Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 8 listopada 2025 23:46
  • Data zakończenia: 8 listopada 2025 23:57

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie informacje o wykorzystywaniu pamięci wirtualnej można uzyskać, analizując zawartość pliku w systemie Linux?

A. /proc/vmstat
B. xload
C. pagefile.sys
D. /etc/inittab
Plik /proc/vmstat jest kluczowym źródłem informacji dotyczących pamięci wirtualnej w systemie Linux. Zawiera dane o aktualnym stanie pamięci, w tym statystyki dotyczące wirtualnej pamięci, takich jak ilość pamięci swap, liczba stron wymienianych, czy też liczba stron w pamięci fizycznej. Analizowanie zawartości tego pliku pozwala na głębsze zrozumienie zarządzania pamięcią przez system, co jest niezbędne w kontekście optymalizacji wydajności i monitorowania zasobów. Na przykład, jeśli zauważysz, że liczba stron wymienianych na dysk jest wysoka, może to wskazywać na zbyt małą ilość pamięci RAM, co prowadzi do spowolnienia systemu. Dlatego umiejętność interpretacji danych z /proc/vmstat jest niezwykle ważna dla administratorów systemów oraz programistów zajmujących się wydajnością aplikacji. Dobrymi praktykami są regularne monitorowanie tego pliku oraz konfigurowanie systemu tak, aby optymalizować użycie pamięci, co jest kluczowe dla stabilności i wydajności systemu.

Pytanie 2

Aby wymusić na użytkownikach lokalnych systemów z rodziny Windows Server regularną zmianę hasła oraz stosowanie haseł o odpowiedniej długości i spełniających wymagania dotyczące złożoności, należy ustawić

A. konta użytkowników w Ustawieniach
B. zasady blokady kont w politykach grup
C. zasady haseł w lokalnych zasadach zabezpieczeń
D. właściwości konta użytkownika w zarządzaniu systemem
Zarządzanie polityką haseł w Windows Server to temat z jednej strony ciekawy, a z drugiej dość skomplikowany. Można pomyśleć, że zasady blokady konta są kluczowe, ale w rzeczywistości nie do końca to wystarcza. Te zasady mają na celu raczej ochronę użytkowników po zbyt wielu nieudanych logowaniach, a nie wymuszanie, by hasła były bardziej skomplikowane. Co do zarządzania użytkownikami w Panelu Sterowania, to raczej podstawowa sprawa, która nie daje możliwości wprowadzenia bardziej zaawansowanych zasad. W związku z tym, właściwości konta w zarządzaniu komputerem dają tylko ograniczone opcje, co nie jest idealne, jeśli myślimy o większym bezpieczeństwie. W praktyce, złe podejście do polityki haseł może naprawdę narazić system na różne problemy, dlatego ważne jest, by administratorzy zdawali sobie sprawę, że muszą korzystać z odpowiednich narzędzi i metod, żeby skutecznie chronić dostęp do systemów.

Pytanie 3

Które z poniższych stwierdzeń odnosi się do sieci P2P - peer to peer?

A. Komputer w tej sieci może jednocześnie działać jako serwer i klient
B. Udostępnia jedynie zasoby dyskowe
C. Wymaga centrali z dedykowanym oprogramowaniem
D. Ma charakter sieci hierarchicznej
Odpowiedź, że komputer w sieci może równocześnie pełnić rolę serwera i klienta, jest prawidłowa, ponieważ w architekturze P2P (peer-to-peer) każdy uczestnik sieci pełni równocześnie obie te funkcje. W przeciwieństwie do tradycyjnych modeli klient-serwer, w których istnieje wyraźny podział ról oraz centralny serwer, w sieciach P2P każdy węzeł może zarówno udostępniać zasoby (np. pliki, moc obliczeniową), jak i korzystać z tych zasobów oferowanych przez inne węzły. Przykłady zastosowań technologii P2P obejmują systemy wymiany plików, takie jak BitTorrent, gdzie każdy użytkownik pobiera i udostępnia dane, co zwiększa efektywność i szybkość transferu. P2P jest również stosowane w kryptowalutach, takich jak Bitcoin, gdzie każdy uczestnik sieci, zwany węzłem, ma pełne prawo do walidacji transakcji i uczestniczenia w procesie konsensusu. Z punktu widzenia bezpieczeństwa i decentralizacji, P2P eliminuje ryzyko pojedynczego punktu awarii, co jest kluczowe w nowoczesnych aplikacjach.

Pytanie 4

Z jakiego oprogramowania NIE można skorzystać, aby przywrócić dane w systemie Windows na podstawie wcześniej wykonanej kopii?

A. Acronis True Image
B. FileCleaner
C. Norton Ghost
D. Clonezilla
FileCleaner to narzędzie, które służy głównie do czyszczenia dysków z niepotrzebnych plików, usuwania historii przeglądania, plików tymczasowych oraz innych danych, które mogą zajmować miejsce na dysku. Nie jest to program przeznaczony do odzyskiwania danych. W przypadku utraty danych ważne jest posiadanie kopii zapasowej, a narzędzia takie jak Acronis True Image, Clonezilla czy Norton Ghost są dedykowane do tworzenia i przywracania kopii zapasowych. Acronis True Image, na przykład, umożliwia tworzenie pełnych obrazów systemu lub pojedynczych plików, co pozwala na łatwe przywrócenie danych w razie ich utraty. Clonezilla jest narzędziem open-source, które również oferuje funkcje klonowania dysków i przywracania danych, a Norton Ghost to klasyczny program do tworzenia kopii zapasowych, który był popularny w przeszłości. Dlatego FileCleaner nie jest odpowiednim rozwiązaniem w kontekście odzyskiwania danych z kopii zapasowej, podczas gdy inne wymienione programy są specjalnie do tego zaprojektowane.

Pytanie 5

Programem, który pozwala na zdalne monitorowanie działań użytkownika w sieci lokalnej lub przejęcie pełnej kontroli nad zdalnym komputerem, jest

A. CPU-Z
B. RealVNC
C. NSlookup
D. Recuva
NSlookup jest narzędziem służącym do zapytań DNS, pozwalającym na uzyskiwanie informacji o domenach oraz ich odpowiednikach IP. Pomocne jest w diagnostyce problemów z DNS, ale nie ma funkcji zdalnego dostępu ani kontroli zdalnych maszyn. Użytkownicy mogą mylić NSlookup z narzędziami zdalnego dostępu z powodu podobieństw w zastosowaniach sieciowych, jednak jego funkcjonalność jest znacznie bardziej ograniczona. Recuva to program zaprojektowany do odzyskiwania utraconych plików z dysków twardych lub nośników pamięci, a jego zastosowanie nie ma nic wspólnego z zdalnym dostępem. Pomyłka może wynikać z nieznajomości specyfikacji programów i ich funkcji, co prowadzi do niewłaściwych konkluzji na temat ich zastosowania. CPU-Z to narzędzie do zbierania informacji o sprzęcie komputerowym, w tym o procesorze, płycie głównej czy pamięci RAM. Choć przydatne dla użytkowników chcących zrozumieć swój sprzęt, nie oferuje żadnych funkcji do zdalnego dostępu. Kluczowe jest zrozumienie różnic między tymi narzędziami, aby właściwie dobierać je do swoich potrzeb oraz uniknąć nieporozumień wynikających z niewłaściwego zastosowania oprogramowania.

Pytanie 6

Do jakiego portu należy podłączyć kabel sieciowy zewnętrzny, aby uzyskać pośredni dostęp do sieci Internet?

Ilustracja do pytania
A. LAN
B. USB
C. WAN
D. PWR
Port PWR jest używany do zasilania urządzenia i nie przenosi danych sieciowych. Choć istotny dla działania sprzętu, nie ma żadnego związku z transmisją danych do internetu. Port USB w routerach często służy do podłączania urządzeń peryferyjnych, takich jak drukarki lub zewnętrzne pamięci masowe. Nie jest przeznaczony do przesyłania danych internetowych, a jego funkcjonalność zależy od specyfikacji urządzenia. Port LAN (Local Area Network) jest używany do łączenia urządzeń w sieci lokalnej, takich jak komputery, serwery i inne urządzenia sieciowe. Porty LAN umożliwiają komunikację w obrębie jednej sieci, ale nie zapewniają bezpośredniego dostępu do internetu. Błędne spojrzenie na funkcje tych portów wynika z nieznajomości ich specjalistycznych zastosowań. Poprawne zrozumienie tych różnic jest kluczowe dla efektywnego zarządzania siecią i zapewnienia jej bezpieczeństwa. Każdy port ma swoje określone przeznaczenie, które wpływa na sposób, w jaki urządzenia komunikują się ze sobą i z siecią zewnętrzną. Zrozumienie roli każdego portu jest fundamentalne dla projektowania i zarządzania siecią komputerową, umożliwiając właściwe konfigurowanie i skalowanie infrastruktury sieciowej w celu maksymalizacji jej wydajności i bezpieczeństwa. Wybór odpowiedniego portu do określonych zadań jest istotnym aspektem administrowania siecią, umożliwiającym poprawne działanie całego systemu.

Pytanie 7

Jakie elementy łączy okablowanie pionowe w sieci LAN?

A. Gniazdo abonenckie z punktem pośrednim rozdzielczym
B. Dwa sąsiadujące punkty abonenckie
C. Główny punkt rozdzielczy z punktami pośrednimi rozdzielczymi
D. Główny punkt rozdzielczy z gniazdem dla użytkownika
Warto zauważyć, że odpowiedzi sugerujące połączenie dwóch sąsiednich punktów abonenckich oraz gniazda abonenckiego z pośrednim punktem rozdzielczym są nieprawidłowe w kontekście definicji okablowania pionowego. Okablowanie pionowe odnosi się do systemu, który łączy główne punkty rozdzielcze z pośrednimi, co zapewnia centralizację i organizację wszystkich połączeń sieciowych. Przyjęcie, że okablowanie pionowe może ograniczać się do sąsiednich punktów abonenckich, ignoruje istotną rolę centralizacji, która jest niezbędna do efektywnego zarządzania siecią. Z kolei związek gniazda abonenckiego z pośrednim punktem rozdzielczym nie odpowiada na definicję okablowania pionowego, gdyż nie uwzględnia głównego punktu rozdzielczego jako kluczowego komponentu w architekturze sieci. Tego rodzaju błędne myślenie może prowadzić do decyzji projektowych, które nie zapewniają odpowiedniej wydajności i elastyczności sieci. W praktyce, projektowanie sieci musi być zgodne ze standardami, takimi jak ISO/IEC 11801, które podkreślają znaczenie architektury okablowania w zapewnieniu trwałych i skalowalnych rozwiązań sieciowych.

Pytanie 8

Czytnik w napędzie optycznym, który jest zanieczyszczony, należy oczyścić

A. izopropanolem
B. benzyną ekstrakcyjną
C. spirytusem
D. rozpuszczalnikiem ftalowym
Izopropanol to naprawdę jeden z najlepszych wyborów do czyszczenia soczewek i różnych powierzchni optycznych. Jego działanie jest super efektywne, bo fajnie rozpuszcza brud, a przy tym nie szkodzi delikatnym elementom w sprzęcie. Co ważne, bardzo szybko paruje, więc po czyszczeniu nie ma problemu z zostawianiem jakichś śladów. W praktyce można używać wacików nasączonych izopropanolem, co sprawia, że łatwo dotrzeć do tych trudniej dostępnych miejsc. Zresztą, standardy takie jak ISO 9001 mówią, że izopropanol to dobry wybór do konserwacji elektronicznego sprzętu, więc warto się tego trzymać. Pamiętaj, żeby unikać silnych rozpuszczalników, bo mogą one nieźle namieszać i zniszczyć materiały, z jakich zbudowany jest sprzęt.

Pytanie 9

W celu ochrony lokalnej sieci komputerowej przed atakami typu Smurf pochodzącymi z Internetu, należy zainstalować oraz właściwie skonfigurować

A. zaporę ogniową
B. bezpieczną przeglądarkę stron WWW
C. oprogramowanie antyspamowe
D. skaner antywirusowy
Zainstalowanie i odpowiednia konfiguracja zapory ogniowej są kluczowe w zabezpieczaniu lokalnej sieci komputerowej przed atakami typu Smurf, które są formą ataku DDoS. Atak Smurf wykorzystuje protokół ICMP (Internet Control Message Protocol) do wysyłania dużych ilości ruchu do ofiary, co prowadzi do przeciążenia jej zasobów. Zapora ogniowa może skutecznie blokować takie ruchy, poprzez filtrowanie pakietów ICMP i kontrolowanie, które połączenia są dozwolone. Dobrym przykładem jest skonfigurowanie zapory w taki sposób, aby odrzucała wszystkie nieautoryzowane zapytania ICMP lub ograniczała odpowiedzi na zapytania ICMP do minimum. Warto również stosować zapory aplikacyjne, które mogą analizować ruch na poziomie aplikacji, co zwiększa bezpieczeństwo. Dobrą praktyką jest również regularne aktualizowanie reguł zapory oraz monitorowanie logów w celu identyfikacji potencjalnych zagrożeń. Stosowanie zapory ogniowej wpisuje się w standardy branżowe, takie jak NIST Cybersecurity Framework, które zalecają ochronę zasobów poprzez kontrolowanie dostępu do sieci.

Pytanie 10

Wykonane polecenia, uruchomione w interfejsie CLI rutera marki CISCO, spowodują ```Router#configure terminal Router(config)#interface FastEthernet 0/0 Router(config-if)#ip address 10.0.0.1 255.255.255.0 Router(config-if)#ip nat inside```

A. konfiguracja interfejsu zewnętrznego z adresem 10.0.0.1/24 dla NAT
B. pozwolenie na ruch z sieci o adresie 10.0.0.1
C. zdefiniowanie zakresu adresów wewnętrznych 10.0.0.1 ÷ 255.255.255.0
D. konfiguracja interfejsu wewnętrznego z adresem 10.0.0.1/24 dla NAT
Odpowiedzi sugerujące dopuszczenie ruchu pochodzącego z sieci o adresie 10.0.0.1, określenie puli adresów wewnętrznych 10.0.0.1 ÷ 255.255.255.0 oraz ustawienie interfejsu zewnętrznego o adresie 10.0.0.1/24 dla technologii NAT prezentują istotne nieporozumienia w zakresie działania NAT oraz klasyfikacji interfejsów w ruterach Cisco. Przede wszystkim, NAT (Network Address Translation) jest technologią, której głównym celem jest umożliwienie komunikacji pomiędzy siecią wewnętrzną a zewnętrzną poprzez translację adresów IP. W tej konfiguracji interfejs FastEthernet 0/0 został oznaczony jako 'ip nat inside', co jednoznacznie wskazuje na jego rolę jako interfejsu wewnętrznego, a nie zewnętrznego. Oznaczenie interfejsu jako 'inside' jest kluczowe, ponieważ ruch przychodzący z tego interfejsu będzie podlegał translacji, co jest niezbędne do prawidłowego działania NAT. Poza tym, odpowiedzi sugerujące puli adresów wewnętrznych są mylące, ponieważ maska 255.255.255.0 wskazuje na zakres adresów od 10.0.0.1 do 10.0.0.254, jednak nie jest to sposób na określenie puli w kontekście NAT. NAT działa na zasadzie translacji, gdzie adresy wewnętrzne zamieniane są na adresy publiczne w momencie wysyłania pakietów do sieci zewnętrznej, co nie ma nic wspólnego z określaniem zakresów adresowych wewnętrznych. Zrozumienie tych zasad jest kluczowe w kontekście prawidłowej konfiguracji oraz zabezpieczeń sieciowych, dlatego takie nieścisłości mogą prowadzić do poważnych błędów w implementacji.

Pytanie 11

Monitor CRT jest podłączany do karty graficznej przy użyciu złącza

A. BNC
B. D-USB
C. PCMCIA
D. D-SUB
Wybór złącza BNC, D-USB i PCMCIA jako odpowiedzi na pytanie o połączenie monitora CRT z kartą graficzną jest błędny z kilku powodów. Złącza BNC, choć używane w niektórych aplikacjach wideo, są typowo stosowane w profesjonalnych systemach telewizyjnych i komunikacyjnych do przesyłania sygnałów wideo, a nie w standardowych połączeniach komputerowych. BNC nie jest powszechnie stosowane do podłączania monitorów CRT do kart graficznych, przez co nie spełnia wymagań tego pytania. Z kolei D-USB, które jest błędnie użyte jako termin, nie istnieje w konwencjonalnym użyciu. USB (Universal Serial Bus) to złącze umożliwiające transfer danych oraz zasilanie, ale nie jest przeznaczone do przesyłania sygnałów wideo dla monitorów CRT. Właściwym odpowiednikiem do przesyłania sygnałów wideo w kontekście USB jest standard USB-C, jednak w przypadku CRT nie byłoby to stosowane. Ostatnie złącze, PCMCIA, to standard kart rozszerzeń, który był używany głównie w laptopach do dodawania funkcji, takich jak karty sieciowe czy modemy. Nie jest to jednak interfejs do przesyłania sygnału wideo i tym samym nie ma zastosowania w kontekście pytania. Wybór tych nieprawidłowych odpowiedzi może wynikać z mylnego utożsamiania różnych typów złączy i ich funkcji, co jest powszechnym błędem w zrozumieniu architektury komputerowej.

Pytanie 12

Ile bitów trzeba wydzielić z części hosta, aby z sieci o adresie IPv4 170.16.0.0/16 utworzyć 24 podsieci?

A. 6 bitów
B. 4 bity
C. 5 bitów
D. 3 bity
Wybierając mniej niż 5 bitów, takie jak 3 lub 4, tracimy zdolność do zapewnienia wystarczającej liczby podsieci dla wymaganej liczby 24. Dla 3 bitów otrzymujemy jedynie 2^3=8 podsieci, co jest niewystarczające, a dla 4 bitów 2^4=16 podsieci, co również nie zaspokaja wymagań. Takie podejście może prowadzić do nieefektywności w zarządzaniu siecią, ponieważ zbyt mała liczba podsieci może skutkować przeciążeniem i trudnościami w administracji. W praktyce, niewłaściwe oszacowanie wymaganej liczby bitów prowadzi do problemów z adresacją, co może skutkować konfiguracjami, które nie spełniają potrzeb organizacji. Również błędne obliczenia mogą prowadzić do nieprzewidzianych zatorów w komunikacji między różnymi segmentami sieci. Właściwe planowanie podsieci jest kluczowe w inżynierii sieciowej, gdyż pozwala na efektywne zarządzanie zasobami oraz minimalizację problemów związanych z adresacją i zasięgiem. Ewentualne pominięcie odpowiedniej liczby bitów może również powodować problemy z bezpieczeństwem, ponieważ zbyt mała liczba podsieci może prowadzić do niekontrolowanego dostępu do zasobów sieciowych.

Pytanie 13

Obecnie pamięci podręczne drugiego poziomu procesora (ang. "L-2 cache") są zbudowane z układów pamięci

A. SRAM
B. DRAM
C. EEPROM
D. ROM
Odpowiedzi ROM, DRAM i EEPROM nie są prawidłowe w kontekście pamięci podręcznych drugiego poziomu. ROM (Read-Only Memory) to pamięć, która jest przeznaczona głównie do przechowywania stałych danych, takich jak oprogramowanie układowe. Ze względu na swoją naturę, ROM nie jest odpowiedni do dynamicznego przechowywania danych, które często się zmieniają w trakcie pracy procesora. Z kolei DRAM (Dynamic Random-Access Memory) jest wykorzystywana głównie jako pamięć główna w systemach komputerowych, a nie w pamięciach cache. DRAM wymaga ciągłego odświeżania, co wprowadza dodatkowe opóźnienia, które są nieakceptowalne w kontekście pamięci podręcznej, gdzie kluczowe jest szybkie dostarczanie danych do procesora. Zastosowanie EEPROM (Electrically Erasable Programmable Read-Only Memory) również nie jest właściwe, ponieważ ta technologia jest przeznaczona do przechowywania danych, które muszą być programowane i kasowane elektrycznie, co czyni ją zbyt wolną dla pamięci cache. Typowy błąd myślowy prowadzący do wyboru błędnych odpowiedzi to mylenie różnych typów pamięci ze względu na ich przeznaczenie i charakterystykę działania. Stosowanie pamięci RAM w kontekście pamięci podręcznej powinno być oparte na zrozumieniu wymagań dotyczących szybkości, opóźnień i efektywności energetycznej, co podkreśla znaczenie wyboru SRAM w tej roli.

Pytanie 14

Jaki typ plików powinien być stworzony w systemie operacyjnym, aby zautomatyzować najczęściej wykonywane zadania, takie jak kopiowanie, utworzenie pliku lub folderu?

A. Plik konfiguracyjny
B. Plik inicjujący
C. Plik wsadowy
D. Plik systemowy
No więc, odpowiedzi dotyczące plików konfiguracyjnych, systemowych czy inicjujących są w sumie trochę mylące. Plik konfiguracyjny w zasadzie jest tylko takim zestawieniem ustawień dla systemu albo aplikacji, więc nie ma co liczyć na automatyzację. Pliki systemowe? One tylko działają w tle, żeby system miał po prostu jak funkcjonować, ale też nie pomagają w automatyzacji. A pliki inicjujące, które uruchamiają różne programy, ani myślą o robieniu sekwencji zadań. Wiem, że czasem można pomylić te funkcje, ale warto pamiętać, że pliki konfiguracyjne to nie to samo co automatyzacja. Wielu ludzi myśli, że skoro dotyczą ustawień, to mogą też coś tam automatyzować, ale to nie tak działa. W rzeczywistości pliki wsadowe są tym, co naprawdę pomaga w automatyzacji i w efektywnym zarządzaniu systemem.

Pytanie 15

Jakie stwierdzenie dotyczące konta użytkownika Active Directory w systemie Windows jest właściwe?

A. Nazwa logowania użytkownika nie może mieć długości większej niż 100 bajtów
B. Nazwa logowania użytkownika musi mieć mniej niż 21 znaków
C. Nazwa logowania użytkownika może mieć długość większą niż 100 bajtów
D. Nazwa logowania użytkownika musi mieć mniej niż 20 znaków
Wielu użytkowników może mieć trudności z interpretacją wymagań dotyczących długości nazwy logowania użytkownika w Active Directory, co prowadzi do powszechnych nieporozumień. Stwierdzenie, że nazwa logowania musi mieć mniej niż 20 lub 21 znaków, jest mylące, ponieważ w rzeczywistości ograniczenia są znacznie bardziej elastyczne. Warto zauważyć, że maksymalna długość nazwy logowania użytkownika w Active Directory wynosi 256 znaków, co stanowi istotny element praktyk administracyjnych dla dużych instytucji. Zastosowanie zbyt krótkich nazw logowania może prowadzić do sytuacji, w których identyfikacja użytkowników staje się problematyczna, zwłaszcza w przypadku, gdy w organizacji działa wiele osób z podobnymi imionami i nazwiskami. Ograniczenia długości nazwy mogą również wpływać na integrację z innymi systemami, gdzie dłuższe identyfikatory są wymagane. Wreszcie, błędne przekonania na temat ograniczeń długości mogą skutkować nieefektywnym zarządzaniem kontami użytkowników, co z kolei może prowadzić do nieporozumień, zwiększenia ryzyka bezpieczeństwa oraz utrudnień w audytach. Dlatego ważne jest, aby administratorzy byli dobrze poinformowani o faktycznych możliwościach oraz standardach dotyczących długości nazw logowania w systemie Active Directory.

Pytanie 16

Wartość liczby BACA w systemie heksadecymalnym to liczba

A. 135316(8)
B. 47821(10)
C. 1100101010111010(2)
D. 1011101011001010(2)
Odpowiedź 1011101011001010(2) jest naprawdę trafna! Liczba BACA w systemie heksadecymalnym faktycznie odpowiada 47821 w dziesiątkowym. Fajnie, że wiesz, jak to przeliczyć na binarny. Każda cyfra w heksadecymalnym to cztery bity – no wiesz, B to 11, A to 10, C to 12, a A znowu to 10. Kiedy przekształcisz to na bity, wychodzi: B = 1011, A = 1010, C = 1100, i jeszcze raz A = 1010. Łącząc to wszystko, dostajesz 1011101011001010. Te konwersje są mega ważne w programowaniu, bo różne systemy liczbowe pomagają w lepszym zarządzaniu danymi. Na przykład, komputery często używają heksadecymalnego i binarnego do zapisywania adresów w pamięci czy kolorów w grafice. Jak dla mnie, świetna robota!

Pytanie 17

Jak nazywa się standard podstawki procesora bez nóżek?

A. LGA
B. SPGA
C. PGA
D. CPGA
Standard LGA (Land Grid Array) to nowoczesna konstrukcja podstawki procesora, która nie wykorzystuje nóżek, co odróżnia ją od innych standardów, takich jak PGA (Pin Grid Array) czy CPGA (Ceramic Pin Grid Array). W LGA procesor ma na swojej spodniej stronie siatkę metalowych styków, które łączą się z odpowiednimi punktami na podstawce. Dzięki temu, LGA oferuje lepszą stabilność mechaniczną i umożliwia większą gęstość połączeń. Przykładem zastosowania standardu LGA są procesory Intel, takie jak rodzina Core i7, które są wykorzystywane w komputerach stacjonarnych oraz laptopach. LGA umożliwia również lepsze chłodzenie, ponieważ płaska powierzchnia procesora pozwala na efektywniejsze dopasowanie chłodzenia. Przy projektowaniu nowoczesnych płyt głównych stosuje się LGA jako standard, co jest zgodne z najlepszymi praktykami w zakresie projektowania systemów komputerowych.

Pytanie 18

Co otrzymujemy po zsumowaniu liczb 33(8) oraz 71(8)?

A. 1010100(2)
B. 1010101(2)
C. 1001100(2)
D. 1100101(2)
Wybór innych odpowiedzi często wynika z nieprawidłowego zrozumienia zasad konwersji liczb między systemami liczbowymi oraz z błędnego dodawania w systemie ósemkowym. Na przykład, przy dodawaniu 33(8) i 71(8), kluczowe jest zrozumienie, że system ósemkowy ogranicza wartości cyfr do zakresu od 0 do 7. W przypadku, gdy użytkownik próbuje dodać te liczby bez wcześniejszej konwersji do systemu dziesiętnego, mógłby popełnić błąd arytmetyczny, myśląc, że cyfry są dodawane tak jak w systemie dziesiętnym. Inną możliwością jest pomylenie wyniku podczas konwersji z systemu dziesiętnego na binarny, co może prowadzić do niepoprawnych wyników, takich jak 1001100(2) lub 1010101(2). Często takie błędy wynikają z braku praktyki w konwertowaniu liczb oraz z niewłaściwego zrozumienia, jak różne systemy liczbowo-arabiczne różnią się między sobą. Użytkownicy mogą także zafałszować wyniki przez błędne dodawanie w systemie ósemkowym, na przykład dodając cyfry w sposób, który nie uwzględnia przeniesienia, co prowadzi do nieprawidłowego wyniku w systemie ósemkowym. Wszystkie te błędy podkreślają znaczenie zrozumienia podstawowych zasad systemów liczbowych oraz praktyki w ich stosowaniu, by uniknąć typowych pułapek w obliczeniach.

Pytanie 19

Wskaż program w systemie Linux, który jest przeznaczony do kompresji plików?

A. shar
B. tar
C. arj
D. gzip
Odpowiedzi na to pytanie, takie jak tar, shar czy arj, odnoszą się do różnych aspektów zarządzania plikami w systemach Linux, ale nie są one dedykowanymi programami kompresji danych. Tar jest narzędziem do tworzenia archiwów, które nie wykonuje kompresji, chyba że jest używane w połączeniu z gzip lub innymi programami kompresującymi. Shar to format skryptów UNIX do przesyłania plików, który służy głównie do dystrybucji plików źródłowych, a nie ich kompresji. Z kolei arj to starszy program archiwizacyjny, który był popularny w latach 90., ale nie jest tak powszechnie używany w systemach Linux. Typowym błędem jest mylenie archiwizacji z kompresją – archiwizacja organizuje pliki w jednym miejscu, natomiast kompresja zmniejsza ich rozmiar. Właściwe zrozumienie różnicy między tymi pojęciami jest kluczowe dla efektywnego zarządzania danymi w systemach operacyjnych, a także dla wyboru odpowiednich narzędzi do zadań związanych z przechowywaniem i przesyłaniem informacji.

Pytanie 20

Który port stosowany jest przez protokół FTP (File Transfer Protocol) do przesyłania danych?

A. 20
B. 25
C. 53
D. 69
Port 20 jest kluczowym portem używanym przez protokół FTP (File Transfer Protocol) do transmisji danych. FTP operuje w trybie klient-serwer i wykorzystuje dwa porty: port 21 do nawiązywania połączenia oraz port 20 do przesyłania danych. Gdy klient FTP wysyła żądanie pobrania lub wysłania pliku, dane są transmitowane przez port 20. Zastosowanie tego portu jest zgodne z normami IETF i RFC 959, które definiują specyfikację FTP. Przykładowo, w sytuacji, gdy użytkownik chce przesłać plik na serwer FTP, połączenie kontrolne nawiązywane jest na porcie 21, a dane przesyłane są na porcie 20. W praktyce, w kontekście automatyzacji procesów, port 20 jest także wykorzystywany w skryptach i aplikacjach, które wymagają transferu plików, co czyni go niezbędnym elementem infrastruktury sieciowej. Wiedza o tym, jak działa FTP i jego porty, jest niezbędna dla administratorów systemów oraz specjalistów ds. IT, którzy zajmują się zarządzaniem serwerami oraz transferem danych.

Pytanie 21

Jakie jest tworzywo eksploatacyjne w drukarce laserowej?

A. laser
B. zbiornik z tuszem
C. kaseta z tonerem
D. taśma drukująca
Wybór niepoprawnych odpowiedzi wskazuje na pewne nieporozumienia dotyczące charakterystyki materiałów eksploatacyjnych stosowanych w drukarkach laserowych. Pojemnik z tuszem odnosi się do technologii druku atramentowego, a nie laserowego. Drukarki atramentowe używają cieczy, która jest aplikowana na papier, co różni się zasadniczo od działania drukarek laserowych, które wykorzystują proszek tonerowy. Z kolei taśma barwiąca jest stosowana w innych typach drukarek, takich jak drukarki igłowe czy termiczne, gdzie barwnik jest przenoszony z taśmy na papier, co również nie ma zastosowania w technologii laserowej. W przypadku druku laserowego, kluczowym elementem jest proces elektrostatyczny, w którym ładowany proszek tonerowy przyczepia się do naładowanej elektrostatycznie powierzchni bębna, a następnie przenoszony jest na papier. Laser jest tylko źródłem, które generuje obraz na bębnie, ale nie jest materiałem eksploatacyjnym. Zrozumienie różnic między tymi technologiami jest istotne dla właściwego doboru sprzętu oraz materiałów eksploatacyjnych, co wpływa na efektywność i koszt druku. W praktyce, wybór odpowiednich materiałów eksploatacyjnych może znacząco wpłynąć na jakość wydruków oraz wydajność urządzenia.

Pytanie 22

Jakie zagrożenie nie jest eliminowane przez program firewall?

A. Ataki powodujące zwiększony ruch w sieci
B. Szpiegowanie oraz kradzież poufnych informacji użytkownika
C. Wirusy rozprzestrzeniające się za pomocą poczty e-mail
D. Dostęp do systemu przez hakerów
Każda z wymienionych odpowiedzi, które sugerują, że firewall może chronić przed różnymi zagrożeniami, prowadzi do błędnych wniosków i zrozumienia roli tego narzędzia w architekturze zabezpieczeń. Uzyskanie dostępu do komputera przez hakerów, szpiegowanie oraz wykradanie poufnych danych użytkownika, a nawet ataki generujące wzmożony ruch w sieci, to scenariusze, na które firewalle mogą reagować, ale nie są one w stanie skutecznie zapobiegać. Na przykład, firewalle filtrują ruch sieciowy i mogą blokować nieautoryzowane połączenia, ale nie są wystarczające do ochrony przed atakami typu social engineering, które często są wykorzystywane przez hakerów do uzyskania dostępu do systemów. Ponadto, wirusy rozprzestrzeniające się pocztą e-mail mogą być zainstalowane na komputerze użytkownika poprzez otwarcie zainfekowanego załącznika, co pokazuje, że firewalle, które nie analizują treści wiadomości, nie mają możliwości zapobiegania takim incydentom. Dlatego kluczowe jest zrozumienie, że firewalle są tylko jednym z wielu elementów składających się na kompleksowy system bezpieczeństwa, a ignorowanie tego faktu może prowadzić do poważnych luk w zabezpieczeniach.

Pytanie 23

Jaki protokół stosują komputery, aby informować rutera o przynależności do konkretnej grupy multicastowej?

A. IGMP
B. RIP
C. OSPF
D. UDP
OSPF (Open Shortest Path First) to protokół routingu stosowany w sieciach IP, ale jego funkcjonalność jest zupełnie inna niż IGMP. OSPF służy do dynamicznego wykrywania i zarządzania trasami w sieci, a nie do zarządzania członkostwem w grupach multicastowych. Jego celem jest zapewnienie optymalnej ścieżki dla ruchu IP poprzez algorytmy takie jak Dijkstra, co ma kluczowe znaczenie w dużych, złożonych sieciach. UDP (User Datagram Protocol) to natomiast protokół transportowy, który umożliwia przesyłanie danych bez gwarancji dostarczenia, co czyni go nieodpowiednim do zarządzania członkostwem w grupach rozgłoszeniowych. W kontekście przesyłania multicastowego, UDP może być używany jako protokół transportowy dla strumieni danych, lecz nie zarządza on informacjami o tym, które urządzenia należą do danej grupy. RIP (Routing Information Protocol) to inny protokół routingu, który, podobnie jak OSPF, nie ma funkcji związanych z zarządzaniem grupami multicastowymi. W związku z tym, odpowiedzi związane z OSPF, UDP i RIP są nieprawidłowe, ponieważ nie odpowiadają na pytanie o sposób, w jaki komputery informują routery o członkostwie w grupach rozgłoszeniowych. Zrozumienie różnic między tymi protokołami a IGMP jest kluczowe dla prawidłowego projektowania i zarządzania sieciami, aby skutecznie wykorzystywać ich specyfikę w praktycznych zastosowaniach.

Pytanie 24

Aby stworzyć partycję w systemie Windows, należy skorzystać z narzędzia

A. diskmgmt.msc
B. dfsgui.msc
C. devmgmt.msc
D. dsa.msc
Odpowiedź 'diskmgmt.msc' jest poprawna, ponieważ jest to narzędzie systemowe w systemie Windows, które umożliwia zarządzanie dyskami i partycjami. Użytkownicy mogą za jego pomocą tworzyć, usuwać, formatować i zmieniać rozmiar partycji, co jest kluczowe przy organizacji przestrzeni dyskowej. Przykładowo, jeśli użytkownik chce podzielić dysk twardy na kilka mniejszych jednostek, aby lepiej zarządzać danymi, może to zrobić przy użyciu tego narzędzia. Dobrą praktyką jest regularne sprawdzanie stanu dysków oraz optymalizacja ich struktury, co może przyczynić się do lepszej wydajności systemu. Ponadto, diskmgmt.msc pozwala na przypisywanie liter dysków, co ułatwia ich identyfikację przez system oraz użytkowników. Używając tego narzędzia, można również zarządzać wolnym miejscem na dysku, co jest istotne w kontekście zachowania integralności danych oraz efektywności operacyjnej całego systemu operacyjnego. Warto zaznaczyć, że dostęp do tego narzędzia można uzyskać, wpisując 'diskmgmt.msc' w oknie uruchamiania (Win + R), co czyni go łatwo dostępnym dla użytkowników.

Pytanie 25

Granice dla obszaru kolizyjnego nie są określane przez porty urządzeń takich jak

A. koncentrator (ang. hub)
B. router
C. przełącznik (ang. swith)
D. most (ang. bridge)
Przełączniki, mosty i routery działają na wyższych warstwach modelu OSI, co pozwala im na inteligentne zarządzanie ruchem sieciowym oraz wyznaczanie granic dla domeny kolizyjnej. Przełącznik, na przykład, operuje na warstwie drugiej i potrafi analizować adresy MAC, co pozwala mu na przekazywanie danych tylko do odpowiednich odbiorców, eliminując kolizje. Mosty z kolei łączą różne segmenty sieci, co również przyczynia się do ograniczenia domen kolizyjnych przez segregację ruchu. Routery, działające na warstwie trzeciej, mają zdolność kierowania pakietów na podstawie adresów IP i mogą łączyć różne sieci, co również wpływa na wydajność i bezpieczeństwo. Użytkownicy często mylą te urządzenia, zakładając, że każde z nich funkcjonuje w ten sam sposób jak koncentrator. W rzeczywistości, używanie koncentratorów w nowoczesnych sieciach może prowadzić do znacznych problemów z wydajnością oraz bezpieczeństwem, ponieważ nie oferują one mechanizmów minimalizujących kolizje. Błędem jest zatem przypisywanie koncentratorom podobnych funkcji do bardziej zaawansowanych urządzeń, takich jak przełączniki czy routery, co może prowadzić do nieefektywnej konfiguracji sieci. Współczesne praktyki zalecają użycie przełączników, aby zoptymalizować ruch sieciowy i zapewnić lepsze zarządzanie zasobami.

Pytanie 26

Jakie oznaczenie potwierdza oszczędność energii urządzenia?

A. Energy STAR
B. Energy IEEE
C. Energy ISO
D. Energy TCO
Wybór innej odpowiedzi może wynikać z mylenia różnych certyfikacji związanych z efektywnością energetyczną. Na przykład, Energy ISO odnosi się do standardów międzynarodowych, które mogą dotyczyć różnych aspektów zarządzania jakością i bezpieczeństwa, ale nie są specyficznie ukierunkowane na energooszczędność produktów. Standardy ISO, choć istotne w kontekście jakości, nie oferują bezpośrednich informacji na temat zużycia energii przez urządzenia. Energy TCO odnosi się do całkowitych kosztów posiadania i może obejmować różne aspekty, w tym zużycie energii, ale nie jest to certyfikat potwierdzający energooszczędność samych produktów. Warto zauważyć, że Energy IEEE nie istnieje jako certyfikat energooszczędności; IEEE to organizacja zajmująca się standardami w dziedzinie elektronicznej i inżynierii komputerowej, a nie efektywnością energetyczną. Te pomyłki wskazują na nieporozumienie w zakresie certyfikacji i ich skutków. Przy wyborze energooszczędnych urządzeń warto kierować się sprawdzonymi i uznawanymi programami, takimi jak Energy STAR, które mają jasne kryteria skuteczności energetycznej, co jest kluczowe w podejmowaniu świadomych decyzji zakupowych.

Pytanie 27

Jak nazywa się topologia fizyczna, w której każdy węzeł łączy się bezpośrednio ze wszystkimi innymi węzłami?

A. siatki
B. pojedynczego pierścienia
C. hierarchiczna
D. gwiazdy rozszerzonej
Wybór topologii pojedynczego pierścienia sugeruje, że każdy węzeł łączy się z dwoma innymi węzłami, tworząc zamknięty obwód. Choć taka struktura może być stosunkowo prosta do zbudowania i może być atrakcyjna ze względu na niskie koszty materiałowe, to nie oferuje ona zalet niezawodności, które są charakterystyczne dla topologii siatki. Jeśli jeden węzeł lub łącze ulegnie awarii, cała sieć może przestać działać, co czyni ją podatną na awarie. Przykładami zastosowania topologii pierścieniowej mogą być mniejsze sieci lokalne, ale w przypadku większych systemów nie zaleca się jej stosowania ze względu na wspomniane ograniczenia. Topologia gwiazdy rozszerzonej polega na centralnym węźle, do którego podłączane są inne węzły, co oznacza, że awaria centralnego węzła może również prowadzić do przerwania komunikacji w całej sieci. Hierarchiczna topologia natomiast, w której węzły są zorganizowane w strukturę drzewa, także nie zapewnia pełnej sieciowej redundancji, co czyni ją mniej stabilną w porównaniu do połączeń w topologii siatki. W praktyce, wykorzystując topologie, ważne jest, aby zrozumieć ich ograniczenia i dostosować je do specyfikacji oraz potrzeb konkretnej organizacji, aby zapewnić maksymalną efektywność oraz bezpieczeństwo systemu sieciowego.

Pytanie 28

Na schemacie przedstawiono konfigurację protokołu TCP/IP pomiędzy serwerem a stacją roboczą. Na serwerze zainstalowano rolę DNS. Wykonanie polecenia ping www.cke.edu.pl na serwerze zwraca pozytywny wynik, natomiast na stacji roboczej jest on negatywny. Jakie zmiany należy wprowadzić w konfiguracji, aby usługa DNS na stacji funkcjonowała poprawnie?

Ilustracja do pytania
A. adres serwera DNS na stacji roboczej na 192.168.1.11
B. adres bramy na serwerze na 192.168.1.11
C. adres serwera DNS na stacji roboczej na 192.168.1.10
D. adres bramy na stacji roboczej na 192.168.1.10
Zamiana adresu bramy na stacji roboczej lub na serwerze nie rozwiązuje problemu związanego z negatywnym wynikiem polecenia ping na stacji roboczej, ponieważ problem dotyczy rozwiązywania nazw, a nie routingu. Brama domyślna w sieciach komputerowych jest używana do przesyłania pakietów IP poza lokalną sieć, jednak w tym przypadku komunikacja jest wewnątrz sieci lokalnej, a błędne ustawienia bramy nie byłyby przyczyną niepowodzenia w pingowaniu domeny. Zamiast tego, poprawna konfiguracja DNS jest kluczowa dla rozwiązywania nazw domenowych. Innym błędnym założeniem byłoby użycie adresu IP bramy jako serwera DNS. Adres bramy domyślnej jest przeznaczony do przesyłania ruchu do innych sieci, a nie do tłumaczenia nazw domen. Często spotykanym błędem jest również używanie adresu 127.0.0.1 jako DNS na komputerze, który nie jest serwerem DNS, ponieważ ten adres wskazuje na lokalną maszynę. W przypadku serwerów rzeczywiście pełniących rolę DNS, jak w tej sytuacji, należy skonfigurować stacje robocze, aby używały odpowiedniego adresu IP serwera DNS, co w tym przypadku jest 192.168.1.10. Takie podejście zapewnia, że stacja robocza ma dostęp do poprawnie skonfigurowanego serwera DNS, który może skutecznie tłumaczyć nazwy domenowe i umożliwiać komunikację sieciową. Warto również pamiętać, że w dużych sieciach czasem stosuje się redundancję serwerów DNS, aby zwiększyć dostępność, co jednak nie zmienia podstawowej potrzeby poprawnego skonfigurowania podstawowego serwera DNS w sieci lokalnej.

Pytanie 29

Część programu antywirusowego działająca w tle jako kluczowy element zabezpieczeń, mająca na celu nieustanne monitorowanie ochrony systemu komputerowego, to

A. monitor antywirusowy
B. skaner skryptów
C. moduł przeciwspywaczowy
D. firewall
Monitor antywirusowy to naprawdę ważny kawałek oprogramowania, który działa w tle i cały czas pilnuje naszego komputera. Jego zadanie to śledzenie, co się dzieje w systemie, a także wykrywanie zagrożeń w czasie rzeczywistym i blokowanie wirusów, zanim zdążą nam namieszać w plikach. Na przykład, jak ściągasz coś z netu, to monitor automatycznie skanuje ten plik, żeby sprawdzić, czy nie ma tam jakichś wirusów. To bardzo rozsądne podejście, bo w branży IT zaleca się, żeby mieć różne warstwy ochrony, a monitor to właśnie ta pierwsza linia obrony. W nowoczesnych systemach antywirusowych często używa się sztucznej inteligencji, co znacząco podnosi skuteczność ochrony. Szczególnie w firmach, gdzie bezpieczeństwo danych jest na pierwszym miejscu, taki monitor jest niezbędny.

Pytanie 30

Który z parametrów należy użyć w poleceniu netstat, aby uzyskać statystyki interfejsu sieciowego dotyczące liczby przesłanych oraz odebranych bajtów i pakietów?

A. -a
B. -n
C. -o
D. -e
Nieprawidłowe odpowiedzi wskazują na pewne nieporozumienia dotyczące zastosowania parametrów polecenia netstat. Parametr -a, na przykład, jest używany do wyświetlania wszystkich aktywnych połączeń oraz portów, ale nie dostarcza szczegółowych informacji o statystykach interfejsów sieciowych. Użycie tego parametru prowadzi do zbyt ogólnych danych, które mogą nie być pomocne w analizie wydajności poszczególnych interfejsów sieciowych. Z kolei parametr -n służy do wyświetlania adresów IP w postaci numerycznej, co również nie odpowiada na potrzebę analizy statystyk interfejsów. Użytkownicy mogą mylnie sądzić, że informacje w formie numerycznej są bardziej użyteczne, jednak w kontekście wydajności interfejsów bezpośrednie statystyki są kluczowe. Parametr -o, z drugiej strony, jest używany do wyświetlania identyfikatorów procesów (PID) związanych z połączeniami, co także nie ma związku z ilościami przesyłanych bajtów i pakietów. Właściwe zrozumienie tych parametrów jest niezbędne do skutecznego monitorowania i rozwiązywania problemów w sieciach, a niepoprawne interpretacje mogą prowadzić do utraty cennych informacji podczas diagnostyki.

Pytanie 31

Na ilustracji zaprezentowano graficzny symbol

Ilustracja do pytania
A. rutera
B. mostu
C. koncentratora
D. regeneratora
Symbol graficzny przedstawiony na rysunku to typowe oznaczenie rutera urządzenia sieciowego odpowiedzialnego za trasowanie pakietów danych między różnymi sieciami. Rutery wykorzystują tabele routingu i protokoły takie jak OSPF BGP czy EIGRP do określania najefektywniejszej ścieżki dla przesyłanych danych. W praktyce ruter znajduje zastosowanie w każdym zastosowaniu gdzie konieczne jest połączenie różnych segmentów sieci lokalnych LAN z siecią rozległą WAN lub Internetem. Działanie rutera opiera się na analizie adresów IP nadchodzących pakietów i decydowaniu o ich dalszym kierunku. W odróżnieniu od przełączników które operują w ramach jednej sieci lokalnej rutery umożliwiają komunikację między różnymi podsieciami. Ważnym aspektem konfiguracji ruterów jest zabezpieczenie przed nieautoryzowanym dostępem oraz efektywne zarządzanie ruchem sieciowym aby zapewnić optymalną wydajność i bezpieczeństwo. Rutery są kluczowe dla utrzymania spójności i niezawodności infrastruktury sieciowej zgodnie z najlepszymi praktykami sieciowymi co czyni je niezbędnymi w nowoczesnych rozwiązaniach IT.

Pytanie 32

Wskaż błędny sposób podziału dysku MBR na partycje

A. 1 partycja podstawowa oraz jedna rozszerzona
B. 2 partycje podstawowe i jedna rozszerzona
C. 3 partycje podstawowe oraz jedna rozszerzona
D. 1 partycja podstawowa i dwie rozszerzone
W przypadku podziału dysku MBR istnieje wiele błędnych koncepcji dotyczących liczby partycji podstawowych i rozszerzonych, które mogą prowadzić do nieporozumień. Zgodnie z zasadami MBR, maksymalnie można stworzyć cztery partycje podstawowe lub trzy partycje podstawowe oraz jedną partycję rozszerzoną. W przypadku podziału na dwie partycje rozszerzone i jedną podstawową, powstaje problem, ponieważ partycja rozszerzona jest strukturą, która jedynie umożliwia utworzenie wielu partycji logicznych. Partycja rozszerzona nie może występować w liczbie większej niż jedna. Typowym błędem jest mylenie partycji podstawowych z logicznymi – partycje logiczne są zawarte wewnątrz partycji rozszerzonej i nie mogą istnieć samodzielnie bez odpowiedniej struktury rozszerzonej. Z tego powodu, odpowiedzi sugerujące możliwość utworzenia więcej niż jednej partycji rozszerzonej są nieprawidłowe. Warto również zauważyć, że wybór MBR jako systemu partycjonowania jest czasami ograniczający, szczególnie w przypadku nowoczesnych dysków twardych, gdzie lepszym rozwiązaniem może być GPT, które oferuje bardziej zaawansowane funkcje, takie jak większa liczba partycji oraz lepsze wsparcie dla większych dysków. Zrozumienie tych zasad jest kluczowe dla właściwego zarządzania danymi i projektowania struktur dyskowych.

Pytanie 33

W klasycznym adresowaniu, adres IP 74.100.7.8 przyporządkowany jest do

A. klasy B
B. klasy D
C. klasy A
D. klasy C
Adres IP 74.100.7.8 należy do klasy A, ponieważ pierwsza okteta (74) mieści się w zakresie od 1 do 126. Klasa A jest zarezerwowana dla dużych sieci i pozwala na przydzielenie znacznej liczby adresów IP, co czyni ją idealną dla organizacji, które potrzebują dużej liczby hostów. W adresowaniu klasowym, pierwsza okteta definiuje klasę adresu: klasa A (1-126), klasa B (128-191), klasa C (192-223), klasa D (224-239) i klasa E (240-255). Przykładowo, organizacje takie jak duże korporacje czy dostawcy usług internetowych często korzystają z klasy A, aby przydzielić adresy IP dla swoich serwerów i urządzeń. Znajomość klasyfikacji adresów IP jest istotna w kontekście routingu i zarządzania sieciami, gdyż pozwala na efektywne planowanie i wdrażanie architektury sieciowej, a także na minimalizację problemów związanych z konfliktem adresów. Klasa A wspiera również możliwość zastosowania CIDR (Classless Inter-Domain Routing), co umożliwia bardziej elastyczne zarządzanie przestrzenią adresową.

Pytanie 34

Jakie oznaczenie nosi wtyk powszechnie znany jako RJ45?

A. 4P4C (4 Position 4 Contact)
B. 8P4C (8 Position 4 Contact)
C. 8P8C (8 Position 8 Contact)
D. 4P8C (4 Position 8 Contact)
Oznaczenie 8P8C (8 Position 8 Contact) odnosi się do wtyków, które są powszechnie stosowane w kablach Ethernetowych, szczególnie w standardzie 1000BASE-T, który obsługuje transfer danych na poziomie 1 Gbps. Wtyki te mają osiem pinów, co pozwala na przesyłanie danych w pełnym dupleksie, a ich konstrukcja zapewnia odpowiednią jakość sygnału oraz minimalizację zakłóceń elektromagnetycznych. W praktyce, RJ45 jest niezbędny w budowie sieci lokalnych (LAN) oraz w aplikacjach związanych z komunikacją internetową. Użycie wtyków 8P8C stało się standardem w branży telekomunikacyjnej, co pozwala na szeroką kompatybilność pomiędzy różnymi urządzeniami sieciowymi, takimi jak routery, przełączniki i komputery. Warto zauważyć, że stosowanie wtyków zgodnych z tym standardem jest istotne dla zachowania efektywności przesyłu danych oraz optymalizacji pracy sieci.

Pytanie 35

Który z materiałów eksploatacyjnych nie jest stosowany w ploterach?

A. Atrament
B. Pisak
C. Filament
D. Tusz
Wybierając tusz, pisak czy atrament, można łatwo pomylić ich zastosowanie, zwłaszcza w kontekście urządzeń, w których są one wykorzystywane. Tusz oraz atrament są materiałami eksploatacyjnymi stosowanymi w ploterach atramentowych, które są powszechnie używane do drukowania dokumentów i grafik. W przypadku tych ploterów, tusze mają różne formuły, takie jak tusze pigmentowe i barwnikowe, co wpływa na jakość i trwałość wydruków. Tusze pigmentowe charakteryzują się wyższą odpornością na blaknięcie, co czyni je idealnymi do zewnętrznych zastosowań, podczas gdy tusze barwnikowe zwykle oferują lepszą reprodukcję kolorów na papierze. Pisaki, chociaż mniej powszechne, mogą być również wykorzystywane w ploterach tnących do rysowania i oznaczania. Warto dodać, że ich mechanizm działania jest oparty na innej technologii niż w przypadku standardowych ploterów atramentowych, co może prowadzić do nieporozumień. Kluczowym błędem w analizowaniu tych materiałów jest założenie, że wszystkie mogą być stosowane w tym samym kontekście, co jest dalekie od rzeczywistości. Dlatego ważne jest, aby znać specyfikę każdego urządzenia i odpowiednio dobierać materiały eksploatacyjne do jego funkcji.

Pytanie 36

Użytkownik pragnie ochronić dane na karcie pamięci przed przypadkowym usunięciem. Taką zabezpieczającą cechę oferuje karta

A. MS
B. SD
C. MMC
D. CF
Karty pamięci SD (Secure Digital) są powszechnie stosowane w elektronice użytkowej i oferują mechaniczne zabezpieczenie przed przypadkowym skasowaniem danych. W przypadku kart SD, zabezpieczenie to jest realizowane poprzez fizyczny przełącznik, który można przestawić na pozycję "lock". Gdy przełącznik jest w tej pozycji, karta nie pozwala na zapis nowych danych ani na ich usuwanie, co chroni zawartość przed niezamierzonym skasowaniem. To funkcjonalność, która jest szczególnie przydatna w sytuacjach, gdy użytkownik nie chce ryzykować utraty ważnych danych, na przykład podczas przenoszenia plików między urządzeniami. Warto dodać, że standardy SD są zgodne z międzynarodowymi normami, co zapewnia kompatybilność z wieloma urządzeniami, takimi jak aparaty cyfrowe, smartfony, laptopy czy konsolki do gier. Karty SD są dostępne w różnych pojemnościach i klasach prędkości, co umożliwia ich szerokie zastosowanie w codziennym użytkowaniu i profesjonalnych aplikacjach.

Pytanie 37

W którym systemie operacyjnym może pojawić się komunikat podczas instalacji sterowników dla nowego urządzenia?

System.......nie może zweryfikować wydawcy tego sterownika. Ten sterownik nie ma podpisu cyfrowego albo podpis nie został zweryfikowany przez urząd certyfikacji. Nie należy instalować tego sterownika, jeżeli nie pochodzi z oryginalnego dysku producenta lub od administratora systemu.
A. Linux
B. Windows XP
C. Unix
D. Windows 98
Windows XP to system operacyjny, który wprowadził istotne zmiany w zarządzaniu bezpieczeństwem sterowników urządzeń. Jednym z kluczowych elementów było wprowadzenie wymagania podpisów cyfrowych dla sterowników jako środka zapewnienia ich autentyczności i integralności. Gdy instalowany sterownik nie posiadał poprawnego podpisu, system wyświetlał ostrzeżenie, co miało na celu ochronę użytkownika przed potencjalnie szkodliwym oprogramowaniem. Dzięki temu użytkownicy byli zachęcani do korzystania z certyfikowanych sterowników, co minimalizowało ryzyko problemów z kompatybilnością i stabilnością systemu. System Windows XP korzystał z infrastruktury klucza publicznego (PKI) do weryfikacji podpisów cyfrowych, co było zgodne z najlepszymi praktykami w branży IT. Instalacja niepodpisanych sterowników była możliwa, lecz wymagała świadomego działania użytkownika, który musiał zaakceptować ryzyko. W praktyce, oznaczało to, że administratorzy systemów byli bardziej świadomi źródeł pochodzenia sterowników i ich potencjalnych zagrożeń. Takie podejście do zarządzania sterownikami pozwoliło na zwiększenie bezpieczeństwa systemu i jego użytkowników, co było istotnym krokiem w kierunku implementacji bardziej rygorystycznych standardów bezpieczeństwa w przyszłych wersjach Windows.

Pytanie 38

W systemie Linux komenda ps wyświetli

A. listę bieżących procesów związanych z drukowaniem
B. ustawienia serwera drukarek Print Server
C. listę bieżących procesów zalogowanego użytkownika
D. ustawienia Proxy Server
Polecenie 'ps' w systemie Linux jest używane do wyświetlania listy aktualnie działających procesów. Domyślnie, bez dodatkowych opcji, polecenie to prezentuje informacje o procesach, które są uruchomione przez bieżącego użytkownika. W kontekście administracji systemem, monitorowanie procesów jest kluczowe dla zarządzania zasobami oraz diagnozowania problemów z wydajnością. Na przykład, osoba zajmująca się administracją może używać 'ps' do identyfikacji procesów, które zużywają nadmierne zasoby CPU lub pamięci, co pozwala na podjęcie odpowiednich działań, takich jak zakończenie nieefektywnych procesów. Dodatkowo, dzięki możliwości wykorzystania różnych opcji, takich jak 'ps aux', administratorzy mogą analizować bardziej szczegółowe informacje, w tym identyfikatory procesów (PID), statusy procesów oraz zużycie zasobów. Warto również zwrócić uwagę, że 'ps' jest często używane w połączeniu z innymi komendami, jak 'grep', do filtrowania wyników, co pokazuje jego dużą elastyczność.

Pytanie 39

W przypadku planowania wykorzystania przestrzeni dyskowej komputera do przechowywania oraz udostępniania danych, takich jak pliki oraz aplikacje dostępne w internecie, a także ich zarządzania, komputer powinien być skonfigurowany jako

A. serwer terminali
B. serwer aplikacji
C. serwer plików
D. serwer DHCP
Serwer plików to dedykowane urządzenie lub oprogramowanie, które umożliwia przechowywanie, zarządzanie i udostępnianie plików w sieci. Jego główną funkcją jest archiwizacja i udostępnianie danych, co czyni go kluczowym elementem w wielu organizacjach. Użytkownicy mogą z łatwością uzyskiwać dostęp do plików z różnych urządzeń. Typowym przykładem zastosowania serwera plików jest przechowywanie dokumentów, zdjęć czy multimediów w centralnej lokalizacji, z której mogą one być udostępniane wielu użytkownikom jednocześnie. W praktyce, konfigurując serwer plików, można korzystać z protokołów takich jak SMB (Server Message Block) lub NFS (Network File System), które są standardami w branży. Dobre praktyki obejmują regularne tworzenie kopii zapasowych danych, aby zapobiec ich utracie, oraz stosowanie systemów uprawnień, które kontrolują, kto ma dostęp do określonych plików. Serwery plików są również często implementowane w architekturze NAS (Network-Attached Storage), co zwiększa ich dostępność w sieci.

Pytanie 40

Który z podanych adresów IP v.4 należy do klasy C?

A. 191.11.0.10
B. 10.0.2.0
C. 126.110.10.0
D. 223.0.10.1
Adres IP 223.0.10.1 należy do klasy C, ponieważ jego pierwsza okteta (223) mieści się w przedziale od 192 do 223. Klasa C jest zaprojektowana dla mniejszych sieci, które wymagają większej liczby hostów i charakteryzuje się możliwością adresowania do 2^21 (około 2 miliona) adresów IP, co czyni ją szczególnie przydatną dla organizacji z umiarkowaną ilością urządzeń. W praktyce, w sieciach klasy C, tradycyjnie używa się maski podsieci 255.255.255.0, co pozwala na utworzenie 256 adresów w danej podsieci, z czego 254 mogą być używane dla hostów. Klasa C jest najczęściej stosowana w biurach oraz mniejszych przedsiębiorstwach, gdzie potrzeba jest większa niż w przypadku klas A i B, ale nie na tyle duża, by wymagać bardziej skomplikowanych rozwiązań. Dobrą praktyką jest także wykorzystanie adresów z puli klasy C do tworzenia VLAN-ów, co zwiększa bezpieczeństwo i poprawia zarządzanie ruchem sieciowym.