Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 09:54
  • Data zakończenia: 8 grudnia 2025 10:04

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Po wyczyszczeniu filtra używanego do wstępnego oczyszczania powietrza, kondensat należy

A. osuszyć z nadmiaru wody
B. odprowadzić bezpośrednio do ścieków
C. oczyścić z resztek oleju
D. przefiltrować przy użyciu węgla aktywnego
Odpowiedź 'oczyścić z cząstek oleju' jest poprawna, ponieważ kondensat pochodzący z filtrów do zgrubnego oczyszczania powietrza często zawiera cząstki oleju, które mogą być szkodliwe dla środowiska oraz niezgodne z przepisami dotyczącymi odprowadzania ścieków. Oczyszczanie kondensatu z takich zanieczyszczeń jest kluczowe, aby zapewnić jego bezpieczne i zgodne z normami technicznymi usunięcie. W praktyce, w wielu zakładach przemysłowych stosuje się specjalistyczne separatory oleju, które skutecznie wydzielają olej z wody. Dzięki takiemu procesowi, kondensat można następnie poddać dalszym procesom oczyszczania lub bezpiecznie odprowadzić do systemu kanalizacyjnego, zgodnie z lokalnymi regulacjami prawnymi. Niezastosowanie się do tych zasad może prowadzić do zanieczyszczenia wód gruntowych oraz naruszenia norm środowiskowych, co wiąże się z poważnymi konsekwencjami prawnymi i finansowymi.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Największe ryzyko związane z urządzeniami elektrycznymi wynika z możliwości

A. wystąpienia zwarcia doziemnego
B. pojawu przerwy w obwodzie elektrycznym
C. dotknięcia odizolowanych części będących pod napięciem
D. dotknięcia elementów urządzenia elektrycznego mających uziemienie
Zagrożenie w przypadku dotyku uziemionych elementów urządzenia elektrycznego jest znikome, ponieważ uziemienie ma na celu odprowadzenie niebezpiecznego napięcia do ziemi, co chroni użytkowników przed porażeniem. W sytuacji, gdy elementy są uziemione, to ewentualny prąd upływowy zostanie skierowany do ziemi, a nie przez ciało człowieka. W praktyce oznacza to, że dobrze zaprojektowane i poprawnie uziemione urządzenia elektryczne są znacznie bezpieczniejsze. Z kolei wystąpienie zwarcia doziemnego dotyczy sytuacji, gdy prąd elektryczny przemieszcza się do ziemi, ale problem ten również został zaprojektowany z myślą o minimalizacji ryzyka, poprzez zastosowanie odpowiednich zabezpieczeń i wyłączników. Zdarzenie przerwy w obwodzie elektrycznym samo w sobie nie stwarza bezpośredniego zagrożenia; może prowadzić do braku zasilania, ale nie do porażenia. Generalnie, mylenie zagrożeń związanych z elektrycznością wynika często z braku zrozumienia zasady działania urządzeń elektrycznych oraz ich zabezpieczeń. Kluczowe jest, aby użytkownicy mieli świadomość, że najpoważniejsze zagrożenie pochodzi od elementów pod napięciem, a nie od właściwie uziemionych czy przerwanych obwodów.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Którą metodę kontroli temperatury pracy silnika przedstawiono na rysunku?

Ilustracja do pytania
A. Termowizyjną.
B. Ultradźwiękową.
C. Segera.
D. Termometryczną.
Odpowiedź "Termowizyjna" jest poprawna, ponieważ na zdjęciu przedstawiony jest aparat termowizyjny, który jest wykorzystywany do pomiaru temperatury w sposób bezkontaktowy. Technologia ta polega na detekcji promieniowania podczerwonego emitowanego przez obiekty, co pozwala na uzyskanie obrazu termicznego. Dzięki temu rozwiązaniu można w szybki sposób ocenić temperaturę różnych części silnika, co jest niezwykle istotne dla zapewnienia jego prawidłowego funkcjonowania oraz zapobiegania awariom. Metoda ta jest szczególnie przydatna w zastosowaniach przemysłowych, gdzie monitorowanie temperatury w czasie rzeczywistym pozwala na wczesne wykrywanie problemów, takich jak przegrzewanie się komponentów. Użycie kamer termograficznych jest zgodne z najlepszymi praktykami w dziedzinie diagnostyki maszyn, co czyni ją standardem w przemyśle wytwórczym i eksploatacyjnym. Przykłady zastosowań obejmują inspekcje w zakładach energetycznych, motoryzacyjnych czy w przemyśle lotniczym.

Pytanie 9

Jakie narzędzie należy zastosować do pomiaru luzów pomiędzy powierzchniami elementów konstrukcyjnych?

A. liniał
B. suwmiarka
C. mikrometr
D. szczelinomierz
Szczelinomierz to narzędzie pomiarowe, które jest szczególnie zaprojektowane do określania luzów i szczelin pomiędzy elementami konstrukcyjnymi. Jego konstrukcja umożliwia precyzyjne pomiary w trudnych warunkach pracy, gdzie inne narzędzia, takie jak suwmiarka czy mikrometr, mogą nie dostarczyć wystarczającej dokładności. Szczelinomierze są często stosowane w różnych branżach, w tym w mechanice precyzyjnej, motoryzacji i inżynierii lotniczej, gdzie kontrola luzów pomiędzy ruchomymi elementami jest kluczowa dla zapewnienia prawidłowego funkcjonowania maszyn. Na przykład, w silnikach spalinowych precyzyjne pomiary luzów między zaworami a gniazdami zaworowymi są niezbędne do zapewnienia optymalnej wydajności silnika oraz minimalizacji zużycia. W standardach branżowych, takich jak ISO, podkreśla się znaczenie stosowania odpowiednich narzędzi do pomiarów luzów, co czyni szczelinomierz najlepszym wyborem w tego typu aplikacjach.

Pytanie 10

Symbol graficzny którego elementu przedstawiono na rysunku?

Ilustracja do pytania
A. Transila.
B. Transoptora.
C. Tyrystora.
D. Tranzystora.
Wybór niewłaściwego elementu, takiego jak tyrystor, transoptor czy tranzystor, wskazuje na nieporozumienia dotyczące ich funkcji i zastosowań. Tyrystor, na przykład, to półprzewodnikowy element mocy, który działa jako przełącznik, ale nie jest przeznaczony do ochrony przed przepięciami. Jego główną funkcją jest kontrolowanie prądu w obwodach, co czyni go bardziej odpowiednim dla aplikacji, gdzie wymagana jest kontrola mocy, a nie ochrona przed skokami napięcia. Z kolei transoptory służą głównie do izolacji galwanicznej pomiędzy różnymi częściami układu, co nie ma związku z funkcją ochronną. Tranzystory, mimo że są wszechstronnymi elementami stosowanymi do wzmacniania sygnałów, nie mają właściwości, które byłyby przydatne w kontekście ochrony układów przed przepięciami. Często błędne odpowiedzi wynikają z mieszania pojęć związanych z różnymi typami elementów elektronicznych oraz ich funkcjami. Zrozumienie, że transile mają specyficzne zastosowanie w ochronie, a inne wymienione elementy pełnią zupełnie różne role, jest kluczowe dla właściwego projektowania układów elektronicznych i zapewnienia ich bezpieczeństwa.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jaki rodzaj czujnika nadaje się do pomiaru poziomu bez kontaktu?

A. Czujnik hydrostatyczny
B. Czujnik ultradźwiękowy
C. Czujnik pojemnościowy
D. Czujnik pływakowy
Czujniki pływakowe opierają się na fizycznym mechanizmie, w którym pływak unosi się na powierzchni cieczy, a zmiana jego położenia sygnalizuje poziom medium. Ich stosowanie wiąże się z ograniczeniami, takimi jak możliwość zanieczyszczenia mechanizmu oraz konieczność zapewnienia dostępu do cieczy. Czujniki hydrostatyczne mierzą ciśnienie hydrostatyczne w danym punkcie, co również wymaga kontaktu z medium, a zmiany temperatury czy gęstości cieczy mogą wpłynąć na dokładność pomiarów. Czujniki pojemnościowe działają na zasadzie pomiaru zmian pojemności elektrycznej spowodowanych obecnością medium, ale również wymagają kontaktu z mierzonym substancją, co ogranicza ich zastosowanie w przypadku substancji agresywnych lub zanieczyszczających. Błędem myślowym jest założenie, że wszystkie czujniki mogą działać w systemach bezkontaktowych; każdy z wymienionych czujników ma swoje ograniczenia i specyfikę, co należy uwzględnić przy wyborze odpowiedniego rozwiązania dla konkretnej aplikacji.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Wskaź prawidłową sekwencję montażu składników w systemie przygotowania sprężonego powietrza?

A. Reduktor, smarownica, filtr powietrza
B. Smarownica, filtr powietrza, reduktor
C. Reduktor, filtr powietrza, smarownica
D. Filtr powietrza, reduktor, smarownica
Filtr powietrza, reduktor, smarownica to prawidłowa kolejność montażu elementów składowych w zespole przygotowania sprężonego powietrza. Rozpoczynamy od filtra powietrza, który jest kluczowy w procesie oczyszczania powietrza z zanieczyszczeń, takich jak pyły, woda i oleje, aby zapewnić wysoką jakość sprężonego powietrza. Następnie, po filtracji, powietrze trafia do reduktora ciśnienia, który obniża ciśnienie powietrza do pożądanego poziomu, co jest niezbędne do dalszej obróbki i właściwego działania urządzeń pneumatycznych. Ostatnim elementem jest smarownica, która dostarcza odpowiednią ilość oleju do sprężonego powietrza, co zmniejsza tarcie w narzędziach pneumatycznych i wydłuża ich żywotność. Takie podejście jest zgodne z najlepszymi praktykami w branży pneumatycznej, co pozwala na osiągnięcie optymalnej efektywności i bezpieczeństwa w operacjach z wykorzystaniem sprężonego powietrza.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jaki element odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. Zawór ograniczający ciśnienie.
B. Element dławiący.
C. Element realizujący iloczyn logiczny.
D. Przełącznik obiegu.
Analizując niepoprawne odpowiedzi, można zauważyć kilka kluczowych błędów konceptualnych. Po pierwsze, element dławiący, choć również istotny w układach hydraulicznymi, służy do regulacji przepływu medium, a nie do jego przełączania. Dławik nie zmienia kierunku przepływu, lecz ogranicza jego ilość, co sprawia, że jest stosowany w innych kontekstach, takich jak kontrola prędkości silników hydraulicznych. Z kolei, element realizujący iloczyn logiczny jest komponentem stosowanym w automatyce, ale nie ma zastosowania w kontekście układów hydraulicznych czy pneumatycznych. Jest on wykorzystywany w systemach sterowania jako element decyzyjny, a nie jako mechanizm do kierowania przepływem medium. Zawór ograniczający ciśnienie, choć pełni ważną rolę w ochronie układów przed nadmiernym ciśnieniem, także nie realizuje funkcji przełączania, a jego zastosowanie koncentruje się na stabilizacji ciśnienia w systemach. Typowym błędem myślowym w przypadku wyboru tych odpowiedzi jest mylenie funkcji różnych komponentów oraz brak zrozumienia ich specyficznych ról w systemach hydraulicznych. Znajomość tych różnic jest kluczowa dla prawidłowego projektowania i eksploatacji układów, co podkreśla znaczenie odpowiedniego szkolenia i edukacji w obszarze technologii hydraulicznych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. ochrony prądowej systemu
B. wskaźnika działania systemu
C. czujnika poziomu światła
D. przełącznika instalacyjnego systemu
Fotorezystor, jako element wyłącznika zmierzchowego, pełni kluczową rolę czujnika natężenia oświetlenia, co oznacza, że jego zadaniem jest monitorowanie poziomu jasności otoczenia. Działa na zasadzie zmiany oporu elektrycznego w zależności od natężenia światła padającego na jego powierzchnię. W sytuacjach, gdy natężenie światła spada poniżej określonego progu, fotorezystor przekazuje sygnał do układu sterującego, co powoduje włączenie odpowiednich urządzeń, takich jak lampy zewnętrzne. Zastosowanie fotorezystorów w wyłącznikach zmierzchowych jest powszechne w systemach automatyzacji, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Przykłady zastosowań obejmują oświetlenie uliczne, które automatycznie włącza się po zachodzie słońca oraz oświetlenie ogrodów, które działa na zasadzie detekcji zmierzchu. W branży elektrycznej standardy, takie jak IEC 61000, podkreślają znaczenie stosowania odpowiednich elementów detekcyjnych w instalacjach elektrycznych, co potwierdza rolę fotorezystora jako efektywnego czujnika natężenia oświetlenia.

Pytanie 22

Na rysunku przedstawiono proces

Ilustracja do pytania
A. spawania.
B. cięcia.
C. malowania.
D. klejenia.
Wybór odpowiedzi dotyczącej spawania, klejenia lub malowania jest błędny, ponieważ procesy te różnią się fundamentalnie od cięcia tlenowego. Spawanie polega na łączeniu materiałów metalowych poprzez ich stopienie w miejscu połączenia, co zazwyczaj nie wymaga użycia tlenu ani specjalnych gazów. W przypadku klejenia, kluczowym elementem jest adhezja, a nie reakcja chemiczna z tlenem, co całkowicie wyklucza tę metodę z kontekstu opisanego na rysunku. Malowanie z kolei skupia się na nakładaniu powłok na powierzchnie, co również nie ma związku z cięciem. Błędne odpowiedzi mogą wynikać z nieporozumienia dotyczącego charakterystyki poszczególnych procesów technologicznych oraz ich zastosowania. Kluczowym aspektem cięcia tlenowego jest wykorzystanie wysokotemperaturowego płomienia, który jest niezbędny do efektywnego podgrzania metalu, co jest pomijane w kontekście pozostałych metod. Warto zwrócić uwagę na to, że każdy z tych procesów wymaga specyficznych umiejętności oraz odpowiednich narzędzi, co podkreśla znaczenie właściwego rozpoznawania technologii oraz ich zastosowań w praktyce przemysłowej.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Określ prawidłową kolejność dokręcania śrub lub nakrętek części podzespołu, przedstawionego na rysunku.

Ilustracja do pytania
A. 6, 2, 4, 3, 5, 1
B. 1, 6, 2, 3, 4, 5
C. 5, 1, 3, 4, 6, 2
D. 2, 5, 3, 6, 4, 1
Prawidłowa kolejność dokręcania śrub lub nakrętek w podzespole jest kluczowa dla zapewnienia równomiernego dociśnięcia części, co może zapobiec ich odkształceniu oraz zapewnić stabilność i bezpieczeństwo konstrukcji. W przypadku dokręcania elementów, takich jak bloki silników czy podzespoły mechaniczne, stosuje się zazwyczaj schemat krzyżowy, który polega na naprzemiennym dociąganiu śrub w różnych miejscach. W tym wypadku zaczynamy od śruby 2, następnie przechodzimy do przeciwległej śruby 5, co pozwala na zminimalizowanie naprężeń wewnętrznych. Kolejność 3, 6, 4, 1 uzupełnia proces, rozkładając siłę dociągu w sposób optymalny. Taka praktyka jest zgodna z zaleceniami inżynieryjnymi i standardami, które postulują, aby równomiernie rozłożyć siłę dociągu w celu zwiększenia żywotności i niezawodności podzespołów. Znajomość tych zasad jest niezbędna w pracach mechanicznych i montażowych, aby uniknąć problemów z uszczelnieniem, odkształceniem elementów czy ich awarią.

Pytanie 25

Jaki zawór powinien być użyty, aby umożliwić przepływ czynnika wyłącznie w jednym kierunku?

A. Dławiący
B. Rozdzielający
C. Zwrotny
D. Regulacyjny
Zawór zwrotny to kluczowy element w systemach hydraulicznych i pneumatycznych, który pozwala na przepływ czynnika roboczego tylko w jednym kierunku. Jego zasadniczą funkcją jest zapobieganie cofaniu się medium, co jest niezbędne w wielu zastosowaniach, takich jak instalacje wodociągowe, systemy grzewcze czy układy smarowania. Przykładowo, w instalacji rur do transportu wody, zawór zwrotny chroni przed cofaniem się wody, co mogłoby prowadzić do uszkodzeń lub nieefektywności systemu. Zawory te mogą być wykonane z różnych materiałów, w tym stali nierdzewnej, mosiądzu czy tworzyw sztucznych, w zależności od medium, jakie mają kontrolować. Standardy branżowe, jak PN-EN 12345, określają wymagania dla zaworów zwrotnych, w tym ich wydajność i trwałość. W praktyce, ich zastosowanie zapewnia nie tylko bezpieczeństwo, ale także efektywność energetyczną systemów, co jest istotne w kontekście nowoczesnych rozwiązań inżynieryjnych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Na rysunku przedstawiono symbol czujnika

Ilustracja do pytania
A. magnetycznego.
B. mechanicznego.
C. ultradźwiękowego.
D. indukcyjnego.
Symbol przedstawiony na rysunku jest charakterystyczny dla czujników magnetycznych, które są szeroko stosowane w różnych dziedzinach technologii. Czujniki te działają na zasadzie wykrywania obecności pola magnetycznego, co pozwala na monitorowanie i kontrolowanie wielu procesów. Przykładem aplikacji czujników magnetycznych jest automatyka przemysłowa, gdzie są używane do detekcji pozycji elementów maszyn, takich jak drzwi czy klapki. Dodatkowo, w branży motoryzacyjnej czujniki te mogą być wykorzystywane do pomiaru prędkości obrotowej silników oraz w systemach ABS, gdzie monitorują prędkość kół. Warto również zauważyć, że czujniki magnetyczne wykorzystują zasady elektromagnetyzmu, co jest zgodne z normami branżowymi, takimi jak IEC 60947 dla urządzeń elektrycznych. Ich niezawodność i prostota w implementacji sprawiają, że są one preferowanym rozwiązaniem w wielu zastosowaniach inżynieryjnych.

Pytanie 28

Jaką rolę pełni multiplekser?

A. Porównywanie sygnałów podawanych na wejścia
B. Przesyłanie danych z wybranego wejścia na jedno wyjście
C. Przesyłanie danych z jednego wejścia do wybranego wyjścia
D. Kodowanie sygnałów na wejściach
Multiplekser to kluczowy element w systemach cyfrowych, który umożliwia przesyłanie danych z jednego z kilku wejść do jednego wyjścia na podstawie sygnału kontrolnego. Dzięki tej funkcji, multipleksery są szeroko stosowane w telekomunikacji, gdzie pozwalają na efektywne zarządzanie pasmem i organizowanie ruchu danych. Na przykład, w systemach telewizyjnych, multipleksery pozwalają na wybór sygnału z różnych źródeł (np. anteny, kablówki, satelity) i kierowanie go do jednego wyjścia, aby zminimalizować potrzebne okablowanie i uprościć architekturę systemu. Ponadto, w kontekście inżynierii komputerowej, multipleksery są niezbędne do realizacji operacji arytmetycznych w jednostkach ALU (Arithmetic Logic Unit), gdzie wybierają odpowiednie dane do dalszej obróbki. Wykorzystanie standardów takich jak ITU-T G.703 w telekomunikacji pokazuje, jak ważne jest zastosowanie multiplekserów do synchronizacji i multiplexowania sygnałów w sieciach cyfrowych. Dobrze zaprojektowany multiplekser zwiększa wydajność systemów oraz pozwala na oszczędność miejsca i zasobów.

Pytanie 29

Co może się zdarzyć, gdy w trakcie montażu silnika trójfazowego nastąpi przerwanie przewodu ochronnego PE?

A. przeciążenia instalacji elektrycznej, co może skutkować pożarem
B. pojawienia się napięcia na obudowie silnika, co grozi porażeniem prądem elektrycznym
C. awarii stojana silnika
D. wzrostu temperatury silnika podczas pracy, co może prowadzić do zapalenia się silnika
Odpowiedź dotycząca pojawienia się napięcia na obudowie silnika oraz ryzyka porażenia prądem elektrycznym jest prawidłowa, ponieważ przewód ochronny PE (ochronny) ma kluczowe znaczenie w zapewnieniu bezpieczeństwa użytkowania urządzeń elektrycznych. W przypadku przerwania tego przewodu, obudowa silnika może znaleźć się pod napięciem, ponieważ nie będzie możliwości odprowadzenia prądów upływowych do ziemi. Taki stan stwarza zagrożenie dla osób pracujących w pobliżu, gdyż kontakt z obudową, która jest na potencjale elektrycznym, może prowadzić do porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu zdarzeń, zaleca się stosowanie systemów detekcji uszkodzeń izolacji oraz regularne przeglądy instalacji elektrycznej. Ponadto, zgodnie z normą PN-EN 61140, urządzenia powinny być wyposażone w odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zareagować na niebezpieczne różnice napięcia i wyłączyć zasilanie w sytuacji awaryjnej.

Pytanie 30

Zgodnie z normą PN-M-85002 na wale o średnicy 12 mm można osadzić wpust pryzmatyczny o wymiarach

Wpis z normy PN-M-85002
Wałek — d mmWpust
ponaddob×h mm
682×2
8103×3
10124×4
12175×5
17226×6
22308×7
A. 6x6 mm
B. 3x3 mm
C. 5x5 mm
D. 4x4mm
Odpowiedź 4x4 mm jest poprawna, ponieważ zgodnie z normą PN-M-85002 dla wałów o średnicy od 10 do 12 mm, przewidziano wpust pryzmatyczny o wymiarach 4x4 mm. Wpust pryzmatyczny jest kluczowym elementem w mechanice, który zapewnia efektywne przenoszenie momentu obrotowego między wałem a piastą. W praktyce, stosowanie odpowiednich wymiarów wpustów jest niezbędne dla zapewnienia stabilności i trwałości połączeń mechanicznych. W przypadku zastosowań w przemyśle, niewłaściwy dobór wymiarów wpustu może prowadzić do problemów z przenoszeniem momentu, co skutkuje zwiększeniem zużycia elementów oraz ryzykiem awarii. Przykładowo, w układach napędowych maszyn, zastosowanie wpustu o niewłaściwych wymiarach może skutkować poślizgiem, co negatywnie wpływa na wydajność całego systemu. Dlatego znajomość norm oraz precyzyjne dobieranie wymiarów wpustów pryzmatycznych jest kluczowe dla inżynierów mechaników oraz technologów.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Na rysunku przedstawiono pneumatyczne elementy

Ilustracja do pytania
A. wykonawcze.
B. wytwarzające.
C. sterujące.
D. wejściowe.
Właściwa odpowiedź to "wykonawcze". Pneumatyczne elementy wykonawcze, takie jak siłowniki, pełnią kluczową rolę w systemach automatyki i przemysłu. Ich zadaniem jest przekształcanie energii sprężonego powietrza na energię mechaniczną, co umożliwia wykonanie różnych rodzajów pracy, takich jak ruch liniowy, obrotowy czy podnoszenie ciężarów. Siłowniki pneumatyczne są szeroko stosowane w wielu aplikacjach, od prostych mechanizmów w maszynach po zaawansowane systemy automatyki przemysłowej. Przy projektowaniu układów pneumatycznych istotne jest przestrzeganie norm, takich jak ISO 1219, które definiują symbole i oznaczenia dla elementów pneumatycznych. Dobrze zaprojektowany system pneumatyczny zapewnia nie tylko efektywność operacyjną, ale również bezpieczeństwo, co jest niezbędne w aplikacjach przemysłowych. Właściwe zrozumienie oraz umiejętność identyfikacji elementów wykonawczych to kluczowe umiejętności w dziedzinie automatyki, które mają wpływ na wydajność i niezawodność całego systemu.

Pytanie 33

Jakie narzędzia są potrzebne do dokręcania przewodów hydraulicznych?

A. Kluczy płaskich
B. Szczypiec płaskich
C. Kluczy oczkowych
D. Szczypiec uniwersalnych
Klucze płaskie to narzędzia, które są szczególnie zaprojektowane do przykręcania i odkręcania nakrętek oraz śrub o płaskich kształtach. W kontekście przewodów hydraulicznych, klucze płaskie są niezwykle istotne, ponieważ pozwalają na precyzyjne dopasowanie do nakrętek, które często mają ograniczony dostęp. Umożliwiają one właściwe i bezpieczne dokręcenie połączeń, co jest kluczowe dla zachowania szczelności systemu hydraulicznego. Dobrym przykładem zastosowania kluczy płaskich w praktyce jest ich użycie w instalacjach hydraulicznych w maszynach budowlanych, gdzie odpowiednie dokręcenie połączeń może zapobiec wyciekom płynów roboczych. Użycie kluczy płaskich jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia trwałości oraz bezpieczeństwa instalacji hydraulicznych. Warto pamiętać, że stosując klucze płaskie, należy dobierać odpowiedni rozmiar narzędzia do nakrętki, aby uniknąć uszkodzeń zarówno narzędzia, jak i elementów instalacji. W przypadku kluczy płaskich, ich konstrukcja zapewnia odpowiednią dźwignię, co przekłada się na efektywność pracy.

Pytanie 34

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. zmienny o częstotliwości 50 Hz na prąd stały
B. trój fazowy na prąd jednofazowy
C. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
D. stały na prąd zmienny o regulowanej częstotliwości
Falownik jest kluczowym urządzeniem w systemach zasilania, które przekształca prąd stały (DC) na prąd zmienny (AC) o regulowanej częstotliwości. Ta funkcjonalność jest istotna w wielu zastosowaniach, w tym w napędach silników elektrycznych, gdzie regulacja prędkości i momentu obrotowego jest niezbędna do efektywnego działania. Falowniki są szeroko stosowane w przemyśle, na przykład w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja), które wymagają elastycznej regulacji wydajności. Dzięki zastosowaniu falowników, użytkownicy mogą oszczędzać energię, co jest zgodne z zasadami zrównoważonego rozwoju oraz standardami efektywności energetycznej, takimi jak normy IEC 61800. Współczesne falowniki często wyposażone są w zaawansowane funkcje, takie jak kontrola wektora, co pozwala na osiąganie wysokiej precyzji w regulacji parametrów pracy. W praktyce, przekształcenie DC na AC umożliwia zasilanie różnych urządzeń zasilanych prądem zmiennym, co czyni falowniki niezbędnymi w nowoczesnych systemach automatyki oraz robotyki.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Osoba pracująca na linii produkcyjnej blach, która prowadzi proces odlewania taśmy cynkowo-tytanowej, powinna poza obuwiem, rękawicami i kaskiem roboczym posiadać odzież

A. roboczą standardową
B. termoaktywną
C. bawełnianą w formie kombinezonu
D. roboczą trudnopalną
Odpowiedzi takie jak "robocze zwykłe", "termoaktywne" oraz "bawełniane typu kombinezon" są niewłaściwe w kontekście pracy przy procesie odlewania taśmy cynkowo-tytanowej. Odzież robocza zwykła nie zapewnia odpowiedniej ochrony przed wysoką temperaturą oraz ogniem, co jest kluczowe w tym środowisku. Ubrania wykonane z materiałów nieodpornych na ogień mogą ulec zapaleniu w przypadku kontaktu z płomieniem lub iskrami, co naraża pracownika na poważne ryzyko poparzeń oraz innych obrażeń. Odzież termoaktywna, choć ma swoje miejsce w odzieży roboczej, nie oferuje wystarczającej ochrony przed ogniem i nie jest zaprojektowana do pracy w ekstremalnych warunkach cieplnych. Natomiast bawełniane kombinezony, mimo że są wygodne, również nie mają właściwości trudnopalnych, co czyni je niewłaściwym wyborem w tej specyficznej sytuacji. Niezrozumienie znaczenia stosowania odpowiednich materiałów w odzieży roboczej może prowadzić do niebezpiecznych sytuacji, dlatego kluczowe jest, aby wszyscy pracownicy byli świadomi zagrożeń związanych z ich środowiskiem pracy i stosowali odpowiednie środki ochrony osobistej, które spełniają wszelkie normy oraz przepisy bezpieczeństwa.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. trójdrogowy trójpołożeniowy (3/3)
B. pięciodrogowy dwupołożeniowy (5/2)
C. trójdrogowy dwupołożeniowy (3/2)
D. pięciodrogowy trójpołożeniowy (5/3)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 39

Który z przedstawionych na rysunkach podzespołów urządzenia pneumatycznego zapewnia redukcję ciśnienia i zatrzymanie cząstek stałych w układzie zasilania sprężonym powietrzem?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Odpowiedź B jest poprawna, ponieważ filtr z regulatorem ciśnienia pełni kluczową rolę w układzie zasilania sprężonym powietrzem. Filtr usuwa zanieczyszczenia, takie jak cząstki stałe, krople wody i oleju, co jest istotne dla zachowania prawidłowego funkcjonowania urządzeń pneumatycznych. Regulacja ciśnienia jest niezbędna, aby uniknąć uszkodzeń systemu spowodowanych nadmiernym ciśnieniem. Przykładem praktycznego zastosowania jest przemysł motoryzacyjny, gdzie sprężone powietrze wykorzystuje się do zasilania narzędzi pneumatycznych. W tym kontekście, filtr z regulatorem ciśnienia zapewnia nie tylko bezpieczeństwo, ale także efektywność operacyjną, redukując ryzyko awarii sprzętu. Normy takie jak ISO 8573-1 definiują wymagania jakości powietrza sprężonego, co potwierdza znaczenie filtracji i regulacji w każdym systemie pneumatycznym. Przestrzeganie dobrych praktyk w zakresie konserwacji tych elementów pozwala na dłuższą żywotność i niezawodność urządzeń.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.