Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 10 grudnia 2025 12:33
  • Data zakończenia: 10 grudnia 2025 12:48

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który kolor izolacji przewodu w instalacjach elektrycznych jest przypisany do przewodu neutralnego?

A. Zielony
B. Niebieski
C. Żółty
D. Czerwony
Kolor niebieski jest zastrzeżony dla przewodu neutralnego w instalacjach elektrycznych, zgodnie z międzynarodowymi standardami, takimi jak IEC 60446. Przewód neutralny pełni kluczową rolę w systemach elektrycznych, ponieważ służy do zamykania obwodu i umożliwia przepływ prądu z powrotem do źródła. Użycie koloru niebieskiego dla przewodów neutralnych pozwala na ich łatwe zidentyfikowanie, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy elektryków. W praktyce, podczas instalacji systemów elektrycznych, korzystanie z ustalonych kolorów przewodów ma na celu minimalizację ryzyka błędów przy podłączaniu urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz ochrony przed porażeniem prądem. Dodatkowo, w przypadku konserwacji lub naprawy, wyraźne oznaczenie przewodów neutralnych znacząco ułatwia pracę elektryków, co podkreśla znaczenie standardyzacji w branży elektrycznej.

Pytanie 2

Które urządzenie oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Bezpiecznik.
B. Rozłącznik.
C. Wyłącznik.
D. Odłącznik.
Wybór odpowiedzi innej niż 'Wyłącznik' wskazuje na pewne nieporozumienia dotyczące funkcji i symboliki poszczególnych urządzeń elektrycznych. Bezpiecznik, będący urządzeniem zabezpieczającym, działa na zasadzie przerywania obwodu w momencie przekroczenia określonego prądu, a jego symbol różni się znacząco od symbolu wyłącznika. Odłącznik z kolei, choć również używany do rozłączania obwodów, jest zazwyczaj stosowany w sytuacjach, gdzie brak konieczności automatycznego działania jest kluczowy; jego symbol na schemacie jest inny, co może prowadzić do błędnej interpretacji. Rozłącznik, natomiast, służy do przerywania obwodu w sposób bardziej złożony, często w kontekście instalacji przemysłowych i zasilania w obiektach wysokiego napięcia, co również odzwierciedla inny symbol. Typowe błędy myślowe związane z tym pytaniem mogą wynikać z nieznajomości różnic pomiędzy tymi urządzeniami. W praktyce, znajomość symboli oraz funkcji wyłączników jest niezbędna dla zapewnienia bezpieczeństwa w pracy z instalacjami elektrycznymi oraz ich prawidłowego funkcjonowania zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 3

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Schemat C został zaprezentowany w sposób, który odpowiada zasadom prawidłowego montażu instalacji elektrycznych. W tym schemacie przewód fazowy (L) jest właściwie podłączony do jednego z łączników, co umożliwia sterowanie oświetleniem w sposób zgodny z normami. Przewód neutralny (N) nie jest połączony z łącznikami, co jest zgodne z dobrymi praktykami w instalacjach oświetleniowych, gdzie przewody neutralne zazwyczaj podłączane są bezpośrednio do źródła światła lub rozdzielnicy. Taki układ zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażenia prądem. Zastosowanie schematu C w praktyce pozwala na efektywne i bezpieczne sterowanie oświetleniem, co jest kluczowe w projektowaniu oraz wykonawstwie instalacji elektrycznych. Warto również zwrócić uwagę na konieczność przestrzegania odpowiednich norm, takich jak PN-IEC 60364, które regulują sposób wykonywania instalacji elektrycznych, aby były one zarówno funkcjonalne, jak i bezpieczne dla użytkowników.

Pytanie 4

Który parametr instalacji elektrycznej można sprawdzić za pomocą testera przedstawionego na rysunku?

Ilustracja do pytania
A. Rezystancję uziemienia odbiornika.
B. Prąd upływu.
C. Ciągłość przewodów.
D. Kolejność faz zasilających.
Dobra robota z wyborem odpowiedzi! To narzędzie, które widzisz na zdjęciu, to tester kolejności faz. Jest naprawdę ważny w elektryce, bo sprawdza, czy fazy są odpowiednio podłączone w instalacjach trójfazowych. Zrozumienie tej kolejności jest kluczowe, bo jak fazy się zamienią, to mogą być problemy z działaniem urządzeń, szczególnie silników. Bezpieczne uruchamianie nowych instalacji to podstawa, a ten tester naprawdę się przydaje. W branży elektrycznej normy mówią, że musimy pilnować tej kolejności, żeby uniknąć nieprawidłowości i niebezpieczeństw. Poza tym, jeśli w systemie jest nierównomierne obciążenie, to ten tester też może pomóc to zdiagnozować, a to ważne dla oszczędności energii.

Pytanie 5

Który rodzaj wirującej maszyny elektrycznej przedstawiono na ilustracji?

Ilustracja do pytania
A. Asynchroniczną pierścieniową.
B. Komutatorową prądu przemiennego.
C. Bocznikową prądu stałego.
D. Synchroniczną.
Odpowiedź 'synchroniczna' jest prawidłowa, ponieważ na ilustracji przedstawiono maszynę elektryczną, której konstrukcja jednoznacznie wskazuje na typ synchroniczny. Charakterystyczne oznaczenia biegunów magnetycznych 'S' i 'N' sugerują wykorzystanie stałego magnesu, co jest typowe dla maszyn synchronicznych. Dodatkowo, trójfazowe uzwojenie stojana (U, V, W) jest kluczowym elementem, który współpracuje z wirnikiem, aby utrzymać prędkość obrotową zsynchronizowaną z częstotliwością prądu w sieci, co czyni te maszyny niezwykle stabilnymi w działaniu. Maszyny synchroniczne mają szerokie zastosowania, od produkcji energii w elektrowniach po napędy w różnorodnych aplikacjach przemysłowych. Dzięki ich zdolności do pracy z wysoką efektywnością i kontrolą mocy czynnej oraz biernej, są one preferowanym rozwiązaniem w wielu systemach zasilania. W branży energetycznej, zgodność z normami IEC 60034-1 jest kluczowa dla zapewnienia jakości i bezpieczeństwa działania tych maszyn.

Pytanie 6

Która z wielkości elektrycznych jest mierzona w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Rezystancja przewodu ochronnego.
B. Impedancja przewodu neutralnego.
C. Rezystancja uziemienia.
D. Impedancja pętli zwarcia.
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumień dotyczących różnych rodzajów rezystancji i impedancji w instalacjach elektrycznych. Impedancja pętli zwarcia odnosi się do całkowitego oporu w obwodzie w przypadku zwarcia, a jej pomiar jest istotny, by zapewnić odpowiednie działanie zabezpieczeń, ale nie jest to to samo, co rezystancja przewodu ochronnego. Odpowiedź dotycząca rezystancji uziemienia również może być mylnie utożsamiana z pomiarem rezystancji przewodu ochronnego. Uziemienie ma na celu ochronę przed niebezpiecznymi napięciami, natomiast przewód ochronny pełni rolę zabezpieczającą w kontekście porażenia prądem. Impedancja przewodu neutralnego również nie jest związana z pomiarem rezystancji przewodu ochronnego; w zasadzie odnosi się do oporu, który występuje w przewodzie neutralnym w trakcie normalnej pracy instalacji. Typowym błędem myślowym jest mylenie tych pojęć i branie pod uwagę nieodpowiednich parametrów podczas pomiarów. Kluczowe jest zrozumienie specyfikacji oraz funkcji poszczególnych przewodów w systemach elektrycznych, co jest niezbędne do prawidłowego diagnozowania i konserwacji instalacji. Znajomość różnic między tymi wielkościami jest fundamentalna dla bezpieczeństwa i efektywności systemu elektrycznego.

Pytanie 7

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP55
B. IP33
C. IP44
D. IP20
Wybór właściwego stopnia ochrony IP jest kluczowym elementem przy projektowaniu instalacji elektrycznych, zwłaszcza w pomieszczeniach o podwyższonej wilgotności. Odpowiedzi sugerujące stopień ochrony niższy niż IP44, takie jak IP20 czy IP33, nie spełniają wymagań dla pomieszczeń wilgotnych. IP20 oznacza ochronę przed ciałami obcymi o średnicy większej niż 12,5 mm i brak ochrony przed wodą, co czyni je zupełnie nieodpowiednimi dla wilgotnych środowisk. Podobnie IP33, chociaż zapewnia pewną ochronę przed bryzgami wody pod kątem do 60 stopni, nie gwarantuje pełnej ochrony w warunkach, gdzie woda może pochodzić z różnych kierunków. Odpowiedź IP55, choć oferuje lepszą ochronę niż wymagana minimalna, jest często stosowana w bardziej wymagających środowiskach, np. na zewnątrz, gdzie wymagana jest zwiększona odporność na kurz i wodę. Wybór odpowiedniego stopnia ochrony jest kluczowy dla zapewnienia bezpieczeństwa i trwałości instalacji, dlatego warto być świadomym nie tylko wymogów minimalnych, ale i specyficznych warunków pracy urządzeń, aby unikać niepotrzebnych kosztów i zagrożeń związanych z nieodpowiednimi komponentami.

Pytanie 8

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. skutecznych
B. rażeniowych
C. dotykowych
D. krokowych
Mówiąc o napięciach dotykowych, rażeniowych czy krokowych, chociaż są istotne z punktu widzenia bezpieczeństwa, niekoniecznie są najlepszym sposobem na ocenę efektywności połączeń wyrównawczych. Napięcia dotykowe to te, które można poczuć, gdy dotykamy czegoś przewodzącego, ale to nie mówi nam zbyt wiele o tym, jak skutecznie działają połączenia wyrównawcze. Z napięciami rażeniowymi jest podobnie – one dotyczą kontaktu z niebezpiecznym przewodnikiem, ale także nie oceniają efektywności samego połączenia. Napięcia krokowe, które mogą wystąpić podczas awarii, mają większe znaczenie dla oceny ryzyka dla ludzi w pobliżu, ale znów nie dostarczają informacji o samych połączeniach. Dlatego poleganie na tych pomiarach może prowadzić do błędnych wniosków, bo nie biorą one pod uwagę całego rozkładu napięć w instalacji, a to w końcu może być mylące. Ważne jest, by rozróżniać kwestie bezpieczeństwa od skuteczności systemu ochrony. Prawdziwe pomiary napięć skutecznych dają nam ważne informacje, które pomagają upewnić się, że instalacja elektryczna spełnia normy, takie jak PN-IEC 60364, które mocno akcentują bezpieczeństwo oraz prawidłowe działanie systemów ochronnych.

Pytanie 9

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
B. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
C. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
D. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
Wybór narzędzi do montażu nie jest taki prosty, jakby się mogło wydawać. Odpowiedzi, które nie zawierają kluczowych narzędzi, takich jak szczypce do cięcia, czy przyrząd do ściągania powłoki, to poważny błąd. Szczypce uniwersalne mogą być fajne, ale nie do obcinania przewodów, bo można je łatwo uszkodzić. A młotek, serio? To narzędzie budowlane, nie elektryczne – może nie być idealne w tej sytuacji. Jak nie masz odpowiednich narzędzi do ściągania izolacji, to ograniczasz swoje możliwości przy robieniu porządnych połączeń, a to już prosta droga do problemów. Twój zestaw narzędzi powinien być na pewno skompletowany w sposób przemyślany, bo inaczej możesz mieć kłopoty z bezpieczeństwem. Rozumienie, jak różne narzędzia ze sobą współpracują, jest kluczowe w tej branży.

Pytanie 10

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 500 V
B. 1 000 V
C. 250 V
D. 2 500 V
Wybór napięcia probierczego o wartości 250 V jest niewłaściwy, ponieważ jest zbyt niskie do przeprowadzenia skutecznego testu izolacji w instalacjach o napięciu znamionowym 230/400 V. Użycie tak niskiego napięcia może nie ujawniać rzeczywistych problemów ze stanem izolacji, a co za tym idzie, może prowadzić do błędnych wniosków na temat jej jakości. Ponadto, napięcie 250 V nie spełnia wymagań normatywnych określonych przez IEC, które zalecają zastosowanie wyższego napięcia, aby efektywnie ocenić odporność izolacji na przebicia. Wybór 1000 V jako napięcia probierczego również może być nieadekwatny dla standardowych instalacji 230/400 V, ponieważ takie napięcie może powodować nadmierne obciążenie izolacji, co nie zawsze jest bezpieczne. Może to prowadzić do uszkodzenia izolacji, co w konsekwencji wiąże się z ryzykiem powstania awarii w instalacji. Warto również zauważyć, że napięcie 2500 V, mimo że jest stosowane w specyficznych przypadkach, takich jak testy na wytrzymałość izolacji w wysokonapięciowych instalacjach, jest zbytnio zawyżone w kontekście pomiarów w standardowych instalacjach elektrycznych. Przy wyborze odpowiedniego napięcia do testów, należy kierować się zaleceniami producentów oraz obowiązującymi normami bezpieczeństwa, aby zapewnić rzetelne i bezpieczne wyniki pomiarów.

Pytanie 11

Na podstawie przedstawionego schematu połączeń określ, kiedy nastąpi zadziałanie wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. Po załączeniu wyłącznika w obwodzie gniazd pokoi.
B. Po załączeniu wyłącznika w obwodzie łazienki.
C. Po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika.
D. Po załączeniu wyłącznika w obwodzie łazienki i podłączeniu odbiornika.
Wyłącznik różnicowoprądowy (RCD) ma kluczową rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych, szczególnie w obszarach o dużym ryzyku, jak łazienki czy kuchnie. Prawidłowa odpowiedź wskazuje, że wyłącznik zadziała po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika. RCD działa na zasadzie pomiaru różnicy prądów, które przepływają przez przewody fazowy i neutralny. Gdy różnica przekracza określony próg (najczęściej 30 mA), wyłącznik natychmiast przerywa obwód, co zapobiega porażeniu prądem. Na schemacie widać, że przewody fazowe są zamienione miejscami, co zwiększa ryzyko wystąpienia upływu prądu, zwłaszcza przy podłączeniu odbiornika. Zastosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które regulują zasady zabezpieczeń w instalacjach elektrycznych. Dlatego kluczowe jest, by każdy użytkownik instalacji elektrycznej miał świadomość, jak ważne jest ich prawidłowe działanie oraz regularne testowanie ich sprawności.

Pytanie 12

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
B. Użycie transformatora separacyjnego do zasilania
C. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
D. Montaż ochronników przepięciowych w głównej rozdzielnicy
Zamontowanie osłon zabezpieczających przewody przed działaniem promieni słonecznych jest kluczowym wymogiem przy instalacji elektrycznej w warunkach zewnętrznych. Ekspozycja na promieniowanie UV może prowadzić do degradacji materiałów izolacyjnych, co zwiększa ryzyko zwarć i awarii. Osłony chronią przewody przed niekorzystnymi warunkami atmosferycznymi, co jest szczególnie istotne w kontekście bezpieczeństwa użytkowania. Przykładem skutecznych osłon są rurki ochronne z PVC, które nie tylko izolują przewody, ale również chronią je przed mechanicznymi uszkodzeniami. Zgodnie z normą PN-IEC 60364, instalacje elektryczne muszą być projektowane w taki sposób, aby minimalizować ryzyko uszkodzeń, a stosowanie osłon to jedna z podstawowych zasad. Dodatkowo, regulacje branżowe podkreślają, że w przypadku instalacji na tynku, stosowanie takich zabezpieczeń jest nie tylko zalecane, ale wręcz wymagane, aby zapewnić długotrwałą i bezpieczną eksploatację systemu elektrycznego.

Pytanie 13

Złącze wtykowe przedstawione na rysunku przeznaczone jest do zastosowań w obszarach zagrożonych

Ilustracja do pytania
A. wybuchem pyłu.
B. nadmierną wilgotnością.
C. wzrostem temperatury.
D. wyziewami żrącymi.
Wybór odpowiedzi dotyczący wzrostu temperatury, wyziewów żrących czy nadmiernej wilgotności wskazuje na nieporozumienie dotyczące zastosowania technologii o oznaczeniu "Ex". Złącza wtykowe z tym oznaczeniem nie są projektowane do ochrony przed skutkami wzrostu temperatury, co może dotyczyć innego rodzaju zabezpieczeń, takich jak elementy chłodzące lub izolacje termiczne. Wyziewy żrące, np. kwasy czy inne substancje chemiczne, mogą w rzeczywistości wymagać złączy odpornych na korozję, co jest innym aspektem niż ochronne właściwości oznaczenia Ex. Nadmierna wilgotność to zjawisko, które również nie odnosi się do zagrożeń wybuchowych, lecz może prowadzić do problemów z korozją, co wymaga użycia złączy odpornych na działanie wilgoci. Kluczowym błędem w myśleniu jest utożsamienie złączy Ex z innymi zagrożeniami, które nie są związane z atmosferami wybuchowymi. W kontekście norm i regulacji, należy zrozumieć, że złącza Ex są certyfikowane wyłącznie dla specyficznych warunków pracy, co nie obejmuje pozostałych wymienionych zagrożeń, dlatego ich wybór powinien być ściśle powiązany z rzeczywistymi warunkami panującymi w danym środowisku pracy.

Pytanie 14

Jakiego pomiaru należy dokonać, aby ocenić efektywność ochrony przed porażeniem w przypadku uszkodzenia odbiornika klasy I w sieci TT?

A. Rezystancji uziomu, do którego dołączona jest obudowa odbiornika
B. Ciągłości przewodów fazowych
C. Rezystancji izolacji przewodu uziemiającego
D. Ciągłości przewodu neutralnego
Rezystancja uziomu, do którego dołączona jest obudowa odbiornika, jest kluczowym pomiarem w celu sprawdzenia skuteczności ochrony przeciwporażeniowej w systemach elektrycznych, w tym w sieciach TT. Odbiorniki I klasy ochronności wymagają, aby obudowa była trwale uziemiona, co zapewnia, że w przypadku wystąpienia awarii, prąd upływowy ma możliwość przepływu do ziemi, co minimalizuje ryzyko porażenia prądem elektrycznym. Pomiar rezystancji uziomu powinien być wykonany zgodnie z normami, takimi jak PN-IEC 60364, które zalecają, aby wartość ta nie przekraczała 10 Ω dla zapewnienia efektywnej ochrony. Przykładowo, w instalacjach przemysłowych, gdzie używane są urządzenia o dużej mocy, niska rezystancja uziomu jest niezbędna, aby zapewnić szybkie działanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe. Ponadto, w praktyce, warto przeprowadzać regularne pomiary rezystancji uziomu, aby upewnić się, że warunki uziemienia nie uległy zmianie wraz z upływem czasu czy też w wyniku warunków atmosferycznych, co może wpłynąć na bezpieczeństwo użytkowników. Jest to podstawowy krok w procesie zarządzania ryzykiem w instalacjach elektrycznych.

Pytanie 15

Co powoduje zwęglenie izolacji na końcu przewodu fazowego blisko zacisku w puszce rozgałęźnej?

A. Zbyt mały przekrój użytego przewodu
B. Zbyt wysoka wartość prądu długotrwałego
C. Wzrost napięcia zasilającego spowodowany przepięciem
D. Poluzowanie śruby mocującej w puszce
Zbyt duża wartość prądu długotrwałego jest często mylnie postrzegana jako główna przyczyna uszkodzeń instalacji elektrycznych. W rzeczywistości, przewody są projektowane z odpowiednimi normami i tolerancjami, które uwzględniają różne wartości prądu, a ich nadmierne obciążenie występuje w przypadkach, gdy przewody są nieodpowiednio dobrane do zastosowania. Kolejnym błędnym wnioskiem jest za mały przekrój zastosowanego przewodu. W przypadku, gdy przewód jest zbyt cienki, nie jest to jedyna przyczyna uszkodzenia izolacji. W rzeczywistości, nawet przewody o odpowiednim przekroju mogą ulegać uszkodzeniom, jeśli nie są prawidłowo zamocowane lub jeżeli występują inne problemy techniczne. Wzrost napięcia zasilającego spowodowany przepięciem również jest rzadziej przyczyną zwęglenia, ponieważ większość instalacji jest wyposażona w odpowiednie zabezpieczenia, które mają na celu ochronę przed takimi sytuacjami. Zrozumienie właściwego kontekstu dla tych problemów jest kluczowe w zapobieganiu ich występowaniu. Często błędne wnioski opierają się na braku zrozumienia zasad działania instalacji elektrycznych oraz ich projektowania zgodnie z normami. Dlatego istotne jest, aby osoby zajmujące się instalacjami elektrycznymi były dobrze wykształcone i miały świadomość znaczenia odpowiednich praktyk w ich pracy.

Pytanie 16

Podczas korzystania z sprawnie działającego piekarnika elektrycznego z termostatem, żarówka oświetleniowa w pokoju często nieznacznie przygasa. Jakie mogą być przyczyny tego zjawiska?

A. Słaby styk w lampie
B. Zbyt mały przekrój przewodów zasilających pomieszczenie
C. Uszkodzony obwód zasilający piekarnik
D. Nadpalony styk wyłącznika światła
Nadpalony styk wyłącznika oświetlenia, słaby styk w oprawie oświetleniowej oraz uszkodzony obwód zasilający piekarnik to potencjalne, ale mniej prawdopodobne przyczyny przygasania żarówki podczas pracy piekarnika. Nadpalony styk wyłącznika oświetlenia może rzeczywiście powodować problemy z przewodnictwem, co może prowadzić do spadków napięcia, ale zazwyczaj objawiają się one w sposób bardziej intensywny, np. poprzez migotanie światła lub całkowite wyłączenie oświetlenia. Słaby styk w oprawie oświetleniowej również może skutkować problemami, jednak najczęściej objawia się to w postaci niestabilnego działania konkretnej żarówki, a nie ogólnym przygasaniem. Uszkodzony obwód zasilający piekarnik może sprawiać, że urządzenie nie działa prawidłowo, ale w przypadku dobrze funkcjonujących piekarników, zjawisko przygasania żarówek jest bardziej powiązane z przeciążeniem obwodu. Typowe błędy myślowe prowadzące do błędnych wniosków obejmują skupienie się na problemach lokalnych, zamiast analizować cały obwód zasilający. W praktyce, diagnozując problemy z instalacją elektryczną, konieczne jest zrozumienie interakcji między urządzeniami i ich wpływu na infrastrukturę elektryczną, co z kolei wymaga znajomości przepisów i standardów dotyczących instalacji elektrycznych.

Pytanie 17

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 2500 V
B. 1000 V
C. 250 V
D. 500 V
Pomiar rezystancji izolacji przewodu YDY 5x6 450/700 V powinien być przeprowadzany przy użyciu induktora na napięciu 1000 V. Taki poziom napięcia jest zgodny z normami i standardami branżowymi, które zalecają używanie wyższych napięć w celu uzyskania dokładnych i wiarygodnych wyników pomiarów izolacji. Przy pomiarze rezystancji izolacji na napięciu 1000 V można skutecznie sprawdzić, czy izolacja przewodu wytrzymuje wymagane napięcia robocze oraz czy nie występują mikrouszkodzenia, które mogłyby prowadzić do awarii. Przykładem zastosowania pomiaru na takim poziomie napięcia jest testowanie instalacji elektrycznych w budynkach przemysłowych, gdzie zabezpieczenie przed porażeniem prądem jest kluczowe. Dobrą praktyką jest także przeprowadzanie takich pomiarów w cyklu konserwacyjnym, aby zapobiec ewentualnym uszkodzeniom i zapewnić bezpieczeństwo użytkowników.

Pytanie 18

Które z przedstawionych narzędzi przeznaczone jest do zdejmowania izolacji z żył przewodów elektrycznych?

Ilustracja do pytania
A. Narzędzie 3.
B. Narzędzie 1.
C. Narzędzie 2.
D. Narzędzie 4.
Wybór jednego z pozostałych narzędzi wskazuje na pewne nieporozumienia dotyczące ich przeznaczenia oraz zastosowania w pracy z przewodami elektrycznymi. Zaciskarka do końcówek kablowych, mimo że jest narzędziem niezwykle użytecznym w elektryce, służy wyłącznie do mocowania końcówek do przewodów, a nie do zdejmowania izolacji. Użycie tego narzędzia do tej czynności może prowadzić do uszkodzenia przewodu i stwarzać ryzyko nieprawidłowego połączenia. Kombinerki, które również zostały wskazane, to narzędzie uniwersalne, które znajduje zastosowanie w wielu pracach, ale ich konstrukcja nie umożliwia precyzyjnego ściągania izolacji; mogą one prowadzić do przypadkowego przetarcia lub przecięcia żyły. Obcinak do przewodów, choć przydatny do cięcia, nie jest zaprojektowany do zdejmowania izolacji, co czyni go nieodpowiednim wyborem w tej sytuacji. Powszechnym błędem w rozumieniu funkcji narzędzi elektrycznych jest mylenie ich zastosowań oraz brak wiedzy na temat specyfikacji technicznych. Zrozumienie, które narzędzie odpowiada konkretnym wymaganiom, jest kluczowe dla zapewnienia jakości i bezpieczeństwa prac elektrycznych.

Pytanie 19

Której klasy ogranicznik przepięć przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy A
B. Klasy B
C. Klasy D
D. Klasy C
Wybór odpowiedzi spośród klas A, B czy C jest nieprawidłowy, ponieważ te klasy ograniczników przepięć mają inne zastosowania i nie odpowiadają na konkretne potrzeby ochrony końcowych urządzeń elektronicznych. Ograniczniki klasy A są przeznaczone do ochrony instalacji przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych, co czyni je bardziej odpowiednimi dla systemów zasilających i infrastruktury budowlanej, a nie dla urządzeń użytkowych. Klasa B z kolei jest zarezerwowana dla zastosowań przemysłowych, gdzie konieczne jest ograniczenie przepięć na poziomie wyższym niż w przypadku klasy D, co czyni je niewłaściwym wyborem dla urządzeń codziennego użytku. Klasa C, stosowana w instalacjach niskonapięciowych, również nie zapewnia odpowiedniej ochrony dla końcowych urządzeń, które wymagają bardziej specyficznej i bezpośredniej ochrony. Kluczowym błędem, który często prowadzi do wyboru niewłaściwej klasy, jest mylenie ogólnych właściwości ograniczników z ich specyfiką zastosowania. Każda klasa ograniczników ma określone parametry i przeznaczenie, które powinny być zgodne z wymaganiami danego systemu. Zrozumienie różnic między tymi klasami jest kluczowe dla właściwego doboru urządzeń ochronnych w celu zapewnienia optymalnej ochrony i wydajności systemów elektronicznych.

Pytanie 20

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
B. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
C. Do montażu zacisków zakleszczających.
D. Do formowania oczek na końcach żył jednodrutowych.
Te kleszcze, co są na obrazku, to narzędzie do robienia oczek na końcach żyłek, które mają tylko jeden drut. Mają takie stożkowe szczęki, które fajnie pozwalają wyprofilować drut, żeby dobrze się łączył z innymi częściami instalacji elektrycznej. Można je zobaczyć w akcji tam, gdzie trzeba zrobić mocne i trwałe połączenia, co jest ważne zarówno w przemyśle, jak i w domach. Te oczka pomagają przyczepić przewody do zacisków, a to jest zgodne z normami, które mówią, jak to wszystko powinno być robione, żeby było bezpiecznie i trwale. Dobrze używać takich narzędzi, bo w przeciwnym razie można łatwo uszkodzić drut. Gdy dobrze uformujemy drut kleszczami, zmniejszamy ryzyko zwarć i innych problemów technicznych, co ma duże znaczenie, gdy pracuje się z elektryką.

Pytanie 21

Na podstawie przedstawionego schematu instalacji określ liczbę jednofazowych obwodów gniazd wtyczkowych.

Ilustracja do pytania
A. 5 obwodów.
B. 14 obwodów.
C. 7 obwodów.
D. 12 obwodów.
Wybór innej liczby obwodów gniazd wtyczkowych odzwierciedla typowe nieporozumienia, które mogą występować w procesie analizy schematów instalacyjnych. Często można spotkać się z nadinterpretacją liczby dostępnych gniazd, co prowadzi do błędnych wniosków. Na przykład, odpowiedzi takie jak "7 obwodów" czy "14 obwodów" mogą wynikać z założenia, że każde gniazdo zużywa oddzielny obwód, co nie jest zgodne z praktycznymi standardami instalacji elektrycznej. W rzeczywistości, projektując instalację, należy uwzględnić fakt, że kilka gniazd może być zasilanych z jednego obwodu, jednak to zawsze musi być zgodne z maksymalnymi obciążeniami, jakie przewidziano dla danego obwodu. Warto również wspomnieć, że nieprawidłowe wyrażenia liczby obwodów mogą prowadzić do zagrożeń związanych z przeciążeniem, co jest niezgodne z normami bezpieczeństwa elektrycznego. Podstawą obliczeń powinna być liczba wyłączników nadprądowych przypisanych do gniazd, co w tym przypadku jasno wskazuje na 5 obwodów. Dobrą praktyką w projektowaniu instalacji elektrycznych jest przestrzeganie zasad wynikających z norm, co zapewnia nie tylko bezpieczeństwo, ale również efektywność działania całego systemu. Dlatego ważne jest, aby nie opierać się na domysłach, ale na konkretnej analizie schematów instalacyjnych.

Pytanie 22

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Zwarcie doziemne przewodu neutralnego
B. Uszkodzenie izolacji przewodu ochronnego
C. Przerwa w przewodzie neutralnym
D. Przerwa w przewodzie ochronnym
Uszkodzenie izolacji przewodu ochronnego, przerwa w przewodzie neutralnym oraz przerwa w przewodzie ochronnym to zjawiska, które mogą wpływać na bezpieczeństwo instalacji elektrycznej, lecz nie są bezpośrednio związane z niemożnością załączenia wyłącznika różnicowoprądowego. Przede wszystkim, uszkodzenie izolacji przewodu ochronnego oznacza, że przewód ten może przewodzić prąd do uziemienia, co z kolei może prowadzić do niebezpiecznych sytuacji, ale nie uniemożliwia załączenia RCD. Podobnie, przerwa w przewodzie neutralnym może wpłynąć na stabilność pracy urządzeń, jednak RCD może funkcjonować, jeżeli prąd wpływający i wypływający są zgodne, nawet gdy przewód neutralny jest przerwany przy końcach obwodu. Przerwa w przewodzie ochronnym jest niebezpieczna i może być powodem zagrożenia, ale nie działa bezpośrednio na zasadzie RCD. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków mogą obejmować mylenie funkcji przewodów neutralnych i ochronnych oraz niezrozumienie zasady działania wyłączników różnicowoprądowych. Wiedza na temat tych zjawisk jest kluczowa dla bezpiecznego projektowania i eksploatacji instalacji elektrycznych, a ich nieznajomość może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa użytkowników oraz całych systemów elektrycznych.

Pytanie 23

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Odpowiedź D. jest poprawna, ponieważ detektor przewodów elektrycznych to specjalistyczne narzędzie, które umożliwia lokalizację przewodów w ścianach oraz innych elementach budowlanych. W przypadku instalacji podtynkowych, gdzie przewody są ukryte, kluczowe jest precyzyjne określenie ich położenia, aby uniknąć uszkodzeń podczas prac remontowych czy budowlanych. Detektory te działają na zasadzie wykrywania pola elektromagnetycznego emitowanego przez przewody, co pozwala na ich skuteczną lokalizację bez potrzeby przeprowadzania skomplikowanych badań. Dzięki zastosowaniu detektorów, można również zminimalizować ryzyko uszkodzenia istniejących instalacji. W branży elektrycznej stosowanie tego typu przyrządów jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami, co podkreśla ich znaczenie w planowaniu i realizacji instalacji elektrycznych.

Pytanie 24

Jakie zmiany w parametrach obwodu elektrycznego wiążą się z zamianą przewodu typu ADYt 3×2,5 na przewód typu YDYt 3×2,5?

A. Obniżenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
B. Obniżenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
C. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
D. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
Wprowadzenie przewodu YDYt 3×2,5 zamiast ADYt 3×2,5 wiąże się z koniecznością zrozumienia różnic w ich konstrukcji i zastosowaniu. Przewody ADYt, będące przewodami aluminiowymi, mają ograniczone właściwości mechaniczne i elektryczne w porównaniu do ich miedziowych odpowiedników. Zmniejszenie wartości prądu dopuszczalnego długotrwale, jak sugerują niektóre odpowiedzi, jest wynikiem mylnego pojmowania właściwości materiałów. Przewody YDYt, wykonane z miedzi, mają znacznie lepsze przewodnictwo elektryczne, co oznacza, że mogą przewodzić większe prądy bez ryzyka przegrzania. Wartości rezystancji izolacji są także kluczowe przy ocenie jakości przewodu; błędne założenie, że wymiana na przewód YDYt zmniejsza tę rezystancję, jest niezgodne z rzeczywistością. Wyższa rezystancja izolacji w przewodach YDYt przyczynia się do ich większej niezawodności i odporności na czynniki atmosferyczne. Ponadto, w praktyce stosowanie przewodów miedziowych w miejscach o dużym obciążeniu prądowym jest normą, a ich zastosowanie w instalacjach elektrycznych zgodnych z normami IEC oraz PN zwiększa bezpieczeństwo i efektywność energetyczną. Zatem, przy wyborze przewodów elektrycznych, kluczowe jest zrozumienie ich specyfikacji oraz warunków, w jakich będą eksploatowane, aby uniknąć nieporozumień związanych z ich parametrami.

Pytanie 25

Który z przedstawionych na rysunkach przewodów należy użyć do montażu obwodów zasilających jednofazowej instalacji elektrycznej w układzie TN-S?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Odpowiedź C jest poprawna, ponieważ przewód, który przedstawia, spełnia wymogi dotyczące kolorów przewodów w instalacjach elektrycznych w układzie TN-S. Zgodnie z normą PN-HD 308 S2:2009, kolor brązowy jest przeznaczony dla przewodów fazowych (L), kolor niebieski dla przewodów neutralnych (N), a kolor żółto-zielony dla przewodów ochronnych (PE). Przewody te są stosowane w systemach zasilania jednofazowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowania i poprawności działania instalacji. W kontekście praktycznym, użycie przewodu zgodnego z tymi normami pozwala na uniknięcie błędów przy podłączaniu urządzeń elektrycznych, co może prowadzić do uszkodzeń sprzętu lub zagrożenia dla życia i zdrowia użytkowników. W przemyśle elektrycznym znajomość i stosowanie tych standardów jest kluczowe dla zapewnienia zgodności z przepisami oraz dla bezpieczeństwa instalacji.

Pytanie 26

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 1-20 krotności prądu znamionowego
B. 20-30 krotności prądu znamionowego
C. 3-5 krotności prądu znamionowego
D. 5-10 krotności prądu znamionowego
Wybór odpowiedzi "5-10 krotności prądu znamionowego" dla charakterystyki C wyłączników nadprądowych jest poprawny, ponieważ odpowiada on standardowym wartościom zdefiniowanym w normach elektrotechnicznych. Wyłączniki charakteryzujące się tym zakresem są zaprojektowane tak, aby reagować na przeciążenia oraz krótkie spięcia w sytuacjach, gdy prąd wzrasta do poziomów znacznie wyższych niż prąd znamionowy. W praktyce oznacza to, że wyłączniki te skutecznie chronią instalacje elektryczne przed uszkodzeniami, które mogą być spowodowane nagłymi skokami prądu. Przykładem zastosowania wyłączników o charakterystyce C mogą być instalacje elektryczne w obiektach przemysłowych, gdzie urządzenia takie jak silniki i transformatory mogą generować znaczne prądy rozruchowe. Dobrze dobrany wyłącznik nadprądowy, zgodnie z normą PN-EN 60898, w odpowiednich sytuacjach zabezpiecza przed skutkami przeciążeń, co jest kluczowe dla bezpiecznej eksploatacji urządzeń oraz minimalizowania ryzyka pożarów i awarii.

Pytanie 27

Który z łączników instalacyjnych przedstawionych na rysunkach należy zastosować w układzie realizującym sterowanie oświetleniem z dwóch miejsc?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Łącznik schodowy, który wybrałeś, jest kluczowym elementem w systemach oświetleniowych, umożliwiającym sterowanie z dwóch różnych miejsc, co jest niezwykle przydatne w wielu zastosowaniach, jak np. w długich korytarzach czy na schodach. Dzięki zastosowaniu tego typu łącznika można w wygodny sposób włączać i wyłączać światło, co zwiększa komfort użytkowników i bezpieczeństwo. Łączniki schodowe są również zgodne z obowiązującymi normami, które zalecają ich użycie w miejscach wymagających podwójnego sterowania. W praktyce, stosując łącznik schodowy, pamiętaj o odpowiednim okablowaniu oraz zastosowaniu odpowiednich zabezpieczeń, aby zapewnić długotrwałe i niezawodne działanie instalacji. Warto również zwrócić uwagę na jakość użytych materiałów oraz zgodność z dyrektywami Unii Europejskiej, które regulują kwestie bezpieczeństwa elektrycznego, co podkreśla znaczenie dobrych praktyk w branży.

Pytanie 28

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
B. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
C. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
D. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 29

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. C16
B. D10
C. B25
D. C20
Odpowiedzi C16, C20 i D10 to nie są najlepsze wybory i to z kilku powodów. Przede wszystkim, wybierając wyłącznik nadmiarowo-prądowy, trzeba brać pod uwagę przewidywany prąd zwarciowy. Przy 150 A, C16 i C20 mogą być za małe, bo ich prąd znamionowy nie jest wystarczający. C16 by działał za szybko w normalnych warunkach, co oznacza, że mógłby wyłączać się bez potrzeby, a to nie jest dobre, zwłaszcza przy takich prądach zwarciowych. C20, choć lepszy od C16, nadal nie spełnia wymagań, które mogą być w awaryjnych sytuacjach. A D10? No, to już w ogóle nie ma sensu, bo 10 A to zdecydowanie za mało na prąd zwarciowy wynoszący 150 A. Używanie takich słabych wyłączników może prowadzić do częstych wyłączeń i narażenia instalacji na różne niebezpieczeństwa. W praktyce to może skończyć się poważnymi kłopotami, nawet porażeniem elektrycznym. Dlatego tak ważne jest, żeby trzymać się norm i przepisów.

Pytanie 30

W którym z punktów spośród wskazanych strzałkami na charakterystyce prądowo-napięciowej diody prostowniczej przedstawionej na wykresie odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. W punkcie A
B. W punkcie D
C. W punkcie B
D. W punkcie C
Wybór punktów B, C albo D jakby nie do końca trafiony. To może sugerować, że nie do końca rozumiesz, jak działa charakterystyka prądowo-napięciowa diody. Te punkty są w strefie, gdzie zmiany napięcia nie powodują szybkiego wzrostu prądu, co jest kluczowe do określenia momentu przebicia. Punkt B zazwyczaj jest w okolicach nasycenia diody, a nie w miejscu, gdzie zachodzi przebicie lawinowe. Punkt C to z kolei obszar zaporowy, w którym zwiększenie napięcia nie wpływa na przewodnictwo. Punkt D najczęściej pokazuje, że napięcie przekracza dopuszczalne wartości, co może uszkodzić diodę. Często myli się te punkty z momentem, kiedy dioda zaczyna przewodzić. Dlatego ważne jest, żeby naprawdę przyjrzeć się tej charakterystyce prądowo-napięciowej i wiedzieć, jakie parametry są kluczowe do prawidłowego działania diod w układach.

Pytanie 31

Jaka jest wartość bezwzględna błędu pomiaru natężenia prądu, jeśli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla danego zakresu pomiarowego na
±(1 % +2 cyfry)?

A. ±2,35 mA
B. ±0,37 mA
C. ±0,35 mA
D. ±0,02 mA
W analizie błędów pomiarowych kluczowe jest zrozumienie, jak oblicza się wartość błędu na podstawie specyfikacji urządzenia. Błędne odpowiedzi wynikają często z nieprawidłowego zastosowania wzorów lub zrozumienia zasad dotyczących dokładności. Na przykład, niektóre osoby mogą pomylić 1% z wartością całkowitą pomiaru, co prowadzi do oszacowania błędu jako ±0,35 mA. Jednakże w takim przypadku nie uwzględnia się dodatkowego błędu stałego, który w tym przypadku wynosi 0,02 mA. Z kolei wybranie wartości ±2,35 mA jest zupełnie nieadekwatne, ponieważ w praktyce nie ma podstaw do przyjęcia tak dużego błędu w odniesieniu do wskazania 35 mA, co wskazuje na fundamentalne nieporozumienie w zakresie norm dotyczących dokładności pomiarów. Umożliwia to zrozumienie, że błędy systematyczne i przypadkowe muszą być brane pod uwagę w kontekście całkowitych wartości określonych przez producentów. Dlatego w pomiarach elektrycznych rekomenduje się korzystanie z dokładnych procedur obliczeniowych, które uwzględniają zarówno błędy procentowe, jak i stałe, co pozwala na uzyskanie rzetelnych wyników pomiarów. Ponadto, brak wiedzy na temat tego, jak poprawnie interpretować specyfikacje techniczne urządzeń pomiarowych, może prowadzić do poważnych błędów w ocenie wyników pomiarów, co w praktyce przekłada się na nieefektywność lub błędne decyzje w kontekście zastosowań inżynieryjnych.

Pytanie 32

Którym symbolem graficznym oznacza się prowadzenie przewodów w tynku na schemacie ideowym projektowanej instalacji elektrycznej?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź D jest poprawna, ponieważ symbol graficzny oznaczający prowadzenie przewodów w tynku na schemacie ideowym instalacji elektrycznej jest zgodny z przyjętymi normami. W praktyce takie oznaczenie jest używane, aby zapewnić jasność i zrozumienie w dokumentacji projektowej. Przewody prowadzone w tynku są istotnym elementem każdej instalacji elektrycznej, a ich oznaczenie za pomocą przerywanej linii po bokach ułatwia identyfikację i lokalizację instalacji w danym obiekcie. Na przykład, podczas wykonywania prac budowlanych czy modernizacyjnych, zespoły instalacyjne mogą szybko zidentyfikować miejsca, gdzie należy prowadzić dodatkowe przewody lub prowadzić modyfikacje. Ponadto, stosowanie standardowych symboli w projektach elektrycznych jest zgodne z normami PN-IEC 60617, co zwiększa spójność i profesjonalizm dokumentacji inżynierskiej.

Pytanie 33

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Wymiana uszkodzonych gniazd wtyczkowych
B. Przesunięcie miejsc montażu opraw oświetleniowych
C. Zamiana zużytych urządzeń na nowe
D. Instalacja nowych punktów świetlnych
Wymiana uszkodzonych gniazd wtyczkowych jest kluczowym elementem prac konserwacyjnych instalacji elektrycznych w mieszkaniach oraz budynkach użyteczności publicznej. Gniazda wtyczkowe stanowią bezpośredni punkt dostępu do energii elektrycznej, a ich uszkodzenie może prowadzić do poważnych zagrożeń, takich jak zwarcia, pożary czy porażenia prądowe. Właściwe utrzymanie gniazd wtyczkowych zgodnie z normami PN-IEC 60364 oraz PN-EN 60669 zapewnia bezpieczeństwo użytkowników i niezawodność instalacji. Wymiana uszkodzonych gniazd powinna być przeprowadzana przez wykwalifikowanych elektryków, którzy potrafią ocenić stan instalacji oraz wybrać odpowiednie komponenty do wymiany. Praktycznym przykładem jest sytuacja, gdy w wyniku uszkodzenia mechanicznego gniazdo nie działa poprawnie, co może wpływać na funkcjonalność podłączonych urządzeń. Regularne przeglądy oraz wymiana uszkodzonych części to praktyka zgodna z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 34

Kabel typu YAKY przedstawiono na rysunku

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór odpowiedzi innej niż B może wynikać z nieporozumienia dotyczącego specyfikacji kabli elektroenergetycznych. Kable typu YAKY charakteryzują się szczególnymi właściwościami, które odróżniają je od innych typów kabli. Na przykład, kable oznaczone jako A, C lub D mogą mieć różne kształty przekroju, co wpływa na ich właściwości mechaniczne oraz zastosowanie. Kable o prostokątnym lub innym niż okrągły przekroju nie spełniają standardów dla kabli YAKY, co może prowadzić do błędnych wniosków przy ich wyborze. Często mylnie zakłada się, że wszystkie kable izolowane spełniają te same funkcje, jednak każdy typ kabla ma swoją specyfikę. Kable YAKY zastosowane w instalacjach zewnętrznych wymagają dodatkowych właściwości, takich jak odporność na działanie promieni UV oraz zmienne warunki atmosferyczne, co nie jest zapewnione w przypadku innych typów kabli. Często występuje także błąd myślowy polegający na myleniu kabli energetycznych z innymi rodzajami kabli, np. sygnalizacyjnymi, które mogą mieć zupełnie inną konstrukcję i przeznaczenie. Aby skutecznie projektować systemy elektroenergetyczne, ważne jest, aby zwracać uwagę na szczegółowe właściwości kabli zgodnie z obowiązującymi normami oraz standardami branżowymi.

Pytanie 35

Na którym rysunku przedstawiono schemat montażowy poprawnie działającego układu, połączonego zgodnie z pokazanym schematem ideowym i zasadami montażu obwodów oświetleniowych?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Analizując błędne odpowiedzi, można dostrzec szereg nieprawidłowości, które mogą prowadzić do problemów w działaniu układu oświetleniowego. W przypadku połączeń, które nie są zgodne z zasadami montażu, jak w odpowiedzi A i C, występuje problem z podłączeniem przewodu neutralnego, co jest kluczowe dla prawidłowego funkcjonowania całego systemu. Przewód neutralny musi być podłączony właściwie, aby zapewnić powrót prądu z urządzenia do źródła zasilania. Niepoprawne połączenia mogą skutkować nieprawidłowym działaniem łączników, a nawet uszkodzeniem elementów instalacji. W odpowiedzi B zauważamy błąd w połączeniu ostatniego łącznika, co nie tylko uniemożliwia działanie układu, ale także stwarza ryzyko dla bezpieczeństwa, gdyż może prowadzić do niekontrolowanych wyładowań elektrycznych. W praktyce każdy element instalacji elektrycznej musi być starannie przemyślany i spełniać określone normy, aby zminimalizować ryzyko awarii. Często popełniane błędy myślowe polegają na niepełnym zrozumieniu zasad działania obwodów oświetleniowych oraz ignorowaniu standardów dotyczących instalacji elektrycznych. Zrozumienie fundamentalnych zasad dotyczących obwodów oraz ich prawidłowych połączeń jest niezbędne dla zachowania bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.

Pytanie 36

W jakim typie układu sieciowego możemy spotkać przewód PEN?

A. IT
B. TT
C. TN-C
D. TN-S
Odpowiedź TN-C jest prawidłowa, ponieważ w tym układzie sieciowym przewód PEN łączy funkcje przewodu neutralnego (N) i ochronnego (PE). Układ TN-C jest stosowany w wielu instalacjach elektrycznych, w tym w budynkach użyteczności publicznej oraz w przemyśle, gdzie zapewnia zarówno transport energii, jak i ochronę przed porażeniem elektrycznym. Kluczowym aspektem tego układu jest to, że przewód PEN jest wspólny dla wielu odbiorników i umożliwia efektywne prowadzenie instalacji przy ograniczeniu liczby przewodów. Zgodnie z normą PN-EN 60364, przewód PEN musi być odpowiednio zaprojektowany i wykonany, aby zapewnić wysoką niezawodność oraz bezpieczeństwo użytkowników. W praktyce stosowanie przewodu PEN w układzie TN-C jest również korzystne z punktu widzenia kosztów, ponieważ ogranicza ilość potrzebnych przewodów, co przekłada się na mniejsze wydatki materiałowe oraz prostotę instalacji. Na przykład w wielu budynkach mieszkalnych stosuje się układ TN-C, co pozwala na wydajne i bezpieczne zasilanie różnych urządzeń elektrycznych.

Pytanie 37

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Półprzewodnikowe.
B. Wyładowcze wysokoprężne.
C. Żarowe.
D. Wyładowcze niskoprężne.
Odpowiedź "Żarowe" jest prawidłowa, ponieważ na ilustracji przedstawiono lampę halogenową, stanowiącą jeden z typów żarówek. Żarówki halogenowe działają na zasadzie żarzenia się włókna wolframowego w atmosferze gazu halogenowego, co pozwala na uzyskanie wyższej efektywności świetlnej oraz dłuższej żywotności w porównaniu do tradycyjnych żarówek. W praktyce, lampy halogenowe są szeroko stosowane w oświetleniu domowym, biurowym oraz w zastosowaniach przemysłowych, gdzie wymagana jest intensywna biel i wysoka jakość światła. Dzięki ich zdolności do wytwarzania naturalnego, białego światła, są często wykorzystywane w oświetleniu akcentującym, a także w reflektorach. Warto również zauważyć, że lampy halogenowe są zgodne z normami dotyczącymi efektywności energetycznej, co czyni je dobrym wyborem w kontekście zrównoważonego rozwoju.

Pytanie 38

Jakie minimalne napięcie znamionowe może posiadać izolacja przewodów używanych w sieci trójfazowej o niskim napięciu 230/400 V?

A. 300/300 V
B. 100/100 V
C. 300/500 V
D. 450/750 V
Izolacja przewodów w sieciach elektrycznych jest kluczowym elementem zapewniającym bezpieczeństwo i efektywność systemów zasilających. Wybór niewłaściwego napięcia znamionowego może prowadzić do poważnych konsekwencji, takich jak uszkodzenie przewodów, ryzyko porażenia prądem, a nawet pożarów. Odpowiedzi takie jak 300/300 V, 100/100 V czy 450/750 V mogą wydawać się atrakcyjne, jednak każda z nich ma swoje ograniczenia i nie spełnia wymagań dla instalacji niskonapięciowych. Na przykład, napięcie 300/300 V jest zbyt niskie w kontekście zastosowań niskonapięciowych, co może prowadzić do uszkodzenia izolacji w przypadku wystąpienia zwarcia. Natomiast 100/100 V jest zdecydowanie niewystarczające dla standardowych instalacji trójfazowych. Z kolei 450/750 V, mimo że może wyglądać na odpowiednie, jest zbyt wysokie dla nominalnych wartości napięcia 230/400 V, co może prowadzić do nieoptymalnego doboru komponentów w instalacji. Dlatego kluczowe jest stosowanie przewodów o odpowiednich dla danego zastosowania parametrach, jak 300/500 V, co zapewnia bezpieczeństwo oraz efektywność działania całego systemu elektrycznego. Zrozumienie norm i standardów, takich jak PN-EN 60228, jest niezbędne dla inżynierów i techników zajmujących się projektowaniem oraz instalowaniem systemów elektrycznych.

Pytanie 39

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. określenie czasu oraz prądu zadziałania wyłącznika RCD
B. zweryfikowanie ciągłości połączeń w instalacji
C. przeprowadzenie pomiarów impedancji pętli zwarcia
D. wykonanie pomiaru rezystancji uziemienia
Sprawdzanie ciągłości połączeń w instalacji, chociaż ważne dla ogólnego bezpieczeństwa, nie jest bezpośrednio związane z oceną skuteczności wyłączenia zasilania w systemie TN. Często można mylnie sądzić, że zapewnienie ciągłości połączeń jest wystarczające do zapewnienia bezpieczeństwa użytkowników. Jednakże nawet jeśli ciągłość połączenia jest zachowana, nie gwarantuje to, że zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), zadziałają w odpowiednim czasie. Wyznaczanie czasu i prądu zadziałania wyłącznika RCD jest również istotne, ale nie dostarcza informacji o impedancji pętli zwarcia, która jest kluczowa do oceny, czy ochrona przed zwarciami jest wystarczająca. Mierzenie rezystancji uziemienia to kolejny ważny aspekt, ale jego wyniki nie zastąpią pomiaru impedancji pętli zwarcia, który jest bezpośrednim wskaźnikiem skuteczności działania zabezpieczeń przy wystąpieniu niebezpiecznych sytuacji. W związku z tym, pomiar impedancji pętli zwarcia powinien być priorytetem dla inżynierów i techników zajmujących się instalacjami elektrycznymi, aby zapewnić ich właściwe działanie w sytuacjach awaryjnych.

Pytanie 40

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 600/1000 V
B. 450/750 V
C. 300/300 V
D. 300/500 V
Wybór napięcia dla przewodów elektrycznych to bardzo ważna sprawa, bo wpływa na ich bezpieczeństwo i niezawodność. Przewody o napięciach 600/1000 V, 300/500 V i 300/300 V nie nadają się do instalacji jednofazowych przy 230/400 V, bo nie spełniają minimalnych wymogów. Takie 600/1000 V są robione do cięższych warunków, więc są drogie i niepotrzebne tam, gdzie wystarczą przewody 450/750 V. Natomiast 300/500 V i 300/300 V mają za małe wartości, co zwiększa ryzyko uszkodzeń i awarii. Użycie takich przewodów w instalacjach jednofazowych może prowadzić do problemów z bezpieczeństwem, jak przepięcia czy porażenia. Wiem, że często to wynika z braku wiedzy o standardach w branży. Ważne jest, żeby projektanci i instalatorzy rozumieli te specyfikacje, by uniknąć niebezpiecznych sytuacji i zapewnić, że instalacje elektryczne będą działać długo i sprawnie.