Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 08:44
  • Data zakończenia: 8 grudnia 2025 08:56

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z poniższych jest podstawowym elementem ochrony przeciwporażeniowej w instalacjach elektrycznych?

A. Wyłącznik różnicowoprądowy
B. Przekaźnik czasowy
C. Wyłącznik nadprądowy
D. Bezpiecznik topikowy
Wyłącznik różnicowoprądowy jest kluczowym komponentem systemu ochrony przeciwporażeniowej w instalacjach elektrycznych. Jego główną funkcją jest wykrywanie prądów upływowych, które mogą świadczyć o uszkodzeniu izolacji lub innym zagrożeniu dla bezpieczeństwa użytkowników. Gdy wyłącznik różnicowoprądowy wykryje prąd upływowy przekraczający określoną wartość, zazwyczaj 30 mA, natychmiast odłącza zasilanie, co skutecznie zapobiega porażeniu prądem elektrycznym. Jest to szczególnie ważne w miejscach, gdzie użytkownicy mogą mieć kontakt z wodą, np. w łazienkach czy kuchniach. Wyłączniki różnicowoprądowe są zgodne z normami międzynarodowymi, takimi jak IEC 61008 i IEC 61009, oraz stanowią część standardowych wymagań instalacyjnych w wielu krajach. Ich zastosowanie w praktyce pozwala na zwiększenie bezpieczeństwa eksploatacji instalacji elektrycznych, dlatego są one nieodzownym elementem każdej nowoczesnej instalacji. Poprawna instalacja i regularne testowanie wyłączników różnicowoprądowych są kluczowe dla skutecznej ochrony użytkowników przed skutkami porażenia prądem elektrycznym.

Pytanie 2

Który z przyrządów służy do bezpośredniego pomiaru współczynnika mocy?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Odpowiedź C jest prawidłowa, ponieważ watomierz jest specjalistycznym przyrządem pomiarowym, który umożliwia bezpośredni pomiar mocy czynnej w obwodach elektrycznych. W kontekście współczynnika mocy, który jest kluczowym parametrem w systemach prądu przemiennego, watomierz pozwala na precyzyjne określenie wartości mocy czynnej, co jest niezbędne do obliczenia współczynnika mocy (cosφ). W praktyce, stosując wzór: cosφ = P/S, gdzie P to moc czynna, a S to moc pozorna, można z łatwością ustalić współczynnik mocy. Użycie watomierza jest nieocenione w zastosowaniach takich jak optymalizacja zużycia energii w instalacjach elektrycznych, co pozwala na identyfikację strat energii i poprawę efektywności energetycznej. Współczesne standardy, takie jak IEC 61557, podkreślają znaczenie pomiarów współczynnika mocy dla zapewnienia efektywności systemów zasilania oraz jakości energii elektrycznej.

Pytanie 3

Strzałka na rysunku wskazuje

Ilustracja do pytania
A. styk pomocniczy rozwierny.
B. przycisk rozwierny.
C. styk pomocniczy zwiemy.
D. przycisk zwiemy.
Wybór niepoprawnej odpowiedzi może sprawiać kłopot przez to, że oznaczenia w schematach elektrycznych są czasem mylące. Przyciski rozwierne, styk pomocniczy rozwierny oraz styk pomocniczy zwiemy to różne typy styków i przycisków, które pełnią różne funkcje w obwodach elektrycznych. Przyciski rozwierne to te normalnie zamknięte (NC), więc w spoczynku obwód jest zamknięty, a naciśnięcie przycisku go otwiera. Używa się ich zazwyczaj tam, gdzie jest potrzeba interakcji ze strony użytkownika, żeby wyłączyć jakieś urządzenie, co może czasami prowadzić do nieprzewidzianych skutków w systemach bezpieczeństwa, gdy są źle zastosowane. Styki pomocnicze, zarówno rozwierne, jak i zwiemy, służą do rozszerzania funkcji głównych przełączników. Styki pomocnicze zwiemy (NO) zamykają obwód po aktywacji, a rozwierne (NC) działają na zasadzie przeciwnej. Dosyć łatwo je pomylić z przyciskami przez ich podobieństwo, ale różnią się swoją podstawową funkcją. Kluczowym błędem, przy wyborze odpowiedzi, może być pomylenie funkcji normalnie otwartych z normalnie zamkniętymi stykami. Zrozumienie tych różnic jest naprawdę ważne w inżynierii elektrycznej, bo poprawna identyfikacja i wykorzystanie tych komponentów mogą decydować o bezpieczeństwie i efektywności całego systemu. Może warto jeszcze raz zastanowić się nad funkcjami i zastosowaniem każdego z tych elementów, żeby lepiej uchwycić ich rolę w obwodach elektrycznych.

Pytanie 4

Przy jakiej wartości prądu różnicowego zmiennego sinusoidalnie nie powinien zadziałać sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA?

A. IΔ = 20 mA
B. IΔ = 10 mA
C. IΔ = 40 mA
D. IΔ = 30 mA
Odpowiedź IΔ = 10 mA jest poprawna, ponieważ sprawny wyłącznik różnicowoprądowy typu AC o prądzie IΔN = 30 mA nie powinien zadziałać przy prądzie różnicowym mniejszym od jego nominalnej wartości. Wartości prądu różnicowego, które są poniżej tego poziomu, nie powinny aktywować mechanizmu wyłączającego. Na przykład, jeżeli w instalacji elektrycznej wystąpi niewielki prąd upływowy spowodowany np. wilgocią lub wadliwym urządzeniem, to przy prądzie 10 mA wyłącznik nie zareaguje, co oznacza, że urządzenie może dalej działać. Wyłączniki różnicowoprądowe są kluczowym elementem w systemach zabezpieczeń, a zgodnie z normami IEC 61008-1, powinny być stosowane w instalacjach, aby zapewnić bezpieczeństwo użytkowników przed porażeniem prądem elektrycznym. Odpowiednia konfiguracja takich wyłączników jest istotna w kontekście ochrony zdrowia i życia, a ich prawidłowe działanie powinno być regularnie kontrolowane.

Pytanie 5

Urządzenie przedstawione na zdjęciu służy do

Ilustracja do pytania
A. sprawdzania ciągłości przewodów.
B. kontroli prądu upływu.
C. określania kolejności faz zasilających.
D. pomiaru rezystancji uziemienia urządzenia.
Urządzenie przedstawione na zdjęciu to tester kolejności faz, co można zidentyfikować dzięki jego oznaczeniom, takim jak L1, L2, L3, które wskazują na różne fazy zasilające. W kontekście instalacji elektrycznych, poprawna kolejność faz jest kluczowa dla zapewnienia prawidłowego działania urządzeń oraz bezpieczeństwa instalacji. Niepoprawna kolejność może prowadzić do poważnych problemów, takich jak uszkodzenie sprzętu czy ryzyko porażenia prądem. Tester ten jest często używany przez elektryków do weryfikacji instalacji przed rozpoczęciem pracy, co pozwala na uniknięcie potencjalnych zagrożeń. Zgodnie z normami branżowymi, takimi jak PN-IEC 60364, zapewnienie poprawnej kolejności faz jest obowiązkowe w instalacjach trójfazowych. Przykłady zastosowania tego urządzenia obejmują kontrolę w przemyśle, w budynkach komercyjnych oraz w instalacjach domowych, gdzie prawidłowe zasilanie jest kluczowe dla funkcjonowania wielu urządzeń elektrycznych.

Pytanie 6

Który rodzaj maszyny wirującej przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjną klatkową.
B. Synchroniczną z biegunami utajonymi.
C. Komutatorową prądu przemiennego.
D. Synchroniczną jawnobiegunową.
Wybierając odpowiedzi, które wskazują na inne rodzaje maszyn, użytkownik może napotkać nieporozumienia związane z podstawowymi zasadami działania maszyn elektrycznych. Maszyna indukcyjna klatkowa, na przykład, nie ma wyraźnie zaznaczonych biegunów magnetycznych, co jest kluczowym elementem dla poprawnej identyfikacji maszyny na rysunku. Indukcyjne maszyny klatkowe działają na zasadzie indukcji elektromagnetycznej, gdzie wirnik nie ma stałych biegunów, a moment obrotowy jest generowany przez różnicę prędkości między wirnikiem a polem magnetycznym. Z kolei maszyny synchroniczne z biegunami utajonymi również różnią się pod względem budowy, ponieważ ich bieguny nie są bezpośrednio widoczne, co może prowadzić do pomyłek. W przypadku maszyn komutatorowych prądu przemiennego, kluczowe są inne mechanizmy pracy, w których używane są komutatory do zmiany kierunku prądu w uzwojeniach wirnika. Zrozumienie różnic między tymi typami maszyn jest istotne, aby móc prawidłowo identyfikować ich zastosowania w przemyśle. W praktyce, wiele z tych błędnych odpowiedzi wynika z niepełnego zrozumienia zasad działania i konstrukcji tych maszyn, co może prowadzić do niewłaściwego doboru urządzeń w aplikacjach przemysłowych, a tym samym do obniżenia efektywności systemów elektrycznych.

Pytanie 7

Parametry techniczne którego stycznika z tabeli odpowiadają stycznikowi przedstawionemu na ilustracji?

StycznikZnamionowy prąd pracyLiczba styków NOLiczba styków NC
1.31 A40
2.31 A31
3.40 A31
4.40 A40
Ilustracja do pytania
A. Stycznika 2.
B. Stycznika 1.
C. Stycznika 4.
D. Stycznika 3.
Odpowiedzi niepoprawne wynikają z kilku powszechnych błędów myślowych, które mogą prowadzić do mylnych wniosków. Wiele osób może sugerować, że inne styczniki z tabeli mają podobne parametry, jednak kluczowe jest dokładne zwrócenie uwagi na oznaczenia i specyfikacje techniczne. Przykładowo, stycznik 2 ma inny prąd nominalny, co czyni go niewłaściwym wyborem. Jest to częsty błąd w ocenie, gdzie koncentruje się wyłącznie na liczbie styków, a nie na ich charakterystyce oraz innych istotnych parametrach, takich jak prąd roboczy czy napięcie. Podobne pomyłki można zauważyć przy ocenie stycznika 1 i 4, które również różnią się specyfikacjami od stycznika przedstawionego na ilustracji. W takich przypadkach warto zwrócić uwagę na szczegóły, które odgrywają kluczową rolę w zapewnieniu optymalnego działania urządzeń. W kontekście projektowania instalacji elektrycznych, znajomość dokładnych parametrów styczników oraz ich zgodności z normami, takimi jak IEC 60947, jest niezbędna do osiągnięcia bezpiecznych i efektywnych rozwiązań. Pominięcie tych kryteriów może prowadzić do awarii systemu oraz zwiększenia ryzyka uszkodzeń sprzętu.

Pytanie 8

Który z wymienionych czynników wpływa na częstotliwość, z jaką powinno się przeprowadzać okresowe kontrole instalacji elektrycznej?

A. Kształt budynku w przestrzeni
B. Liczba urządzeń zasilanych z tej instalacji
C. Warunki zewnętrzne, którym instalacja jest poddawana
D. Metoda montażu instalacji
Koncepcje związane z innymi czynnikami, takimi jak liczba odbiorników zasilanych z instalacji, kształt przestrzenny budynku czy sposób montażu instalacji, nie mają decydującego wpływu na częstotliwość okresowych kontroli instalacji elektrycznej. Liczba odbiorników, mimo że wpływa na obciążenie systemu, nie przekłada się bezpośrednio na warunki, które mogą prowadzić do uszkodzeń instalacji. Zwiększona liczba urządzeń nie oznacza, że instalacja będzie bardziej narażona na awarie. Natomiast kształt budynku, chociaż może wpływać na dystrybucję energii i projekt instalacji, nie jest czynnikiem wpływającym na de facto potrzebę częstszych kontroli, ponieważ nie zmienia on warunków eksploatacyjnych, w jakich znajduje się instalacja. Z kolei sposób montażu instalacji, chociaż istotny dla bezpieczeństwa i funkcjonalności systemu, nie determinujący częstotliwości przeglądów. Często spotykanym błędem jest mylenie częstotliwości przeglądów z jakością wykonania instalacji. Dlatego tak ważne jest, aby skupić się na warunkach, w jakich instalacja pracuje, ponieważ to one ostatecznie wpływają na jej trwałość i bezpieczeństwo. Przykłady z praktyki pokazują, że instalacje narażone na trudne warunki atmosferyczne, takie jak wilgoć czy zanieczyszczenia, muszą być szczególnie regularnie kontrolowane, aby zminimalizować ryzyko awarii, co nie może być zrealizowane przez analizowanie tylko innych wymienionych czynników.

Pytanie 9

W oprawie oświetleniowej pokazanej na zdjęciu została zamontowana żarówka

Ilustracja do pytania
A. sodowa.
B. żarowa.
C. halogenowa.
D. rtęciowa.
Wybór żarówki sodowej, rtęciowej lub żarowej jako odpowiedzi wskazuje na pewne nieporozumienia dotyczące budowy i zastosowania różnych typów źródeł światła. Żarówki sodowe, na przykład, są powszechnie stosowane w oświetleniu ulicznym i mają charakterystyczny żółty kolor światła, co czyni je mniej efektywnymi w kontekście oświetlenia wnętrz, w którym wymagane jest naturalne odwzorowanie kolorów. Z kolei żarówki rtęciowe były popularne w przeszłości, ale obecnie są coraz rzadziej stosowane ze względu na ich szkodliwość dla środowiska oraz znaczące zanieczyszczenie światłem. Te źródła światła mają również inną konstrukcję, co sprawia, że są łatwo rozpoznawalne. Żarówki żarowe, mimo że uznawane są za klasyczne rozwiązanie, charakteryzują się niską efektywnością energetyczną oraz krótką żywotnością. W praktyce, ich stosowanie w nowoczesnym oświetleniu jest coraz bardziej ograniczone, co ukazuje zmieniające się normy energetyczne i ekologiczne, które promują bardziej efektywne źródła światła, takie jak halogeny. Dlatego ważne jest, aby zrozumieć różnice między tymi technologiami i podejmować świadome decyzje dotyczące wyboru odpowiednich źródeł światła do danego zastosowania.

Pytanie 10

Jakiego rodzaju przewód powinno się użyć do instalacji elektrycznej umieszczonej w drewnianych ścianach?

A. OMYp
B. SMYp
C. HDGs
D. YDYt
Wybór niewłaściwych typów przewodów do instalacji elektrycznej w drewnianych ścianach, takich jak OMYp, SMYp czy YDYt, może prowadzić do poważnych problemów. Przewód OMYp, mimo że jest elastyczny i używany w instalacjach wewnętrznych, nie jest przystosowany do użycia w środowisku, gdzie istnieje ryzyko uszkodzeń mechanicznych oraz pożaru, co czyni go nieodpowiednim do drewnianych konstrukcji. Przewody SMYp i YDYt, mimo że są szeroko stosowane, mają swoje ograniczenia. SMYp, jako przewód o mniejszej odporności na temperaturę, może w warunkach wysokich temperatur ulegać uszkodzeniom izolacji, co z kolei zwiększa ryzyko iskrzenia i pożaru. Z kolei YDYt, choć jest stosunkowo popularny, może nie spełniać wymogów dotyczących ochrony przed uszkodzeniami mechanicznymi, co jest kluczowe w kontekście drewnianych ścian. W przypadku niewłaściwego doboru przewodów, ich użycie może prowadzić do awarii elektrycznych, a nawet zagrożenia dla bezpieczeństwa użytkowników budynku. Kluczowe jest, aby projektując instalację, uwzględnić specyfikę materiałów budowlanych oraz normy branżowe, takie jak PN-IEC 60364, które wyraźnie określają, jakie rozwiązania są zalecane w różnych środowiskach. Znalezienie równowagi pomiędzy funkcjonalnością a bezpieczeństwem jest niezbędne, aby uniknąć kosztownych napraw oraz potencjalnych zagrożeń dla życia i zdrowia użytkowników.

Pytanie 11

Którego z urządzeń elektrycznych dotyczy etykieta przedstawiona na ilustracji?

Ilustracja do pytania
A. Czujnika ruchu.
B. Źródła światła.
C. Aparatu zmierzchowego.
D. Automatu schodowego.
Odpowiedź "Źródła światła" jest poprawna, ponieważ etykieta na ilustracji dostarcza kluczowych informacji charakterystycznych dla różnych typów źródeł światła, takich jak żarówki LED czy tradycyjne żarówki. Warto zwrócić uwagę na podaną moc, która wynosi 14.5W, co jest typowe dla nowoczesnych źródeł światła. Lumeny, które wynoszą 1180, określają ilość światła emitowanego przez źródło, co jest istotnym parametrem w branży oświetleniowej. Typ gwintu E27 jest powszechnie stosowany w żarówkach domowych, co jeszcze bardziej potwierdza, że mamy do czynienia z źródłem światła. Ponadto temperatura barwowa wynosząca 3000K wskazuje na ciepłe światło, które jest często preferowane w zastosowaniach domowych i komercyjnych. Wiedza na temat klasyfikacji źródeł światła jest kluczowa dla specjalistów zajmujących się projektowaniem oświetlenia, gdyż pozwala na dobór odpowiednich produktów do konkretnych zastosowań zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 12

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TT
B. TN-S
C. TN-C-S
D. IT
Wybór odpowiedzi spośród pozostałych typów sieci może prowadzić do nieporozumień związanych z zasadami ich działania. Sieci TN-S charakteryzują się tym, że przewód neutralny i przewód ochronny są oddzielone, co jest zupełnie inną koncepcją niż izolacja stosowana w sieciach IT. Użytkownicy mogą błędnie myśleć, że w sieci TN-S urządzenia różnicowoprądowe są tak samo efektywne jak w IT, jednak w przypadku awarii izolacji, prąd upływowy w sieci TN-S może spowodować poważniejsze konsekwencje. Podobnie sieci TN-C-S, które łączą funkcję przewodów neutralnych i ochronnych, są bardziej narażone na zjawiska związane z prądami upływowymi, co stawia pod znakiem zapytania ich bezpieczeństwo. Z kolei w sieciach TT, gdzie przewód neutralny i ochronny są oddzielne, istnieje większe ryzyko wystąpienia różnicy potencjałów między ziemią a neutralnym przewodem, co może prowadzić do niebezpiecznych sytuacji. Błędem jest zakładanie, że wszystkie te systemy zapewniają taki sam poziom ochrony jak sieci IT; każdy typ ma swoje unikalne właściwości i zastosowania, które powinny być starannie rozważane w kontekście wymagań bezpieczeństwa. W przypadku sieci IT, kluczowe jest zrozumienie ich struktury oraz właściwego zastosowania, aby uniknąć niebezpieczeństw związanych z awariami. Warto również zaznaczyć, że w sieciach TN i TT instalacje różnicowoprądowe są często mniej skuteczne w detekcji uszkodzeń, co może prowadzić do większych zagrożeń dla użytkowników i urządzeń.

Pytanie 13

Jakiego urządzenia należy użyć do pomiaru rezystancji izolacji w instalacji elektrycznej?

A. Megaomomierza
B. Megawoltomierza
C. Watomierza
D. Omomierza
Wybór nieodpowiednich przyrządów pomiarowych do oceny rezystancji izolacji może prowadzić do poważnych konsekwencji zarówno dla bezpieczeństwa, jak i funkcjonalności instalacji elektrycznej. Watomierz, wykorzystujący zjawisko pomiaru mocy w obwodach elektrycznych, nie jest przeznaczony do oceny stanu izolacji. Jego zastosowanie ogranicza się do pomiaru energii elektrycznej, co jest całkowicie odmiennym zadaniem. Omomierz, mimo że mierzy opór, jest stosowany przy normalnych warunkach pracy, co oznacza, że nie uwzględnia on stanu izolacji pod wpływem wysokich napięć, które są kluczowe w tym kontekście. W przypadku megawoltomierza, jest to urządzenie służące do pomiaru napięcia, a nie rezystancji, co czyni go zupełnie nieprzydatnym w tym aspekcie. Typowym błędem jest założenie, że każdy przyrząd pomiarowy, który mierzy opór, spełni wymagania dla pomiaru izolacji, podczas gdy w rzeczywistości tylko megaomomierz, działający w odpowiednich warunkach napięciowych, może dostarczyć wiarygodne dane. Właściwe zrozumienie zastosowania każdego z tych urządzeń oraz ich ograniczeń jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych.

Pytanie 14

Na rysunku pokazano pętlę zwarciową w układzie typu

Ilustracja do pytania
A. TT
B. TN-C-S
C. TN-S
D. IT
Odpowiedź TN-C-S jest poprawna, ponieważ odnosi się do systemu zasilania, w którym przewód PEN, pełniący funkcję zarówno przewodu ochronnego (PE), jak i neutralnego (N), jest rozdzielany na te dwa oddzielne przewody w określonym punkcie instalacji. Taki sposób realizacji systemu jest zgodny z normami bezpieczeństwa, co zapewnia nie tylko właściwe zabezpieczenie przed porażeniem prądem, ale także minimalizuje ryzyko zakłóceń w pracy urządzeń elektrycznych. W praktyce, układ TN-C-S jest często stosowany w budynkach mieszkalnych oraz przemysłowych, gdzie istotne jest zachowanie wysokiego poziomu bezpieczeństwa. Rozdzielenie przewodu PEN na PE i N zmniejsza ryzyko wystąpienia prądów wyrównawczych oraz potencjalnych problemów związanych z niewłaściwym uziemieniem. Ponadto, w kontekście regulacji, taki układ jest zgodny z normami IEC 60364, które nakładają obowiązek stosowania rozwiązań minimalizujących ryzyko wystąpienia niebezpiecznych sytuacji związanych z elektrycznością. Warto również zauważyć, że przy projektowaniu instalacji elektrycznych, inżynierowie muszą zwracać uwagę na lokalne przepisy i normy, które mogą wpłynąć na wybór konkretnego systemu zasilania.

Pytanie 15

Jakie środki ochrony przed porażeniem zastosowano w systemie, gdzie zasilanie urządzeń pochodzi z transformatora bezpieczeństwa?

A. Izolację miejsca pracy
B. Separację urządzeń
C. Ochronne obniżenie napięcia
D. Podwójną lub wzmocnioną izolację
W kontekście ochrony przed porażeniem prądem elektrycznym, podwójna lub wzmocniona izolacja jest jedną z metod ochrony, jednak jej zastosowanie nie jest odpowiednie w każdym przypadku. Metoda ta polega na zastosowaniu dodatkowej izolacji poza standardową, co rzeczywiście może zwiększyć bezpieczeństwo urządzenia. Nie jest to jednak wystarczające rozwiązanie dla systemów zasilanych z transformatorów bezpieczeństwa, gdzie kluczowym czynnikiem jest niskie napięcie. Separacja odbiorników również nie jest najlepszym podejściem, mimo że ma swoje miejsce w projektowaniu systemów elektrycznych. Oznacza to oddzielenie obwodów elektrycznych w celu zwiększenia bezpieczeństwa, jednak nie eliminuje ryzyka porażenia, zwłaszcza w zastosowaniach niskonapięciowych. Izolacja stanowiska, czyli zabezpieczanie użytkowników przed dostępem do elementów czynnych, jest strategią bardziej stosowaną w kontekście obszarów roboczych, lecz nie adresuje podstawowego problemu związane z niskim napięciem, które jest kluczowe w przypadkach zasilania z transformatorów bezpieczeństwa. Ostatecznie, ochronne obniżenie napięcia jest najskuteczniejszym i rekomendowanym środkiem w takich sytuacjach, ponieważ obniża ryzyko porażenia do minimum poprzez stosowanie bezpiecznych wartości napięcia.", ""]

Pytanie 16

Posługując się tabelą dobierz wyłącznik nadmiarowo-prądowy o największym prądzie znamionowym, który może zabezpieczać obwód jednofazowy, wykonany przewodami o przekroju 1,5 mm2, ułożonymi w sposób B2.

Tabela: Obciążalność długotrwała I, [A] przewodów miedzianych o izolacji polwinitowej przy obliczeniowej temperaturze 25oC
UłożenieA1A2B1B2CE
Liczba jednocześnie obciążonych żył232323232323
Przekrój mm2Dopuszczalna obciążalność długotrwała, A
1,515,514,515,51418,516,517,5162118,52319,5
2,5211918,519,52522242129253227
4282527243430322928344236
A. B16
B. B20
C. C6
D. B6
Odpowiedź "B16" jest poprawna, ponieważ wyłącznik nadmiarowo-prądowy oznaczony jako B16 ma prąd znamionowy 16 A, co jest najbliższą wartością nieprzekraczającą dopuszczalnej obciążalności długotrwałej przewodów o przekroju 1,5 mm² ułożonych w sposób B2 wynoszącej 16,5 A. Wybór odpowiedniego wyłącznika nadmiarowo-prądowego jest kluczowy w kontekście zapewnienia bezpieczeństwa instalacji elektrycznej. W przypadku przewodów o takim przekroju, należy pamiętać, że ich maksymalna obciążalność długotrwała powinna być zawsze przekraczana przez wartość prądową wyłącznika, jednak nie może ona jej przekraczać o więcej niż 10%. Używając wyłącznika B16, możemy być pewni, że ochrona przewodów będzie odpowiednia, a ryzyko przegrzania lub ich uszkodzenia zostanie zminimalizowane. Rekomendacje dotyczące użycia wyłączników nadmiarowo-prądowych w instalacjach jednofazowych, takie jak te zawarte w normie PN-IEC 60898-1, jasno określają, że dobór odpowiedniego zabezpieczenia powinien być uzależniony od zastosowania oraz przewidywanego obciążenia. Przykładowo, w przypadku obwodów zasilających gniazdka w domach jednorodzinnych, wyłącznik B16 jest standardowym wyborem, zapewniającym nie tylko ochronę przed przeciążeniem, ale również przed zwarciem.

Pytanie 17

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
C. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 18

Wybierz z tabeli numer katalogowy wtyczki, która wraz przewodem wystarczy do zasilenia betoniarki z silnikiem trójfazowym pobierającym w warunkach pracy znamionowej moc 12 kVA. Maszyna sterowana jest stycznikiem z cewką na napięcie 230 V i zasilana z sieci TN-S o napięciu 230/400 V.

Ilustracja do pytania
A. 014-6
B. 015-6
C. 025-6
D. 024-6
Wybór niewłaściwej wtyczki, takiej jak 014-6, 015-6 lub 024-6, może wydawać się na pierwszy rzut oka odpowiedni, jednakże przy bliższym przyjrzeniu się okazuje się, że każda z tych opcji nie spełnia podstawowych wymagań dla urządzenia o mocy 12 kVA. Wtyczka 014-6 jest zaprojektowana na niższe obciążenia, co oznacza, że jej maksymalna wartość prądu jest niewystarczająca dla betoniarki, która wymaga 17,32 A. Z kolei wtyczka 015-6 również nie jest przystosowana do pracy z takim obciążeniem, co może prowadzić do niebezpiecznych sytuacji związanych z przegrzewaniem i uszkodzeniem wtyczki. W przypadku wtyczki 024-6, choć może ona mieć nieco wyższe parametry, wciąż nie osiąga wymaganej wydajności prądowej. Użycie niewłaściwej wtyczki może skutkować nie tylko awarią sprzętu, ale także naruszeniem przepisów BHP, które wymuszają stosowanie odpowiednich, certyfikowanych komponentów do zasilania maszyn przemysłowych. Warto pamiętać, że każde urządzenie elektryczne powinno być zasilane zgodnie z jego specyfikacją, co obejmuje również właściwy dobór wtyczek oraz przewodów, aby zminimalizować ryzyko awarii i zapewnić bezpieczeństwo użytkowania.

Pytanie 19

Zdjęcie przedstawia przewód

Ilustracja do pytania
A. YLY 3x1,5 500 V
B. YDYn 3x1,5 500 V
C. YDY 3x1,5 750 V
D. YDYp 3x1,5 750 V
Przewód przedstawiony na zdjęciu to przewód typu YDYp 3x1,5 750 V, co można rozpoznać po zastosowaniu symboliki w oznaczeniach. Oznaczenie 'Y' wskazuje na materiał izolacji, w tym przypadku poliwinitowy. Druga litera 'D' oznacza, że przewód wykonany jest z drutu miedzianego, co zapewnia jego dużą przewodność elektryczną. Z kolei 'Y' ponownie odnosi się do dodatkowej warstwy izolacji, a 'p' oznacza, że przewód ma formę płaską. Taki typ przewodu jest często wykorzystywany w instalacjach elektrycznych w budynkach, gdzie występuje potrzeba oszczędności miejsca oraz estetyki. Przewody płaskie, jak YDYp, są idealne do układania w ścianach, podłogach, czy w innych przestrzeniach, gdzie ich rozmiar pozwala na łatwe ukrycie. Napięcie znamionowe 750 V czyni je odpowiednim rozwiązaniem do wielu standardowych aplikacji, co czyni je zgodnym z normami PN-EN 50525, dotyczącymi przewodów elektrycznych. Wybór właściwego przewodu ma kluczowe znaczenie dla bezpieczeństwa i efektywności instalacji elektrycznej, dlatego znajomość ich właściwości jest niezbędna w pracy elektryka.

Pytanie 20

Którą z przedstawionych opraw oświetleniowych należy zastosować w piwnicy o zwiększonej wilgotności?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Odpowiedź "C" jest uzasadniona, ponieważ oprawa oświetleniowa zaprezentowana na zdjęciu charakteryzuje się szczelną konstrukcją, co jest kluczowe w pomieszczeniach o zwiększonej wilgotności, takich jak piwnice. Zgodnie z normami, takimi jak PN-EN 60529, oprawy przeznaczone do użytku w warunkach wilgotnych powinny posiadać odpowiedni stopień ochrony IP, który zapewnia ochronę przed wnikaniem wody oraz pyłu. Dla piwnic zwykle zaleca się oprawy z stopniem IP65 lub wyższym, co oznacza, że są one całkowicie chronione przed kurzem i zabezpieczone przed strumieniem wody. Zastosowanie odpowiedniej oprawy oświetleniowej w takich miejscach nie tylko zapewnia bezpieczeństwo użytkowników, ale również przedłuża żywotność urządzenia, minimalizując ryzyko uszkodzenia spowodowanego wilgocią. Przykładem mogą być oprawy LED dostosowane do warunków zewnętrznych, które często spełniają te wymagania, oferując równocześnie efektywność energetyczną.

Pytanie 21

W strefie 0 przedstawionego na rysunku pomieszczenia z wanną można instalować

Ilustracja do pytania
A. urządzenia zasilanie prądem zmiennym do 12 V.
B. elektryczne podgrzewacze wody.
C. oprawy oświetleniowe o II klasie ochronności.
D. przenośne odbiorniki o II klasie ochronności.
W strefie 0 pomieszczenia z wanną można instalować jedynie urządzenia zasilane niskim napięciem, czyli prądem zmiennym do 12 V. Jest to zgodne z normami IEC 60364 oraz polskimi przepisami dotyczącymi ochrony przeciwporażeniowej. Niskie napięcie zapewnia znacznie wyższy poziom bezpieczeństwa w obszarach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacząco zwiększone. W praktyce oznacza to, że w strefie 0 można bezpiecznie stosować niektóre elementy oświetleniowe, takie jak lampy LED zasilane niskim napięciem, co umożliwia tworzenie atrakcyjnych aranżacji wnętrz. Przykładem mogą być podwodne reflektory montowane w wannach, które nie tylko poprawiają estetykę, lecz także zapewniają bezpieczeństwo użytkowników, minimalizując ryzyko wypadku. Instalacje w strefach mokrych powinny być projektowane przez wyspecjalizowanych elektryków, aby zapewnić zgodność z normami i bezpieczeństwo użytkowników.

Pytanie 22

Na którym rysunku przedstawiono schemat montażowy poprawnie działającego układu, połączonego zgodnie z pokazanym schematem ideowym i zasadami montażu obwodów oświetleniowych?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Odpowiedź D jest prawidłowa, ponieważ przedstawia schemat montażowy, który spełnia wszystkie wymagania dotyczące połączeń przewodów w obwodach oświetleniowych. W tym przypadku przewody fazowe (L), neutralne (N) oraz ochronne są podłączone zgodnie z zasadami montażu, co zapewnia prawidłowe działanie układu oświetleniowego. W praktyce oznacza to, że przewód fazowy jest podłączony do odpowiednich łączników, a przewód neutralny do źródła zasilania. To podejście nie tylko zapewnia bezpieczeństwo użytkowania, ale także eliminuje ryzyko zwarcia czy uszkodzenia elementów instalacji. W branży elektroinstalacyjnej kluczowe jest przestrzeganie norm takich jak PN-IEC 60364, które regulują kwestie bezpieczeństwa w instalacjach elektrycznych. Poprawne połączenie przewodów jest również istotne w kontekście efektywności energetycznej, co ma znaczenie w obliczeniach kosztów eksploatacyjnych układów oświetleniowych.

Pytanie 23

Która z wymienionych czynności zaliczana jest do prac konserwacyjnych w przypadku oprawy oświetleniowej przedstawionej na rysunku?

Ilustracja do pytania
A. Czyszczenie obudowy i styków.
B. Wymiana złączki.
C. Wymiana oprawki.
D. Wykonanie pomiarów natężenia oświetlenia.
Wybór odpowiedzi związanej z wymianą oprawki lub złączki wskazuje na pewne nieporozumienie w zakresie klasyfikacji czynności konserwacyjnych i naprawczych. Wymiana oprawki jest działaniem, które zazwyczaj następuje w momencie, gdy oprawka jest uszkodzona lub nie działa poprawnie, co klasyfikuje tę czynność jako naprawczą, a nie konserwacyjną. Podobnie, wymiana złączki dotyczy bardziej aspektów technicznych, które wymagają interwencji w przypadku awarii, a nie rutynowego utrzymania. Czynności te są niezbędne w sytuacjach kryzysowych, ale nie powinny być mylone z regularnym utrzymywaniem sprzętu w dobrym stanie. W kontekście wykonywania pomiarów natężenia oświetlenia, należy zauważyć, że jest to proces kontrolny, który służy do oceny jakości oświetlenia w danym obszarze, a nie do jego konserwacji. Mylne podejście do konserwacji opraw oświetleniowych oraz ich funkcjonalności często prowadzi do nieprawidłowego zarządzania zasobami i zwiększonych kosztów operacyjnych. Przykładem może być sytuacja, w której brak odpowiedniej konserwacji skutkuje koniecznością częstszych napraw, co znacząco podnosi wydatki związane z utrzymaniem systemu oświetleniowego. Dlatego istotne jest, aby zrozumieć różnicę między tymi pojęciami oraz zastosować odpowiednie praktyki konserwacyjne, które będą sprzyjały długotrwałemu i efektywnemu działaniu urządzeń.

Pytanie 24

Które urządzenie elektryczne przedstawiono na rysunku?

Ilustracja do pytania
A. Rozłącznik izolacyjny FRX400.
B. Stycznik elektromagnetyczny.
C. Wyłącznik silnikowy.
D. Wyłącznik nadprądowy S304.
Poprawna odpowiedź to stycznik elektromagnetyczny. Na zdjęciu widoczne są charakterystyczne cewki elektromagnetyczne, które aktywują styki przy pomocy pola magnetycznego. Styczniki są kluczowymi elementami w systemach automatyki, umożliwiając zdalne załączanie i wyłączanie obwodów elektrycznych, co jest niezwykle istotne w kontekście sterowania silnikami elektrycznymi w aplikacjach przemysłowych. Dzięki nim można bezpiecznie kontrolować duże obciążenia, co przekłada się na efektywność operacyjną. Styczniki są projektowane zgodnie z normami IEC 60947-4-1, które definiują wymagania dotyczące ich konstrukcji oraz poziomów bezpieczeństwa operacyjnego. Przykłady zastosowania to sterowanie silnikami w maszynach produkcyjnych, systemach wentylacyjnych oraz w instalacjach oświetleniowych, gdzie można zdalnie załączać i wyłączać obwody. Użycie styczników pozwala też na integrację z systemami automatyki budynkowej, co zwiększa komfort i efektywność energetyczną.

Pytanie 25

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Rezystancji izolacji
B. Rezystancji uziemienia
C. Impedancji zwarciowej
D. Napięcia dotykowego
Impedancja zwarciowa, napięcie dotykowe, a także rezystancja uziemienia to istotne parametry w kontekście bezpieczeństwa instalacji elektrycznych, lecz nie są one bezpośrednio związane z oceną skuteczności ochrony przed dotykiem bezpośrednim. Impedancja zwarciowa odnosi się do zachowania się instalacji podczas zwarcia, co ma znaczenie dla ochrony przed zwarciami, ale nie mówi nic o izolacyjności systemu. Napięcie dotykowe to wartość napięcia, jaką może otrzymać osoba mająca kontakt z elementami instalacji. Choć jego pomiar jest ważny, nie zastępuje on analizy rezystancji izolacji, która jest kluczowym wskaźnikiem stanu technicznego izolacji. Z kolei rezystancja uziemienia ma za zadanie zminimalizować potencjalne napięcia występujące w przypadku uszkodzenia izolacji, ale również nie pokazuje bezpośrednio skuteczności izolacji samej w sobie. Wiele osób myli te pojęcia, co może prowadzić do niepoprawnych wniosków i braku odpowiednich działań naprawczych. W kontekście norm i dobrych praktyk, np. IEC 60364, kluczowe jest zrozumienie, że prawidłowa izolacja jest fundamentem bezpieczeństwa, a pomiar rezystancji izolacji jest jednym z podstawowych działań w utrzymaniu instalacji elektrycznych.

Pytanie 26

Który z wymienionych elementów należy do dodatkowej ochrony przed porażeniem elektrycznym?

A. Uniedostępnianie (umieszczenie poza zasięgiem ręki)
B. Dodatkowe miejscowe wyrównawcze połączenia ochronne
C. Samoczynne wyłączenie zasilania
D. Bardzo niskie napięcie ze źródła bezpiecznego
Uniedostępnianie, czyli umieszczenie urządzeń elektrycznych poza zasięgiem ręki, jest jedną z metod ochrony, jednak nie stanowi uzupełniającej ochrony przeciwporażeniowej. W rzeczywistości, polega ono na fizycznym oddzieleniu użytkownika od potencjalnych zagrożeń, co może w pewnych sytuacjach zwiększać bezpieczeństwo, ale nie eliminuje ryzyka całkowicie. Ponadto, taka metoda nie jest skuteczna w przypadku sytuacji awaryjnych, gdzie dostęp do urządzeń elektrycznych jest niezbędny do ich wyłączenia. Samoczynne wyłączenie zasilania to kolejna strategia, która ma na celu zminimalizowanie skutków porażenia prądem, ale jej skuteczność jest uzależniona od wykrycia awarii, co nie zawsze jest gwarantowane. Bardzo niskie napięcie ze źródła bezpiecznego również jest metodą ochrony, lecz nie jest to metoda uzupełniająca, a podstawowa koncepcja, która sama w sobie nie wystarcza do zapewnienia pełnej ochrony. Dobre praktyki w zakresie ochrony przeciwporażeniowej wymagają zastosowania złożonych systemów zabezpieczeń, w tym połączeń wyrównawczych, co pokazuje, że ignorowanie tych podstawowych zasad może prowadzić do błędnych wniosków i zwiększonego ryzyka w sytuacjach awaryjnych.

Pytanie 27

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. Oba niesprawne.
B. 1 - niesprawny, 2 - sprawny.
C. 1 - sprawny, 2 - niesprawny.
D. Oba sprawne.
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 28

Na podstawie przedstawionej tabeli obciążalności długotrwałej przewodów dobierz przekrój żył przewodu czterożyłowego ułożonego na ścianie, na uchwytach, zasilającego oporowy piec trójfazowy o prądzie znamionowym 36 A w sieci o napięciu 230/400 V.

Ilustracja do pytania
A. 4 mm2
B. 10 mm2
C. 2,5 mm2
D. 6 mm2
Wybór przekroju przewodu jest kluczowym zagadnieniem w projektowaniu instalacji elektrycznych, a niewłaściwe podejście do tego tematu może prowadzić do poważnych konsekwencji. Wiele osób może pomylić przekroje żył, myśląc, że im mniejszy przekrój, tym mniejsze straty energii lub łatwiejsza instalacja. Takie podejście jest błędne, ponieważ niewłaściwie wybrany przekrój przewodu może skutkować przegrzewaniem, co z kolei może prowadzić do uszkodzenia przewodów, a nawet pożaru. Na przykład, wybór 10 mm² dla obciążenia 36 A może wydawać się nadmiernym zabezpieczeniem, jednak warto uwzględnić, że nie jest to zgodne z zasadami doboru, które nakazują stosować najbliższą większą wartość w odniesieniu do aktualnego obciążenia. Zastosowanie 4 mm² byłoby niewystarczające, ponieważ nie pokrywałoby minimalnych wymagań dla obciążenia 36 A. Z kolei 2,5 mm² jest zdecydowanie zbyt małym przekrojem, co stwarzałoby ryzyko przegrzewania i uszkodzenia instalacji. Dlatego zasadniczym błędem jest ignorowanie tabel obciążalności, które są niezbędne do bezpiecznego i efektywnego projektowania instalacji elektrycznych. W przemyśle elektrycznym przestrzeganie norm i standardów, takich jak PN-IEC 60364, jest kluczowe dla zapewnienia bezpieczeństwa i efektywności energetycznej. Zrozumienie tych zasad jest kluczowe dla każdego, kto pracuje z instalacjami elektrycznymi i chce uniknąć potencjalnie niebezpiecznych sytuacji.

Pytanie 29

Który układ sieciowy przedstawiono na schemacie?

Ilustracja do pytania
A. TN-S
B. IT
C. TT
D. TN-C
Odpowiedź "TT" jest poprawna, ponieważ schemat przedstawia charakterystyczne cechy układu TT. W pierwszej kolejności należy zwrócić uwagę na bezpośrednie uziemienie punktu neutralnego źródła zasilania, co jest kluczowe dla funkcjonowania tego układu. Uziemienie to zapewnia, że wszelkie potencjalne różnice napięcia są szybko i skutecznie wyładowywane do ziemi, co minimalizuje ryzyko porażenia prądem. Ponadto, w układzie TT każdy odbiornik ma swoje własne uziemienie, co zapewnia dodatkowe bezpieczeństwo – w przypadku uszkodzenia izolacji, prąd nie przemieszcza się przez konstrukcję budynku. Ważnym aspektem jest również brak połączenia między przewodem neutralnym (N) a przewodem ochronnym (PE) w instalacji odbiorczej, co jest zgodne z normami, takimi jak PN-IEC 60364, które podkreślają konieczność niezależnych uziemień dla poprawy bezpieczeństwa elektrycznego. Dzięki tym cechom, układ TT jest często stosowany w instalacjach budowlanych, zwłaszcza w budynkach mieszkalnych, gdzie zapewnienie bezpieczeństwa użytkowników jest absolutnym priorytetem.

Pytanie 30

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy przepięciowy
B. Dwubiegunowy instalacyjny nadprądowy
C. Dwubiegunowy różnicowoprądowy
D. Dwubiegunowy podnapięciowy
Wyłącznik oznaczony symbolem CLS6-B6/2 to instalacyjny nadprądowy wyłącznik dwubiegunowy, który jest kluczowym elementem w systemach elektrycznych. Jego główną funkcją jest ochrona obwodów przed przeciążeniem i zwarciem, co zapobiega uszkodzeniom urządzeń, a także minimalizuje ryzyko pożaru. Instalacyjne wyłączniki nadprądowe są projektowane zgodnie z normą IEC 60898, co zapewnia ich wysoką jakość i niezawodność. Przykładowe zastosowanie to użycie tego typu wyłączników w instalacjach domowych, gdzie chronią obwody oświetleniowe oraz gniazda elektryczne. W zależności od specyfikacji, wyłączniki mogą być skonfigurowane do ochrony obwodów jednofazowych lub trójfazowych, co sprawia, że są wszechstronne. Dodatkowo, ich funkcjonalność może być wzbogacona o elementy takie jak współpraca z urządzeniami różnicowoprądowymi, co zwiększa bezpieczeństwo instalacji. Wybór odpowiedniego wyłącznika jest kluczowy dla efektywności i bezpieczeństwa całego systemu elektrycznego.

Pytanie 31

Do wykonywania której czynności przeznaczone jest narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Przecinania karbowanych rur winidurowych.
B. Odizolowywania żył przewodów.
C. Mocowania przewodów wtynkowych do ściany.
D. Zaciskania tulejek na końcówkach przewodów.
Narzędzie przedstawione na zdjęciu to automatyczne szczypce do ściągania izolacji, które służą do odizolowywania żył przewodów elektrycznych. Dzięki zastosowaniu tego narzędzia, proces odizolowywania jest nie tylko szybszy, ale także bardziej precyzyjny, co minimalizuje ryzyko uszkodzenia samego przewodu. W praktyce narzędzie to jest niezwykle przydatne w pracach związanych z instalacjami elektrycznymi, gdzie dokładność i bezpieczeństwo są kluczowe. Używając szczypiec do ściągania izolacji, elektrycy mogą skutecznie przygotować przewody do podłączeń, co jest szczególnie ważne w kontekście standardów bezpieczeństwa takich jak normy IEC 60364, które określają wymagania dla instalacji elektrycznych niskiego napięcia. Dobre praktyki w branży zalecają również, aby zawsze używać odpowiednich narzędzi dla konkretnego zadania, co nie tylko zwiększa efektywność pracy, ale także zapewnia bezpieczeństwo operacji. Narzędzie to jest zaprojektowane tak, aby dostosowywać się do różnych średnic przewodów, co czyni je uniwersalnym rozwiązaniem dla elektryków.

Pytanie 32

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Półprzewodnikowe.
B. Wyładowcze wysokoprężne.
C. Żarowe.
D. Wyładowcze niskoprężne.
Odpowiedź "półprzewodnikowe" jest prawidłowa, ponieważ na ilustracji można zauważyć źródło światła LED, które jest typowym przykładem tego typu technologii. Źródła światła półprzewodnikowego charakteryzują się wysoką efektywnością energetyczną, długą żywotnością oraz różnorodnością kolorów emitowanego światła. Diody LED znajdują szerokie zastosowanie, od oświetlenia wnętrz, przez oświetlenie zewnętrzne, aż po zastosowania w elektronice, takie jak podświetlenie ekranów. W wielu branżach, takich jak motoryzacja czy architektura, stosowanie LED-ów stało się standardem ze względu na ich niskie zużycie energii oraz możliwość dostosowywania intensywności światła. Standardy dotyczące oświetlenia, takie jak ANSI czy CIE, podkreślają znaczenie efektywności i jakości światła w kontekście ochrony środowiska oraz oszczędności energii, co czyni diody LED doskonałym wyborem dla zrównoważonego rozwoju.

Pytanie 33

Które z poniższych wskazówek nie odnosi się do realizacji nowych instalacji elektrycznych w obiektach mieszkalnych?

A. Odbiorniki o dużej mocy należy zasilać z dedykowanych obwodów
B. Obwody oświetleniowe powinny być oddzielone od gniazd wtyczkowych
C. Gniazda wtyczkowe w kuchni powinny być zasilane z oddzielnego obwodu
D. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z oddzielnego obwodu
Zalecenie dotyczące zasilania gniazd wtyczkowych w każdym pomieszczeniu z osobnego obwodu jest niezgodne z dobrymi praktykami instalacyjnymi i może prowadzić do nieefektywności w systemie elektrycznym. W rzeczywistości, podział gniazd na osobne obwody dla każdego pomieszczenia zwiększałby koszty zarówno materiałowe, jak i robocze. Przy projektowaniu instalacji elektrycznej kluczowe jest zapewnienie odpowiedniej równowagi między jakością a kosztami. Ponadto, standardy instalacji elektrycznych, takie jak PN-IEC 60364, zalecają grupowanie gniazd wtyczkowych w obwody, co pozwala na lepsze zarządzanie obciążeniem i unikanie przeciążeń. Osobne obwody dla gniazd w każdym pomieszczeniu mogą prowadzić do problemów z dostępnością energii elektrycznej w przypadku awarii jednego z obwodów. W praktyce, w budynkach mieszkalnych gniazda wtyczkowe są najczęściej grupowane według pomieszczeń, a ich zasilanie z jednego obwodu jest powszechne. Taki system zwiększa elastyczność użytkowania i zmniejsza ryzyko wystąpienia przerw w dostawie energii w całym budynku. Ważne jest również, aby pamiętać, że obwody gniazdowe powinny być odpowiednio zabezpieczone przed przeciążeniem, co można osiągnąć przez zastosowanie odpowiednich zabezpieczeń nadprądowych w rozdzielnicy. Takie podejście jest zgodne z obowiązującymi normami i zapewnia bezpieczne oraz funkcjonalne środowisko mieszkalne.

Pytanie 34

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk TEST na wyłączonym wyłączniku
B. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
C. Naciskając przycisk TEST na załączonym wyłączniku
D. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
Aby prawidłowo sprawdzić działanie wyłącznika różnicowoprądowego (RCD), należy nacisnąć przycisk TEST na załączonym wyłączniku. W momencie naciśnięcia przycisku TEST, wyłącznik symuluje wyciek prądu, co powinno spowodować jego natychmiastowe wyłączenie. Działanie to jest zgodne z zaleceniami zawartymi w normach europejskich EN 61008 oraz EN 61009, które podkreślają znaczenie regularnych testów wyłączników RCD w celu zapewnienia bezpieczeństwa elektrycznego. Przykładem zastosowania tej procedury może być okresowe testowanie w instalacjach domowych lub przemysłowych, co powinno odbywać się co najmniej raz na miesiąc. Regularne testowanie RCD jest kluczowe, ponieważ pozwala upewnić się, że wyłącznik będzie działał prawidłowo w przypadku rzeczywistego wycieku prądu, co może zminimalizować ryzyko porażenia prądem lub pożaru. Należy pamiętać, że po teście wyłącznik powinien być ponownie włączony, aby przywrócić normalne funkcjonowanie instalacji elektrycznej.

Pytanie 35

Jak często powinny być wykonywane konserwacje urządzeń w instalacji elektrycznej w budynkach mieszkalnych?

A. Przed każdym uruchomieniem urządzenia
B. Zgodnie z instrukcją obsługi danego odbiornika
C. Każdorazowo podczas badań okresowych instalacji
D. Co najmniej raz na dwa lata
Częstość przeprowadzania konserwacji odbiorników elektrycznych w mieszkaniach nie może być uogólniana na podstawie arbitralnych okresów czasu, jak sugerują inne odpowiedzi. Odpowiedź wskazująca na przeprowadzanie konserwacji 'co najmniej raz na dwa lata' może prowadzić do niebezpiecznych sytuacji, ponieważ nie uwzględnia specyfiki danego odbiornika oraz jego warunków pracy. Odbiorniki mogą być narażone na różnorodne czynniki, takie jak temperatura, wilgotność, obecność zanieczyszczeń czy intensywność użytkowania, które wpływają na ich stan techniczny i bezpieczeństwo. Ponadto, odpowiedź sugerująca, że konserwacja powinna się odbywać 'przed każdorazowym uruchomieniem odbiornika' jest niepraktyczna, ponieważ wiele odbiorników, jak np. sprzęt AGD, nie wymaga codziennych kontroli przed użyciem. Wprowadza to błąd myślowy, że wszystkie urządzenia wymagają takiej samej uwagi. Argument zakładający, że konserwacja powinna się odbywać 'każdorazowo w czasie badań okresowych instalacji' ignoruje fakt, że badania okresowe dotyczą całej instalacji, a nie pojedynczych odbiorników. Takie podejście może prowadzić do zaniedbań, gdyż niektóre odbiorniki mogą nie być objęte przeglądami w odpowiednich interwałach. Dlatego kluczowe jest, aby użytkownicy odbiorników kierowali się instrukcjami producentów, co pozwala na odpowiednią i bezpieczną eksploatację urządzeń.

Pytanie 36

Schemat jakiego łącznika instalacyjnego przedstawiono na rysunku?

Ilustracja do pytania
A. Krzyżowego.
B. Świecznikowego.
C. Schodowego.
D. Hotelowego.
Niezrozumienie charakterystyki poszczególnych typów łączników instalacyjnych może prowadzić do nieprawidłowych wniosków. Łącznik schodowy, który byłby jednym z możliwych wyborów, jest zaprojektowany do sterowania jednym obwodem świetlnym z dwóch miejsc, co różni go od łącznika krzyżowego. Użytkownik, który wybiera łącznik schodowy, może myśleć, że wystarczy go zastosować w każdej sytuacji, co jest błędne, zwłaszcza w przypadku dużych pomieszczeń. Z kolei łącznik hotelowy jest używany w systemach zdalnego sterowania, gdzie np. w pokoju hotelowym można zarządzać oświetleniem z jednego panelu. To z kolei nie odnosi się do funkcji łącznika krzyżowego. Ponadto, łącznik świecznikowy, którego zastosowanie ogranicza się do prostych obwodów, również nie spełni wymagań skomplikowanych instalacji, w których potrzebne jest sterowanie z trzech lub więcej miejsc. Warto zauważyć, że błędne wybory mogą wynikać z niepełnego zrozumienia schematów oraz funkcji poszczególnych łączników, co jest powszechnym problemem wśród osób nieposiadających odpowiedniego przeszkolenia w zakresie instalacji elektrycznych. Właściwe dobieranie komponentów do instalacji elektrycznych jest kluczowe dla zapewnienia ich efektywności i bezpieczeństwa.

Pytanie 37

Którym z kluczy nie da się skręcić stojana silnika elektrycznego śrubami jak przedstawiona na ilustracji?

Ilustracja do pytania
A. Imbusowym.
B. Płaskim.
C. Oczkowym.
D. Nasadowym.
Odpowiedź "imbusowym" jest poprawna, ponieważ klucz imbusowy jest przeznaczony do stosowania ze śrubami, które mają gniazdo sześciokątne wewnętrzne. W przypadku przedstawionym na ilustracji mamy do czynienia z klasyczną śrubą o sześciokątnej główce, co oznacza, że do jej dokręcenia można zastosować inne rodzaje kluczy, takie jak klucz nasadowy, oczkowy lub płaski. Każdy z tych kluczy posiada odpowiedni kształt, który umożliwia odpowiednie dopasowanie do główki śruby, co zapewnia efektywne przenoszenie momentu obrotowego. Klucz nasadowy jest powszechnie używany w mechanice, ponieważ jego konstrukcja pozwala na łatwe dokręcanie oraz odkręcanie śrub w trudnodostępnych miejscach. Klucz oczkowy z kolei umożliwia precyzyjne dokręcanie w ciasnych przestrzeniach, a klucz płaski jest podstawowym narzędziem w warsztatach mechanicznych. Wiedza na temat właściwego doboru narzędzi jest kluczowa dla zapewnienia efektywności i bezpieczeństwa pracy w każdej aplikacji mechanicznej.

Pytanie 38

Który element osprzętu łączeniowego przedstawiono na rysunku?

Ilustracja do pytania
A. Listwę zaciskową.
B. Listwę elektroinstalacyjną.
C. Szynę łączeniową.
D. Szynę montażową.
Szyna łączeniowa, którą rozpoznałeś na zdjęciu, pełni istotną rolę w systemach elektroinstalacyjnych. Jest to komponent, który umożliwia efektywne połączenie i dystrybucję energii elektrycznej pomiędzy różnymi urządzeniami w rozdzielnicy. Dzięki zastosowaniu szyny łączeniowej, możliwe jest zminimalizowanie oporów elektrycznych i zredukowanie strat energii, co jest kluczowe w projektowaniu nowoczesnych instalacji elektrycznych. W praktyce, takie szyny są często stosowane w obiektach komercyjnych oraz przemysłowych, gdzie wymagane jest jednoczesne podłączenie wielu urządzeń, takich jak wyłączniki, bezpieczniki czy urządzenia automatyki. Ponadto, zgodnie z normami IEC 61439, szyny łączeniowe muszą spełniać określone wymagania dotyczące przewodności oraz odporności na przeciążenia. Dzięki temu, ich stosowanie podnosi nie tylko efektywność, ale również bezpieczeństwo całej instalacji elektrycznej.

Pytanie 39

Który z łączników elektrycznych stosowanych do zarządzania oświetleniem w instalacjach budowlanych dysponuje czterema oddzielnymi zaciskami przyłączeniowymi oraz jednym klawiszem do sterowania?

A. Schodowy
B. Jednobiegunowy
C. Krzyżowy
D. Świecznikowy
Odpowiedzi schodowy, jednobiegunowy i świecznikowy to różne rodzaje łączników, a każdy z nich ma swoje konkretne zastosowanie. Łącznik schodowy, który często widzimy przy schodach, działa tylko z dwóch punktów i ma tylko dwa zaciski. To oznacza, że nie nadaje się do bardziej rozbudowanych układów, gdzie musimy sterować światłem z kilku miejsc. Z kolei jednobiegunowy łącznik jest jeszcze bardziej ograniczony, bo działa tylko w jednym miejscu. A łącznik świecznikowy, jak sama nazwa wskazuje, jest do obsługi jednego obwodu, więc też nie spełnia wymagań do sterowania z wielu lokalizacji. Takie myślenie, że każdy łącznik sprawdzi się wszędzie, to błąd, bo wymogi instalacyjne bywają różne. Dlatego warto wybierać łączniki zgodnie z ich przeznaczeniem oraz zasadami budowlanymi, żeby wszystko działało sprawnie i bezpiecznie, co jest ważne dla komfortu użytkowania.

Pytanie 40

Jaką wartość ma prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego przy danych: fN = 50 Hz; p = 4?

A. 1 500 obr./min
B. 720 obr./min
C. 1 450 obr./min
D. 750 obr./min
Prędkość obrotowa pola magnetycznego stojana silnika indukcyjnego można obliczyć za pomocą wzoru: n = (120 * f<sub>N</sub>) / p, gdzie n to prędkość obrotowa w obr./min, f<sub>N</sub> to częstotliwość zasilania w hercach, a p to liczba par biegunów. W podanym przypadku f<sub>N</sub> wynosi 50 Hz, a liczba par biegunów p wynosi 4. Podstawiając wartości do wzoru, otrzymujemy: n = (120 * 50) / 4 = 1500 obr./min. Jednakże, aby uzyskać prędkość obrotową rzeczywistą, musimy uwzględnić poślizg silnika indukcyjnego, który wynosi zazwyczaj od 2 do 5% w zależności od obciążenia. Przy założeniu typowego poślizgu na poziomie 5%, obliczamy prędkość rzeczywistą: 1500 - (0,05 * 1500) = 1425 obr./min. W praktyce jednak standardowe silniki indukcyjne o częstotliwości 50 Hz i 4 parach biegunów mają prędkość nominalną wynoszącą 750 obr./min, co odpowiada ich charakterystyce pracy w rzeczywistych warunkach. Takie parametry są zgodne z normami IEC 60034-1, które opisują wymagania dla maszyn elektrycznych.