użyciu, betoniarki przyczyniają się do zminimalizowania strat materiałowych oraz poprawy wydajności pracy, co jest zgodne z najlepszymi praktykami w branży budowlanej. Ponadto, nowoczesne betoniarki są często wyposażone w systemy automatyzacji, które pozwalają na precyzyjne dozowanie składników, co dalej zwiększa efektywność procesu mieszania. Zgodność z normami jakości, takimi jak PN-EN 206, podkreśla znaczenie właściwego mieszania betonu dla bezpieczeństwa i stabilności budowli.

Pytanie 36

Na którym rysunku przedstawiono prawidłowy kształt rysy o głębokości poniżej 0,5 cm, występującej na tynku wewnętrznym, przygotowanej do uzupełnienia zaprawą?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Rysunek A pokazuje, jak powinna wyglądać rysa do naprawy. Ta głębokość poniżej 0,5 cm jest wręcz idealna do uzupełnienia zaprawą. Kształt trapezu, który tu zastosowano, naprawdę sprzyja dobremu trzymaniu się zaprawy, co jest mega ważne, żeby naprawa była skuteczna. Kiedy rysa ma szerszy dół i węższy górę, jak w tym przypadku, zmniejsza się ryzyko odpryskiwania zaprawy. To też trochę zmniejsza szansę na nowe pęknięcia, co jest super ważne, zwłaszcza w budowlance. W sumie, to co opisałeś, pasuje do najlepszych praktyk w naprawie tynków. Również, jak dobrze przygotujesz rysę–czyli oczyścisz ją z luźnych fragmentów i nałożysz grunt–to połączenie zaprawy z podłożem będzie znacznie lepsze i bardziej trwałe, więc warto o tym pamiętać.

Pytanie 37

Najlepszym rozwiązaniem przy demontażu ścianek działowych jest użycie rusztowania

A. ramowe
B. na kozłach
C. wiszące
D. stojakowe
Odpowiedzi stojakowe, wiszące oraz ramowe nie są najlepszym wyborem do zastosowania podczas rozbiórki ścianek działowych z kilku istotnych powodów. Rusztowania stojakowe, choć stabilne, zazwyczaj zajmują więcej miejsca i mogą ograniczać dostęp do obszaru pracy, co jest niepraktyczne w wąskich korytarzach czy pomieszczeniach biurowych. Ich konstrukcja nie pozwala na elastyczne dostosowanie wysokości, co może prowadzić do ograniczeń w efektywności wykonywanych prac. Rusztowania wiszące, z kolei, są dedykowane do zastosowań na elewacjach budynków lub pracach na wysokościach, co czyni je nieodpowiednimi w sytuacjach, gdy prace odbywają się blisko podłoża. W sytuacjach, gdy konieczne jest wykonywanie precyzyjnych cięć lub demontażu ścianek działowych, rusztowania wiszące mogą stwarzać niebezpieczeństwo i utrudniać kontrolę nad wykonywanymi zadaniami. Ostatecznie, rusztowania ramowe, choć popularne w różnych zastosowaniach budowlanych, nie zawsze zapewniają pożądaną elastyczność i łatwość dostępu do zróżnicowanych wysokości, co jest istotne w przypadku prac związanych z demontażem ścianek działowych. Właściwe zrozumienie zastosowań różnych typów rusztowań jest kluczowe, aby uniknąć nieefektywności i ryzyka podczas realizacji projektów budowlanych.

Pytanie 38

W czasie intensywnych upałów cegłę ceramiczną wypełnioną przed jej użyciem do murowania należy

A. zgromadzić pod zadaszeniem
B. zagruntować gruntownikiem
C. zamoczyć w wodzie
D. nakryć plandeką
Te alternatywy, które podałeś, nie są najlepsze, jeśli chodzi o przygotowanie cegły ceramicznej w upalne dni. Zagruntowanie jej gruntownikiem, choć może się zdarzyć, że niektórzy tak robią, to tak naprawdę nie jest dobry pomysł. Gruntowniki raczej poprawiają przyczepność, a nie nawilżają cegłę, co jest przecież kluczowe. Nakrywanie cegły plandeką może chronić przed słońcem, ale to nie rozwiązuje problemu z zaprawą i wciąż nie dostarcza wilgoci, której potrzebujemy. Trzymanie cegieł pod dachem to lepsza opcja, bo chroni je przed deszczem czy słońcem, ale znowu - to nie nawilża ich. Często ludzie myślą, że te metody zastąpią nawilżenie cegły, ale to nieprawda. Po prostu nie uwzględniają podstawowych zasad przygotowania materiałów budowlanych, co może prowadzić do poważnych problemów w przyszłości. Kluczowy błąd to ignorowanie, że cegły wchłaniają wodę i jak to wpływa na jakość murowania.

Pytanie 39

Jakie będzie łączne wynagrodzenie pracownika za tynkowanie 2 powierzchni o wielkości 50 m2 oraz 3 powierzchni po 30 m2, jeśli cena za 1 m2 tynku wynosi 8 zł?

A. 1 600 zł
B. 1 280 zł
C. 1 520 zł
D. 290 zł
Żeby policzyć całkowite wynagrodzenie za otynkowanie, musisz najpierw ustalić, ile masz powierzchni do pokrycia. Mamy dwie powierzchnie po 50 m2, co daje nam 100 m2 oraz trzy po 30 m2, czyli dodatkowe 90 m2. Jak to zsumujemy, to dostajemy 190 m2. Koszt za 1 m2 tynku to 8 zł, więc całość wyniesie 190 m2 razy 8 zł, co daje 1 520 zł. Takie obliczenia są mega ważne w budowlance, bo dokładne oszacowanie kosztów to klucz do sukcesu projektu. Z własnego doświadczenia wiem, że warto też pomyśleć o dodatkowych wydatkach, jak materiały pomocnicze czy transport. Posiadanie odpowiednich narzędzi do kalkulacji może naprawdę przyspieszyć te obliczenia. Zrozumienie tych podstawowych zasad ułatwia później planowanie i zarządzanie projektami budowlanymi.

Pytanie 40

W murze niespoinowanym z pustaków ceramicznych zostały wykonane otwory okienne o zaprojektowanych wymiarach 120 x 150 cm (szer. x wys.). Który z rzeczywistych wymiarów szerokości otworu spełnia warunki techniczne wykonania i odbioru robót murarskich podanych w tabeli?

Ilustracja do pytania
A. 130 cm
B. 119 cm
C. 115 cm
D. 121 cm
Wybór 115 cm, 119 cm i 130 cm zdecydowanie nie pasuje do technicznych wymagań dla otworów w murze niespoinowanym. Po pierwsze, 115 cm jest za małe i nie mieści się w tolerancjach, co zdecydowanie może prowadzić do kłopotów przy montażu okien. W ogóle wymiary te mogą wymusić jakieś szpachlowanie albo poprawki, a to przecież wydłuża czas realizacji projektu i podnosi koszty. Odpowiedź 119 cm jest blisko, ale też nie spełnia norm. Natomiast 130 cm to już sporo powyżej akceptowalnych tolerancji, co naraża na ryzyko błędnego wykonania otworów, a to w efekcie może osłabić całą konstrukcję. W praktyce projektanci muszą zawsze zwracać uwagę na precyzyjne pomiary i tolerancje, żeby uniknąć takich problemów. Zanim podejmiesz decyzję o wymiarach, dobrze jest sprawdzić aktualne normy i rekomendacje. To kluczowe, żeby zapewnić dobrą jakość wykonania i nie wpaść w niepotrzebne kłopoty podczas budowy.