Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 16 lutego 2026 17:31
  • Data zakończenia: 16 lutego 2026 17:49

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które z wymienionych stwierdzeń nie jest zasadą poprawnego wykonywania ideowego schematu elektrycznego?

A. Łączniki należy pokazywać w stanie otwarcia lub w tzw. położeniu początkowym.
B. Linie połączeń powinny być możliwie krótkie i prowadzone poziomo lub pionowo.
C. Liczba linii przecinających się, a oznaczających przewody, powinna być jak najmniejsza.
D. Łączniki należy pokazywać w stanie zamknięcia lub w tzw. położeniu końcowym.
Prawidłowo wskazałeś stwierdzenie, które nie jest zasadą poprawnego wykonywania ideowego schematu elektrycznego. W schematach ideowych łączniki, styczniki, przyciski itp. elementy przełączające pokazuje się standardowo w stanie spoczynkowym, czyli w położeniu początkowym, najczęściej otwartym. Taką zasadę opisują normy dotyczące dokumentacji elektrycznej, np. PN‑EN 60617 czy ogólnie PN‑EN 61082 – element rysuje się tak, jak wygląda, gdy układ nie jest zasilony, a żaden człowiek nie naciska przycisków. Dlatego zapis „Łączniki należy pokazywać w stanie zamknięcia lub w tzw. położeniu końcowym” jest sprzeczny z dobrą praktyką projektową. Gdybyśmy wszystkie łączniki rysowali w stanie załączonym, schemat byłby mylący: wyglądałoby, jakby obwód był cały czas pod napięciem, co utrudnia analizę działania, diagnozowanie usterek i projektowanie zabezpieczeń. W praktyce np. zwykły łącznik oświetleniowy w mieszkaniu rysuje się jako rozłączony, mimo że w eksploatacji często jest akurat włączony. To samo dotyczy styczników silnikowych – na schemacie ideowym styki pomocnicze i główne pokazuje się w stanie beznapięciowym cewki, czyli zazwyczaj rozwarte, jeśli są to styki NO. Pozostałe zasady z odpowiedzi są jak najbardziej poprawne i zgodne z warsztatem elektryka: linie połączeń prowadzi się możliwie krótko, równolegle do krawędzi kartki (poziomo/pionowo), a liczbę przecięć przewodów minimalizuje się, żeby schemat był czytelny. Moim zdaniem to są takie podstawy kultury technicznej – jak ktoś umie czytelnie narysować schemat, to od razu widać, że poważnie traktuje projekt i późniejszy serwis instalacji.

Pytanie 2

Zamontowanie gniazda wtyczkowego bez styku ochronnego i dołączenie do niego urządzenia elektrycznego I klasy ochronności spowoduje

A. przeciążenie instalacji elektrycznej.
B. uszkodzenie urządzenia elektrycznego.
C. zagrożenie porażeniem prądem elektrycznym.
D. zwarcie w instalacji elektrycznej.
Prawidłowo – kluczowy problem w tym pytaniu to ochrona przeciwporażeniowa urządzeń I klasy ochronności. Urządzenia tej klasy mają obudowę metalową połączoną ze stykiem ochronnym (bolcem) w gnieździe. Ten styk musi być połączony z przewodem ochronnym PE w instalacji. Dzięki temu, jeśli nastąpi uszkodzenie izolacji i przewód fazowy dotknie obudowy, prąd popłynie przez PE, a zabezpieczenie (wyłącznik nadprądowy, bezpiecznik, wyłącznik różnicowoprądowy) szybko zadziała i odłączy zasilanie. Jeżeli zamontujemy gniazdo bez styku ochronnego i podłączymy do niego urządzenie I klasy, to obudowa zostaje „zawieszona w powietrzu” – nie ma połączenia ochronnego. W razie przebicia fazy na obudowę, metalowe części mogą znaleźć się pod napięciem 230 V względem ziemi. Użytkownik, który dotknie obudowy i jednocześnie np. kaloryfera, zlewu, podłogi betonowej, może stać się ścieżką przepływu prądu. To właśnie jest typowe zagrożenie porażeniem prądem elektrycznym. Z punktu widzenia norm (PN-HD 60364 i ogólne zasady SEP) stosowanie gniazd bez styku ochronnego w nowych instalacjach jest niedopuszczalne, jeżeli mają być tam podłączane urządzenia I klasy. W praktyce oznacza to, że w mieszkaniach, warsztatach, biurach powinny być montowane gniazda ze stykiem ochronnym, a przewód ochronny musi być poprawnie podłączony. Moim zdaniem każdy elektryk powinien mieć odruch: urządzenie z wtyczką z bolcem → tylko do gniazda ze stykiem ochronnym. Stare „płaskie” gniazdka bez bolca to relikt, który w zastosowaniach ogólnych jest po prostu niebezpieczny.

Pytanie 3

Na rysunku przedstawiono sposób podłączenia podtynkowego

Ilustracja do pytania
A. gniazda komputerowego.
B. łącznika grupowego.
C. gniazda antenowego.
D. łącznika świecznikowego.
Gniazdo komputerowe, które znajduje się na zdjęciu, jest przedstawione w formie złącza RJ45. To standardowe gniazdo wykorzystywane w instalacjach sieciowych, które obsługuje przewody Ethernet. Jego charakterystyczną cechą jest obecność ośmiu pinów, które umożliwiają podłączenie odpowiednich kabli, co zapewnia stabilne połączenie sieciowe. Gniazda RJ45 są powszechnie stosowane w biurach, szkołach i innych miejscach, gdzie wymagana jest szybka wymiana danych. Warto również zaznaczyć, że zgodnie z normą TIA/EIA-568, gniazda te są kluczowe dla budowy infrastruktury sieciowej, a ich poprawne podłączenie gwarantuje wysoką jakość sygnału oraz minimalizację zakłóceń. Wiedza na temat gniazd komputerowych oraz ich zastosowania w praktyce jest niezbędna dla każdego, kto zajmuje się budową lub serwisowaniem sieci komputerowych.

Pytanie 4

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 1000 V
B. 250 V
C. 500 V
D. 2500 V
Pomiar rezystancji izolacji przewodu YDY 5x6 450/700 V powinien być przeprowadzany przy użyciu induktora na napięciu 1000 V. Taki poziom napięcia jest zgodny z normami i standardami branżowymi, które zalecają używanie wyższych napięć w celu uzyskania dokładnych i wiarygodnych wyników pomiarów izolacji. Przy pomiarze rezystancji izolacji na napięciu 1000 V można skutecznie sprawdzić, czy izolacja przewodu wytrzymuje wymagane napięcia robocze oraz czy nie występują mikrouszkodzenia, które mogłyby prowadzić do awarii. Przykładem zastosowania pomiaru na takim poziomie napięcia jest testowanie instalacji elektrycznych w budynkach przemysłowych, gdzie zabezpieczenie przed porażeniem prądem jest kluczowe. Dobrą praktyką jest także przeprowadzanie takich pomiarów w cyklu konserwacyjnym, aby zapobiec ewentualnym uszkodzeniom i zapewnić bezpieczeństwo użytkowników.

Pytanie 5

Stosując kryterium obciążalności prądowej, dobierz przewód kabelkowy o najmniejszym przekroju żył miedzianych do wykonania trójfazowej instalacji wtynkowej w układzie TN-S, która jest zabezpieczona wyłącznikiem instalacyjnym z oznaczeniem B16.

Przekrój przewodu mm²Jeden lub kilka kabli 1-żyłowych ułożonych w rurzeKilka kabli np.: przewody płaszczowe, rurowe, wtynkowePojedynczy w powietrzu, przy czym odstęp odpowiada przynajmniej średnicy kabla
Żyła Cu AŻyła Al AŻyła Cu AŻyła Al AŻyła Cu AŻyła Al A
0,75--12-15-
1,011-15-19-
1,515-18-24-
2,5201526203226
4252034274233
6332644355442
A. YDY 5x1 mm2
B. YDY 5x2,5 mm2
C. YDY 5x1,5 mm2
D. YADY 5x4 mm2
Wybór przewodu YDY 5x1,5 mm2 jest prawidłowy, ponieważ jego obciążalność długotrwała wynosi 18A, co jest wyższe od prądu znamionowego wyłącznika B16, wynoszącego 16A. W praktyce oznacza to, że przewód ten będzie w stanie efektywnie i bezpiecznie przewodzić prąd w instalacji trójfazowej w układzie TN-S. Takie rozwiązanie jest zgodne z normami PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych. Dobrze dobrany przewód nie tylko zapewnia bezpieczeństwo, ale także wpływa na efektywność energetyczną całej instalacji. W przypadku przewodów miedzianych, ważne jest, aby ich przekrój był dostosowany do obciążenia, co pozwala uniknąć przegrzewania się izolacji i potencjalnych awarii. Przewód YDY 5x1,5 mm2 jest często stosowany w budownictwie mieszkalnym oraz w małych obiektach przemysłowych, gdzie obciążenia nie są bardzo wysokie, a bezpieczeństwo instalacji jest priorytetem.

Pytanie 6

W miejsce cyfr dobierz symbole graficzne rodzaju przewodów, zachowując kolejność.

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Odpowiedź D jest poprawna, ponieważ zgodnie z zasadami podłączania przewodów w instalacjach elektrycznych, oznaczenia przewodów mają kluczowe znaczenie dla ich prawidłowego funkcjonowania. Przewód oznaczony grubą kropką reprezentuje przewód neutralny (N), podczas gdy przewody bez oznaczeń to przewody fazowe (L). W analizowanym schemacie widzimy, że do łącznika dochodzi przewód fazowy, a jego wyjście również prowadzi do przewodu fazowego. Odpowiedź D ilustruje tę sytuację, przedstawiając dwa przewody fazowe oraz jeden neutralny, co jest zgodne z normami i dobrymi praktykami branżowymi. Właściwe podłączenie przewodów jest istotne, aby zapewnić bezpieczeństwo instalacji oraz jej właściwe działanie. Przykładowo, w instalacjach oświetleniowych, prawidłowe oznaczenie i podłączenie przewodów ma kluczowe znaczenie dla uniknięcia zwarć oraz zapewnienia nieprzerwanego dostępu do energii elektrycznej.

Pytanie 7

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
B. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
C. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
D. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
Poprawna odpowiedź odnosi się do kabla sygnalizacyjnego, który charakteryzuje się wieloma żyłami skręconymi parami. Tego typu kable są powszechnie stosowane w systemach telekomunikacyjnych oraz w instalacjach automatyki przemysłowej, gdzie przesyłane sygnały muszą być odporne na zakłócenia elektromagnetyczne. Warto zwrócić uwagę, że napięcie 300/500 V jest typowe dla kabli wykorzystywanych w obwodach sygnalizacyjnych, które nie wymagają tak wysokiej izolacji jak kable elektroenergetyczne. Kable sygnalizacyjne o wiązkach parowych zostały opracowane w celu zminimalizowania interferencji między żyłami, co czyni je idealnym wyborem tam, gdzie wymagana jest stabilna transmisja danych. Zgodnie z normą PN-EN 50288, odpowiednie oznakowanie oraz dobór materiałów izolacyjnych mają kluczowe znaczenie dla niezawodności i bezpieczeństwa instalacji. W praktyce, stosowanie kabli sygnalizacyjnych w automatyce przemysłowej pozwala na efektywne zarządzanie procesami oraz monitorowanie stanu urządzeń, co przekłada się na zwiększenie wydajności operacyjnej.

Pytanie 8

Do jakiej kategorii urządzeń elektrycznych należą linie napowietrzne i kablowe?

A. Pomocniczych
B. Odbiorczych
C. Wytwórczych
D. Przesyłowych
Linie napowietrzne i kablowe zaliczają się do grupy urządzeń przesyłowych, ponieważ ich główną funkcją jest transport energii elektrycznej na znaczną odległość, co jest kluczowe dla zasilania odbiorców końcowych oraz dla stabilności systemu energetycznego. Przesył energii elektrycznej odbywa się z wykorzystaniem linii napowietrznych, które są powszechnie stosowane w terenach wiejskich oraz w obszarach, gdzie nie ma potrzeby zakupu droższych kabli. Dobre praktyki w zakresie przesyłu energii elektrycznej zakładają minimalizację strat, które mogą występować w trakcie transportu, co jest istotne dla efektywności energetycznej. Przykładowo, zastosowanie linii wysokiego napięcia pozwala na przesyłanie dużych mocy przy mniejszych stratach. W kontekście standardów, linie przesyłowe powinny spełniać normy określone przez Międzynarodową Komisję Elektrotechniczną (IEC) oraz krajowe regulacje dotyczące jakości i bezpieczeństwa. W praktyce oznacza to, że projektując systemy przesyłowe, inżynierowie muszą uwzględniać nie tylko parametry techniczne, ale również aspekt ochrony środowiska oraz wpływ na otoczenie.

Pytanie 9

Którego osprzętu instalacyjnego dotyczy przedstawiony fragment opisu?

Fragment opisu osprzętu instalacyjnego
W celu zabezpieczenia przed porażeniem prądem elektrycznym małych dzieci instaluje się modele ze specjalnymi przesłonami torów prądowych. Konstrukcja mechaniczna przesłony uniemożliwia włożenie długopisu, kredki czy innego przewodnika do toru prądowego.

Do uzyskania pełnego bezpieczeństwa stosuje się przesłony torów prądowych wyposażone dodatkowo w tzw. klucz uprawniający, uchylający przesłony torów prądowych.
A. Wtyczki kabla zasilającego.
B. Puszki łączeniowej.
C. Oprawki źródła światła.
D. Gniazda wtykowego.
Gniazda wtykowe to naprawdę ważny element w każdej instalacji elektrycznej, zwłaszcza gdy mowa o bezpieczeństwie, szczególnie dla dzieci. Opisujesz modele gniazd, które mają specjalne przesłony na torach prądowych, co naprawdę chroni przed przypadkowym dotknięciem tych niebezpiecznych części. Te gniazda, które są zgodne z różnymi normami, są stworzone z myślą o tym, żeby minimalizować ryzyko porażenia prądem. Na przykład, gniazda z systemem przesłon pozwalają na wsunięcie wtyczki tylko w konkretnej pozycji, co znacznie ogranicza ryzyko kontaktu z prądem. Używanie takich gniazd jest super ważne w pomieszczeniach, gdzie bywają dzieci, a wiele standardów branżowych, jak np. normy IEC 60884, to potwierdza. To naprawdę praktyczne podejście do projektowania osprzętu zwiększa bezpieczeństwo w naszych domach i miejscach publicznych, gdzie kontakt z prądem może być poważnym zagrożeniem.

Pytanie 10

Określ typ usterki, która blokuje załączenie prawidłowego wyłącznika różnicowoprądowego zainstalowanego w systemie elektrycznym?

A. Zwarcie doziemne przewodu neutralnego
B. Przerwa w przewodzie neutralnym
C. Uszkodzenie izolacji przewodu ochronnego
D. Przerwa w przewodzie ochronnym
Zwarcie doziemne przewodu neutralnego to sytuacja, w której przewód neutralny styka się z ziemią lub innym przewodem, co prowadzi do nieprawidłowego działania instalacji elektrycznej. Taki stan może uniemożliwić prawidłowe funkcjonowanie wyłącznika różnicowoprądowego (RCD). RCD działa na zasadzie wykrywania różnic w prądach przepływających przez przewody fazowy i neutralny. W przypadku zwarcia doziemnego, prąd może niepoprawnie wracać przez ziemię, co powoduje, że RCD nie wykrywa różnicy, przez co nie może się załączyć. W praktyce, aby uniknąć takich sytuacji, ważne jest regularne kontrolowanie stanu instalacji oraz przestrzeganie norm zawartych w PN-IEC 60364, które dotyczą projektowania i wykonania instalacji elektrycznych. Dodatkowo, stosowanie odpowiednich zabezpieczeń, takich jak odpowiednio dobrane wyłączniki różnicowoprądowe, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz właściwego działania systemu. Zwracanie uwagi na te aspekty może pomóc w zapobieganiu poważnym zagrożeniom.

Pytanie 11

Jaki wyłącznik nadmiarowo-prądowy najlepiej zastosować do zabezpieczenia instalacji elektrycznej z przewidywanym prądem zwarciowym Iz = 150 A?

A. B25
B. C16
C. D10
D. C20
Wybrałeś odpowiedź B25 i to jest całkiem dobra decyzja. Wyłącznik nadmiarowo-prądowy typu B o prądzie znamionowym 25 A sprawdzi się w instalacji, gdzie prąd zwarciowy wynosi 150 A. Z tego co wiem, te wyłączniki są zazwyczaj stosowane w obwodach, gdzie prąd rozruchowy nie jest za duży, jak na przykład w oświetleniu lub gniazdkach. Kiedy mamy do czynienia z większym prądem zwarciowym, musimy dobrze dobrać wyłącznik, tak żeby nie doszło do uszkodzeń instalacji ani do przegrzewania się przewodów. W praktyce wydaje mi się, że wyłącznik B25 będzie odpowiedni i da dobrą ochronę. Warto pamiętać przy projektowaniu elektryki, żeby dobrze policzyć przewidywany prąd zwarciowy i wybrać właściwe wyłączniki, bo to naprawdę ma znaczenie. Zgadzam się, że również trzeba przestrzegać lokalnych przepisów budowlanych oraz elektrycznych, żeby zapewnić bezpieczeństwo.

Pytanie 12

Które z narzędzi przedstawionych na ilustracji służy do obcinania kabli?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Narzędzie oznaczone literą C. to szczypce do obcinania kabli, które są kluczowymi narzędziami w pracy z instalacjami elektrycznymi oraz w elektronice. Szczypce tego typu zostały zaprojektowane z myślą o precyzyjnym przecinaniu przewodów, co jest niezbędne w wielu aplikacjach, takich jak przygotowywanie kabli do podłączeń czy naprawy. Ich charakterystyczny kształt ostrzy umożliwia łatwe i efektywne cięcie, minimalizując ryzyko uszkodzenia wewnętrznych żył przewodów. W praktyce, używając tych szczypiec, można szybko przygotować przewody do dalszego montażu, co jest szczególnie ważne w kontekście pracy na budowie czy w serwisie. Zgodnie z normami branżowymi, stosowanie odpowiednich narzędzi do cięcia kabli, takich jak szczypce do obcinania, jest istotne dla zapewnienia bezpieczeństwa oraz jakości wykonania instalacji elektrycznych. Warto także pamiętać, że wybór odpowiednich narzędzi jest zgodny z zaleceniami producentów i organizacji takich jak IEC (Międzynarodowa Komisja Elektrotechniczna).

Pytanie 13

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. XzTKMXpw
B. DYt
C. LgY
D. YADY
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 14

Jakie minimalne napięcie znamionowe może posiadać izolacja przewodów używanych w sieci trójfazowej o niskim napięciu 230/400 V?

A. 300/300 V
B. 100/100 V
C. 300/500 V
D. 450/750 V
Izolacja przewodów stosowanych w sieciach trójfazowych niskiego napięcia, takich jak 230/400 V, powinna spełniać określone normy dotyczące napięcia znamionowego. Odpowiedź 300/500 V jest prawidłowa, ponieważ zapewnia odpowiedni margines bezpieczeństwa i wytrzymałość na napięcia krótkotrwałe, które mogą wystąpić w wyniku zakłóceń lub przepięć. Przykładowo, przewody o izolacji 300/500 V są powszechnie stosowane w instalacjach domowych oraz przemysłowych, gdzie wymagane jest zabezpieczenie przed zwarciami i innymi problemami elektrycznymi. Zgodnie z normą PN-EN 60228, przewody te muszą być odporne na wysokie temperatury oraz działanie substancji chemicznych, co czyni je idealnym wyborem do różnorodnych zastosowań. W praktyce, dobór odpowiedniej izolacji ma kluczowe znaczenie dla bezpieczeństwa i efektywności systemów elektrycznych, dlatego ważne jest, aby stosować przewody zgodne z wymaganiami dotyczącymi napięcia znamionowego, zapewniając tym samym wysoką jakość instalacji elektrycznych.

Pytanie 15

Którego z mierników pokazanych na rysunku należy użyć do pomiaru impedancji pętli zwarcia obwodu elektrycznego?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Wybór odpowiedzi B jest trafiony, bo mierniki pętli zwarcia to te specjalne narzędzia, które dokładnie mierzą impedancję w obwodach elektrycznych. Używając takiego miernika, możemy sprawdzić rezystancję pętli zwarcia, co jest super ważne, gdy chodzi o bezpieczeństwo instalacji. Dzięki tym pomiarom możemy upewnić się, że wszystko jest w normie, tzn. nie przekraczamy wartości określonych w normach, jak PN-IEC 60364 – to coś, co każdy elektryk powinien znać. Ba, te mierniki potrafią też sprawdzić czas wyłączenia zabezpieczeń, co daje nam lepszy obraz tego, jak działa cała instalacja. Fajnym przykładem użycia takiego miernika jest testowanie nowej instalacji przed jej oddaniem do użytku – wtedy mamy pewność, że jest wszystko w porządku i bezpieczne dla użytkowników.

Pytanie 16

Zamieszczony na rysunku zrzut ekranu przyrządu pomiarowego przedstawia wyniki pomiaru

Ilustracja do pytania
A. rezystancji izolacji przewodu w sieci jednofazowej.
B. rezystancji izolacji przewodu w sieci trójfazowej.
C. impedancji pętli zwarcia w sieci trójfazowej.
D. impedancji pętli zwarcia w sieci jednofazowej.
Wybór niepoprawnej odpowiedzi może wynikać z mylnego zrozumienia różnicy między pomiarem rezystancji izolacji a pomiarem impedancji pętli zwarcia. Impedancja pętli zwarcia jest mierzona w kontekście analizy bezpieczeństwa systemu zasilania i odnosi się do oporu, który prąd zwarciowy napotyka w trakcie zwarcia. Wartości impedancji pętli zwarcia są zazwyczaj znacznie niższe, ponieważ obejmują wszystkie elementy obwodu, w tym przewody i urządzenia ochronne. Mierzenie impedancji pętli zwarcia w sieci trójfazowej miałoby zupełnie inny kontekst i byłoby wykonywane z użyciem odmiennych technik oraz z wykorzystaniem innych jednostek miary. Ponadto, rezystancja izolacji, która jest mierzona w megaomach, stanowi kluczowy wskaźnik stanu izolacji przewodów, co jest zupełnie innym procesem niż analiza impedancji pętli zwarcia. W praktyce, technicy często mylą te pojęcia, co prowadzi do niewłaściwego stosowania metod pomiarowych i interpretacji wyników. Zrozumienie podstawowych różnic między tymi pomiarami jest kluczowe dla zapewnienia bezpieczeństwa oraz sprawności instalacji elektrycznych.

Pytanie 17

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Niepoprawne odpowiedzi mogą wynikać z kilku typowych błędów myślowych i nieporozumień związanych z instalacjami elektrycznymi. Przede wszystkim, w schematach A, B i C często błędnie umieszczany jest przewód fazowy L, co może prowadzić do niewłaściwego działania obwodu oświetleniowego. W przypadku schematu A, przewód fazowy został połączony z przewodem neutralnym, co stwarza ryzyko zwarcia. W praktyce, takie połączenie nie tylko uniemożliwi załączenie światła, ale także może doprowadzić do uszkodzenia urządzeń elektrycznych oraz stanowić poważne zagrożenie dla bezpieczeństwa osób korzystających z instalacji. Schemat B z kolei mógłby sugerować, że przewód NE jest poprowadzony przez łącznik, co jest niezgodne z zasadami, gdyż neutralny przewód powinien być zawsze bezpośrednio połączony do źródła zasilania. Wreszcie, schemat C nie uwzględnia prawidłowego uziemienia, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników. Każde z tych podejść pokazuje, jak ważne jest przestrzeganie standardów, takich jak PN-IEC 60364, które nakładają obowiązek stosowania odpowiednich metod podłączeń oraz zabezpieczeń w instalacjach elektrycznych. Właściwe zrozumienie i przestrzeganie tych zasad jest kluczowe dla bezpieczeństwa oraz funkcjonalności instalacji elektrycznych.

Pytanie 18

Który łącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Podwójny krzyżowy.
B. Świecznikowy.
C. Dwubiegunowy.
D. Podwójny schodowy.
Odpowiedź jest prawidłowa, ponieważ na zdjęciu przedstawiono łącznik elektryczny typu podwójnego schodowego. Tego rodzaju łącznik posiada dwa niezależne przyciski, z których każdy służy do sterowania oddzielnym obwodem oświetleniowym. Jest to niezwykle przydatne rozwiązanie w przypadku schodów, gdzie możliwe jest włączanie i wyłączanie oświetlenia zarówno z dołu, jak i z góry. Przykładowo, instalacja takiego łącznika w domu jednorodzinnym pozwala na komfortowe korzystanie z oświetlenia nawet po zmroku. Dodatkowo, zgodnie z normami i najlepszymi praktykami w dziedzinie instalacji elektrycznych, stosowanie łączników schodowych zwiększa bezpieczeństwo w ruchu oraz komfort użytkowników, minimalizując ryzyko poślizgnięć i upadków. Warto również zauważyć, że często łącznik podwójny schodowy jest wykorzystywany w systemach automatyki budowlanej, co pozwala na integrację z różnymi źródłami światła i systemami sterowania. Dzięki temu możliwe jest dostosowanie oświetlenia do indywidualnych potrzeb użytkowników.

Pytanie 19

Który parametr znamionowy, oprócz pojemności elektrycznej, charakteryzuje kondensator?

A. Napięcie.
B. Prąd.
C. Rezystancja.
D. Moc.
Poprawnie – oprócz pojemności elektrycznej kluczowym parametrem kondensatora jest jego napięcie znamionowe. To napięcie, przy którym kondensator może bezpiecznie pracować przez długi czas, bez ryzyka przebicia dielektryka. W praktyce oznacza to: jeżeli kondensator ma np. 50 µF / 400 V AC, to nie powinien być trwale zasilany napięciem wyższym niż 400 V skutecznego. Przy przekroczeniu tej wartości izolacja wewnątrz kondensatora może się uszkodzić, pojawiają się przebicia, grzanie, aż w końcu kondensator może się dosłownie rozlecieć. Moim zdaniem w pracy elektryka właśnie napięcie znamionowe jest często ważniejsze niż sama pojemność. W silnikach jednofazowych dobiera się kondensator rozruchowy lub pracy nie tylko pod kątem µF, ale przede wszystkim pod kątem napięcia – zwykle daje się zapas, np. do sieci 230 V stosuje się kondensatory na 400–450 V AC. To jest zgodne z dobrymi praktykami i zaleceniami producentów, a także z ogólną zasadą, że elementy muszą mieć odpowiedni margines bezpieczeństwa względem warunków pracy. W elektronice podobnie: w zasilaczach impulsowych, filtrach, układach prostowniczych zawsze patrzy się, czy napięcie pracy nie przekracza napięcia podanego na obudowie kondensatora. Kondensator 100 µF / 16 V nie powinien pracować w układzie, gdzie może się pojawić 24 V, bo to po prostu proszenie się o awarię. Dodatkowo warto pamiętać, że kondensatory mają też inne parametry (np. tolerancja pojemności, ESR, dopuszczalny prąd tętnień, temperatura pracy), ale w podstawowej charakterystyce katalogowej, obok pojemności, zawsze pojawia się właśnie napięcie znamionowe. I to jest ten parametr, który trzeba bezwzględnie uwzględniać przy doborze elementu do instalacji czy urządzenia.

Pytanie 20

Która z przedstawionych opraw oświetleniowych najlepiej nadaje się do oświetlenia ogólnego?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Odpowiedź C jest poprawna, ponieważ reprezentuje oprawę oświetleniową typu żyrandola, która jest idealna do zastosowania w oświetleniu ogólnym. Żyrandole montowane na suficie emitują światło w sposób równomierny, co pozwala na oświetlenie całego pomieszczenia, eliminując cienie i ciemne kąty. Tego typu oprawy są często stosowane w przestrzeniach takich jak salony, jadalnie czy biura, gdzie kluczowe jest zapewnienie odpowiedniego poziomu oświetlenia dla komfortu użytkowników. Żyrandole mogą również pełnić funkcję dekoracyjną, a ich design często wzbogaca estetykę wnętrza. W standardach oświetleniowych, takich jak normy EN 12464-1, określa się zalecane poziomy oświetlenia dla różnych typów pomieszczeń, co podkreśla znaczenie zastosowania odpowiednich opraw do osiągnięcia wymaganej wydajności świetlnej. W praktyce, wybór żyrandola do oświetlenia ogólnego powinien opierać się na wielkości pomieszczenia oraz jego przeznaczeniu, co pozwoli na optymalizację zarówno funkcjonalności, jak i stylu.

Pytanie 21

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Stal
B. Miedź
C. Aluminium
D. Brąz
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.

Pytanie 22

W rozdzielnicy instalacji mieszkaniowej, wykonanej zgodnie z przedstawionym schematem, należy zainstalować

Ilustracja do pytania
A. cztery wyłączniki różnicowoprądowe, cztery trójfazowe wyłączniki nadprądowe i jeden jednofazowy wyłącznik nadprądowy.
B. cztery wyłączniki różnicowoprądowe i pięć jednofazowych wyłączników nadprądowych.
C. pięć wyłączników różnicowoprądowych i cztery jednofazowe wyłączniki nadprądowe.
D. jeden wyłącznik różnicowoprądowy, cztery trójfazowe wyłączniki nadprądowe i cztery jednofazowe wyłączniki nadprądowe.
Analizując błędne odpowiedzi, można zauważyć kilka kluczowych nieporozumień dotyczących zasad projektowania i instalacji rozdzielnic. W przypadku odpowiedzi wskazujących na większą liczbę wyłączników różnicowoprądowych, warto zauważyć, że każdy wyłącznik różnicowoprądowy chroni określony obszar instalacji, a ich nadmiar prowadziłby do nieefektywności oraz złożoności w użytkowaniu i konserwacji. Zastosowanie pięciu wyłączników różnicowoprądowych, jak sugeruje jedna z nieprawidłowych odpowiedzi, mogłoby prowadzić do zbędnych kosztów, a także do większego ryzyka błędnych wyzwalań, co jest niepożądane w praktyce. Kolejnym istotnym błędem jest zrozumienie roli wyłączników nadprądowych. Wyłączniki te są projektowane do ochrony obwodów przed przeciążeniem i zwarciem, a ich liczba musi odpowiadać liczbie podłączonych obwodów. W przypadku rozdzielnicy, która ma pięć obwodów jednofazowych, konieczne jest zastosowanie pięciu jednofazowych wyłączników nadprądowych, co jest zgodne z dobrymi praktykami w zakresie instalacji elektrycznych. Ponadto, stosowanie wyłączników trójfazowych w rozdzielnicy, gdzie nie ma odpowiedniej liczby obwodów trójfazowych, również byłoby błędne, ponieważ nie zapewniłoby to odpowiedniej ochrony i mogłoby prowadzić do nieefektywności pracy całego systemu. W związku z tym, ważne jest nie tylko posiadanie wiedzy teoretycznej, ale także umiejętność jej zastosowania w praktyce, aby uniknąć takich błędów w projektowaniu i instalacji systemów elektrycznych.

Pytanie 23

Na ilustracji przedstawiono schemat połączeń uzwojeń silnika indukcyjnego jednofazowego z kondensatorową fazą rozruchową. Którą rolę w układzie pracy tego silnika pełni wyłącznik odśrodkowy oznaczony symbolem WO?

Ilustracja do pytania
A. Wyłącza uzwojenie pomocnicze silnika i kondensator po zakończeniu rozruchu.
B. Załącza kondensator po zakończeniu rozruchu w celu wyeliminowania zakłóceń radioelektrycznych.
C. Zwiera kondensator w celu rozładowania jego energii po zakończeniu rozruchu.
D. Załącza kondensator przy pracy na biegu jałowym w celu poprawy współczynnika mocy.
W silniku indukcyjnym jednofazowym z kondensatorową fazą rozruchową wyłącznik odśrodkowy WO jest elementem odpowiedzialnym za automatyczne odłączenie obwodu rozruchowego, czyli uzwojenia pomocniczego wraz z kondensatorem, po osiągnięciu przez silnik odpowiedniej prędkości obrotowej. W praktyce dzieje się to zwykle przy ok. 70–80% prędkości znamionowej. Do momentu rozruchu uzwojenie główne oraz pomocnicze (przez kondensator) tworzą układ z przesunięciem fazowym prądu, co powoduje powstanie wirującego pola magnetycznego i zapewnia wysoki moment rozruchowy. Gdy silnik się „rozbuja”, dodatkowe uzwojenie nie jest już potrzebne, a wręcz zaczyna szkodzić – powoduje niepotrzebne straty mocy, nagrzewanie, gorszy cosφ. Dlatego zgodnie z dobrą praktyką konstrukcyjną i zaleceniami producentów uzwojenie pomocnicze w typowych silnikach rozruchowych pracuje tylko przez krótki czas. Mechaniczny wyłącznik odśrodkowy, zabudowany na wale, pod wpływem siły odśrodkowej rozwiera styki i odcina kondensator oraz uzwojenie pomocnicze od zasilania. Dzięki temu silnik dalej pracuje wyłącznie na uzwojeniu roboczym, w optymalnych warunkach cieplnych i z mniejszym ryzykiem uszkodzenia izolacji. W serwisie praktycznym często spotyka się przypadki spalonych uzwojeń pomocniczych właśnie wtedy, gdy wyłącznik odśrodkowy się zawiesił i nie rozłączył obwodu rozruchowego – to pokazuje, jak ważna jest jego rola w bezpiecznej i długotrwałej eksploatacji.

Pytanie 24

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
B. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
C. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
D. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
Nie wszystkie wymienione zestawy narzędzi są odpowiednie do montażu aparatury elektrycznej i wykonywania połączeń w rozdzielnicy. Wśród dostępnych opcji brakuje kluczowych narzędzi, które zapewniają prawidłowe i bezpieczne połączenia elektryczne. Na przykład, szczypce płaskie oraz młotek, chociaż mogą się wydawać użyteczne, nie są kluczowe w kontekście precyzyjnego montażu instalacji elektrycznej. Użycie młotka do montażu może prowadzić do uszkodzenia delikatnych komponentów, co jest niepożądane w przypadku rozdzielnic, gdzie precyzja jest kluczowa. Ponadto, przymiar taśmowy, mimo że użyteczny przy pomiarach, nie jest narzędziem niezbędnym do samego montażu i połączeń elektrycznych. Wiele osób może myśleć, że nóż monterski wystarczy do usunięcia izolacji, co jest błędne; niewłaściwe użycie noża może prowadzić do uszkodzenia przewodów. Również wkrętarka, choć użyteczna w niektórych sytuacjach, nie jest podstawowym narzędziem do pracy z przewodami, a korzystanie z niej może nie gwarantować właściwego dokręcenia połączeń. Kluczową kwestią jest zrozumienie, że do pracy w rozdzielnicy potrzebne są specjalistyczne narzędzia, które zapewniają nie tylko efektywność, ale także bezpieczeństwo, co jest niezbędne do prawidłowego działania całej instalacji elektrycznej.

Pytanie 25

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do indukcyjnych sprzęgieł dwukierunkowych
B. Do transformatorów
C. Do wzmacniaczy maszynowych
D. Do prądnic tachometrycznych
Przekładniki prądowe są urządzeniami elektrycznymi, które zaliczają się do kategorii transformatorów. Ich podstawową funkcją jest pomiar prądu elektrycznego poprzez jego przekształcenie na mniejszy, proporcjonalny prąd, co pozwala na łatwiejsze i bezpieczniejsze wykonanie pomiarów oraz ochronę obwodów. Przekładniki prądowe są szeroko stosowane w systemach elektroenergetycznych, a ich zastosowanie jest kluczowe dla zapewnienia precyzyjnych odczytów w urządzeniach takich jak liczniki energii, systemy zabezpieczeń oraz różnego rodzaju apparatura kontrolno-pomiarowa. Standard IEC 61869 określa wymagania dotyczące budowy i testowania przekładników prądowych, co zapewnia ich wysoką jakość oraz niezawodność w eksploatacji. Umożliwiają one również zdalny monitoring, co zwiększa efektywność zarządzania infrastrukturą energetyczną, a ich poprawne zastosowanie ma istotne znaczenie dla bezpieczeństwa instalacji oraz optymalizacji kosztów eksploatacji.

Pytanie 26

Które z wymienionych zaleceń nie dotyczy wykonywania nowych instalacji elektrycznych w pomieszczeniach mieszkalnych?

A. Gniazda wtyczkowe każdego pomieszczenia zasilać z osobnego obwodu.
B. Gniazda wtyczkowe w kuchni zasilać z osobnego obwodu.
C. Rozdzielić obwody oświetleniowe od gniazd wtyczkowych.
D. Odbiorniki dużej mocy zasilać z wydzielonych obwodów.
W nowych instalacjach mieszkaniowych bardzo łatwo pomylić to, co jest realnym wymaganiem norm i dobrej praktyki, z tym co tylko brzmi „logicznie” lub „bezpieczniej”. Wiele osób myśli na przykład, że skoro podział na obwody jest korzystny, to najlepiej byłoby zrobić osobny obwód gniazd dla każdego pomieszczenia. Brzmi to na pierwszy rzut oka rozsądnie, ale z punktu widzenia projektowego i normowego nie ma takiego wymagania, a w typowym mieszkaniu byłoby to po prostu przewymiarowane i mało praktyczne. Normy instalacyjne (jak PN‑HD 60364) oraz zalecenia SEP mówią raczej o konieczności wydzielania pewnych grup odbiorników niż o sztywnym przypisaniu obwodu do każdego pokoju. Bardzo ważnym zaleceniem jest na przykład zasilanie gniazd wtyczkowych w kuchni z osobnego obwodu. Kuchnia jest jednym z najbardziej „prądopożernych” miejsc w mieszkaniu: czajnik, mikrofalówka, ekspres do kawy, zmywarka, lodówka, często piekarnik czy płyta – to wszystko generuje duże obciążenia. Jeden wspólny obwód z innymi pomieszczeniami szybko byłby przeciążony, co groziłoby częstym wybijaniem zabezpieczeń i przegrzewaniem przewodów. Podział obwodów oświetleniowych i gniazd wtyczkowych to też nie jest fanaberia, tylko standardowa zasada. Przy awarii obwodu gniazd (np. zwarcie w jakimś odbiorniku) chcemy, żeby oświetlenie dalej działało, bo zapewnia to bezpieczeństwo poruszania się i umożliwia spokojne zlokalizowanie i usunięcie usterki. Łączenie wszystkiego na jednym obwodzie z punktu widzenia użytkownika i serwisanta jest po prostu niewygodne i mniej bezpieczne. Osobną kwestią są odbiorniki dużej mocy. Płyta indukcyjna, piekarnik elektryczny, pralka, suszarka, klimatyzator – to są urządzenia, które według dobrych praktyk zasila się z wydzielonych obwodów, często z osobnymi zabezpieczeniami i odpowiednio dobranym przekrojem przewodów. Gdyby takie urządzenia „powiesić” na obwodzie ogólnym kilku pomieszczeń, bardzo łatwo o przeciążenie, spadki napięcia, a nawet przegrzanie żył. Typowy błąd myślowy polega na tym, że ktoś chce „maksymalnie rozbić” instalację na obwody, zakładając, że im więcej, tym lepiej i bezpieczniej. W praktyce projektant musi znaleźć rozsądny kompromis: wydzielić kuchnię, oświetlenie, obwody gniazd ogólnych, obwody dla dużych odbiorników, ale nie ma potrzeby tworzenia osobnego obwodu gniazd dla każdego pojedynczego pokoju. To właśnie to ostatnie zalecenie nie jest standardem dla nowych instalacji mieszkaniowych.

Pytanie 27

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 40 mA
B. IΔ = 30 mA
C. IΔ = 10 mA
D. IΔ = 20 mA
Odpowiedź IΔ = 10 mA jest poprawna, ponieważ sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA nie powinien zadziałać przy prądzie różnicowym mniejszym od jego nominalnej wartości. Wartości prądu różnicowego, które są poniżej tego poziomu, nie powinny aktywować mechanizmu wyłączającego. Na przykład, jeżeli w instalacji elektrycznej wystąpi niewielki prąd upływowy spowodowany np. wilgocią lub wadliwym urządzeniem, to przy prądzie 10 mA wyłącznik nie zareaguje, co oznacza, że urządzenie może dalej działać. Wyłączniki różnicowoprądowe są kluczowym elementem w systemach zabezpieczeń, a zgodnie z normami IEC 61008-1, powinny być stosowane w instalacjach, aby zapewnić bezpieczeństwo użytkowników przed porażeniem prądem elektrycznym. Odpowiednia konfiguracja takich wyłączników jest istotna w kontekście ochrony zdrowia i życia, a ich prawidłowe działanie powinno być regularnie kontrolowane.

Pytanie 28

Który rodzaj osprzętu został użyty w instalacji elektrycznej przedstawionej na ilustracji?

Ilustracja do pytania
A. Podtynkowy.
B. Natynkowy.
C. Wodoszczelny.
D. Pyłoszczelny.
Odpowiedź "Podtynkowy" jest prawidłowa, ponieważ przedstawiona instalacja elektryczna charakteryzuje się tym, że wszystkie przewody są ukryte w bruzdach w ścianach, a gniazdka elektryczne są umieszczone w puszkach montażowych, które są zainstalowane wewnątrz ściany. Taki sposób montażu nazywamy instalacją podtynkową, co oznacza, że elementy są schowane pod tynkiem, co nie tylko poprawia estetykę wnętrza, ale również zapewnia większe bezpieczeństwo, zmniejszając ryzyko uszkodzenia osprzętu. Zastosowanie instalacji podtynkowej jest powszechne w nowoczesnym budownictwie, gdzie dąży się do minimalistycznego wyglądu oraz zachowania porządku w przestrzeni. Zgodnie z normami i dobrymi praktykami, instalacja podtynkowa wymaga odpowiedniego zaprojektowania i wykonania, aby zapewnić zgodność z wymaganiami bezpieczeństwa oraz estetyki. Ważne jest także, aby stosować materiały i urządzenia certyfikowane, które spełniają normy europejskie, co dodatkowo zwiększa bezpieczeństwo użytkowania.

Pytanie 29

Jakie z wymienionych usterek w obwodzie odbiorczym instalacji elektrycznej powinno spowodować automatyczne odcięcie napięcia przez wyłącznik różnicowoprądowy?

A. Skok napięcia
B. Zwarcie międzyfazowe
C. Upływ prądu
D. Przeciążenie obwodu
Przepięcie, przeciążenie i zwarcie międzyfazowe to takie awaryjne sytuacje, które się zdarzają w instalacjach elektrycznych, ale RCD wcale się na to nie aktywuje. Przepięcie, to nic innego jak nagły wzrost napięcia, który może złamać urządzenia, ale nie zmienia różnicy prądów, a to jest kluczowe dla działania RCD. RCD nie służy do ochrony przed przepięciami, w takich sytuacjach są ograniczniki przepięć. Przeciążenie natomiast, to co się dzieje, gdy podłączamy zbyt dużo sprzętu do obwodu, co zwiększa prąd powyżej normy, ale RCD nie reaguje, bo nie wykrywa różnicy prądów w takim przypadku. Wtedy na szczęście mamy wyłączniki nadprądowe, które odcinają zasilanie przy za dużym prądzie. A jeśli chodzi o zwarcie międzyfazowe, to jest to, gdy przewody fazowe się stykają i prąd leci jak szalony, ale znów, RCD na to nie działa, bo nie ma żadnej różnicy prądów do wykrycia. Więc ważne jest, by zrozumieć, jak te wszystkie zabezpieczenia w elektryce współpracują, żeby zapewnić bezpieczeństwo, co jest zgodne z najlepszymi praktykami w tej branży.

Pytanie 30

Elektronarzędzie przedstawione na rysunku jest stosowane przy wykonywaniu instalacji elektrycznej

Ilustracja do pytania
A. prowadzonej w tynku.
B. natynkowej.
C. prefabrykowanej.
D. podtynkowej.
Wybór opcji dotyczącej instalacji natynkowej, prowadzonej w tynku lub prefabrykowanej może wynikać z błędnych założeń dotyczących charakterystyki tych typów instalacji. Instalacje natynkowe polegają na montażu przewodów na powierzchni ściany, co jest niezgodne z funkcją urządzenia przedstawionego na rysunku. Frezarka do rowków, jaką widać, służy do tworzenia bruzd, co jest typowe dla instalacji podtynkowej, a nie natynkowej. Wybór opcji prowadzonej w tynku także jest mylny, ponieważ odnosi się do sytuacji, gdzie kable są umieszczane w tynkach, ale nie w bruzdach, co również wymaga innego podejścia technologicznego. Prefabrykowane instalacje natomiast obejmują z góry przygotowane elementy, które są montowane w całości, co nie ma związku z używaniem narzędzi do frezowania. Kluczowym błędem myślowym jest zrozumienie, że każda z tych opcji ma inne zastosowania, a ich wybór oparty jest na konkretnych wymaganiach konstrukcyjnych. Zrozumienie różnic między tymi typami instalacji jest niezbędne do właściwego podejścia do prac elektrycznych i zapewnienia bezpieczeństwa oraz funkcjonalności w budownictwie.

Pytanie 31

Złącze wtykowe przedstawione na rysunku przeznaczone jest do zastosowań w obszarach zagrożonych

Ilustracja do pytania
A. wzrostem temperatury.
B. wyziewami żrącymi.
C. nadmierną wilgotnością.
D. wybuchem pyłu.
Wybór odpowiedzi dotyczący wzrostu temperatury, wyziewów żrących czy nadmiernej wilgotności wskazuje na nieporozumienie dotyczące zastosowania technologii o oznaczeniu "Ex". Złącza wtykowe z tym oznaczeniem nie są projektowane do ochrony przed skutkami wzrostu temperatury, co może dotyczyć innego rodzaju zabezpieczeń, takich jak elementy chłodzące lub izolacje termiczne. Wyziewy żrące, np. kwasy czy inne substancje chemiczne, mogą w rzeczywistości wymagać złączy odpornych na korozję, co jest innym aspektem niż ochronne właściwości oznaczenia Ex. Nadmierna wilgotność to zjawisko, które również nie odnosi się do zagrożeń wybuchowych, lecz może prowadzić do problemów z korozją, co wymaga użycia złączy odpornych na działanie wilgoci. Kluczowym błędem w myśleniu jest utożsamienie złączy Ex z innymi zagrożeniami, które nie są związane z atmosferami wybuchowymi. W kontekście norm i regulacji, należy zrozumieć, że złącza Ex są certyfikowane wyłącznie dla specyficznych warunków pracy, co nie obejmuje pozostałych wymienionych zagrożeń, dlatego ich wybór powinien być ściśle powiązany z rzeczywistymi warunkami panującymi w danym środowisku pracy.

Pytanie 32

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. pętli zwarciowej.
B. uzwojenia fazowego.
C. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
D. izolacji pomiędzy zaciskami uzwojeń silnika.
Poprawna odpowiedź odnosi się do pomiaru rezystancji izolacji pomiędzy zaciskami uzwojeń silnika, co jest kluczowym elementem zapewnienia bezpieczeństwa i funkcjonalności urządzeń elektrycznych. Schemat przedstawia połączenie miernika, co wskazuje na jego użycie do oceny stanu izolacji. W praktyce, regularne pomiary izolacji są niezbędne w procesach konserwacyjnych oraz w diagnostyce awarii silników elektrycznych. Zgodnie z normą IEC 60364, należy dążyć do utrzymania odpowiednich wartości rezystancji izolacji, które powinny być znacznie wyższe niż 1 MΩ, aby zapewnić bezpieczeństwo użytkowania oraz minimalizować ryzyko porażenia prądem. W przypadku stwierdzenia niskiej rezystancji, co może wskazywać na uszkodzenie izolacji, konieczne jest natychmiastowe podjęcie działań naprawczych, aby zapobiec dalszym problemom. Dobre praktyki inżynieryjne zalecają również dokumentowanie wyników pomiarów, co może być pomocne w opracowywaniu programów konserwacyjnych oraz w audytach bezpieczeństwa.

Pytanie 33

Zdjęcie przedstawia

Ilustracja do pytania
A. listwę montażową.
B. szynę łączeniową.
C. drabinkę kablową.
D. płytkę zaciskową.
Szyna łączeniowa to kluczowy element w instalacjach elektrycznych, służący do łączenia przewodów neutralnych w rozdzielnicach. Odpowiedź jest poprawna, ponieważ zdjęcie przedstawia właśnie ten element. Szyny łączeniowe są wykorzystywane w celu zapewnienia efektywności i bezpieczeństwa instalacji, umożliwiając łatwe połączenie wielu przewodów w jednym punkcie. Dzięki nim, instalacje są bardziej uporządkowane, co pozwala na łatwiejszą konserwację i zarządzanie okablowaniem. W praktyce, szyny łączeniowe są projektowane zgodnie z normami IEC oraz PN-EN, co zapewnia ich wysoką jakość i bezpieczeństwo. Zastosowanie szyn łączeniowych jest szczególnie istotne w rozdzielnicach, gdzie konieczne jest zminimalizowanie ryzyka zwarcia i zapewnienie niezawodności działania systemu. Warto również zaznaczyć, że różne typy szyn mogą być dostosowane do specyficznych potrzeb instalacji, co czyni je niezwykle wszechstronnym rozwiązaniem.

Pytanie 34

Jaką z poniższych wkładek bezpiecznikowych powinno się zastosować w celu zabezpieczenia przewodów przed skutkami zwarć oraz przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. aM 16 A
C. aM 20 A
D. gG 20 A
Wybór niewłaściwych wkładek bezpiecznikowych do zabezpieczenia obwodu bojlera elektrycznego często wynika z niepełnego zrozumienia specyfiki zastosowania i funkcji różnych typów wkładek. Na przykład, wybór wkładki aM 16 A lub aM 20 A jest nieodpowiedni, ponieważ wkładki te są przeznaczone głównie do ochrony silników elektrycznych, a ich charakterystyka czasowo-prądowa nie jest dostosowana do obwodów grzewczych. Wkładki aM charakteryzują się wyższą tolerancją na chwilowe przeciążenia, co jest korzystne w przypadku silników, jednak w przypadku bojlerów elektrycznych, gdzie obciążenie ma bardziej stabilny charakter, tak wysoka tolerancja nie jest wymagana i może prowadzić do nieodpowiedniej ochrony. Kolejnym błędnym podejściem jest wybór wkładki gG 20 A. Choć wkładki gG są odpowiednie do ochrony przed zwarciami i przeciążeniami, ich dobór powinien opierać się na obliczonym prądzie znamionowym. W przypadku bojlera o mocy 3 kW, prąd wynosi 13 A, co sugeruje, że wkładka gG 20 A byłaby zbyt mocna, co z kolei mogłoby prowadzić do zbyt późnego wyzwolenia w przypadku wystąpienia zwarcia. Takie decyzje mogą prowadzić do uszkodzenia przewodów lub urządzenia. Kluczowe jest, aby przy wyborze wkładek bezpiecznikowych kierować się ich parametrami zgodnymi z wymaganiami obciążenia, co zostało szczegółowo opisane w normach PN-EN 60269. Dlatego ważne jest, aby dokładnie analizować parametry techniczne urządzeń oraz standardy branżowe, aby zapewnić zarówno bezpieczeństwo, jak i niezawodność systemu elektrycznego.

Pytanie 35

Jakie są wartości znamionowe prądu oraz liczba biegunów wyłącznika oznaczonego symbolem S194 B3?

A. 19 A i 3 bieguny
B. 3 A i 4 bieguny
C. 4 A i 3 bieguny
D. 9 A i 4 bieguny
Wyłącznik oznaczony symbolem S194 B3 posiada prąd znamionowy równy 3 A oraz 4 bieguny. Jest to typowy wyłącznik stosowany w instalacjach elektrycznych, który może być użyty do ochrony obwodów przed przeciążeniami i zwarciami. Prąd znamionowy 3 A wskazuje, że urządzenie jest przeznaczone do zastosowań o niewielkim obciążeniu, co czyni je idealnym rozwiązaniem w przypadku małych instalacji domowych lub biurowych, gdzie nie zachodzi potrzeba stosowania wyłączników o wyższych prądach. Z kolei cztery bieguny oznaczają, że wyłącznik może działać w obwodach trójfazowych, co jest istotne w bardziej skomplikowanych układach elektrycznych. W praktyce, przy doborze wyłącznika, należy zawsze uwzględniać zarówno prąd znamionowy, jak i liczbę biegunów, aby zapewnić odpowiednią ochronę i bezpieczeństwo. Przykładem zastosowania tego typu wyłącznika jest instalacja w małych warsztatach czy laboratoriach, gdzie używane są urządzenia o niskim poborze mocy.

Pytanie 36

Który z przedstawionych zestawów wyłączników nadprądowych należy dobrać do zabezpieczenia obwodów pralki automatycznej i piekarnika w przedstawionej instalacji elektrycznej?

Ilustracja do pytania
A. Zestaw 3.
B. Zestaw 1.
C. Zestaw 4.
D. Zestaw 2.
Jak źle dobierzesz wyłączniki nadprądowe, to może być nieciekawie, zwłaszcza dla urządzeń elektrycznych. Zestaw 1 z wyłącznikiem o za dużej wartości nominalnej nie będzie działał jak trzeba przy przeciążeniu, a to może uszkodzić pralkę albo piekarnik. Wysokie wartości wyłączników potrafią spowolnić reakcję na awarie, co sprzyja przegrzewaniu sprzętów. A Zestaw 4 ma wyłącznik o za niskiej wartości, co wiąże się z częstymi wyłączeniami przy normalnym użytkowaniu – to może być denerwujące dla klientów. Zestaw 3 pokazuje, że dobór wyłączników nie powinien opierać się tylko na ich wartościach, ale też na charakterystyce sprzętów, które mają chronić. Często ludzie nie myślą o prądach startowych czy chwilowych skokach, które mogą być problematyczne przy uruchamianiu silników w pralce. Dobrze dobrany wyłącznik to taki, który odpowiada nie tylko obliczonemu prądowi roboczemu, ale także specyfice pracy danego sprzętu.

Pytanie 37

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
B. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
C. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
D. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
Odpowiedź wskazująca, że instalacja elektryczna nie musi być poddawana konserwacji w przypadku przeprowadzania prac konserwacyjnych, takich jak malowanie ścian, jest prawidłowa, ponieważ w tym kontekście nie zachodzi ryzyko uszkodzenia instalacji ani zagrożenie dla bezpieczeństwa. W rzeczywistości, prace konserwacyjne są często planowane i wykonywane w sposób, który minimalizuje ryzyko dla istniejącej instalacji. Przykładowo, przed rozpoczęciem malowania należy zabezpieczyć gniazdka elektryczne i kable, co pozwala na bezpieczne i zgodne z normami ISO i PN wykonywanie takich prac. Dobrą praktyką jest również przeprowadzenie przeglądu stanu instalacji przed rozpoczęciem jakichkolwiek działań konserwacyjnych, aby upewnić się, że nie ma ukrytych usterek, które mogłyby wpłynąć na bezpieczeństwo. Ostatecznie, przestrzeganie regularnych harmonogramów konserwacji i inspekcji jest kluczowe dla utrzymania bezpieczeństwa oraz wydajności instalacji elektrycznych.

Pytanie 38

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 0,2 sekundy
B. 1 sekundę
C. 5 sekund
D. 0,4 sekundy
Maksymalny czas samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie obciążenia do 32 A w sieci TN wynoszący 0,4 sekundy jest zgodny z normami obowiązującymi w dziedzinie bezpieczeństwa elektrycznego, takimi jak norma PN-EN 61140. Czas ten określa, jak szybko system ochronny powinien zareagować w przypadku wystąpienia zwarcia lub awarii, aby zminimalizować ryzyko porażenia prądem. W praktyce oznacza to, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe, muszą być zdolne do zadziałania w tym krótkim czasie. Takie szybkie reakcje są kluczowe w warunkach użytkowania, zwłaszcza w środowisku domowym i komercyjnym, gdzie obecność ludzi jest stała. Przykładem zastosowania tej zasady mogą być obwody zasilające w łazienkach oraz innych pomieszczeniach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacznie wyższe. Odpowiednie zabezpieczenia w postaci wyłączników, które działają w ciągu 0,4 sekundy, mogą uratować życie, eliminując zasilanie w przypadku niebezpiecznych sytuacji.

Pytanie 39

Wyłącznik różnicowoprądowy reagujący na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA i na prądy wyprostowane, oznaczony jest symbolem graficznym

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Wyłącznik różnicowoprądowy, który reaguje na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA oraz na prądy wyprostowane, jest kluczowym elementem w systemach elektroenergetycznych, zapewniającym ochronę przed porażeniem prądem elektrycznym. Oznaczenie, które widzisz w odpowiedzi A, jest zgodne z normami obowiązującymi w branży elektrycznej, w tym z normą IEC 61008-1, która określa wymagania dotyczące wyłączników różnicowoprądowych. Użycie symbolu graficznego z sinusoidą oraz prostą linią z poziomymi kreskami poniżej, wskazuje na jego zdolność do detekcji prądów różnicowych, co jest istotne w kontekście ochrony instalacji elektrycznych. Praktyczne zastosowanie takich wyłączników obejmuje zarówno budynki mieszkalne, gdzie zabezpieczają użytkowników przed zagrożeniem, jak i obiekty przemysłowe, gdzie minimalizują ryzyko uszkodzenia sprzętu. Ich dobór i prawidłowe oznaczenie w dokumentacji technicznej są fundamentalne dla zapewnienia bezpieczeństwa i zgodności z regulacjami prawnymi.

Pytanie 40

Ile wynosi skuteczność świetlna źródła światła o etykiecie przedstawionej na ilustracji?

Ilustracja do pytania
A. 14,5 lm/W
B. 1 180,0 lm/W
C. 81,4 lm/W
D. 206,9 lm/W
Skuteczność świetlna to mega ważny parametr. Mówi nam, jak dobrze żarówka zamienia energię elektryczną na światło. W tym przypadku widzimy, że strumień świetlny to 1180 lumenów, a moc to 14,5 W. Więc żeby obliczyć skuteczność świetlną, dzielimy strumień przez moc, co daje nam 81,4 lm/W. To pokazuje, że ta żarówka jest całkiem oszczędna, co świetnie wpisuje się w to, co teraz modne w branży oświetleniowej - chodzi o oszczędzanie energii! Generalnie skuteczność świetlna powyżej 80 lm/W to bardzo dobry wynik, zwłaszcza dla LEDów i świetlówek. Fajnie jest to wiedzieć, bo to pomaga nie tylko projektantom, ale też nam, zwykłym ludziom, w wyborze lepszych, bardziej ekologicznych produktów.