Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 19 grudnia 2025 11:36
  • Data zakończenia: 19 grudnia 2025 12:20

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W topologii fizycznej gwiazdy wszystkie urządzenia działające w sieci są

A. podłączone do jednej magistrali
B. podłączone do węzła sieci
C. połączone z dwoma sąsiadującymi komputerami
D. połączone pomiędzy sobą odcinkami kabla tworząc zamknięty pierścień
W topologii fizycznej gwiazdy wszystkie urządzenia w sieci są podłączone do centralnego węzła, którym najczęściej jest przełącznik (switch) lub koncentrator (hub). Taki układ pozwala na zorganizowanie komunikacji w sieci w sposób efektywny i przejrzysty. Każde urządzenie ma indywidualne połączenie z węzłem, co umożliwia niezależną komunikację, a także zwiększa odporność na awarie. W przypadku, gdy jedno z urządzeń przestaje działać, pozostałe nie są bezpośrednio dotknięte, co jest kluczowe dla ciągłości działania sieci. Przykładowo, w biurach często stosuje się topologię gwiazdy, aby zapewnić łatwą rozbudowę sieci oraz prostą identyfikację i lokalizację problemów. Dobre praktyki w zakresie projektowania sieci z uwzględnieniem topologii gwiazdy obejmują również stosowanie odpowiednich kabli oraz technologii, aby zminimalizować straty sygnału i zapewnić optymalną wydajność sieci.

Pytanie 2

Licencja typu TRIAL pozwala na korzystanie z oprogramowania

A. w ograniczonym zakresie, np. z pominięciem niektórych funkcji
B. wyłącznie do zastosowań niekomercyjnych
C. przez nieograniczony czas, z możliwością wprowadzenia zmian
D. przez określony okres (np. 3 miesiące)
Licencje TRIAL są często mylone z innymi rodzajami licencji, co prowadzi do nieporozumień. Na przykład licencja, która pozwala na użytkowanie oprogramowania przez dowolny czas z możliwością modyfikacji, jest typowym przypadkiem licencji open source, a nie trial. W przypadku licencji typu TRIAL użytkownicy mają ograniczony czas na testowanie oprogramowania, co jest kluczowym elementem tej formy licencjonowania. Licencje TRIAL nie są również przeznaczone tylko do celów niekomercyjnych, co jest błędnym założeniem. Użytkownicy mogą wykorzystać oprogramowanie trial zarówno w celach osobistych, jak i zawodowych, jednak z zastrzeżeniem, że po zakończeniu okresu próbnego muszą nabyć pełną wersję lub usunąć oprogramowanie. Kolejnym błędnym podejściem jest mylenie ograniczeń funkcjonalnych z całkowitym brakiem dostępu do oprogramowania. Oprogramowanie trial często oferuje pełny zestaw funkcji, ale na ograniczony czas, co pozwala użytkownikom na pełne zapoznanie się z możliwościami przed podjęciem decyzji o zakupie. W związku z tym kluczowe jest zrozumienie, że licencja TRIAL ma na celu umożliwienie użytkownikom oceny oprogramowania w określonym czasie, a nie w formie nieograniczonej lub ograniczonej do funkcji.

Pytanie 3

Aby zarejestrować i analizować pakiety przesyłane w sieci, należy wykorzystać aplikację

A. FileZilla
B. WireShark
C. puTTy
D. CuteFTP
WireShark to zaawansowane narzędzie do analizy protokołów sieciowych, które umożliwia przechwytywanie i przeglądanie danych przesyłanych przez sieć w czasie rzeczywistym. Dzięki jego funkcjom użytkownicy mogą analizować ruch sieciowy, identyfikować problemy z wydajnością oraz debugować aplikacje sieciowe. Program obsługuje wiele protokołów i potrafi wyświetlić szczegółowe informacje o każdym pakiecie, co czyni go nieocenionym narzędziem dla administratorów sieci oraz specjalistów ds. bezpieczeństwa. Przykładem zastosowania WireSharka może być sytuacja, w której administrator musi zdiagnozować problemy z połączeniem w sieci lokalnej – dzięki możliwości filtrowania danych, może szybko zlokalizować błędne pakiety i zrozumieć ich przyczynę. W kontekście dobrych praktyk branżowych, WireShark jest powszechnie zalecany do monitorowania bezpieczeństwa, analizy ataków oraz audytów sieciowych, co czyni go kluczowym narzędziem w arsenale specjalistów IT.

Pytanie 4

Mechanizm ograniczeń na dysku, który umożliwia kontrolowanie wykorzystania zasobów dyskowych przez użytkowników, nazywany jest

A. ąuota
B. management
C. spool
D. release
Odpowiedź 'cząta' jest prawidłowa, ponieważ odnosi się do mechanizmu zarządzania przydziałem zasobów dyskowych dla użytkowników w systemach operacyjnych oraz systemach plików. Cząta, czyli quota, pozwala administratorom na ograniczenie ilości danych, które użytkownicy mogą przechowywać na dysku. Jest to szczególnie istotne w środowiskach współdzielonych, gdzie wiele osób korzysta z tych samych zasobów. Przykładem zastosowania cząty może być serwer plików, gdzie administrator ustala ograniczenia dla poszczególnych użytkowników, aby zapobiec zapełnieniu przestrzeni dyskowej przez jednego z nich. Dobrą praktyką jest regularne monitorowanie użycia przestrzeni dyskowej i dostosowywanie limitów w oparciu o potrzeby użytkowników oraz dostępne zasoby. W wielu systemach operacyjnych, takich jak Linux, można łatwo ustawiać i zarządzać czątem przy pomocy narzędzi takich jak 'edquota' czy 'quota'.

Pytanie 5

Jakie medium transmisyjne powinno się zastosować do połączenia urządzeń sieciowych oddalonych o 110 m w pomieszczeniach, gdzie występują zakłócenia EMI?

A. Fal radiowych
B. Światłowodu jednodomowego
C. Skrętki ekranowanej STP
D. Kabla współosiowego
Światłowód jednodomowy to świetny wybór, jeśli chodzi o podłączanie różnych urządzeń w sieci, zwłaszcza na dystansie do 110 m. Ma tę przewagę, że radzi sobie w trudnych warunkach, gdzie jest dużo zakłóceń elektromagnetycznych. To naprawdę pomaga, bo światłowody są znacznie mniej wrażliwe na te zakłócenia w porównaniu do tradycyjnych kabli. Poza tym, oferują mega dużą przepustowość – da się przesyłać dane z prędkościami sięgającymi gigabitów na sekundę, co jest kluczowe dla aplikacji, które potrzebują dużo mocy obliczeniowej. Używa się ich w różnych branżach, takich jak telekomunikacja czy infrastruktura IT, gdzie ważne jest, żeby sygnał był mocny i stabilny. Warto też dodać, że światłowody są zgodne z międzynarodowymi standardami, co czyni je uniwersalnymi i trwałymi. Oczywiście, instalacja wymaga odpowiednich technik i narzędzi, co może być droższe na starcie, ale w dłuższej perspektywie na pewno się opłaca ze względu na ich efektywność i pewność działania.

Pytanie 6

Jaki jest skrócony zapis maski sieci, której adres w zapisie dziesiętnym to 255.255.254.0?

A. /24
B. /23
C. /22
D. /25
Zapis skrócony maski sieci 255.255.254.0 to /23, co oznacza, że w pierwszych 23 bitach znajduje się informacja o sieci, a pozostałe 9 bitów jest przeznaczone na identyfikację hostów. W zapisie dziesiętnym maska 255.255.254.0 ma postać binarną 11111111.11111111.11111110.00000000, co potwierdza, że pierwsze 23 bity są jedynkami, a pozostałe bity zerami. Ta maska pozwala na adresowanie 512 adresów IP w danej podsieci, co jest przydatne w większych środowiskach sieciowych, gdzie liczba hostów może być znacząca, na przykład w biurach czy na uczelniach. Dzięki zapisie skróconemu łatwiej jest administracyjnie zarządzać adresami IP, co jest zgodne z dobrymi praktykami w dziedzinie inżynierii sieciowej. Zrozumienie, jak funkcjonują maski sieciowe, pozwala na efektywne projektowanie sieci oraz optymalizację wykorzystania dostępnych zasobów adresowych.

Pytanie 7

Zgodnie z normą EN-50173, klasa D skrętki komputerowej obejmuje zastosowania wykorzystujące zakres częstotliwości

A. do 100 MHZ
B. do 16 MHz
C. do 100 kHz
D. do 1 MHz
Klasa D skrętki komputerowej, zgodnie z normą EN-50173, obejmuje aplikacje korzystające z pasma częstotliwości do 100 MHz. Oznacza to, że kabel kategorii 5e i wyższe, takie jak kategoria 6 i 6A, są zaprojektowane, aby wspierać transmisję danych w sieciach Ethernet o dużej przepustowości, w tym Gigabit Ethernet oraz 10 Gigabit Ethernet na krótkich dystansach. Standardy te uwzględniają poprawne ekranowanie i konstrukcję przewodów, co minimalizuje zakłócenia elektromagnetyczne oraz zapewnia odpowiednią jakość sygnału. Przykładowo, w biurach oraz centrach danych często wykorzystuje się skrętki kategorii 6, które obsługują aplikacje wymagające wysokiej wydajności, takie jak przesyłanie multimediów, wideokonferencje czy intensywne transfery danych. Wiedza na temat klas kabli i odpowiadających im pasm częstotliwości jest kluczowa dla inżynierów i techników zajmujących się projektowaniem oraz wdrażaniem nowoczesnych sieci komputerowych, co wpływa na efektywność komunikacji i wydajność całych systemów sieciowych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Która norma określa parametry transmisyjne dla komponentów kategorii 5e?

A. TIA/EIA-568-B-1
B. EIA/TIA 607
C. TIA/EIA-568-B-2
D. CSA T527
Wybór EIA/TIA 607 jako odpowiedzi na to pytanie jest niepoprawny, ponieważ norma ta koncentruje się na wymaganiach dotyczących instalacji i zarządzania kablami w budynkach, a nie na specyfikacji parametrów transmisyjnych kabli. Z kolei norma TIA/EIA-568-B-1 dotyczy ogólnych zasad dotyczących infrastruktury okablowania, ale nie szczegółowych parametrów transmisyjnych dla komponentów kategorii 5e. Błędne jest także odwoływanie się do CSA T527, ponieważ ta norma odnosi się do standardów dla kabli telekomunikacyjnych w Kanadzie, ale nie dostarcza szczegółowych wytycznych dotyczących parametrów transmisyjnych dla komponentów kategorii 5e. Osoby, które mylnie wybierają te odpowiedzi, często nie dostrzegają, że odpowiednie normy są kluczowe dla zapewnienia jakości i wydajności systemów sieciowych. Wiedza o tym, że różne normy mają różne cele i zakresy, jest fundamentalna w kontekście projektowania i instalacji systemów telekomunikacyjnych. Niezrozumienie różnicy między normami dotyczącymi ogólnych zasad instalacji a tymi, które obejmują szczegółowe wymagania dotyczące parametrów transmisyjnych, może prowadzić do wyboru niewłaściwych komponentów i w efekcie do problemów z wydajnością sieci.

Pytanie 10

Który standard protokołu IEEE 802.3 powinien być użyty w środowisku z zakłóceniami elektromagnetycznymi, gdy dystans między punktem dystrybucji a punktem abonenckim wynosi 200 m?

A. 100Base–FX
B. 100Base–T
C. 10Base2
D. 1000Base–TX
Standard 100Base-FX jest odpowiedni w środowiskach, gdzie występują zakłócenia elektromagnetyczne, zwłaszcza w sytuacjach wymagających przesyłania sygnału na odległość do 200 m. Ten standard wykorzystuje światłowody, co znacząco zwiększa odporność na zakłócenia elektromagnetyczne w porównaniu do standardów opartych na miedzi, takich jak 100Base-T. W praktyce oznacza to, że w miejscach, gdzie instalacje elektryczne mogą generować zakłócenia, 100Base-FX jest idealnym rozwiązaniem. Przykładem zastosowania tego standardu mogą być instalacje w biurach znajdujących się w pobliżu dużych maszyn przemysłowych lub w środowiskach, gdzie wykorzystywane są silne urządzenia elektryczne. 100Base-FX obsługuje prędkość przesyłu danych do 100 Mb/s na dystansie do 2 km w kablu światłowodowym, co czyni go bardzo elastycznym rozwiązaniem dla różnych aplikacji sieciowych. Ponadto, stosowanie światłowodów przyczynia się do zminimalizowania strat sygnału, co jest kluczowe w przypadku dużych sieci korporacyjnych.

Pytanie 11

Aby umożliwić jedynie urządzeniom z określonym adresem fizycznym połączenie z siecią WiFi, trzeba ustawić w punkcie dostępowym

A. filtrację adresów MAC
B. bardziej zaawansowane szyfrowanie
C. strefę o ograniczonym dostępie
D. firewall
Filtrowanie adresów MAC to technika, która pozwala na ograniczenie dostępu do sieci WiFi jedynie do urządzeń posiadających określone adresy MAC (Media Access Control). Każde urządzenie sieciowe ma unikalny adres MAC, który identyfikuje je w sieci lokalnej. Konfigurując filtrację adresów MAC w punkcie dostępowym, administrator może wprowadzić listę dozwolonych adresów, co zwiększa bezpieczeństwo sieci. Przykład zastosowania tej technologii może obejmować małe biuro lub dom, gdzie właściciel chce zapewnić, że tylko jego smartfony, laptopy i inne urządzenia osobiste mogą łączyć się z siecią, uniemożliwiając dostęp nieznanym gościom. Choć filtracja adresów MAC nie jest niezawodna (ponieważ adresy MAC mogą być spoofowane), jest jednym z elementów strategii bezpieczeństwa, współpracując z innymi metodami, takimi jak WPA2 lub WPA3, co zapewnia wielowarstwową ochronę przed nieautoryzowanym dostępem do sieci.

Pytanie 12

Urządzenia spełniające standard 802.11 g mogą osiągnąć maksymalną prędkość transmisji danych wynoszącą

A. 150 Mb/s
B. 11 Mb/s
C. 108 Mb/s
D. 54 Mb/s
Odpowiedź 54 Mb/s to strzał w dziesiątkę. Standard 802.11g, który wszedł w życie w 2003 roku, właśnie taką prędkość oferuje. To spory postęp w porównaniu do wcześniejszego 802.11b, które radziło sobie tylko z 11 Mb/s. Prędkość 54 Mb/s osiąga się dzięki technologii OFDM, która lepiej wykorzystuje pasmo. W praktyce, ten standard jest naprawdę przydatny w domowych sieciach i małych biurach, gdzie szybkość i stabilność są ważne, na przykład do oglądania filmów czy grania online. Co ciekawe, 802.11g współpracuje też z urządzeniami 802.11b, co ułatwia korzystanie ze starszych sprzętów w nowych sieciach. Z mojej perspektywy, warto jednak pamiętać, że realna prędkość może być niższa z powodu różnych zakłóceń, odległości od routera i liczby podłączonych urządzeń.

Pytanie 13

Jakie jest odpowiednik maski 255.255.252.0 w postaci prefiksu?

A. /25
B. /24
C. /22
D. /23
Maska podsieci 255.255.252.0 to nic innego jak prefiks /22. To znaczy, że 22 bity używamy do określenia identyfikatora podsieci w adresie IPv4. Mówiąc prosto, te dwa ostatnie bity dają nam możliwość utworzenia 4 podsieci i 1022 hostów w każdej (liczy się 2^10 - 2, bo trzeba odjąć adres sieci i rozgłoszeniowy). Ta maska jest całkiem przydatna w większych sieciach, gdzie chcemy dobrze zarządzać adresami IP. Na przykład w firmach można ją zastosować do podziału dużych zakresów adresów na mniejsze, lepiej zorganizowane podsieci, co potem pomaga w zarządzaniu ruchem i bezpieczeństwem. Używanie odpowiednich masek podsieci to ważny aspekt w projektowaniu sieci, bo to jedna z tych najlepszych praktyk w branży. A jeśli chodzi o IPv6, to już nie jest tak krytyczne, ale wciąż dobrze wiedzieć, jak to wszystko działa w kontekście routingu i adresowania.

Pytanie 14

Planowana sieć przypisana jest do klasy C. Sieć została podzielona na 4 podsieci, w których każda z nich obsługuje 62 urządzenia. Która z wymienionych masek będzie odpowiednia do realizacji tego zadania?

A. 255.255.255.224
B. 255.255.255.240
C. 255.255.255.192
D. 255.255.255.128
Maska 255.255.255.192 jest odpowiednia do podziału sieci klasy C na cztery podsieci z co najmniej 62 urządzeniami w każdej. Maska ta, zapisana w postaci CIDR, to /26, co oznacza, że 26 bitów jest zarezerwowanych na adresy sieciowe, a pozostałe 6 bitów na adresy hostów. Obliczając liczbę dostępnych adresów hostów w poszczególnych podsieciach, stosujemy wzór 2^(32 - maska) - 2, co w tym przypadku daje 2^(32 - 26) - 2 = 62. Oznacza to, że każda z czterech podsieci może obsłużyć dokładnie 62 urządzenia, co jest zgodne z wymaganiami. W praktyce, podział na podsieci pozwala na lepsze zarządzanie ruchem sieciowym, zwiększenie bezpieczeństwa poprzez izolację podsieci oraz umożliwia efektywne wykorzystanie dostępnego adresowania IP. Standardy, takie jak RFC 950, określają zasady podziału sieci i przypisania adresów, co jest kluczowe w projektowaniu nowoczesnych architektur sieciowych.

Pytanie 15

Jaki jest adres rozgłoszeniowy dla sieci 172.30.0.0/16?

A. 172.0.255.255
B. 172.30.255.255
C. 172.255.255.255
D. 172.30.0.255
Adres rozgłoszeniowy dla sieci 172.30.0.0/16 jest 172.30.255.255, co wynika z zasad obliczania adresów IP w sieciach klasy C. W przypadku notacji CIDR /16 oznacza to, że pierwsze 16 bitów identyfikuje sieć, a pozostałe 16 bitów mogą być użyte do adresowania urządzeń w tej sieci, co daje maksymalnie 65,536 adresów (od 172.30.0.0 do 172.30.255.255). Adres rozgłoszeniowy jest ostatnim adresem w tej przestrzeni adresowej i jest używany do wysyłania pakietów do wszystkich hostów w danej sieci. W praktyce, rozgłoszenia są często wykorzystywane w protokołach takich jak DHCP (Dynamic Host Configuration Protocol) czy ARP (Address Resolution Protocol), gdzie urządzenia muszą komunikować się z wieloma innymi urządzeniami w danej sieci lokalnej. Zrozumienie tego konceptu jest kluczowe dla projektowania i implementacji efektywnych rozwiązań sieciowych, zgodnych z najlepszymi praktykami branżowymi oraz standardami sieciowymi.

Pytanie 16

W systemach z rodziny Windows Server, w jaki sposób definiuje się usługę serwera FTP?

A. w serwerze sieci Web
B. w usłudze plików
C. w serwerze aplikacji
D. w usłudze zasad i dostępu sieciowego
Usługa serwera FTP w systemach z rodziny Windows Server jest częścią serwera sieci Web, co oznacza, że jej konfiguracja oraz zarządzanie odbywa się w kontekście roli IIS (Internet Information Services). IIS to kompleksowa platforma do hostowania różnych typów aplikacji internetowych i usług. W przypadku FTP, administratorzy mają możliwość tworzenia, zarządzania i konfigurowania różnych witryn FTP, a także zarządzania dostępem do zasobów za pomocą zaawansowanych ustawień uprawnień. Przykładowo, można skonfigurować serwer FTP do obsługi zdalnego przesyłania plików, co jest przydatne w wielu scenariuszach, takich jak transfer danych między serwerami lub zapewnienie dostępu klientom do plików. Z perspektywy bezpieczeństwa, warto również stosować szyfrowanie połączeń FTP przy użyciu FTPS lub SFTP, co zwiększa bezpieczeństwo przesyłanych danych. Zgodnie z dobrymi praktykami, administratorzy powinni regularnie monitorować logi serwera FTP oraz implementować odpowiednie zasady autoryzacji i audytów, aby zapewnić integralność i bezpieczeństwo danych.

Pytanie 17

W ustawieniach haseł w systemie Windows Server aktywowana jest opcja hasło musi spełniać wymagania dotyczące złożoności. Ile minimalnie znaków powinno mieć hasło użytkownika?

A. 6 znaków
B. 12 znaków
C. 10 znaków
D. 5 znaków
Hasło użytkownika w systemie Windows Server musi składać się z co najmniej 6 znaków, aby spełniać wymagania dotyczące złożoności. Złożoność hasła ma na celu zwiększenie bezpieczeństwa systemu, redukując ryzyko nieautoryzowanego dostępu. Wymaganie minimalnej długości hasła to jedna z podstawowych praktyk w zarządzaniu bezpieczeństwem, która pomaga zabezpieczyć konta użytkowników przed atakami typu brute force. Przykładowo, stosując hasła o długości 6 znaków, zaleca się użycie kombinacji wielkich i małych liter, cyfr oraz znaków specjalnych, co znacznie podnosi poziom ochrony. Dla porównania, hasła składające się z zaledwie 5 znaków są mniej bezpieczne, ponieważ łatwiej je złamać przy użyciu odpowiednich narzędzi. Zgodnie z wytycznymi NIST (National Institute of Standards and Technology), złożoność haseł oraz ich długość są kluczowe dla ochrony danych, a stosowanie haseł o minimalnej długości 6 znaków jest powszechnie przyjętą praktyką w branży IT.

Pytanie 18

Administrator zauważa, że jeden z komputerów w sieci LAN nie może uzyskać dostępu do Internetu, mimo poprawnie skonfigurowanego adresu IP. Który parametr konfiguracji sieciowej powinien sprawdzić w pierwszej kolejności?

A. Maskę podsieci
B. Adres serwera DNS
C. Adres MAC karty sieciowej
D. Adres bramy domyślnej
<strong>Adres bramy domyślnej</strong> jest kluczowym parametrem konfiguracji sieciowej, który umożliwia komputerowi w sieci LAN komunikację z urządzeniami poza swoją lokalną podsiecią, w tym z Internetem. Brama domyślna to zwykle adres IP routera lub innego urządzenia pośredniczącego, które przekazuje ruch wychodzący z lokalnej sieci do innych sieci. Nawet jeśli komputer ma poprawnie ustawiony adres IP i maskę podsieci, brak lub błędna konfiguracja bramy domyślnej uniemożliwi mu wysyłanie pakietów poza własny segment sieci – czyli właśnie do Internetu. To dlatego w praktyce administratorzy zawsze zaczynają od weryfikacji tego parametru, gdy urządzenie nie może się połączyć z zasobami zewnętrznymi. W standardowych systemach operacyjnych, takich jak Windows czy Linux, parametr ten jest podawany ręcznie lub automatycznie przez DHCP. Z mojego doświadczenia, nawet przy poprawnych pozostałych ustawieniach sieciowych najczęstszą przyczyną braku dostępu do Internetu jest właśnie brak lub literówka w adresie bramy. W środowiskach produkcyjnych i edukacyjnych regularnie powtarza się zasada: jeśli lokalna komunikacja działa, a Internet nie – sprawdź najpierw bramę domyślną. To podstawowy krok w diagnostyce sieciowej i element każdej checklisty administratora.

Pytanie 19

Atak mający na celu zablokowanie dostępu do usług dla uprawnionych użytkowników, co skutkuje zakłóceniem normalnego działania komputerów oraz komunikacji w sieci, to

A. Denial of Service
B. Brute force
C. Man-in-the-Middle
D. Ping sweeps
Atak typu Denial of Service (DoS) polega na uniemożliwieniu dostępu do usług i zasobów sieciowych dla legalnych użytkowników poprzez przeciążenie systemu, co prowadzi do jego awarii lub spowolnienia. Tego rodzaju atak może być realizowany na różne sposoby, na przykład poprzez wysyłanie ogromnej liczby żądań do serwera, co skutkuje jego zablokowaniem. W praktyce, ataki DoS są szczególnie niebezpieczne dla organizacji, które polegają na ciągłej dostępności swoich usług, takich jak bankowość internetowa, e-commerce czy usługi chmurowe. Aby chronić się przed takimi atakami, organizacje powinny stosować różnorodne strategie, takie jak filtry ruchu, mechanizmy wykrywania intruzów oraz odpowiednie konfiguracje zapór sieciowych. Dobrą praktyką jest także implementacja systemów przeciwdziałania atakom DDoS (Distributed Denial of Service), które są bardziej skomplikowane i wymagają współpracy wielu urządzeń. Standardy branżowe, takie jak ISO/IEC 27001, podkreślają znaczenie zarządzania ryzykiem i wdrażania polityk bezpieczeństwa, aby zminimalizować skutki ataków DoS.

Pytanie 20

Simple Mail Transfer Protocol to protokół odpowiedzialny za

A. synchronizację czasu pomiędzy komputerami
B. zarządzanie grupami multicastowymi w sieciach opartych na protokole IP
C. obsługę odległego terminala w architekturze klient-serwer
D. przekazywanie poczty elektronicznej w Internecie
Simple Mail Transfer Protocol (SMTP) to standardowy protokół komunikacyjny wykorzystywany do przesyłania poczty elektronicznej w Internecie. Został opracowany w latach 80. XX wieku i od tego czasu stał się jednym z kluczowych elementów infrastruktury komunikacyjnej w sieci. Protokół ten działa na zasadzie klient-serwer, gdzie klient (np. program pocztowy) wysyła wiadomości do serwera pocztowego, który następnie przekazuje je do odpowiednich serwerów odbiorców. Jednym z głównych zastosowań SMTP jest umożliwienie przesyłania wiadomości między różnymi domenami. W praktyce, większość systemów e-mailowych, takich jak Gmail czy Outlook, korzysta z SMTP do obsługi wysyłania wiadomości e-mail. Protokół ten również obsługuje różne metody autoryzacji, co zwiększa bezpieczeństwo przesyłania wiadomości. Warto również zauważyć, że SMTP współpracuje z innymi protokołami, takimi jak IMAP czy POP3, które są używane do odbierania e-maili. Zrozumienie SMTP jest niezbędne dla osób zajmujących się administracją systemami e-mailowymi oraz dla specjalistów IT, którzy chcą zapewnić efektywną komunikację w organizacjach.

Pytanie 21

Wskaż błędne stwierdzenie dotyczące Active Directory?

A. Active Directory to usługa, która monitoruje wykorzystanie limitów dyskowych aktywnych katalogów
B. W Active Directory informacje są organizowane w sposób hierarchiczny
C. Active Directory stanowi system katalogowy w sieciach operacyjnych firmy Microsoft
D. Domeny uporządkowane w hierarchii mogą tworzyć strukturę drzewa
Active Directory (AD) to usługa katalogowa stworzona przez firmę Microsoft, która ułatwia zarządzanie użytkownikami i zasobami w sieci. Obejmuje funkcje takie jak zarządzanie tożsamościami, kontrola dostępu oraz centralizacja informacji o użytkownikach, grupach oraz urządzeniach. W praktyce AD umożliwia administratorom zarządzanie kontami użytkowników, grupami, komputerami oraz politykami bezpieczeństwa w zorganizowany sposób. Na przykład, dzięki hierarchicznej strukturze domen i jednostek organizacyjnych, administratorzy mogą łatwo przypisywać odpowiednie uprawnienia i ograniczenia w zależności od potrzeb organizacji. Standardy takie jak LDAP (Lightweight Directory Access Protocol) są wykorzystywane do komunikacji z katalogiem, co zapewnia interoperacyjność z innymi systemami. Dobre praktyki w zakresie bezpieczeństwa, takie jak regularne audyty i stosowanie polityk dostępu, są kluczowe dla ochrony danych i zasobów w środowisku AD.

Pytanie 22

Na ilustracji przedstawiono symbol

Ilustracja do pytania
A. bramki VoIP.
B. rutera.
C. punktu dostępowego.
D. przełącznika.
Symbole przedstawione w niepoprawnych odpowiedziach odnoszą się do innych urządzeń sieciowych, które mają różne funkcje i zastosowania. Przełącznik to urządzenie, które łączy różne urządzenia w sieci lokalnej i umożliwia im komunikację. Jego główną rolą jest zarządzanie ruchem danych, co różni się od funkcji punktu dostępowego, który koncentruje się na bezprzewodowym dostępie. Bramki VoIP służą do przesyłania głosu przez sieci IP, co nie ma związku z bezprzewodowym dostępem do sieci. Również ruter, choć kluczowy w zarządzaniu ruchem internetowym, nie pełni roli punktu dostępowego, ponieważ ruter łączy różne sieci, a punkt dostępowy rozszerza zasięg sieci bezprzewodowej. Typowe błędy myślowe, które mogą prowadzić do niepoprawnych odpowiedzi, obejmują mylenie urządzeń sieciowych z różnymi funkcjami. Na przykład, mogą pojawić się sytuacje, w których użytkownicy mogą mylnie przypuszczać, że każdy element sieci, który obsługuje połączenia, ma taką samą funkcję, co punkt dostępowy. W rzeczywistości, każdy z wymienionych urządzeń spełnia unikalne zadania w infrastrukturze sieciowej, a ich zrozumienie jest kluczowe dla efektywnej pracy w środowisku IT.

Pytanie 23

Ruter otrzymał pakiet, który jest adresowany do komputera w innej sieci. Adres IP, który jest celem pakietu, nie znajduje się w sieci bezpośrednio podłączonej do rutera, a tablica routingu nie zawiera informacji na jego temat. Brama ostateczna nie została skonfigurowana. Jaką decyzję podejmie ruter?

A. Zwróci pakiet do nadawcy
B. Przekaże do hosta w lokalnej sieci
C. Wyśle na interfejs wyjściowy do kolejnego skoku
D. Odrzuci pakiet
Zwracanie pakietów do źródła może wyglądać na sensowne, ale w rzeczywistości to nie działa w przypadku routerów. Ruter nie ma opcji, żeby oddać pakiet, jeśli nie wie, jak dotrzeć do docelowego adresu IP. Jeżeli mówimy o przesyłaniu pakietu do hosta w lokalnej sieci, to tu też jest problem – ruter nie zna lokalnych adresów IP dla danego pakietu. Próba wysłania pakietu do następnego skoku też nie wypali, bo ruter nie ma pojęcia, gdzie go skierować. Kiedy pakiet nie wpasowuje się w żadną z tras w tablicy routingu, a brama ostatniej szansy nie istnieje, kończy się na odrzuceniu pakietu. Takie myślenie może prowadzić do złego zarządzania siecią, bo administratorzy mogą myśleć, że ruter poradzi sobie z każdą sytuacją, co jest błędne. Na dłuższą metę, zła analiza ruchu w sieci może powodować poważne problemy z dostępnością i bezpieczeństwem.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Urządzenie przedstawione na zdjęciu to

Ilustracja do pytania
A. most.
B. media konwerter.
C. przełącznik.
D. ruter z WiFi.
Urządzenie przedstawione na zdjęciu to ruter z WiFi, co można rozpoznać po charakterystycznych antenach, które są kluczowym elementem umożliwiającym bezprzewodową transmisję danych. Routery z WiFi są fundamentem współczesnych sieci domowych i biurowych, służąc do udostępniania połączenia internetowego dla różnych urządzeń, takich jak laptopy, smartfony czy tablety. W standardzie 802.11 (WiFi) funkcjonują w różnych pasmach, najczęściej 2.4 GHz i 5 GHz, co pozwala na optymalizację prędkości oraz zasięgu sygnału. Porty LAN oraz WAN/Internet, które również można zauważyć w tym urządzeniu, potwierdzają, że pełni rolę centralnego punktu komunikacji w sieci lokalnej. W praktyce, dobra konfiguracja rutera z WiFi, w tym zabezpieczenia takie jak WPA3, jest niezbędna dla ochrony danych użytkowników oraz zapewnienia stabilności połączenia. Warto również zaznaczyć, że nowoczesne routery często obsługują technologie takie jak MU-MIMO czy beamforming, co znacząco wpływa na jakość i wydajność transmisji.

Pytanie 26

Administrator systemu Linux chce nadać plikowi dokument.txt uprawnienia tylko do odczytu dla wszystkich użytkowników. Jakiego polecenia powinien użyć?

A. chmod 777 dokument.txt
B. chmod 600 dokument.txt
C. chmod 755 dokument.txt
D. chmod 444 dokument.txt
Wiele osób wybiera błędne ustawienia uprawnień, bo nie zawsze rozumie, jak działa system trzech cyfr w poleceniu <code>chmod</code>. Przykładowo, wartość 777 daje wszystkim pełne prawo do odczytu, zapisu i wykonania – to ogromne zagrożenie dla bezpieczeństwa, bo każdy użytkownik może dowolnie modyfikować lub usuwać plik. To typowy błąd początkujących, którzy chcą „rozwiązać problem raz na zawsze”, a w rzeczywistości otwierają system na potencjalne nadużycia. Z kolei 600 daje uprawnienia tylko właścicielowi – odczyt i zapis, reszta nie ma żadnego dostępu. To dobre, jeśli plik ma być prywatny, ale nie spełnia założeń pytania – nie jest wtedy „czytelny dla wszystkich”. Uprawnienia 755 często są używane dla katalogów lub plików wykonywalnych (np. skryptów), bo umożliwiają właścicielowi edycję i wykonanie, a reszcie tylko odczyt i wykonanie. Jednak w przypadku zwykłego pliku tekstowego nadawanie uprawnienia do wykonania (execute) jest całkowicie zbędne, a wręcz może prowadzić do nieprzewidzianych sytuacji, np. prób uruchomienia pliku czy podatności w środowiskach serwerowych. W praktyce najlepszą metodą jest nadawanie uprawnień możliwie najmniejszych, które spełniają wymagania funkcjonalne – nadmiarowe uprawnienia to zawsze potencjalne ryzyko. Codzienna praca administratora to balansowanie pomiędzy wygodą a bezpieczeństwem i – moim zdaniem – zrozumienie tych niuansów jest kluczowe przy zarządzaniu systemami Linux w sieciach lokalnych, szczególnie w większych organizacjach. Warto zawsze zastanawiać się, czy dany plik rzeczywiście musi być wykonywalny, zapisywalny czy tylko czytelny, bo to wpływa nie tylko na bezpieczeństwo, ale i na porządek w systemie plików.

Pytanie 27

Aby umożliwić komunikację pomiędzy sieciami VLAN, wykorzystuje się

A. modem
B. koncentrator
C. ruter
D. punkt dostępowy
Ruter to naprawdę ważne urządzenie, które łączy różne sieci, w tym również VLAN-y, czyli wirtualne sieci lokalne. Dzięki VLAN-om można lepiej zarządzać ruchem w sieci i zwiększać jej bezpieczeństwo. Żeby urządzenia w różnych VLAN-ach mogły ze sobą rozmawiać, potrzebny jest ruter, który zajmuje się przełączaniem danych między tymi sieciami. W praktyce ruter korzysta z różnych protokołów routingu, jak OSPF czy EIGRP, żeby skutecznie przesyłać informacje. Co więcej, nowoczesne rutery potrafią obsługiwać routing między VLAN-ami, dzięki czemu można przesyłać dane między nimi bez potrzeby używania dodatkowych urządzeń. Używanie rutera w sieci VLAN to świetny sposób na projektowanie sieci, co ma duży wpływ na efektywność i bezpieczeństwo komunikacji.

Pytanie 28

Jakie urządzenie sieciowe pozwoli na przekształcenie sygnału przesyłanego przez analogową linię telefoniczną na sygnał cyfrowy w komputerowej sieci lokalnej?

A. Media converter.
B. Modem.
C. Switch.
D. Access point.
Modem to urządzenie, które pełni kluczową rolę w komunikacji między analogowymi a cyfrowymi systemami. Jego podstawową funkcją jest modulkacja i demodulkacja sygnałow, co oznacza przekształcanie danych cyfrowych z komputera na sygnał analogowy, który może być przesyłany przez tradycyjną linię telefoniczną. Kiedy dane z komputera są przesyłane do modemu, modem przekształca je w sygnał analogowy, co pozwala na ich transmisję. Po drugiej stronie, gdy sygnał analogowy wraca do modemu, proces jest odwracany - sygnał analogowy jest demodulowany i przekształcany z powrotem do formatu cyfrowego. Przykładami zastosowania modemów są domowe połączenia internetowe przez DSL lub dial-up, gdzie modem jest niezbędny do uzyskania dostępu do sieci internetowej. Modemy są zgodne z różnymi standardami, takimi jak V.90 dla połączeń dial-up, co pokazuje ich znaczenie i szerokie zastosowanie w branży telekomunikacyjnej i informatycznej.

Pytanie 29

Dokument PN-EN 50173 wskazuje na konieczność zainstalowania minimum

A. 1 punktu rozdzielczego na cały wielopiętrowy budynek.
B. 1 punktu rozdzielczego na każde piętro.
C. 1 punktu rozdzielczego na każde 250 m2 powierzchni.
D. 1 punktu rozdzielczego na każde 100 m2 powierzchni.
Odpowiedź dotycząca instalacji jednego punktu rozdzielczego na każde piętro budynku jest zgodna z normą PN-EN 50173, która reguluje zagadnienia związane z infrastrukturą telekomunikacyjną w budynkach. W kontekście projektowania systemu telekomunikacyjnego, kluczowe jest zapewnienie odpowiedniej liczby punktów rozdzielczych, aby umożliwić efektywne zarządzanie siecią oraz zapewnić dostęp do usług komunikacyjnych w każdym z pomieszczeń. Zgodnie z normą, umieszczanie punktów rozdzielczych na każdym piętrze zwiększa elastyczność w rozmieszczaniu urządzeń i zmniejsza długość kabli, co przekłada się na łatwiejszą instalację oraz konserwację systemu. Przykładowo, w budynkach o większej liczbie pięter, odpowiednia gęstość punktów rozdzielczych pozwala na lepsze dostosowanie infrastruktury do zmieniających się potrzeb użytkowników, takich jak dodawanie nowych urządzeń czy zmiany w organizacji przestrzeni biurowej. Dodatkowo, takie podejście jest zgodne z najlepszymi praktykami branżowymi oraz trendami w kierunku elastycznych rozwiązań telekomunikacyjnych.

Pytanie 30

Na którym rysunku został przedstawiony panel krosowniczy?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Panel krosowniczy, przedstawiony na zdjęciu oznaczonym literą B, jest kluczowym elementem infrastruktury teleinformatycznej. Służy do organizacji i zarządzania połączeniami kablowymi w szafach serwerowych oraz rozdzielniach telekomunikacyjnych. Warto zauważyć, że panele te umożliwiają łatwe przemiany połączeń, co jest istotne w kontekście utrzymania i modyfikacji sieci. Typowy panel krosowniczy zawiera wiele portów, najczęściej RJ-45, które są standardem w sieciach Ethernet. Praktyczne zastosowanie paneli krosowniczych obejmuje nie tylko uporządkowanie kabli w sposób estetyczny, ale także poprawę efektywności zarządzania siecią, co jest zgodne z zaleceniami standardów ANSI/TIA-568 dotyczących okablowania strukturalnego. Dodatkowo, panel krosowniczy pozwala na szybką diagnostykę i serwisowanie, co znacznie przyspiesza czas reakcji w przypadku wystąpienia problemów. Właściwe użycie tych urządzeń jest kluczowe dla zapewnienia niezawodności oraz wydajności systemów teleinformatycznych.

Pytanie 31

Jakie jest standardowe port do przesyłania poleceń (command) serwera FTP?

A. 21
B. 20
C. 110
D. 25
Wybór portów 25, 20 i 110 jest nie do końca trafiony z kilku przyczyn. Port 25 to port dla SMTP, czyli do wysyłania e-maili. Czasami ludzie mylą go z FTP, ale to zupełnie inna działka – to port do poczty, nie do przesyłania plików. Port 20 natomiast jest używany do przesyłania danych w trybie aktywnym FTP, ale nie służy do łączenia się ani wysyłania poleceń. A port 110 to z kolei dla POP3, który odbiera wiadomości e-mail, a nie transferuje pliki. Jak się wybiera błędne porty, można się pogubić w ich funkcjach, co utrudnia prawidłowe działanie systemów i komunikację sieciową. Ważne jest, żeby dobrze rozumieć, co każdy port robi, bo to jest kluczowe dla zarządzania siecią i zabezpieczania danych.

Pytanie 32

Który z poniższych adresów jest adresem prywatnym zgodnym z dokumentem RFC 1918?

A. 172.32.0.1
B. 172.16.0.1
C. 172.0.0.1
D. 171.0.0.1
Adres 172.16.0.1 jest poprawnym adresem prywatnym, definiowanym przez dokument RFC 1918, który ustanawia zakresy adresów IP przeznaczonych do użytku w sieciach lokalnych. Adresy prywatne nie są routowane w Internecie, co oznacza, że mogą być używane w sieciach wewnętrznych bez obawy o kolizje z adresami publicznymi. Zakres adresów prywatnych dla klasy B obejmuje 172.16.0.0 do 172.31.255.255, zatem 172.16.0.1 znajduje się w tym zakresie. Przykładowo, firmy często wykorzystują te adresy do budowy sieci lokalnych (LAN), co pozwala urządzeniom w sieci na komunikację bez potrzeby posiadania publicznego adresu IP. W praktyce, urządzenia takie jak routery lokalne przydzielają adresy prywatne w ramach sieci, a następnie wykorzystują translację adresów sieciowych (NAT) do komunikacji z Internetem, co zwiększa bezpieczeństwo i efektywność przydziału adresów.

Pytanie 33

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. hub.
B. switch.
C. router.
D. driver.
Ruter jest kluczowym urządzeniem w infrastrukturze sieciowej, które umożliwia podłączenie lokalnej sieci komputerowej do Internetu. Jego rola polega na kierowaniu pakietami danych pomiędzy różnymi sieciami, co pozwala na komunikację pomiędzy urządzeniami w sieci lokalnej a zdalnymi zasobami w Internecie. Ruter pracuje na warstwie trzeciej modelu OSI, co oznacza, że analizuje adresy IP w pakietach danych, aby określić najlepszą trasę do docelowego adresu. Przykładem zastosowania rutera może być domowa sieć Wi-Fi, gdzie ruter łączy wiele urządzeń, takich jak komputery, smartfony czy telewizory, z globalną siecią Internet. W praktyce, ruter może także pełnić funkcje zabezpieczeń, takie jak zapora ogniowa (firewall), co zwiększa bezpieczeństwo naszej sieci. Dobre praktyki w konfiguracji rutera obejmują regularne aktualizacje oprogramowania oraz stosowanie silnych haseł do zabezpieczenia dostępu do administracji. Warto również zwrócić uwagę na konfigurację NAT (Network Address Translation), która pozwala na ukrycie wewnętrznych adresów IP w sieci lokalnej, co dodatkowo zwiększa bezpieczeństwo.

Pytanie 34

Dwie stacje robocze w tej samej sieci nie mogą się nawzajem komunikować. Która z poniższych okoliczności może być prawdopodobną przyczyną tego problemu?

A. Różne bramy domyślne stacji roboczych
B. Identyczne adresy IP stacji roboczych
C. Inne systemy operacyjne stacji roboczych
D. Tożsame nazwy użytkowników
Odpowiedź, że takie same adresy IP stacji roboczych są przyczyną problemów w komunikacji, jest prawidłowa. Gdy dwa urządzenia w tej samej sieci lokalnej mają przypisane identyczne adresy IP, występuje konflikt adresów, co uniemożliwia poprawną wymianę danych. W standardzie IPv4, każdy adres IP musi być unikalny w danej sieci. W sytuacji konfliktu, urządzenia mogą odbierać wzajemne pakiety, ale nie będą w stanie wysyłać danych do siebie, co skutkuje brakiem komunikacji. Praktycznie, aby unikać takich sytuacji, organizacje powinny stosować system zarządzania adresami IP, jak DHCP, który automatycznie przydziela unikalne adresy IP do urządzeń w sieci. Istotne jest również regularne monitorowanie i weryfikacja konfiguracji sieci, aby upewnić się, że nie występują dublujące się adresy IP. W przypadku większych sieci, należy stosować subnetting, co również ułatwia zarządzanie adresami IP i minimalizuje ryzyko konfliktów.

Pytanie 35

Przy projektowaniu sieci LAN o wysokiej wydajności w warunkach silnych zakłóceń elektromagnetycznych, które medium transmisyjne powinno zostać wybrane?

A. współosiowy
B. typ U/FTP
C. typ U/UTP
D. światłowodowy
Kabel światłowodowy to najlepszy wybór do projektowania sieci LAN w środowiskach z dużymi zakłóceniami elektromagnetycznymi, ponieważ korzysta z włókien szklanych do przesyłania danych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi. W porównaniu do kabli miedzianych, światłowody są odporne na interferencje i mogą transmitować sygnały na znacznie większe odległości z wyższą przepustowością. Na przykład, w zastosowaniach takich jak centra danych, gdzie wiele urządzeń komunikuje się jednocześnie, stosowanie światłowodów zapewnia niezawodność i stabilność połączeń. Standardy, takie jak IEEE 802.3, promują wykorzystanie technologii światłowodowej dla osiągnięcia maksymalnej wydajności i minimalizacji strat sygnału. Dodatkowo, w miejscach o dużym natężeniu elektromagnetycznym, takich jak blisko dużych silników elektrycznych czy urządzeń radiowych, światłowody zapewniają pełną ochronę przed zakłóceniami, co czyni je idealnym rozwiązaniem dla nowoczesnych aplikacji sieciowych.

Pytanie 36

W celu zagwarantowania jakości usług QoS, w przełącznikach warstwy dostępu wdraża się mechanizm

A. który zapobiega tworzeniu się pętli w sieci
B. pozwalający na używanie wielu portów jako jednego łącza logicznego
C. decydujący o liczbie urządzeń, które mogą łączyć się z danym przełącznikiem
D. przydzielania wyższego priorytetu wybranym typom danych
Odpowiedzi, które odnoszą się do zapobiegania powstawaniu pętli w sieci, liczby urządzeń mogących łączyć się z przełącznikiem oraz wykorzystywania kilku portów jako jednego łącza logicznego, nie dotyczą bezpośrednio mechanizmu QoS w przełącznikach warstwy dostępu. Zapobieganie powstawaniu pętli, realizowane na przykład przez protokoły STP (Spanning Tree Protocol), ma na celu utrzymanie stabilności i niezawodności sieci, jednak nie wpływa na jakość usług w kontekście priorytetyzacji ruchu. Podobnie, regulowanie liczby urządzeń łączących się z przełącznikiem nie jest metodą poprawy jakości usług, lecz ma bardziej związek z zarządzaniem zasobami sieciowymi i bezpieczeństwem. Przykładowe techniki zarządzania dostępem do sieci, takie jak MAC filtering, nie rozwiążą problemów związanych z ruchem o różnym poziomie krytyczności. Co więcej, łączenie kilku portów w jedno logiczne, zazwyczaj realizowane poprzez LACP (Link Aggregation Control Protocol), służy zwiększeniu przepustowości, lecz nie wpływa na różnicowanie jakości przesyłanych danych. Typowe błędy myślowe prowadzące do takich wniosków mogą obejmować mylenie pojęć związanych z zarządzaniem ruchem oraz nieodróżnianie mechanizmów związanych z bezpieczeństwem i stabilnością sieci od tych, które mają na celu poprawę jakości usług.

Pytanie 37

Kabel skręcany o czterech parach, w którym każdy z przewodów jest otoczony ekranem foliowym, a ponadto wszystkie pary są dodatkowo zabezpieczone siatką, to kabel

A. F/UTP
B. U/UTP
C. S/FTP
D. SF/UTP
Odpowiedź S/FTP jest prawidłowa, ponieważ oznaczenie to wskazuje na kabel, w którym każda para przewodów jest ekranowana folią, a dodatkowo wszystkie pary są ekranowane wspólnie siatką. Takie rozwiązanie znacząco zwiększa odporność na zakłócenia elektromagnetyczne, co jest kluczowe w zastosowaniach, gdzie wymagane są wysokie prędkości przesyłu danych oraz stabilność sygnału. Kable S/FTP są często wykorzystywane w nowoczesnych sieciach komputerowych, w tym w centrach danych oraz w aplikacjach wymagających przesyłu dużych ilości danych, takich jak streaming wideo czy aplikacje VoIP. Stosowanie kabli ekranowanych zgodnych z międzynarodowymi standardami, takimi jak ISO/IEC 11801, zapewnia nie tylko bezpieczeństwo, ale również wysoką jakość transmisji danych. Dzięki zastosowaniu ekranów, kable S/FTP minimalizują ryzyko zakłóceń, co jest istotne w środowiskach o dużym natężeniu źródeł zakłóceń elektromagnetycznych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Do ilu sieci należą komputery o adresach IPv4 przedstawionych w tabeli?

NazwaAdres IPMaska
Komputer 110.11.161.10255.248.0.0
Komputer 210.12.161.11255.248.0.0
Komputer 310.13.163.10255.248.0.0
Komputer 410.14.163.11255.248.0.0
A. Jednej.
B. Dwóch.
C. Trzech.
D. Czterech.
Wybór odpowiedzi wskazującej na więcej niż jedną sieć opiera się na nieporozumieniu związanym z pojęciem podsieci i zastosowaniem masek sieciowych. Wiele osób może błędnie zakładać, że różne adresy IP automatycznie sugerują obecność różnych sieci. W rzeczywistości to właśnie maska sieciowa określa, które bity adresu IP są używane do identyfikacji sieci, a które do identyfikacji poszczególnych hostów. Jeśli adresy IP mają tę samą maskę, oznacza to, że mogą należeć do tej samej sieci. Kluczowym błędem myślowym jest założenie, że różne adresy IP muszą oznaczać różne sieci, co jest niezgodne z zasadami działania protokołu IP. Zrozumienie działania maski sieciowej oraz sposobu, w jaki różne bity adresu IP są przypisywane do sieci i hostów, jest kluczowe dla właściwego zarządzania i projektowania sieci. W praktyce, projektanci sieci muszą uwzględniać te zasady, aby unikać większych problemów z komunikacją i zarządzaniem ruchem w przyszłości. Wybierając właściwe wartości masek, można efektywniej zarządzać adresowaniem IP i optymalizować działanie sieci, co jest zgodne ze standardami branżowymi.

Pytanie 40

Jakie znaczenie ma zapis /26 w adresie IPv4 192.168.0.0/26?

A. Liczba bitów o wartości 1 w masce
B. Liczba bitów o wartości 0 w adresie
C. Liczba bitów o wartości 0 w masce
D. Liczba bitów o wartości 1 w adresie
Ta odpowiedź jest jak najbardziej trafna, bo zapis /26 oznacza, że w masce podsieci adresu IPv4 192.168.0.0 mamy 26 bitów o wartości 1. W skrócie, maska podsieci jest bardzo ważna, bo pozwala nam określić, która część adresu to sieć, a która to urządzenia. Kiedy mamy maskę /26, to pierwsze 26 bitów to właśnie bity maski, a zostałe 6 bitów (32 minus 26) możemy użyć do adresowania hostów. To w praktyce znaczy, że w takiej podsieci możemy mieć maks 64 adresy IP, z czego 62 będą dostępne dla urządzeń, bo musimy usunąć adres sieci i adres rozgłoszeniowy. Taka maska przydałaby się w małej sieci biurowej, gdzie nie ma więcej niż 62 urządzenia, więc zarządzanie adresami IP jest łatwiejsze. Dobrze jest pamiętać, że odpowiednie wykorzystanie maski podsieci może znacznie poprawić ruch w sieci oraz efektywność wykorzystania zasobów.