Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 21 grudnia 2025 19:41
  • Data zakończenia: 21 grudnia 2025 20:05

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Tynk dekoracyjny, będący gładką warstwą zaprawy gipsowej na podstawie wapienno-gipsowej, to

A. tynk cyklinowany
B. sgraffito
C. tynk zmywalny
D. sztablatura
Sztablatura to technika wykończeniowa, która polega na nałożeniu gładkiej warstwy zaczynu gipsowego na podkład wapienno-gipsowy. Jest to dość popularna metoda w architekturze wnętrz, szczególnie w obiektach zabytkowych, gdzie ważne jest zachowanie estetyki i tradycyjnego rzemiosła. Warto zaznaczyć, że sztablatura charakteryzuje się wysoką odpornością na wilgoć oraz zdolnością do regulacji mikroklimatu pomieszczeń, co czyni ją idealnym rozwiązaniem do stosowania w różnorodnych warunkach. Zastosowanie sztablatury umożliwia uzyskanie jednolitej, gładkiej powierzchni, która może być następnie malowana lub dekorowana innymi technikami, co podnosi walory estetyczne wnętrza. W praktyce, tynk sztukatorski w formie sztablatury jest często wybierany w projektach, które nawiązują do klasycznych stylów architektonicznych, gdzie szczególnie istotne jest zachowanie autentyczności i detali wykończeniowych.

Pytanie 2

Na ilustracji przedstawiono materiał izolacyjny przeznaczony do wykonywania izolacji

Ilustracja do pytania
A. przeciwwodnej i przeciwwilgociowej.
B. akustycznej i przeciwwodnej.
C. termicznej i akustycznej.
D. przeciwwilgociowej i paroprzepuszczalnej.
Na ilustracji przedstawiono materiał izolacyjny, który najprawdopodobniej jest wełną mineralną. Wełna mineralna jest materiałem o znakomitych właściwościach termicznych, co czyni ją idealnym wyborem do izolacji cieplnej budynków. Dzięki swojej strukturze, skutecznie ogranicza straty ciepła, co wpływa na poprawę efektywności energetycznej budynków, a tym samym na obniżenie kosztów ogrzewania. Dodatkowo, wełna mineralna posiada również właściwości akustyczne, co jest istotne w kontekście wytłumiania dźwięków, zarówno wewnątrz pomieszczeń, jak i między nimi. Tego typu materiały są często stosowane w budownictwie zgodnie z normami PN-EN 13162 i PN-EN 13964, które określają wymagania dotyczące materiałów izolacyjnych. Przykłady zastosowania to izolacja ścian, dachów, oraz stropów, co wpływa na komfort użytkowników oraz trwałość budynku.

Pytanie 3

Na rysunku podano wysokość ściany

Ilustracja do pytania
A. instalacyjnej.
B. działowej.
C. osłonowej.
D. kolankowej.
Wysokość ściany kolankowej to kluczowy element konstrukcji budowlanych, szczególnie w kontekście poddaszy oraz dachów. Jest to pionowa odległość od podłogi do miejsca, w którym ściana łączy się z nachyloną częścią dachu. Na ilustracji wysokość ta oznaczona jest liczba 105, co jednoznacznie wskazuje na wysokość ściany kolankowej. Zastosowanie ściany kolankowej jest istotne z punktu widzenia efektywności przestrzennej oraz estetyki wnętrz. Dzięki niej możliwe jest uzyskanie dodatkowej przestrzeni użytkowej na poddaszu, co ma znaczenie w projektowaniu domów jednorodzinnych, a także w obiektach użyteczności publicznej. Dodatkowo, odpowiednia wysokość ściany kolankowej wpływa na ergonomię pomieszczeń, zapewniając komfort użytkowania oraz odpowiednią ilość światła dziennego. Znajomość wysokości tych ścian jest również istotna przy planowaniu instalacji, takich jak wentylacja czy oświetlenie. W zgodzie z normami budowlanymi, odpowiednie zaplanowanie wysokości kolankowej ma również znaczenie w kontekście bezpieczeństwa i stabilności konstrukcji. Właściwe zrozumienie i zastosowanie tej wiedzy jest kluczowe dla każdego projektanta i architekta.

Pytanie 4

Na rysunku przedstawiono pustaki

Ilustracja do pytania
A. ceramiczne do przewodów wentylacyjnych.
B. betonowe do przewodów dymowych.
C. klinkierowe ścienne.
D. zrąbkobetonowe do ścian zewnętrznych.
Wybór innych rodzajów pustaków wskazuje na niezrozumienie ich specyficznych zastosowań oraz różnic w charakterystyce materiałów budowlanych. Pustaki klinkierowe, na przykład, są przede wszystkim stosowane w konstrukcjach ścian zewnętrznych ze względu na ich wysoką odporność na warunki atmosferyczne, ale nie nadają się do formowania przewodów wentylacyjnych z racji swej masywności i braku odpowiednich otworów. Z kolei pustaki betonowe do przewodów dymowych są projektowane do pracy w warunkach wysokich temperatur i nie mają odpowiednich parametrów do wentylacji. Zastosowanie ich w przewodach wentylacyjnych może prowadzić do problemów z efektywnością przepływu powietrza oraz ich trwałością. Pustaki zrąbkobetonowe, choć mogą być stosowane w budownictwie, nie są przeznaczone do przewodów wentylacyjnych, co wynika z ich konstrukcji oraz właściwości materiałowych, które nie sprzyjają właściwej cyrkulacji powietrza. Wybierając niewłaściwy typ pustaków, można napotkać na problemy z jakością powietrza w pomieszczeniach, co może prowadzić do poważnych konsekwencji zdrowotnych dla użytkowników budynków. Kluczowe w doborze materiałów budowlanych jest zrozumienie ich zastosowania w kontekście norm i standardów, co pomaga uniknąć powszechnych błędów myślowych związanych z ich użyciem.

Pytanie 5

Na podstawie fragmentu instrukcji producenta oblicz, ile kilogramów zaprawy murarskiej potrzeba do wymurowania jednej ściany grubości 25 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Zużycie zaprawy murarskiej
Grubość ściany
z cegły pełnej
Zużycie suchej zaprawy
[kg/m²]
½ cegłyok. 40
1 cegłaok. 100
A. ok. 4800 kg
B. ok. 1920 kg
C. ok. 400 kg
D. ok. 1200 kg
Aby obliczyć ilość zaprawy murarskiej potrzebnej do wymurowania jednej ściany, należy najpierw określić jej powierzchnię. W tym przypadku ściana ma wymiary: długość 12 m, wysokość 4 m oraz grubość 25 cm. Powierzchnia ściany wynosi 12 m * 4 m = 48 m². Kolejnym krokiem jest określenie zużycia zaprawy na metr kwadratowy. Zgodnie z tabelami producentów, średnie zużycie zaprawy murarskiej przy budowie ścian z cegły pełnej wynosi około 100 kg na metr kwadratowy. Dlatego całkowita ilość zaprawy murarskiej potrzebnej do wymurowania ściany wynosi 48 m² * 100 kg/m² = 4800 kg. Tego typu obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na dokładne oszacowanie kosztów materiałowych oraz uniknięcie strat materiałów podczas budowy. Wiedza ta jest istotna dla każdego wykonawcy, aby móc planować i wdrażać projekty budowlane zgodnie z obowiązującymi standardami i dobrymi praktykami branżowymi.

Pytanie 6

W przedstawiony na rysunku graficzny sposób oznacza się w dokumentacji projektowej beton

Ilustracja do pytania
A. zwykły zbrojony.
B. zwykły niezbrojony.
C. lekki zbrojony.
D. lekki niezbrojony.
Odpowiedź "zwykły niezbrojony" jest poprawna, ponieważ zgodnie z polskimi normami, szczególnie PN-EN 206, beton zwykły niezbrojony jest oznaczany poprzez zastosowanie pełnego, ukośnego kreskowania. W praktyce, taki materiał znajduje zastosowanie w konstrukcjach, gdzie nie są wymagane dodatkowe właściwości wytrzymałościowe, takich jak w budownictwie mieszkaniowym czy infrastrukturze, gdzie obciążenia nie przekraczają określonych norm. Na przykład, beton ten jest często używany do fundamentów budynków jednorodzinnych czy jako materiał do wypełnienia przestrzeni w obiektach inżynieryjnych. Wiedza na temat poprawnego oznaczania betonu jest kluczowa dla projektantów i wykonawców, ponieważ zapewnia prawidłowe rozumienie zastosowanych materiałów, co w konsekwencji wpływa na trwałość i bezpieczeństwo konstrukcji.

Pytanie 7

Która z poniższych zapraw jest odporna na wysokie temperatury?

A. Krzemionkowa
B. Cementowa
C. Silikatowa
D. Wapienna
Zaprawa krzemionkowa jest klasyfikowana jako zaprawa ogniotrwała ze względu na wysoką odporność na ekstremalne temperatury oraz zdolność do wytrzymywania obciążeń termicznych. Skład chemiczny zaprawy krzemionkowej, który opiera się na krzemionce (SiO2), sprawia, że materiał ten ma doskonałe właściwości w kontekście izolacji termicznej oraz odporności na działanie wysokotemperaturowych czynników, co jest kluczowe w aplikacjach przemysłowych, takich jak piece hutnicze, kominy, czy piekarnie. W praktyce, zaprawy krzemionkowe są stosowane do murowania elementów narażonych na wysoką temperaturę, a także do wypełniania szwów w strukturach, które muszą wytrzymać znaczące zmiany temperaturowe. W zgodności z normami branżowymi, takimi jak PN-EN 1402, zaprawy te powinny wykazywać minimalne skurcze i pęknięcia w warunkach eksploatacyjnych, co dodatkowo potwierdza ich parametry użytkowe. Dodatkowo, ich niska przewodność cieplna pozwala na efektywne gospodarowanie energią w instalacjach przemysłowych, co czyni je niezwykle efektywnym rozwiązaniem w kontekście zrównoważonego rozwoju.

Pytanie 8

Remont odspojonego tynku należy przeprowadzić w poniższej kolejności:

A. skuć odspojony tynk, zwilżyć podłoże wodą, odkurzyć podłoże, otynkować ścianę
B. skuć odspojony tynk, odkurzyć podłoże, zwilżyć podłoże wodą, otynkować ścianę
C. odkurzyć podłoże, skuć odspojony tynk, zwilżyć podłoże wodą, otynkować ścianę
D. odkurzyć podłoże, zwilżyć podłoże wodą, skuć odspojony tynk, otynkować ścianę
Odpowiedź wskazująca na kolejność: skuć odspojony tynk, odkurzyć podłoże, zwilżyć podłoże wodą, otynkować ścianę jest prawidłowa, ponieważ odzwierciedla właściwy proces naprawy odspojonego tynku. Pierwszym krokiem jest skuśnięcie odspojonego tynku, co pozwala na usunięcie luźnych fragmentów, które mogłyby wpłynąć na jakość nowej warstwy. Następnie, przed dalszymi pracami, kluczowe jest odkurzenie podłoża, co eliminuje wszelkie zanieczyszczenia oraz pył, które mogą osłabić przyczepność nowego tynku. Zwilżenie podłoża wodą jest kolejnym istotnym krokiem, ponieważ wilgoć na podłożu pomaga w poprawnej adhezji materiału tynkarskiego. Na koniec, otynkowanie ściany tworzy nową, stabilną powierzchnię ochronną, która jest dobrze przylegająca do podłoża. Taki sposób działania jest zgodny z najlepszymi praktykami w budownictwie oraz standardami jakości, co zapewnia trwałość i estetykę wykonania. Warto również pamiętać, że staranność na każdym etapie procesu jest kluczowa dla uzyskania zadowalającego efektu końcowego.

Pytanie 9

Ile worków z 25 kg suchej zaprawy murarskiej jest potrzebnych do wybudowania ściany o powierzchni 15 m2 i grubości ½ cegły, jeśli jej zużycie na mur o takiej grubości wynosi 75 kg/m2?

A. 75 worków
B. 45 worków
C. 15 worków
D. 25 worków
Aby obliczyć liczbę worków suchej zaprawy murarskiej potrzebnej do wymurowania ściany o powierzchni 15 m² i grubości ½ cegły, należy najpierw zrozumieć, jakie są wymagania materiałowe. Ponieważ zużycie zaprawy wynosi 75 kg/m², obliczamy całkowite zapotrzebowanie na materiał, mnożąc powierzchnię ściany przez zużycie: 15 m² * 75 kg/m² = 1125 kg. Następnie, aby określić liczbę worków, które są dostępne po 25 kg każdy, dzielimy całkowitą wagę przez wagę jednego worka: 1125 kg / 25 kg/work = 45 worków. Taki sposób obliczeń jest zgodny z dobrymi praktykami w budownictwie, gdzie precyzyjne obliczenia materiałowe są kluczowe dla optymalizacji kosztów i uniknięcia niedoborów podczas pracy. Zastosowanie tej metody zapewnia efektywność i zgodność z normami budowlanymi.

Pytanie 10

Podczas budowy ścian z małych bloczków z betonu komórkowego z użyciem zaprawy o właściwościach ciepłochronnych, wskazane jest stosowanie cienkowarstwowych spoin o szerokości

A. od 3,5 do 5,0 mm
B. od 5,5 do 6,5 mm
C. od 1,0 do 3,0 mm
D. do 0,5 mm
Odpowiedzi sugerujące spoiny 'od 3,5 do 5,0 mm', 'do 0,5 mm' oraz 'od 5,5 do 6,5 mm' są nieprawidłowe z różnych powodów. Spoina o grubości 'od 3,5 do 5,0 mm' jest zbyt gruba dla zastosowań z betonu komórkowego, co może prowadzić do efektu mostków termicznych. Grube spoiny zwiększają ryzyko utraty ciepła, co w efekcie prowadzi do wyższych kosztów ogrzewania. Z kolei odpowiedź 'do 0,5 mm' jest niepraktyczna, ponieważ zbyt cienkie spoiny mogą nie zapewnić odpowiedniej przyczepności zaprawy do bloczków, co z kolei może wpłynąć na stabilność muru. Takie podejście może prowadzić do osłabienia struktury, a w konsekwencji do pęknięć i innych uszkodzeń budynku. Natomiast spoiny o grubości 'od 5,5 do 6,5 mm' znacznie zwiększają ryzyko powstawania mostków termicznych oraz obniżają właściwości izolacyjne całej ściany. W praktyce, stosowanie odpowiednich grubości spoin jest kluczowe dla efektywności energetycznej budynków, a nieprzestrzeganie tej zasady może prowadzić do poważnych konsekwencji w trakcie eksploatacji. Dlatego istotne jest, aby studenci i praktycy budownictwa byli świadomi znaczenia odpowiednich grubości spoin przy użyciu betonu komórkowego i zapraw ciepłochronnych.

Pytanie 11

Skoro z 400 kg cementu, 1 m3 piasku oraz 240 l wody uzyskuje się 1 m3 zaprawy cementowej, to ile materiałów należy przygotować na jedną betoniarkę o pojemności 250 l?

A. 300 kg cementu, 0,70 m3 piasku, 180 l wody
B. 100 kg cementu, 0,50 m3 piasku, 120 l wody
C. 100 kg cementu, 0,25 m3 piasku, 60 l wody
D. 200 kg cementu, 0,50 m3 piasku, 120 l wody
Odpowiedź 100 kg cementu, 0,25 m3 piasku oraz 60 l wody jest poprawna, ponieważ odpowiednio przelicza składniki zaprawy cementowej z jednostek na objętość betoniarki o pojemności 250 l. Zgodnie z danymi, z 1 m3 zaprawy uzyskuje się 400 kg cementu, 1 m3 piasku oraz 240 l wody. Przeliczając proporcjonalnie, dla 0,25 m3 zaprawy cementowej, które odpowiada pojemności betoniarki, otrzymujemy: 100 kg cementu (400 kg/1 m3 * 0,25 m3), 0,25 m3 piasku (1 m3/1 m3 * 0,25 m3), oraz 60 l wody (240 l/1 m3 * 0,25 m3). Takie podejście jest zgodne z praktykami budowlanymi, gdzie kluczowe jest zachowanie odpowiednich proporcji materiałów, co wpływa na jakość końcowego produktu. Przykładowo, niewłaściwe dozowanie składników może prowadzić do osłabienia zaprawy, co może wpłynąć na trwałość budowli. Dlatego ważne jest, aby w trakcie przygotowania zaprawy stosować się do wytycznych producenta oraz standardów branżowych.

Pytanie 12

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. izolujących cieplnie
B. renowacyjnych
C. jednowarstwowych zewnętrznych
D. szlachetnych
Zaprawa tynkarska oznaczona symbolem R jest stosowana przede wszystkim do wykonywania tynków renowacyjnych, co jest ściśle związane z jej właściwościami. Renowacyjne tynki mają na celu przywrócenie estetyki oraz funkcjonalności powierzchni, które mogą być uszkodzone lub w złym stanie. Zaprawy te charakteryzują się wysoką przyczepnością do podłoża, elastycznością oraz odpornością na czynniki atmosferyczne, co czyni je idealnym rozwiązaniem w przypadku starszych budynków, gdzie istnieje ryzyko pęknięć lub kruszenia się tynku. W praktyce, podczas renowacji zabytków, stosuje się zaprawy R, aby zapewnić odpowiednią ochronę i trwałość elewacji, a także aby zachować tradycyjne metody budowlane. W kontekście standardów, zaprawy te powinny spełniać normy PN-EN 998-1 dotyczące zapraw do tynkowania, co gwarantuje ich wysoką jakość i odpowiednie właściwości użytkowe.

Pytanie 13

Na którym rysunku przedstawiono kielnię do kształtowania spoin?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Na rysunku A przedstawiono kielnię do kształtowania spoin, która jest kluczowym narzędziem w budownictwie, szczególnie w pracach murowych. Kielnia ta charakteryzuje się wąską, długą i płaską powierzchnią roboczą, co umożliwia precyzyjne formowanie spoin między cegłami. Przykładem zastosowania kielni do kształtowania spoin może być murowanie ścian, w których ważne jest, aby spoiny były estetyczne i miały odpowiednią głębokość. Przy jej użyciu można również wygładzać zaprawę, co zwiększa trwałość i estetykę konstrukcji. Standardy budowlane, takie jak PN-B-06265, podkreślają znaczenie odpowiedniego formowania spoin, co wpływa na jakość wykonania robót budowlanych. Dobrze uformowane spoiny wpływają nie tylko na wygląd, ale również na izolacyjność termiczną i akustyczną budynku, dlatego znajomość i umiejętność stosowania kielni do kształtowania spoin jest niezbędna dla każdego murarza.

Pytanie 14

Która zaprawa charakteryzuje się najlepszymi właściwościami plastycznymi?

A. Cementowo-gliniana
B. Gipsowa
C. Wapienna
D. Cementowo-wapienna
Wybór gipsowej zaprawy jako materiału budowlanego może wydawać się atrakcyjny ze względu na jej szybkie wiązanie i łatwość aplikacji, jednak jej właściwości plastyczne są znacznie gorsze w porównaniu do zaprawy wapiennej. Gips ma tendencję do szybkiego twardnienia, co ogranicza czas pracy z materiałem i sprawia, że jest mniej elastyczny. Z tego powodu, w przypadku ruchów konstrukcji, gipsowe zaprawy mogą pękać, co prowadzi do uszkodzeń. Z kolei zaprawy cementowo-wapienne, choć oferują lepsze właściwości mechaniczne, również nie osiągają poziomu plastyczności zapraw wapiennych. Cement może tworzyć bardzo twarde połączenia, ale jego sztywność jest wadą, gdyż nie pozwala na elastyczne dostosowanie się do zmian w strukturze. Ponadto, zaprawy cementowo-gliniane, mimo że mają swoje zastosowanie, nie dorównują plastycznością tradycyjnym zaprawom wapiennym. Typowe błędy myślowe polegają na myleniu wytrzymałości z plastycznością – wiele osób przyjmuje, że silniejsze materiały będą lepsze w każdej sytuacji, co nie zawsze jest prawdą. Właściwy wybór zaprawy powinien być uzależniony od specyficznych warunków budowy, a nie ogólnych założeń dotyczących materiałów. Dlatego, aby osiągnąć najlepsze rezultaty w budownictwie, kluczowe jest zrozumienie właściwości różnych zapraw oraz ich praktycznego zastosowania.

Pytanie 15

Odczytaj z rysunku, jakie są grubości ścian tworzących pomieszczenie warsztatu.

Ilustracja do pytania
A. 36 i 84 cm
B. 25 i 84 cm
C. 25 i 10 cm
D. 84 i 100 cm
Analiza rysunku wykazuje, że grubości ścian pomieszczenia warsztatu wynoszą odpowiednio 25 cm dla ścian zewnętrznych oraz 84 cm dla ściany wewnętrznej. Te wartości są zgodne z normami budowlanymi, które wskazują na minimalne wartości grubości ścian w budynkach użyteczności publicznej oraz mieszkalnych. W przypadku warsztatu, gdzie często zachodzi konieczność zapewnienia odpowiedniej izolacji termicznej i akustycznej, te grubości są optymalne. Ściany o grubości 25 cm zapewniają wystarczającą izolację, natomiast grubość 84 cm dla ściany wewnętrznej może być wynikiem zastosowania materiałów o lepszych parametrach izolacyjnych lub dodatkowej warstwy izolacyjnej. W praktyce oznacza to, że dobór odpowiednich grubości ścian wpływa nie tylko na komfort użytkowania pomieszczenia, ale również na jego efektywność energetyczną, co jest kluczowe w kontekście nowoczesnego budownictwa. Zastosowanie standardów budowlanych, takich jak PN-EN 1996 dotyczący projektowania ścian murowanych, jest istotne dla zapewnienia trwałości i funkcjonalności obiektów budowlanych.

Pytanie 16

Na rysunku przedstawiono lico muru w wiązaniu

Ilustracja do pytania
A. krzyżykowym.
B. główkowym,
C. wozówkowym.
D. polskim.
Na tym rysunku widać lico muru w wiązaniu wozówkowym. To jeden z najczęściej stosowanych sposobów układania cegieł w budownictwie, co nie jest bez powodu. Cegły w takim wiązaniu układa się naprzemiennie, więc co druga cegła jest dłuższa, a reszta jest krótsza. Dzięki temu mamy solidniejszy mur, mniejsze ryzyko pęknięć i większą nośność całej konstrukcji. Wozówkowe wiązanie stosuje się zarówno w domach, jak i w różnych budynkach użyteczności publicznej. W praktyce, pomaga to rozkładać obciążenia na większą powierzchnię, a to jest zgodne z normami budowlanymi, jak Eurokod 6, który mówi o projektowaniu murów z cegły. Ciekawym jest, że podczas budowy ważne, żeby dłuższe cegły były układane w sposób, który zapewnia ich równomierne wsparcie, co naprawdę zwiększa trwałość całej konstrukcji.

Pytanie 17

Do wykonania murów z bloczków systemu Ytong na cienkie spoiny trzeba przygotować

A. zaprawę wapienną
B. zaprawę klejową
C. zaprawę cementowo-wapienną
D. zaprawę cementową
Wybór zaprawy wapiennej do murowania bloczków Ytong jest niewłaściwy, ponieważ ten rodzaj zaprawy nie zapewnia odpowiedniej przyczepności i nie jest przystosowany do cienkowarstwowych technik murowania. Zaprawa wapienna, choć ma swoje zastosowanie w tradycyjnym budownictwie, jest zbyt elastyczna i może powodować osiadanie murów, co jest szczególnie niepożądane w przypadku lekkich bloczków Ytong. Z kolei zaprawa cementowo-wapienna, choć lepsza od czystej zaprawy wapiennej, nie jest idealnym rozwiązaniem, gdyż jej skład nie pozwala na uzyskanie wymaganego stopnia szczelności i izolacyjności. Ostatecznie, zaprawa cementowa, stosowana bezpośrednio w systemach Ytong, może prowadzić do powstania zbyt grubych spoin, co negatywnie wpływa na właściwości termoizolacyjne budynku. Typowym błędem jest myślenie, że zaprawy oparte na cemencie są uniwersalnym rozwiązaniem, jednak ich zastosowanie w cienkowarstwowych systemach murowania często prowadzi do nieodpowiednich efektów. Dlatego tak ważne jest, aby wybierać materiały budowlane, które są dostosowane do specyfiki używanych bloczków, co w przypadku Ytong oznacza konieczność stosowania zaprawy klejowej, a nie innych typów zapraw.

Pytanie 18

Czym jest spoiwo mineralne hydrauliczne?

A. wapno hydratyzowane
B. gips hydrauliczny
C. wapno dolomitowe
D. cement hutniczy
Wybór wapna dolomitowego jako spoiwa mineralnego hydraulicznego jest błędny, ponieważ jest to materiał, który twardnieje jedynie w obecności dwutlenku węgla, a nie pod wpływem wody. Wapno dolomitowe jest stosunkowo mało odporne na działanie wody, co ogranicza jego zastosowanie w konstrukcjach narażonych na wilgoć. Gips hydrauliczny, choć ma zdolność do twardnienia w wodzie, nie jest klasyfikowany jako spoiwo mineralne hydrauliczne w znaczeniu używanym w budownictwie, gdyż jego zastosowanie jest raczej ograniczone do tynków i wykończeń. Wapno hydratyzowane, podobnie jak wapno dolomitowe, również wymaga obecności CO2 do twardnienia, co czyni je nieodpowiednim w kontekście hydraulicznych spoiw mineralnych. Typowe błędy myślowe, które prowadzą do wyboru tych materiałów, często wynikają z niepełnego zrozumienia różnic między spoiwami hydraulicznymi a tymi, które wymagają reakcji z atmosferycznym dwutlenkiem węgla. Kluczowe jest zrozumienie, że wytrzymałość i odporność na wodę są kluczowymi cechami spoiw hydraulicznych, a wybór niewłaściwego materiału może prowadzić do poważnych problemów konstrukcyjnych.

Pytanie 19

Na rysunku przedstawiony jest przekrój poprzeczny stropu

Ilustracja do pytania
A. Ackermana.
B. odcinkowego.
C. płytowego.
D. Kleina.
Wybór odpowiedzi dotyczącej stropu Ackermana, płytowego czy Kleina wskazuje na nieporozumienie w kwestii charakterystyki geometrycznej oraz materiałowej tych konstrukcji. Strop Ackermana, znany ze swojej specyfiki w budownictwie z prefabrykatów, różni się od stropu odcinkowego, gdyż jego konstrukcja opiera się na sztywnych, prostokątnych elementach, co nie pozwala na uzyskanie łukowych form. Z kolei strop płytowy, charakterystyczny dla budownictwa mieszkaniowego i biurowego, charakteryzuje się jednolitą grubością i brakiem łuków, co czyni go bardziej odpornym na różne typy obciążeń, ale nie zapewnia takich samych możliwości w zakresie rozpiętości jak strop odcinkowy. Wreszcie, strop Kleina, który jest stosunkowo rzadko używany, ma swoje unikalne właściwości konstrukcyjne i nie odpowiada przedstawionemu na rysunku przekrojowi. Typowym błędem jest pomylenie stropów o różnych kształtach i funkcjonalności, co może prowadzić do niedokładnych wniosków na temat ich zastosowania i wykonalności w projektach budowlanych. Zrozumienie różnic między tymi rodzajami stropów jest kluczowe dla ich prawidłowego doboru do konkretnego projektu budowlanego.

Pytanie 20

Aby zapewnić odpowiednią przyczepność tynku do ceglanego muru, konieczne jest

A. nanosić na mur rzadką zaprawę z wapna
B. wykonać mur z pełnymi spoinami
C. wykonać mur z niepełnymi spoinami
D. nanosić na mur preparat poprawiający przyczepność
Wykonanie muru na niepełne spoiny to najlepsza praktyka, jeśli chodzi o zapewnienie dobrej przyczepności tynku do muru z cegieł. Spoiny niepełne pozwalają na lepsze wnikanie zaprawy tynkarskiej w przestrzenie między cegłami, co skutkuje większą powierzchnią kontaktu pomiędzy tynkiem a murem. Dzięki temu uzyskuje się solidniejsze połączenie, co jest kluczowe dla trwałości i estetyki wykończenia. W standardach budowlanych często zaleca się stosowanie niepełnych spoin w kontekście prac tynkarskich, co potwierdzają normy dotyczące budownictwa, takie jak PN-EN 1996-1-1. Przykładowo, w praktyce budowlanej, podczas tynkowania murów z cegły, niepełne spoiny również umożliwiają lepsze odprowadzenie wilgoci, co jest istotne dla zapobiegania powstawaniu pleśni. Stosowanie tej metody tynkowania najlepiej jest również udokumentować w projektach budowlanych, aby mieć pewność, że wykonawcy będą stosować się do ustalonych zasad.

Pytanie 21

Proporcje objętościowe 1:3:12 składników zaprawy cementowo-glinianej typu M 0,6 wskazują na następujący jej skład objętościowy:

A. cement : zawiesina gliniana : wapno
B. cement : zawiesina gliniana : piasek
C. cement : piasek : zawiesina gliniana
D. cement : wapno : zawiesina gliniana
Odpowiedź 'cement : zawiesina gliniana : piasek' jest prawidłowa, ponieważ proporcje 1:3:12 wskazują, że na każdą jednostkę cementu przypada 3 jednostki zawiesiny glinianej oraz 12 jednostek piasku. Taki skład zaprawy cementowo-glinianej charakteryzuje się odpowiednim balansem między wytrzymałością a elastycznością, co czyni go idealnym do zastosowań w budownictwie, na przykład przy murowaniu ścian czy tynkowaniu. W praktyce, stosowanie odpowiednich proporcji składników jest kluczowe dla uzyskania pożądanych właściwości mechanicznych zaprawy, takich jak przyczepność, plastyczność i odporność na działanie czynników atmosferycznych. Warto również zwrócić uwagę na normy PN-EN dotyczące zapraw murarskich, które precyzują wymagania dla różnych typów zapraw, co pozwala na dobór odpowiedniego składu w zależności od specyfikacji projektu budowlanego. Przykłady zastosowań to zarówno budowa nowych obiektów, jak i renowacja istniejących, gdzie kluczowe jest zachowanie zarówno estetyki, jak i trwałości."}

Pytanie 22

Aby zbudować murowane ścianki działowe o grubości do 12 cm i jak najmniejszym ciężarze objętościowym, należy zastosować cegłę

A. ceramicznej pełnej
B. klinkierową
C. dziurawki
D. silikatową pełną
Dziurawka, czyli cegła ceramiczna z otworami, jest doskonałym materiałem do budowy murowanych ścianek działowych o grubości do 12 cm z uwagi na swoje właściwości izolacyjne oraz niski ciężar objętościowy. Dzięki otworom w cegłach, ich masa jest znacznie niższa, co przyczynia się do zmniejszenia obciążenia konstrukcyjnego budynku. Dziurawki charakteryzują się również dobrą izolacyjnością akustyczną, co sprawia, że są idealnym materiałem do budowy ścianek działowych w biurach i mieszkaniach, gdzie istotne jest oddzielenie pomieszczeń. W normach budowlanych, takich jak PN-EN 771-1, określono wymagania dotyczące właściwości materiałów budowlanych, a cegły dziurawki spełniają te standardy, oferując wysoką jakość i trwałość. Przykładem zastosowania dziurek mogą być ścianki działowe w nowoczesnych budynkach mieszkalnych, gdzie niskie koszty transportu i łatwość w obróbce przekładają się na efektywność całego projektu budowlanego.

Pytanie 23

Zgodnie z zaleceniami producenta, z 25 kg zaprawy można uzyskać 1,4 m2 tynku o grubości 10 mm. Jaką ilość zaprawy należy przygotować do otynkowania ścian pomieszczenia o powierzchni 56,7 m2, aby osiągnąć tynk o tej samej grubości?

A. 101,25 kg
B. 1 012,5 kg
C. 10 125 kg
D. 10,125 kg
Właściwe obliczenie ilości zaprawy wymaga uwzględnienia zarówno powierzchni tynkowanej jak i wydajności zaprawy. Z instrukcji producenta wiemy, że 25 kg zaprawy pokrywa 1,4 m² tynku o grubości 10 mm. Aby obliczyć ilość zaprawy potrzebnej do pokrycia 56,7 m², najpierw obliczamy, ile m² można pokryć 1 kg zaprawy, co wynosi 1,4 m²/25 kg = 0,056 m²/kg. Następnie mnożymy tę wartość przez 56,7 m², co daje 1 012,5 kg zaprawy. Użycie dokładnych obliczeń jest istotne w praktyce budowlanej, aby uniknąć niedoborów lub nadmiaru materiału, co może wpływać na koszty i terminy realizacji. W branży budowlanej zaleca się również uwzględnianie niewielkiego zapasu materiału, aby pokryć ewentualne straty czy błędy przy aplikacji, co jest zgodne z najlepszymi praktykami w zarządzaniu projektami budowlanymi.

Pytanie 24

Jak powinny wyglądać spoiny w murach z kanałami dymowymi?

A. niekompletne i równo wykończone od wnętrza kanału
B. niekompletne i nierówno wykończone od wnętrza kanału
C. kompletne i nierówno wykończone od wnętrza kanału
D. kompletne i równo wykończone od wnętrza kanału
Spoiny w murach z kanałami dymowymi powinny być pełne i gładko wyrównane od wnętrza kanału, co jest zgodne z zasadami dobrych praktyk budowlanych oraz normami technicznymi. Pełne spoiny zapewniają odpowiednią szczelność, co jest kluczowe w kontekście odprowadzania spalin i dymu. Gładkie wyrównanie spoin zapobiega osadzaniu się zanieczyszczeń oraz minimalizuje ryzyko tworzenia się miejsc, w których może dochodzić do gromadzenia się sadzy, co z kolei mogłoby prowadzić do zatorów w kominie. Przykładem zastosowania tych zasad jest budowa systemów kominowych w domach jednorodzinnych, gdzie odpowiednie wykonanie spoin wpływa na bezpieczeństwo użytkowania pieców oraz efektowność odprowadzania spalin. W kontekście norm, odpowiednie dokumenty, takie jak PN-EN 12056 dotyczące systemów kominowych, podkreślają znaczenie pełnych i gładkich połączeń w zachowaniu bezpieczeństwa i trwałości konstrukcji kominowych.

Pytanie 25

Jeśli wydano 1 000 zł na materiały, a wydatki na robociznę stanowią 80 % kosztów materiałów, to całkowite koszty robocizny i materiałów wynoszą

A. 1 200 zł
B. 1 020 zł
C. 1 080 zł
D. 1 800 zł
Aby obliczyć łączne koszty robocizny i materiałów, należy najpierw określić wysokość kosztów robocizny, które wynoszą 80% od wartości zakupionych materiałów. Koszty materiałów wynoszą 1 000 zł, więc 80% z tej kwoty obliczamy jako 0,8 * 1 000 zł, co daje 800 zł. Następnie dodajemy te koszty do kosztów materiałów, co daje 1 000 zł + 800 zł = 1 800 zł. Takie podejście jest zgodne z dobrymi praktykami w zakresie zarządzania kosztami, które zalecają dokładne wyliczanie wszystkich wydatków związanych z projektem. W kontekście budżetowania, istotne jest uwzględnianie nie tylko bezpośrednich kosztów materiałów, ale także kosztów robocizny, co pozwala na uzyskanie pełnego obrazu finansowego projektu. Przykładem zastosowania tego typu obliczeń jest planowanie budowy, gdzie można oszacować całkowite wydatki przed rozpoczęciem prac, co wpływa na lepsze zarządzanie budżetem.

Pytanie 26

Na podstawie tablicy 0803 oblicz ilości zapraw cementowo-wapiennych M2 i M7, potrzebnych do ręcznego wykonania tynku zwykłego kategorii II, na ścianach o łącznej powierzchni 200 m2.

Ilustracja do pytania
A. M2 - 3,72 m3 i M7 - 0,40 m3
B. M2 - 1,86 m3 i M7 - 0,20 m3
C. M2 - 4,12 m3 i M7 - 0,42 m3
D. M2 - 2,06 m3 i M7 - 0,21 m3
Odpowiedź M2 - 3,72 m3 i M7 - 0,40 m3 jest prawidłowa, ponieważ obliczenia oparte są na danych zawartych w tabeli 0803, która określa ilości zapraw potrzebnych do tynków w zależności od ich kategorii oraz powierzchni. Dla tynku kategorii II, na 100 m2 powierzchni, potrzeba 1,86 m3 zaprawy M2 oraz 0,20 m3 zaprawy M7. Skoro w naszym przypadku mamy do czynienia z powierzchnią 200 m2, musimy po prostu podwoić te ilości. Otrzymujemy zatem 3,72 m3 zaprawy M2 i 0,40 m3 zaprawy M7. W praktyce, takie obliczenia są kluczowe dla wykonawców, ponieważ precyzyjne oszacowanie materiałów pozwala na uniknięcie zarówno strat finansowych, jak i materiałowych. W branży budowlanej, zgodność z normami i dobrymi praktykami zapewnia nie tylko efektywność, ale także bezpieczeństwo stosowanych materiałów.

Pytanie 27

Oblicz wydatki na robociznę wzniesienia 100 m2 ścian obiektu z pustaków Porotherm, mając na uwadze, że czas potrzebny na wykonanie 1 m2 muru z tych pustaków wynosi 1,15 h, przy założonym 10-godzinnym czasie pracy, a wynagrodzenie murarza to 140 zł.

A. 1 232 zł
B. 2 012 zł
C. 1 410 zł
D. 1 610 zł
Koszt robocizny wymurowania 100 m2 ścian z pustaków Porotherm oblicza się na podstawie nakładu czasu oraz stawki za roboczogodzinę murarza. W przypadku, gdy nakład czasu na wykonanie 1 m2 muru wynosi 1,15 h, to dla 100 m2 potrzebujemy 115 h (1,15 h/m2 x 100 m2). Przy 10-godzinnym systemie pracy, murarz wykonuje 10 m2 w ciągu jednego dnia, co oznacza, że na wymurowanie 100 m2 potrzeba 10 dni (100 m2 ÷ 10 m2/dzień). Przy stawce 140 zł za dniówkę, całkowity koszt robocizny wynosi 10 dni x 140 zł/dzień, co daje 1400 zł. Jednak, przy dokładnym przeliczeniu czasu pracy, koszt robocizny powinien być obliczony jako (115 h x 14 zł/h) co daje nam 1610 zł. To podejście uwzględnia zarówno stawkę godzinową, jak i efektywność pracy w danym systemie. W budownictwie kluczowe jest dokładne oszacowanie czasu pracy, aby uniknąć niedoszacowania kosztów projektu."

Pytanie 28

Przedstawione na rysunku urządzenie służy do

Ilustracja do pytania
A. mieszania składników zapraw i betonów.
B. nawilżania mieszanki betonowej.
C. zagęszczania mieszanki betonowej.
D. wyrównania powierzchni zapraw i betonów.
Poprawna odpowiedź to "mieszania składników zapraw i betonów". Urządzenie przedstawione na rysunku to mieszadło, które ma na celu uzyskanie jednolitej konsystencji mieszanki poprzez dokładne połączenie różnych składników, takich jak cement, piasek, woda i ewentualne dodatki chemiczne. W praktyce, stosowanie mieszadeł jest kluczowe w procesie budowlanym, ponieważ zapewnia równomierne rozprowadzenie wszystkich materiałów, co wpływa na jakość i wytrzymałość finalnego produktu. Zgodnie z normami budowlanymi, dobór odpowiedniego mieszadła jest istotny dla osiągnięcia wymaganej jednorodności mieszanki, co z kolei przekłada się na lepszą przyczepność oraz trwałość zaprawy czy betonu. Warto również wspomnieć, że w przypadku większych projektów budowlanych stosuje się mieszarki stacjonarne, które mogą wpłynąć na efekt skali i wydajność pracy. Dobre praktyki w zakresie mieszania materiałów budowlanych obejmują również regularne kontrolowanie jakości mieszanki oraz przestrzeganie zaleceń producentów materiałów budowlanych.

Pytanie 29

Jaki sposób wiązania cegieł w murze przedstawiono na rysunku?

Ilustracja do pytania
A. Wiązanie śląskie.
B. Wiązanie holenderskie.
C. Wiązanie gotyckie.
D. Wiązanie flamandzkie.
Wiązanie gotyckie nie jest odpowiednią odpowiedzią, ponieważ odnosi się do stylu architektonicznego, który był popularny w Europie w okresie średniowiecza, a nie do konkretnego sposobu układania cegieł. Nieprawidłowe jest także utożsamianie wiązania flamandzkiego z wiązaniem holenderskim, które z kolei charakteryzuje się innym układem cegieł, często z większym naciskiem na cegły pełne w każdej warstwie. Wiązanie śląskie to kolejna technika, która różni się od flamandzkiego, ponieważ układ cegieł w tym wiązaniu może nie uwzględniać przemiennego układu połówek i pełnych cegieł, co zmienia właściwości nośne i estetyczne muru. Warto zauważyć, że błędne rozpoznanie tych wiązań może prowadzić do niewłaściwych decyzji projektowych, co ma poważne konsekwencje dla stabilności budowli. Typowe błędy myślowe, prowadzące do tych niepoprawnych odpowiedzi, obejmują nieznajomość specyfiki układów cegieł oraz mylenie cech charakterystycznych różnych technik, co jest istotne w kontekście zachowania integralności i bezpieczeństwa konstrukcji budowlanych.

Pytanie 30

Kolejność technologiczna działań na pierwszym etapie prac rozbiórkowych budynku przy użyciu metod ręcznych przedstawia się następująco:

A. demontaż instalacji budowlanych, demontaż okien i drzwi, rozbiórka ścianek działowych
B. demontaż okien, rozbiórka ścianek działowych, demontaż instalacji budowlanych
C. rozbiórka dachu, rozbiórka ścianek działowych, demontaż instalacji budowlanych
D. rozbiórka dachu, demontaż okien, demontaż instalacji budowlanych
W analizie niepoprawnych odpowiedzi dostrzegamy kilka kluczowych błędów w podejściu do kolejności prac rozbiórkowych. Pierwszym z nich jest pomijanie znaczenia demontażu instalacji budowlanych na samym początku. Zignorowanie tego etapu może prowadzić do niebezpieczeństw związanych z prądem elektrycznym lub wyciekami substancji. Każde z wymienionych podejść zaczyna od rozbiórki dachu lub innych elementów konstrukcyjnych, co jest niewłaściwe, gdyż może to stwarzać ryzyko przygniecenia pracowników przez opadające materiały. Kolejnym błędem jest niezrozumienie, że odpowiednia kolejność prac wpływa na efektywność całego procesu. Demontaż okien i drzwi przed rozbiórką dachu czy ścianek działowych spowodowałby, że z wnętrza budynku wydostaje się kurz i zanieczyszczenia, co dodatkowo komplikowałoby prace. W kontekście praktycznym, doświadczenia na budowach pokazują, że niewłaściwa kolejność może prowadzić do niepotrzebnych opóźnień oraz wzrostu kosztów. Kluczowym aspektem w planowaniu rozbiórek jest nie tylko przestrzeganie przepisów prawa budowlanego, ale także wytycznych dotyczących bezpieczeństwa, które jasno określają, jak powinny przebiegać te etapy, aby zminimalizować ryzyko wypadków oraz maksymalizować efektywność pracy zespołu budowlanego.

Pytanie 31

Jak powinno się przygotować podłoże z cegły rozbiórkowej do tynkowania, jeżeli jest zabrudzone sadzą i tłuszczem?

A. Zeszkrobać papierem ściernym
B. Nałożyć warstwę folii w płynie
C. Wyczyścić szczotką, a następnie spłukać wodą
D. Umyć wodą z detergentem
Odpowiedź 'Zmyć wodą z detergentem' jest prawidłowa, ponieważ skutecznie usuwa zanieczyszczenia, takie jak sadza i tłuszcz, które mogą negatywnie wpływać na przyczepność tynku do podłoża. W procesie przygotowania podłoża z cegły rozbiórkowej, należy zwrócić szczególną uwagę na jego czystość, ponieważ wszelkie zanieczyszczenia mogą prowadzić do odspajania się tynku w przyszłości. Użycie detergentów jest powszechną praktyką, ponieważ ich właściwości emulgujące pomagają w rozkładzie tłuszczu, co ułatwia usunięcie zabrudzeń. Po umyciu powierzchni za pomocą wody z detergentem, zaleca się spłukanie jej czystą wodą, aby usunąć wszelkie resztki chemikaliów. Warto również pamiętać, że niektóre standardy budowlane zalecają wykonanie testu przyczepności tynku na małym fragmencie podłoża po jego przygotowaniu. Takie podejście pomoże upewnić się, że powierzchnia jest odpowiednio przygotowana, co zapewni długotrwałość i estetykę wykonanego tynku.

Pytanie 32

Na którym rysunku przedstawiono prawidłowy kształt rysy o głębokości mniejszej niż 0,5 cm, występującej na tynku wewnętrznym, przygotowanej do uzupełnienia zaprawą?

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Kształt rysy o głębokości mniejszej niż 0,5 cm, jak przedstawiono na rysunku A, jest zgodny z zaleceniami najlepszych praktyk w zakresie napraw tynków wewnętrznych. Otwarty kształt rysy sprzyja odpowiedniemu wtapianiu zaprawy, co zapewnia trwałe połączenie z podłożem. W praktyce, przy uzupełnianiu rys, należy również pamiętać o odpowiednim przygotowaniu powierzchni, co może obejmować oczyszczenie rysy z luźnych fragmentów oraz zastosowanie środka gruntującego, co dodatkowo zwiększa przyczepność. Zastosowanie rys w kształcie rozwartym, jak w odpowiedzi A, jest kluczowe dla uzyskania estetycznych i funkcjonalnych efektów naprawy. Zgodnie z normami budowlanymi, takich jak PN-EN 13914-1, prawidłowe sposoby napraw tynków bazują na zasadzie zapewnienia odpowiedniego zakotwiczenia materiału naprawczego, co w przypadku widocznej rysy jest niezbędne do uniknięcia dalszych uszkodzeń oraz konieczności kolejnych napraw w przyszłości.

Pytanie 33

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1 : 2 : 6, należy zastosować odpowiednio

A. 1 część wapna, 2 części cementu oraz 6 części piasku
B. 1 część cementu, 2 części wapna i 6 części piasku
C. 1 część cementu, 2 części wapna oraz 6 części wody
D. 1 część wapna, 2 części cementu oraz 6 części wody
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji 1:2:6 oznacza, że na każdą część cementu przypadają dwie części wapna i sześć części piasku. Taki skład jest powszechnie stosowany w budownictwie, szczególnie przy murowaniu. Cement działa jako spoiwo, które łączy pozostałe składniki, a wapno wpływa na elastyczność i trwałość zaprawy. Piasek z kolei zapewnia odpowiednią strukturę i wytrzymałość. W praktyce, stosując tę proporcję, można uzyskać zaprawę o dobrej przyczepności, odporności na czynniki atmosferyczne oraz długowieczności, co jest kluczowe w konstrukcjach budowlanych. Przykładowo, przy budowie murów z cegły, taka zaprawa zapewnia stabilność i odporność na pęknięcia, co jest zgodne z normami budowlanymi PN-EN 998-2. Warto również dodać, że odpowiednie dobieranie składników wpływa na właściwości termiczne i akustyczne muru, co jest istotne w kontekście komfortu użytkowania budynków.

Pytanie 34

Jaką ilość cementu i piasku trzeba przygotować do sporządzenia zaprawy cementowo-wapiennej w proporcji 1:3:12, jeśli użyto 6 pojemników wapna?

A. 2 pojemniki cementu i 24 pojemniki piasku
B. 2 pojemniki cementu i 36 pojemników piasku
C. 3 pojemniki cementu i 36 pojemników piasku
D. 3 pojemniki cementu i 24 pojemniki piasku
Odpowiedź 2 pojemniki cementu i 24 pojemniki piasku jest poprawna, ponieważ proporcja składników zaprawy cementowo-wapiennej wynosi 1:3:12. W tej proporcji używamy jednego elementu cementu, trzech elementów wapna oraz dwunastu elementów piasku. Skoro mamy 6 pojemników wapna, to aby obliczyć ilość cementu, dzielimy 6 pojemników przez 3 (proporcja wapna do cementu), co daje 2 pojemniki cementu. Następnie, aby obliczyć ilość piasku, mnożymy 6 pojemników wapna przez 2 (proporcja wapna do piasku), co daje 24 pojemniki piasku. W praktyce, stosowanie odpowiednich proporcji składników jest kluczowe dla uzyskania optymalnych właściwości mechanicznych zaprawy, takich jak wytrzymałość na ściskanie i trwałość. Warto zwrócić uwagę na znaczenie odpowiedniego doboru materiałów w budownictwie, co jest zgodne z normami budowlanymi, takimi jak PN-EN 197-1, które regulują jakość cementu i jego zastosowanie.

Pytanie 35

Wykonanie zbrojenia wieńca stropu powinno odbywać się

A. na wszystkich ścianach nośnych wokół całego stropu
B. jedynie na ścianach osłonowych budynku
C. tylko na zewnętrznej ścianie budynku, na której opiera się strop
D. wyłącznie na dwóch przeciwnych ścianach nośnych budynku, które wspierają strop
Zbrojenie wieńca stropu jest kluczowym elementem konstrukcyjnym, który ma za zadanie zapewnienie odpowiedniej nośności i stabilności całej konstrukcji budynku. Właściwe rozłożenie zbrojenia na wszystkich ścianach nośnych dookoła stropu jest zgodne z zasadami inżynierii budowlanej oraz standardami, które podkreślają konieczność wzmocnienia miejsc, gdzie przenoszone są obciążenia. Zbrojenie na wszystkich ścianach nośnych ma na celu równomierne rozłożenie sił działających na strop, co minimalizuje ryzyko powstania pęknięć i uszkodzeń w konstrukcji. Przykładem zastosowania tej zasady może być budowa budynków wielokondygnacyjnych, gdzie stropy przenoszą znaczące obciążenia z wyższych pięter. W takich przypadkach stosowanie zbrojenia na wszystkich ścianach nośnych jest niezbędne dla zapewnienia stabilności konstrukcji na całej wysokości budynku. Dobrą praktyką jest również projektowanie zbrojenia w oparciu o normy PN-EN 1992-1-1, które określają wymagania dotyczące projektowania konstrukcji betonowych, w tym zbrojenia wieńców stropowych.

Pytanie 36

Jaką pacą powinno się nałożyć tynk wypalany klasy IVw?

A. Styropianową
B. Stalową
C. Poliuretanową
D. Drewnianą
Odpowiedź 'stalowa' jest poprawna, ponieważ tynki wypalane, zwane również tynkami mineralnymi, mają specyficzne wymagania dotyczące aplikacji, które najlepiej spełniają narzędzia stalowe. Stalowe pacy charakteryzują się dużą wytrzymałością i sztywnością, co pozwala na równomierne i dokładne rozprowadzanie masy tynkarskiej na powierzchni. Użycie stali umożliwia uzyskanie idealnie gładkiej struktury, co jest kluczowe dla trwałości i estetyki tynku. W praktyce, dzięki stalowym pacom, można łatwo kontrolować grubość aplikowanego tynku oraz dostarczyć odpowiednią ilość materiału w wyznaczonym czasie. W branży budowlanej stosuje się także standardy takie jak PN-EN 13914-1, które określają wymagania dla tynków. Zastosowanie odpowiednich narzędzi przy tynkowaniu jest kluczowe dla osiągnięcia wysokiej jakości i trwałości, co w przypadku tynków wypalanych ma istotne znaczenie, biorąc pod uwagę ich przeznaczenie i narażenie na warunki atmosferyczne.

Pytanie 37

Jak powinno się zregenerować stare, odpryskujące tynki?

A. Nałożyć na nie warstwę gładzi
B. Skuć je i uzupełnić nowym tynkiem
C. Pomalować je farbą silikatową
D. Pokryć je warstwą zaczynu wapiennego
Skuwanie starych tynków i ich uzupełnianie nowym tynkiem jest kluczowym krokiem w przywracaniu estetyki oraz funkcjonalności ścian. Stare tynki, które łuszczą się, mogą być wynikiem wielu czynników, takich jak wilgoć, nieodpowiednia aplikacja, a także naturalne procesy starzenia się materiałów budowlanych. Skuwanie pozwala na usunięcie uszkodzonego tynku oraz zapewnia lepszą przyczepność nowego materiału do podłoża. Po skuć, należy dokładnie oczyścić powierzchnię z resztek starego tynku, kurzu i innych zanieczyszczeń. Warto również zainstalować hydroizolację, jeśli problem wilgoci jest istotny, co jest zgodne z dobrą praktyką budowlaną. Po odpowiednim przygotowaniu podłoża, można nałożyć nowy tynk, dostosowany do konkretnej aplikacji, co zapewni trwałość i estetykę na długie lata. Dodatkowo, przed aplikacją, warto skonsultować się z ekspertami lub zapoznać się z lokalnymi normami budowlanymi, aby wybrać odpowiedni materiał i metodę aplikacji.

Pytanie 38

Który z elementów sklepienia oznaczono na rysunku cyfrą 5?

Ilustracja do pytania
A. Grzbiet.
B. Pachę.
C. Podniebienie.
D. Czoło.
W przypadku niepoprawnych odpowiedzi, warto zauważyć, że grzbiet, pacha oraz czoło nie są terminami odnoszącymi się do elementów sklepienia. Grzbiet, najczęściej kojarzony z określeniami anatomicznymi, odnosi się do górnej części ciała lub struktury, ale nie ma bezpośredniego związku z podniebieniem. Pacha, będąca przestrzenią podstawną w ciele, jest terminem z zakresu anatomii kończyn górnych, a nie struktur jamy ustnej. Z kolei czoło, definiowane jako przednia część głowy, również nie dotyczy anatomii podniebienia. Wiele osób może pomylić te terminy z uwagi na ich ogólne rozumienie w kontekście anatomii, jednak kluczowe jest precyzyjne rozróżnianie tych struktur. W kontekście edukacji medycznej oraz praktycznej, nieprecyzyjność w identyfikacji elementów anatomicznych może prowadzić do błędów w diagnozowaniu oraz leczeniu. Przykłady takich nieporozumień obejmują trudności w ustaleniu lokalizacji incydentów medycznych, co podkreśla konieczność dokładnej wiedzy na temat anatomii oraz funkcji poszczególnych struktur ciała. Dlatego istotne jest, aby nie tylko znać definicje, ale także zrozumieć ich zastosowanie w kontekście klinicznym.

Pytanie 39

W jakim wiązaniu wykonano mur przedstawiony na rysunku?

Ilustracja do pytania
A. Główkowym.
B. Wozówkowym.
C. Krzyżykowym.
D. Pospolitym.
Wiązanie krzyżykowe, w którym wykonano mur przedstawiony na rysunku, jest jednym z najbardziej popularnych i efektywnych sposobów układania cegieł. Charakteryzuje się ono tym, że cegły są przesunięte o pół długości cegły w każdej kolejnej warstwie, co nie tylko nadaje estetyczny wygląd, ale również zwiększa stabilność konstrukcji. Przesunięcie to sprawia, że spoiny pionowe nie są w jednej linii, co pomaga w rozkładzie obciążeń i minimalizuje ryzyko pęknięć. W praktyce, wiązanie krzyżykowe jest stosowane w budownictwie zarówno w murach nośnych, jak i w ścianach działowych. W standardach budowlanych podkreśla się, że prawidłowe ułożenie cegieł w tym wiązaniu zapewnia nie tylko estetykę, ale również funkcjonalność budowli. Dlatego tak ważne jest zrozumienie i stosowanie tego rodzaju wiązania w projektach budowlanych, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 40

Na podstawie danych zawartych w tablicy z KNR oblicz, ile cegieł pełnych należy zamówić do wykonania 30 m2ścianek pełnych o grubości ¼cegły.

Ilustracja do pytania
A. 858 sztuk.
B. 1 443 sztuki.
C. 861 sztuk.
D. 1 458 sztuk.
Często zdarza się, że osoby przystępujące do obliczeń mylą jednostki miary lub nieprawidłowo interpretują dane z tabel. Na przykład, niektórzy mogą przyjąć, że do obliczenia potrzebnej liczby cegieł należy pomnożyć wartość cegieł na 1 m² przez inną, nieodpowiednią wartość powierzchni, co prowadzi do błędnych wyników, jak 1 443 lub 1 458 cegieł. Tego rodzaju błędy mogą wynikać z braku znajomości specyfikacji technicznych oraz nieprecyzyjnego podejścia do danych. Często również myli się grubość ściany, co prowadzi do przyjęcia niewłaściwej wartości w obliczeniach. W praktyce, precyzyjne obliczenia materiałów budowlanych są kluczowe dla efektywności projektów budowlanych, a ich niedoszacowanie może prowadzić do opóźnień i dodatkowych kosztów. Niezależnie od przyczyny błędnych obliczeń, ważne jest, aby przed podjęciem decyzji dokładnie przeanalizować wszystkie dostępne dane oraz uwzględnić specyfikacje techniczne dotyczące materiałów budowlanych, takie jak te zawarte w KNR. W ten sposób można uniknąć typowych pułapek związanych z obliczeniami i osiągnąć bardziej wiarygodne wyniki.