Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 grudnia 2025 12:23
  • Data zakończenia: 19 grudnia 2025 12:42

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który element został oznaczony na rysunku symbolem literowym X?

Ilustracja do pytania
A. Tłumik hałasu.
B. Korek uszczelniający.
C. Sensor ciśnienia.
D. Zawór bezpieczeństwa.
Odpowiedzi, które wskazują na inne elementy, takie jak sensor ciśnienia, korek uszczelniający czy zawór bezpieczeństwa, opierają się na niepełnym zrozumieniu funkcji i przeznaczenia tych komponentów. Sensor ciśnienia jest urządzeniem pomiarowym, które monitoruje ciśnienie w systemie i przesyła sygnał do jednostki sterującej. Jego działanie nie ma bezpośredniego związku z redukcją hałasu. Korek uszczelniający, z kolei, służy do zapobiegania wyciekom medium z układu, a jego rola w kontekście akustyki jest znikoma. W przypadku zaworu bezpieczeństwa, jego podstawowym zadaniem jest ochrona systemu przed nadmiernym ciśnieniem, co również nie ma związku z generowaniem hałasu. Wiele osób popełnia typowy błąd myślowy, zakładając, że każdy element układu ma wpływ na poziom hałasu, co jest nieprawdziwe. Tłumik hałasu jest specjalnie zaprojektowany do spełnienia tej funkcji, podczas gdy pozostałe elementy mają inne, specyficzne zadania. Zrozumienie różnic między tymi komponentami jest kluczowe dla prawidłowego projektowania i eksploatacji systemów, a brak tej wiedzy może prowadzić do błędnych decyzji inżynieryjnych.

Pytanie 2

Na podstawie wskazań manometru wskaż wartość zmierzonego ciśnienia?

Ilustracja do pytania
A. 90 bar
B. 0,65 bar
C. 6,5 bar
D. 65 bar
Poprawna odpowiedź, 6,5 bar, wynika z bezpośredniego odczytu wskazania manometru, na którym wartość ciśnienia jest wyraźnie zaznaczona na zewnętrznej skali. Manometry są powszechnie stosowane w różnych aplikacjach przemysłowych i inżynieryjnych, w tym w systemach hydraulicznych, pneumatycznych oraz w branży motoryzacyjnej. Odczytywanie ciśnienia jest kluczowe dla zapewnienia bezpieczeństwa i efektywności operacji. Wartość 6,5 bar wskazuje na umiarkowane ciśnienie, co może być istotne w kontekście działań konserwacyjnych lub diagnostycznych. W praktyce, jeżeli manometr wskazuje ciśnienie na poziomie 6,5 bar, oznacza to, że system, w którym jest używany, działa w optymalnych warunkach. Zachowanie w zakresie poprawnych wartości ciśnienia jest kluczowe, aby uniknąć uszkodzeń sprzętu lub awarii systemu. Dobrą praktyką jest regularne kalibracja manometrów, aby utrzymać ich dokładność i niezawodność. Takie działanie jest zgodne z normą ISO 9001, która podkreśla znaczenie jakości w procesach produkcyjnych i serwisowych.

Pytanie 3

Kiedy w układzie hydraulicznym, w którym nie ma elementów dławiących, w normalnych warunkach roboczych występuje wolna reakcja oraz znaczne opory przepływu, należy zastąpić olej olejem

A. tworzącym emulsję z wodą
B. o wyższej gęstości
C. odpornym na proces starzenia
D. o niższej lepkości
Wybór oleju o większej gęstości jest nieprawidłowy, ponieważ gęstość oleju nie wpływa bezpośrednio na lepkość i nie rozwiązuje problemu wysokich oporów przepływu. W układach hydraulicznych, gdzie wymagane jest szybkie działanie, kluczowym parametrem jest lepkość, a nie gęstość. Zastosowanie oleju o większej gęstości może dodatkowo zwiększyć opory, co prowadzi do jeszcze wolniejszej reakcji systemu. Podobnie, wybór oleju odpornego na starzenie się nie adresuje problemu lepkości. Choć oleje odporne na starzenie się są istotne dla długoterminowej stabilności, nie mają one wpływu na poprawę przepływu oleju, co jest kluczowe w przypadku układów hydraulicznych z dużymi oporami. Co więcej, olej tworzący emulsję z wodą jest całkowicie niewłaściwy, gdyż emulsje mogą prowadzić do korozji i osadów w układzie hydraulicznym. Takie podejście może prowadzić do poważnych awarii i degradacji systemu. Zrozumienie różnicy między lepkością a gęstością oraz ich wpływu na wydajność hydrauliki jest kluczowe dla efektywnego zarządzania układami hydraulicznymi. Właściwe dobieranie olejów na podstawie specyfikacji technicznych oraz analizy warunków pracy pozwala unikać typowych błędów i zapewnia niezawodność komponentów hydraulicznych.

Pytanie 4

Stal niskostopowa zawierająca składniki takie jak krzem, mangan, chrom oraz wanad, cechująca się podwyższoną ilością krzemu, znajduje zastosowanie w produkcji

A. resorów, sprężyn i drążków skrętnych
B. śrub, nakrętek, podkładek
C. narzędzi do obróbki skrawaniem
D. łożysk tocznych
Wybór łożysk tocznych jako zastosowania stali niskostopowej z dodatkami krzemu, manganu, chromu i wanadu jest błędny, ponieważ łożyska wymagają materiałów o specyficznych właściwościach, takich jak wysoka odporność na ścieranie oraz niska ścieralność, co często osiąga się poprzez zastosowanie stali węglowej lub stali narzędziowej. Ponadto, w przypadku łożysk tocznych, kluczowe jest, aby materiał miał odpowiednią mikrostrukturę, co można osiągnąć poprzez obróbkę cieplną, a nie przez zwykłe dodatki stopowe. Natomiast odpowiedź dotycząca śrub, nakrętek i podkładek, mimo że te elementy również muszą być wytrzymałe, z reguły wykorzystują stal o wyższej zawartości węgla, co zapewnia lepsze właściwości mechaniczne w kontekście złącz. Odpowiedzi sugerujące narzędzia do obróbki skrawaniem są także niepoprawne, ponieważ takie narzędzia wymagają materiałów odpornych na wysokie temperatury i ścieranie, a nie stali niskostopowej, której temperatury pracy są ograniczone. Przykłady tych błędów wskazują na niedostateczne zrozumienie właściwości różnych rodzajów stali oraz ich zastosowań, co prowadzi do niepoprawnych wniosków i wyborów materiałowych w branży inżynieryjnej.

Pytanie 5

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. szumów
B. temperatury
C. prędkości
D. drgań
Wszystkie wymienione metody, takie jak pomiar drgań, szumów i temperatury, są uznawane za kluczowe w ocenie stanu łożysk tocznych, co może prowadzić do mylnego przekonania o znaczeniu pomiaru prędkości. Pomiar drgań jest jedną z najczęściej stosowanych technik w diagnostyce stanu maszyn, pozwalającą na szybkie wykrycie anomalii, które mogą prowadzić do awarii. Drgania generowane przez łożyska mogą być analizowane w różnych zakresach częstotliwości, co umożliwia identyfikację konkretnego problemu, jak na przykład uszkodzenia bieżni. Pomiar szumów, choć mniej powszechny, także może dostarczać cennych informacji o stanie łożysk, pomagając w identyfikacji problemów związanych z zużyciem lub zanieczyszczeniami. Z kolei pomiar temperatury jest kluczowy dla zachowania optymalnych warunków pracy łożysk, gdyż przekroczenie normy temperatury może wskazywać na problemy z wentylacją lub niedostateczne smarowanie. Dlatego ważne jest, aby mieć na uwadze, że wszelkie pomiary związane z ocena łożysk powinny być prowadzone zgodnie z najlepszymi praktykami i standardami branżowymi, aby zapewnić ich niezawodność i długowieczność. Wnioskując, pomiar prędkości nie wnosi istotnych informacji do analizy stanu łożysk, co czyni go mniej użytecznym w tym kontekście.

Pytanie 6

Chłodzenie powietrza przy użyciu agregatu chłodniczego do ciśnienia punktu rosy na poziomie +2 °C ma na celu

A. nasycenie powietrza parą wodną
B. usunięcie zanieczyszczeń
C. osuszenie powietrza
D. zwiększenie ciśnienia
Odpowiedź 'osuszenie powietrza' jest prawidłowa, ponieważ oziębianie powietrza za pomocą agregatu chłodniczego prowadzi do zmniejszenia jego zdolności do utrzymywania pary wodnej. Gdy powietrze jest schładzane do temperatury punktu rosy, nadmiar wilgoci kondensuje się, co skutkuje usunięciem wody z powietrza. Przykładem zastosowania tej technologii jest klimatyzacja w budynkach, gdzie odpowiednia kontrola wilgotności jest kluczowa dla komfortu mieszkańców oraz ochrony materiałów budowlanych przed wilgocią. Dobre praktyki w branży HVAC (ogrzewanie, wentylacja, klimatyzacja) zakładają, że optymalny poziom wilgotności w pomieszczeniach powinien wynosić od 30% do 50%. Dlatego agregaty chłodnicze, które działają na zasadzie osuszania, są kluczowe w zapewnieniu komfortu oraz efektywności energetycznej w różnych zastosowaniach, w tym w procesach przemysłowych oraz w serwerowniach, gdzie wilgoć może prowadzić do uszkodzeń sprzętu elektronicznego.

Pytanie 7

Po wymianie łożysk należy przykręcić pokrywę łożyska śrubami metrycznymi M6x80. Wskaż na podstawie tabeli, jaka powinna być wartość momentu dociągającego.

Nazwa elementuMoment dociągający dla śrub [Nm]
M5M6M8M10M12M16M20
Tabliczka łożyska--254575170275
Pokrywa łożyska58152020--
Skrzynka zaciskowa-47,512,5-20-
A. 8 Nm
B. 4 Nm
C. 15 Nm
D. 25 Nm
Moment dociągający śrub M6x80 wynoszący 8 Nm jest zgodny z normami branżowymi dotyczącymi montażu łożysk. Właściwie dobrany moment pozwala na odpowiednie przyleganie elementów oraz zapobiega ich luzowaniu się w trakcie eksploatacji. Przykręcanie pokrywy łożyska z właściwym momentem jest kluczowe dla zapewnienia trwałości i stabilności całej konstrukcji. Zbyt niski moment dociągający może prowadzić do luzów, co w konsekwencji może powodować uszkodzenia łożysk oraz innych komponentów. Z kolei zbyt wysoki moment może prowadzić do uszkodzenia gwintów lub deformacji elementów, co również wpływa negatywnie na funkcjonowanie maszyny. Dlatego ważne jest, aby stosować się do zaleceń producenta oraz norm technicznych przy dokręcaniu elementów. Przykłady zastosowania tej wiedzy obejmują montaż łożysk w silnikach, skrzyniach biegów oraz innych mechanizmach, gdzie precyzyjne dociąganie śrub ma kluczowe znaczenie dla bezpieczeństwa i wydajności.

Pytanie 8

Do których zacisków zestyku przełącznego przekaźnika należy podłączyć +24 V DC oraz lampki H1 i H2, aby połączenia były zgodne ze schematem przedstawionym na ilustracji?

Ilustracja do pytania
A. +24V DC do 12, H1 do 11, H2 do 14.
B. +24V DC do 11, H1 do 12, H2 do 14.
C. +24V DC do 11, H1 do 14, H2 do 12.
D. +24V DC do 14, H1 do 12, H2 do 11.
Poprawna odpowiedź wskazuje na prawidłowe połączenie zacisku +24V DC do zacisku 11 przekaźnika, co jest zgodne z obowiązującymi standardami w instalacjach elektrycznych. Zacisk 11 powinien być zasilany, ponieważ to on odpowiada za włączenie obwodu. Lampka H1 zostaje podłączona do zacisku 14, co jest zgodne z jej rolą w obwodzie sygnalizacyjnym, a lampka H2 do zacisku 12, co również odpowiada schematowi. W praktyce, stosowanie przekaźników z odpowiednimi połączeniami jest kluczowe dla zapewnienia poprawnego działania urządzeń. Przykładowo, w instalacjach automatyki przemysłowej, błędne podłączenie może prowadzić do nieprawidłowego działania systemów zabezpieczeń. W związku z tym, znajomość schematów połączeń oraz umiejętność ich poprawnej interpretacji są niezbędne dla każdej osoby pracującej w obszarze automatyki czy elektrotechniki. Dobrą praktyką jest zawsze weryfikowanie podłączeń przed włączeniem zasilania, aby uniknąć uszkodzeń sprzętu oraz zagrożeń dla bezpieczeństwa.

Pytanie 9

Poziom przezroczystej, nieprzewodzącej cieczy w zbiorniku można zmierzyć za pomocą czujnika

A. ultradźwiękowego
B. piezoelektrycznego
C. refleksyjnego
D. indukcyjnego
Pomiar poziomu cieczy przezroczystej i nieprzewodzącej przy użyciu czujników refleksyjnych to nie najlepszy pomysł. Dlaczego? Bo te urządzenia działają na zasadzie odbicia światła, a kiedy mamy do czynienia z przezroczystymi cieczami, takimi jak woda, światło po prostu przechodzi przez medium. To prowadzi do tego, że mamy bardzo małe odbicie, więc pomiary są mało dokładne. Czujniki indukcyjne z kolei są stworzone do wykrywania materiałów przewodzących prąd, a więc do nieprzewodzących cieczy się zupełnie nie nadają. Ich użycie ogranicza się głównie do pomiarów poziomu metalowych obiektów, co zupełnie nie działa w przypadku cieczy. A czujniki piezoelektryczne, chociaż są w różnych aplikacjach, to nie sprawdzają się do pomiaru poziomu cieczy - działają na zasadzie mierzenia ciśnienia, a ich zastosowanie w przypadku przezroczystych cieczy może prowadzić do błędów, bo mają inne właściwości fizyczne. Czasem użytkownicy mogą myśleć, że te czujniki są do wszystkiego, a to nieprawda. Kluczowe jest zrozumienie, co mierzymy i dostosowanie technologii pomiarowej do właściwości cieczy, bo to naprawdę ważne w inżynierii pomiarowej.

Pytanie 10

Który z podanych elementów przedstawiono na rysunku?

Ilustracja do pytania
A. Sprężarkę powietrza.
B. Silnik pneumatyczny.
C. Pompę hydrauliczną.
D. Silnik hydrauliczny.
Silnik hydrauliczny to urządzenie, które przetwarza energię hydrauliczną na energię mechaniczną, a jego działanie opiera się na zjawisku przepływu cieczy pod ciśnieniem. Na przedstawionym rysunku widoczne są charakterystyczne wejścia zasilające oraz solidna konstrukcja, co jest typowe dla silników hydraulicznych. W branży hydrauliki, silniki te znajdują zastosowanie w różnych maszynach, takich jak koparki, dźwigi czy wózki widłowe, gdzie wymagane jest dostarczenie dużej mocy przy stosunkowo kompaktowych rozmiarach. Dobrą praktyką w projektowaniu systemów hydraulicznych jest wykorzystanie silników hydraulicznych w aplikacjach, które wymagają dużych momentów obrotowych. Warto również zauważyć, że silniki te muszą być odpowiednio dobierane do specyfiki zastosowania, co pozwala na osiągnięcie optymalnej efektywności energetycznej oraz wydajności operacyjnej. Dodatkowo, zrozumienie różnic między silnikiem a pompą hydrauliczną jest kluczowe, ponieważ silniki przekształcają energię, podczas gdy pompy ją generują, co jest istotne w budowie i funkcjonowaniu złożonych systemów hydraulicznych.

Pytanie 11

Jak nazywa się element przedstawiony na rysunku?

Ilustracja do pytania
A. Mimośród.
B. Konfirmat.
C. Śruba.
D. Blachowkręt.
Wybór innej odpowiedzi, takiej jak śruba, blachowkręt czy mimośród, może wynikać z niepełnego zrozumienia różnic między tymi elementami a konfirmatem. Śruba jest ogólnym terminem, który opisuje różnorodne elementy z gwintem, jednak jej zastosowanie jest znacznie szersze i nie zawsze odpowiada specyfikacji, jaką ma konfirmat. Śruby często stosuje się w połączeniach metalowych lub w sytuacjach, gdzie nie jest wymagana duża wytrzymałość konstrukcji. Blachowkręty, z drugiej strony, są projektowane z myślą o łączeniu elementów blaszanych i nie oferują tej samej wytrzymałości na obciążenia statyczne, jakie gwarantują konfirmaty. Mimośród, będący elementem stosowanym głównie w mechanizmach regulacyjnych, nie jest odpowiedni do łączenia płyt meblowych. Wybierając niewłaściwy element, można narazić konstrukcję na uszkodzenia, co podważa jakość i stabilność mebli. Dlatego istotne jest, aby zrozumieć, jakie są różnice w konstrukcji i zastosowaniu tych elementów, aby podejmować świadome decyzje projektowe i montażowe. Analizując te różnice, można lepiej dostosować wybór elementów do specyficznych potrzeb projektu, co przyczyni się do uzyskania bardziej trwałych i funkcjonalnych rozwiązań.

Pytanie 12

Co koniecznie trzeba skonfigurować w urządzeniu, aby mogło funkcjonować w sieci Ethernet?

A. Niepowtarzalny adres IP
B. Bity stopu
C. Z szybkość przesyłania danych
D. Adres serwera DNS
Aby urządzenie mogło pracować w sieci Ethernet, konieczne jest przypisanie mu niepowtarzalnego adresu IP. Adres IP jest unikalnym identyfikatorem, który umożliwia komunikację pomiędzy urządzeniami w sieci. W kontekście protokołu TCP/IP, który jest fundamentem komunikacji w sieciach Ethernet, każdy host musi posiadać swój własny adres IP, aby móc wysyłać i odbierać dane. Przykładowo, w małej sieci lokalnej (LAN) adresy IP mogą być przydzielane dynamicznie przez serwer DHCP, ale każde urządzenie musi być w stanie zostać zidentyfikowane przez unikalny adres. W praktyce, ustawiając adres IP, administratorzy sieci muszą również upewnić się, że nie koliduje on z innymi adresami w sieci, co jest kluczowe dla prawidłowego funkcjonowania i unikania konfliktów. Warto również pamiętać, że adres IP może być w wersji IPv4 lub IPv6, a ich odpowiedni wybór jest istotny w kontekście rozwoju i przyszłości sieci. Dobre praktyki obejmują przydzielanie adresów z odpowiednich pul adresowych oraz dokumentowanie przydzielonych adresów, aby zminimalizować ryzyko błędów.

Pytanie 13

Pompa hydrauliczna z tłokowymi elementami roboczymi jest przestawiona na rysunku

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Rysunek oznaczony literą "D" przedstawia pompę hydrauliczną z tłokowymi elementami roboczymi, co można zidentyfikować dzięki charakterystycznym cechom konstrukcyjnym. Tłokowe pompy hydrauliczne działają na zasadzie przetłaczania cieczy za pomocą ruchu tłoków, które poruszają się w cylindrach. Tego rodzaju pompy są powszechnie stosowane w różnych aplikacjach przemysłowych, takich jak systemy hydrauliczne w maszynach budowlanych czy pojazdach ciężarowych, gdzie wymagana jest wysoka moc i efektywność. Ponadto, tłokowe elementy robocze charakteryzują się dużą zdolnością do wytwarzania wysokiego ciśnienia, co czyni je idealnym wyborem dla systemów wymagających precyzyjnego sterowania. Ważnym aspektem jest również ich trwałość oraz możliwość pracy w trudnych warunkach, co jest istotne w kontekście norm branżowych, takich jak ISO 9001, które podkreślają znaczenie niezawodności i efektywności operacyjnej. Zrozumienie działania tłokowych elementów roboczych jest kluczowe dla inżynierów i techników pracujących w obszarze hydrauliki, ponieważ pozwala na odpowiedni dobór komponentów i ich zastosowanie w praktyce.

Pytanie 14

Aby zrealizować lutowanie na płytce drukowanej, konieczne jest użycie stacji lutowniczej oraz

A. lampy UV i odsysacz
B. lampy UV i szczypce
C. obcinacze i odsysacz
D. obcinacze i szczypce
Wybór obcinaczy i odsysacza, lampy UV i szczypców, czy lampy UV i odsysacza wskazuje na niezrozumienie podstawowych narzędzi oraz procesów wymaganych do lutowania. Odsysacz jest używany głównie do usuwania nadmiaru cyny z połączeń lutowanych, jednak nie jest to element niezbędny do samego wykonania lutowania, lecz narzędzie pomocnicze, które stosuje się w przypadku błędów lub poprawy połączeń. Niezrozumienie jego roli prowadzi do błędnego wniosku, że jest on kluczowy w standardowym procesie lutowania. Lampa UV, z kolei, jest stosowana w kontekście technologii lutowania w obszarze materiałów fotooptycznych i nie ma zastosowania w tradycyjnym lutowaniu komponentów elektronicznych, które wykorzystują cynę. Zastosowanie lampy UV w tym kontekście jest zupełnie nieadekwatne, co pokazuje brak znajomości standardów lutowania oraz technologii, które są podstawą w inżynierii elektronicznej. W praktyce, poprawne zrozumienie procesu lutowania wymaga znajomości narzędzi i ich właściwego zastosowania, co jest kluczowe dla uzyskania wysokiej jakości połączeń lutowanych.

Pytanie 15

Kiedy należy dokonać wymiany filtrów standardowych w systemie przygotowania powietrza?

A. W trakcie przeglądu konserwacyjnego przeprowadzanego co dwa lata i kiedy spadek ciśnienia na filtrze przekroczy 1 bar
B. W trakcie przeglądu konserwacyjnego przeprowadzanego co miesiąc
C. W trakcie przeglądu konserwacyjnego przeprowadzanym raz w roku lub kiedy spadek ciśnienia na filtrze przekroczy 0,5 bara
D. W trakcie przeglądu konserwacyjnego przeprowadzanego co pół roku
Odpowiedź wskazująca na konieczność wymiany elementów filtrów standardowych w zespole przygotowania powietrza podczas przeglądu konserwacyjnego wykonywanego raz w roku lub w przypadku, gdy spadek ciśnienia na filtrze przekroczy 0,5 bara, jest zgodna z najlepszymi praktykami w zakresie utrzymania systemów wentylacyjnych i klimatyzacyjnych. Regularne przeglądy, co najmniej raz w roku, pozwalają na wczesne wykrycie problemów oraz zapewnienie optymalnej wydajności filtrów, co jest kluczowe dla jakości powietrza w pomieszczeniach. W przypadku, gdy spadek ciśnienia na filtrze przekracza 0,5 bara, oznacza to, że filtr jest zanieczyszczony lub zatkany, co może prowadzić do spadku efektywności całego systemu, a w skrajnych przypadkach do uszkodzeń urządzeń. Przykładem zastosowania tej praktyki może być przemysłowe użycie systemów filtracji w halach produkcyjnych, gdzie zanieczyszczenia powietrza mogą wpływać na jakość produktów. W takich przypadkach, regularna wymiana filtrów jest nie tylko zalecana, ale wręcz niezbędna dla zapewnienia ciągłości produkcji oraz ochrony zdrowia pracowników. Ponadto, stosowanie się do zaleceń producenta dotyczących konserwacji i wymiany filtrów pozwala na utrzymanie gwarancji na urządzenia oraz na optymalizację kosztów eksploatacyjnych.

Pytanie 16

Radarowy czujnik wykorzystujący efekt Dopplera pozwala na określenie wartości

A. nadciśnienia
B. podciśnienia
C. temperatury
D. prędkości
Sensor radarowy działający na zasadzie efektu Dopplera jest wykorzystywany przede wszystkim do pomiaru prędkości obiektów. Efekt Dopplera polega na zmianie częstotliwości fali elektromagnetycznej w zależności od ruchu źródła fali oraz obserwatora. W kontekście radaru, gdy obiekt porusza się w kierunku sensora, fale radarowe są przesuwane ku wyższej częstotliwości, a gdy się oddala, dochodzi do obniżenia częstotliwości. Ta zmiana częstotliwości jest bezpośrednio związana z prędkością obiektu. Przykładem zastosowania tej technologii jest pomiar prędkości pojazdów w systemach monitorowania ruchu drogowego oraz w radarach meteorologicznych do analizy prędkości wiatru. W praktyce, radary oparte na efekcie Dopplera są standardem w wielu dziedzinach, takich jak lotnictwo, motoryzacja czy meteorologia, co czyni je nieocenionym narzędziem w nowoczesnej technologii pomiarowej.

Pytanie 17

Jaką z wymienionych czynności należy regularnie przeprowadzać w trakcie konserwacji systemu pneumatycznego?

A. Usuwać kondensat wodny
B. Regulować ciśnienie powietrza
C. Wymieniać rury pneumatyczne
D. Wymieniać szybkozłącza
Usuwanie kondensatu wodnego z układu pneumatycznego jest kluczową czynnością konserwacyjną, która zapobiega wielu problemom technicznym. Kondensat wodny, który powstaje w wyniku różnicy temperatury między powietrzem a elementami układu, może prowadzić do korozji, uszkodzeń uszczelek oraz obniżenia efektywności działania systemu. Regularne usuwanie kondensatu jest nie tylko zalecane, ale wręcz wymagane przez standardy branżowe, takie jak ISO 8573, które definiują jakość sprężonego powietrza. Przykładem praktycznego zastosowania tej wiedzy jest instalacja odpowiednich separatorów kondensatu w systemie, które automatycznie usuwają wodę, minimalizując ryzyko jej nagromadzenia. Dodatkowo, regularne przeglądy układu oraz kontrola poziomu kondensatu w zbiornikach powinny być integralną częścią planu konserwacji, co pozwala na wczesne wykrywanie potencjalnych problemów i zapewnienie ciągłości pracy urządzeń.

Pytanie 18

Ile wynosi wartość rezystancji zastępczej obwodu elektrycznego przedstawionego na rysunku?

Ilustracja do pytania
A. R
B. 2R
C. ½R
D. 1½R
Wartości rezystancji zastępczej obwodu elektrycznego mogą być mylone przez nieprawidłowe interpretacje zasad dotyczących łączenia rezystorów. Na przykład, odpowiedzi sugerujące wartości takie jak 2R czy ½R mogą wynikać z nieprawidłowego zrozumienia zasad szeregowego i równoległego łączenia rezystorów. W przypadku połączeń szeregowych, całkowita rezystancja jest sumą poszczególnych rezystancji, co może prowadzić do wyższych wartości niż pojedyncza rezystancja. Z kolei w połączeniach równoległych stosuje się formułę, w której rezystancja zastępcza jest mniejsza od najniższej rezystancji w obwodzie, co mogłoby sugerować odpowiedzi oparte na ½R. Zrozumienie, że rezystancja zastępcza nie może być wartością większą niż najniższa pojedyncza rezystancja, jest kluczowe. Często błędy te wynikają z mylnej interpretacji schematów obwodów oraz z braku praktycznego doświadczenia w obliczaniu rezystancji. Aby uniknąć tych pomyłek, ważne jest, aby dokładnie przeanalizować każdy element obwodu oraz zastosować poprawne zasady obliczeń, co jest niezbędne w praktycznych zastosowaniach inżynieryjnych i projektowych.

Pytanie 19

Na rysunku zamieszczono symbol graficzny

Ilustracja do pytania
A. wyłącznika silnikowego.
B. ochronnika przeciwprzepięciowego.
C. stycznika.
D. przekaźnika.
Symbol graficzny przedstawiony na rysunku to typowy symbol wyłącznika silnikowego, który jest kluczowym elementem w systemach zasilania silników elektrycznych. Wyłącznik silnikowy pełni funkcję zabezpieczającą, chroniąc silniki przed skutkami przeciążenia oraz zwarcia, co ma fundamentalne znaczenie w zachowaniu bezpieczeństwa instalacji elektrycznych. W kontekście trójfazowego zasilania, wyłącznik silnikowy jest zazwyczaj wyposażony w trzy pary styków, co umożliwia równoczesne odłączenie każdej z faz zasilających. Przykładem zastosowania wyłączników silnikowych są aplikacje w przemysłowych systemach automatyki, gdzie zapewniają one nie tylko ochronę silników, ale również ułatwiają ich uruchamianie i zatrzymywanie. Dodatkowo, standardy takie jak IEC 60947-4-1 określają wymagania dotyczące dobrego projektowania i użytkowania wyłączników silnikowych, co jest kluczowe dla zapewnienia ich efektywności oraz bezpieczeństwa w zastosowaniach przemysłowych.

Pytanie 20

Które urządzenie ma symbol graficzny przedstawiony na rysunku?

Ilustracja do pytania
A. Silnik pneumatyczny.
B. Pompa hydrauliczna.
C. Sprężarka pneumatyczna.
D. Silnik hydrauliczny.
Pompa hydrauliczna jest kluczowym elementem wielu systemów hydraulicznych, a jej symbol graficzny jest standardowo stosowany w dokumentacji technicznej. Oznaczenie to, składające się z okręgu oraz strzałki wskazującej kierunek przepływu, jednoznacznie identyfikuje to urządzenie. Pompy hydrauliczne są używane w różnych aplikacjach, takich jak maszyny budowlane, pojazdy użytkowe oraz systemy automatyki przemysłowej. Działają na zasadzie przetwarzania energii mechanicznej na energię hydrauliczną, co pozwala na efektywne przenoszenie dużych obciążeń przy stosunkowo niskim zużyciu energii. Zgodnie z normami ISO, symbole hydrauliczne powinny być zgodne z ustalonymi standardami, aby ułatwić zrozumienie schematów przez techników i inżynierów. Zrozumienie symboliki jest kluczowe dla efektywnej komunikacji w projektowaniu oraz utrzymaniu systemów hydraulicznych.

Pytanie 21

Do jakiego rodzaju prac stosowane jest narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Szlifowania powierzchni.
B. Cięcia blachy.
C. Wiercenia otworów.
D. Gięcia prętów.
Narzędzie przedstawione na zdjęciu to nożyce do blachy, które są specjalistycznym narzędziem wykorzystywanym do cięcia różnych rodzajów blach. Ich konstrukcja pozwala na precyzyjne i efektywne cięcie materiałów metalowych, co jest kluczowe w wielu branżach, takich jak budownictwo, produkcja i przemysł motoryzacyjny. Nożyce te są dostępne w różnych wariantach, w tym ręcznych i elektrycznych, co zwiększa ich wszechstronność w zastosowaniu. Przy stosowaniu nożyc do blachy istotne jest przestrzeganie standardów BHP, aby zapewnić bezpieczeństwo pracy. W praktyce, narzędzie to umożliwia cięcie blach stalowych o różnej grubości, co pozwala na realizację różnorodnych projektów konstrukcyjnych i remontowych. Przykładem zastosowania może być przygotowanie elementów do montażu systemów rynnowych, gdzie precyzyjne cięcie blachy jest kluczowe dla szczelności i trwałości instalacji.

Pytanie 22

Na rysunku przedstawiono wygląd zewnętrzny czujnika i odpowiadający mu symbol graficzny. Jaki to czujnik?

Ilustracja do pytania
A. Optyczny.
B. Indukcyjny.
C. Pojemnościowy.
D. Ultradźwiękowy.
Czujnik pojemnościowy jest urządzeniem, które wykrywa zmiany w pojemności elektrycznej obiektu i jest szeroko stosowany w różnych aplikacjach automatyki oraz pomiarach. Symbol graficzny przedstawiony na rysunku, składający się z rombu oraz symbolu kondensatora, jednoznacznie wskazuje na ten typ czujnika. Czujniki pojemnościowe są powszechnie wykorzystywane do detekcji obecności obiektów, zwłaszcza w sytuacjach, gdzie tradycyjne metody, takie jak czujniki ultradźwiękowe czy indukcyjne, mogą nie zapewnić odpowiedniej skuteczności. Na przykład, w automatyce przemysłowej czujniki pojemnościowe mogą być używane do monitorowania poziomu cieczy w zbiornikach, gdzie zmiany w poziomie wpływają na pojemność elektryczną. Warto zaznaczyć, że czujniki te charakteryzują się dużą czułością i możliwością detekcji różnorodnych materiałów, co czyni je bardzo wszechstronnymi. W kontekście standardów branżowych, czujniki pojemnościowe są zgodne z normami IEC 60947, co potwierdza ich niezawodność i bezpieczeństwo w zastosowaniach przemysłowych.

Pytanie 23

Wskaź zasady, która stosowana jest wyłącznie przy demontażu urządzenia o złożonej konstrukcji?

A. Przygotować plan demontażu i wymontować jedynie wybrane podzespoły
B. Rozmontować kolejno każdą część urządzenia, nie uwzględniając ich przynależności do podzespołów urządzenia
C. Ustalić lokalizację poszczególnych zespołów i oddzielić je, pozostawiając w całości
D. Opracować plan demontażu i rozłożyć poszczególne zespoły urządzenia, a następnie zdemontować podzespoły na części
Zastosowanie niepoprawnych podejść do demontażu urządzeń skomplikowanych może prowadzić do poważnych problemów zarówno w zakresie bezpieczeństwa, jak i efektywności operacji. Ustalanie położenia poszczególnych zespołów bez ich demontażu w całości może skutkować nieprawidłowym zrozumieniem struktury urządzenia, co w konsekwencji prowadzi do trudności w dalszym procesie demontażu. Ignorowanie przynależności części do konkretnych zespołów oraz demontaż wszystkich elementów bez zachowania kolejności jest nieefektywne i może prowadzić do uszkodzeń. Takie podejście jest wbrew standardom branżowym, które kładą nacisk na systematyczność i precyzję w rozmontowywaniu. W przypadku złożonych urządzeń, takich jak maszyny CNC, każdy zespół może mieć różne wymagania dotyczące demontażu, które muszą być ściśle przestrzegane. Wiele osób popełnia błąd myślowy, zakładając, że demontaż można przeprowadzić w dowolnej kolejności, co często prowadzi do konieczności ponownego montażu lub wymiany uszkodzonych części. Dlatego kluczowe jest, by proces demontażu był dobrze przemyślany i zaplanowany, aby uniknąć potencjalnych komplikacji oraz zwiększyć bezpieczeństwo pracy.

Pytanie 24

Jakie napięcie musi być zastosowane do zasilania prostowniczego układu sześciopulsowego?

A. jednofazowym symetrycznym 2 x 115 V
B. stałym 110 V
C. trójfazowym 230 V/400 V
D. stałym 24 V
Zasilanie układu prostowniczego sześciopulsowego napięciem stałym lub jednofazowym nie jest właściwym podejściem w kontekście efektywności i funkcjonalności tego systemu. Zastosowanie napięcia stałego, na przykład 110 V lub 24 V, ogranicza możliwości konwersji energii, ponieważ prostowniki są zaprojektowane do pracy z prądem przemiennym. Napięcie jednofazowe 2 x 115 V również nie dostarcza odpowiedniej ilości impulsów do prostownika, co skutkuje nierównomiernym prostowaniem i zwiększonymi stratami energii. W rzeczywistości, układ sześciopulsowy wymaga zasilania trójfazowego, które dostarcza trzy fazy prądu przemiennego, co pozwala na efektywną konwersję energii. Prąd jednofazowy może prowadzić do powstawania harmonicznych oraz większych wahań napięcia, co negatywnie wpływa na stabilność pracy układu. Przykłady niewłaściwych aplikacji mogą obejmować użycie prostowników w aplikacjach, które nie są przystosowane do obciążenia jednofazowego, co może prowadzić do uszkodzenia sprzętu oraz obniżenia wydajności systemów energetycznych. Dlatego ważne jest, aby projektując systemy zasilania, wybierać odpowiednie źródła zgodne z wymaganiami technicznymi urządzeń.

Pytanie 25

Czy obniżenie temperatury czynnika w sprężarkach prowadzi do

A. powiększania objętości sprężonego powietrza
B. skraplania pary wodnej oraz osuszania powietrza
C. osadzania zanieczyszczeń na dnie zbiornika
D. wzrostu ciśnienia sprężonego powietrza
Odpowiedź dotycząca skraplania pary wodnej oraz osuszania powietrza jest poprawna, ponieważ ochładzanie czynnika roboczego w sprężarkach prowadzi do zmniejszenia jego temperatury, co z kolei powoduje kondensację pary wodnej zawartej w powietrzu. W praktyce, w systemach klimatyzacyjnych oraz chłodniczych, proces ten jest kluczowy dla zapewnienia efektywności działania układów. W momencie, gdy powietrze jest schładzane, jego zdolność do utrzymywania wilgoci maleje, co prowadzi do skraplania się wody. Zjawisko to jest szczególnie istotne w kontekście osuszania powietrza, co przekłada się na lepszą jakość powietrza oraz wydajność systemów. Standardy takie jak ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) podkreślają znaczenie kontroli wilgotności dla poprawy komfortu użytkowników oraz efektywności energetycznej. Dlatego w wielu zastosowaniach, takich jak chłodzenie przemysłowe czy klimatyzacja budynków, stosuje się wymienniki ciepła, które umożliwiają skuteczne zarządzanie wilgotnością oraz temperaturą powietrza.

Pytanie 26

Na rysunku przedstawiono m.in.

Ilustracja do pytania
A. imadło.
B. wałek pociągowy.
C. uchwyt tokarski.
D. suport poprzeczny.
Uchwyt tokarski jest kluczowym elementem wyposażenia tokarni, który umożliwia precyzyjne mocowanie obrabianych przedmiotów. Jego konstrukcja składa się z dwóch lub więcej szczęk, które mogą być regulowane za pomocą kluczy. Dzięki temu uchwyt jest w stanie zacisnąć różne średnice elementów, co czyni go niezwykle wszechstronnym i niezbędnym w procesach obróbczych. W praktyce, uchwyty tokarskie występują w różnych rozmiarach i kształtach, co pozwala na ich zastosowanie w zależności od typu obrabianego materiału oraz specyfiki pracy na tokarce. Użycie uchwytu tokarskiego zgodnie z dobrą praktyką obróbcza nie tylko zwiększa efektywność pracy, ale również zapewnia bezpieczeństwo operatora, ponieważ odpowiednie mocowanie elementu minimalizuje ryzyko jego usunięcia lub uszkodzenia podczas obróbki. Warto pamiętać, że uchwyty tokarskie są projektowane zgodnie z normami, takimi jak ISO 9001, co gwarantuje ich wysoką jakość i niezawodność w zastosowaniach przemysłowych.

Pytanie 27

Tensomer foliowy powinien być zamocowany do podłoża

A. nitem
B. śrubą
C. zszywką
D. klejem
Tensomer foliowy to naprawdę ważny materiał w budownictwie i przemyśle, więc jego mocowanie do podłoża za pomocą kleju ma sens z kilku powodów. Klej tworzy trwałe i elastyczne połączenie, co jest mega istotne, bo folia może się kurczyć lub rozciągać w zależności od temperatury czy wilgotności. Ważne, żeby używać odpowiednich klejów – najlepiej takich, które są dopasowane do folii i podłoża. Na przykład, kleje poliuretanowe czy akrylowe dobrze się sprawdzają, bo mają dobrą przyczepność i są odporne na warunki atmosferyczne. Przy klejeniu trzeba też dobrze przygotować powierzchnię – czyli usunąć kurz i tłuszcz, żeby to wszystko trzymało się jak należy. Generalnie, mocowanie folii klejem to norma w branży, bo to zapewnia długotrwałą stabilność, co się później opłaca, jeżeli chodzi o koszty.

Pytanie 28

Jakiego typu silnik należy wykorzystać do zasilania systemu, który wymaga bardzo wysokiego momentu rozruchowego (przekraczającego moment znamionowy)?

A. Asynchroniczny
B. Krokowy
C. Bocznikowy
D. Szeregowy
Silnik szeregowy jest najbardziej odpowiedni do aplikacji wymagających wysokiego momentu rozruchowego, ponieważ jego konstrukcja pozwala na uzyskanie znacznie większego momentu przy niskich obrotach. W silniku szeregowym, uzwojenia wirnika są połączone szeregowo z uzwojeniem stojana, co powoduje, że przepływ prądu przez uzwojenia wirnika i stojana jest taki sam. W rezultacie, gdy silnik startuje, prąd wzrasta, co prowadzi do znaczącego wzrostu momentu obrotowego. Taka charakterystyka sprawia, że silniki szeregowe są powszechnie stosowane w aplikacjach takich jak dźwigi, przenośniki, czy inne urządzenia wymagające dużego momentu rozruchowego. Przykładowo, silniki szeregowe są wykorzystywane w systemach transportu materiałów, gdzie konieczne jest pokonanie początkowego oporu. Dobrą praktyką w branży jest dobór silnika szeregowego do zastosowań, gdzie moment rozruchowy przewyższa moment znamionowy, co zapewnia efektywne i bezpieczne użytkowanie maszyn.

Pytanie 29

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. omomierzem
B. technicznym mostkiem Thomsona
C. megaomomierzem
D. laboratoryjnym mostkiem Thomsona
Chociaż istnieje wiele narzędzi do pomiarów elektrycznych, nie każde z nich jest odpowiednie do oceny rezystancji izolacji. Omomierz, który jest jednym z wymienianych urządzeń, jest używany do pomiaru rezystancji w obwodach niskonapięciowych, ale nie nadaje się do pomiarów izolacji. Podczas pomiarów rezystancji izolacji kluczowe jest stosowanie wysokich napięć, które są generowane tylko przez megaomomierze. Z kolei laboratoria często korzystają z mostków Thomsona, jednak te urządzenia są bardziej przeznaczone do precyzyjnych pomiarów rezystancji w warunkach laboratoryjnych, a nie do oceny stanu izolacji w rzeczywistych instalacjach. Istotnym błędem w myśleniu jest przekonanie, że jakiekolwiek urządzenie pomiarowe wystarczy do oceny izolacji. W rzeczywistości, aby zapewnić bezpieczeństwo i niezawodność instalacji, należy korzystać z odpowiednich narzędzi i technik, które są zgodne z wytycznymi branżowymi. Ignorowanie tej zasady może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem czy pożar, co jest sprzeczne z najlepszymi praktykami w dziedzinie elektryki. Właściwy wybór narzędzi pomiarowych jest kluczowy dla uzyskania wiarygodnych wyników oraz zapobiegania potencjalnym zagrożeniom.

Pytanie 30

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. hałasów
B. ciepłoty
C. wibracji
D. prędkości
Pomiar prędkości to nie najlepsza metoda do oceny stanu łożysk tocznych. W praktyce zazwyczaj korzysta się z analizy drgań, szumów i temperatury. Analiza drgań to fajna technika, bo monitorując drgania, można zauważyć, czy coś jest nie tak, na przykład, czy łożysko ma luz albo jest uszkodzone. Z kolei pomiar szumów daje nam dodatkowe info o stanie łożysk, bo zmieniające się dźwięki mogą wskazywać na problemy. A co do temperatury — jeśli zaczyna rosnąć, to może być znak, że coś się dzieje, jak na przykład zbyt duże tarcie lub słabe smarowanie. W przemyśle, na przykład motoryzacyjnym czy w transporcie kolejowym, regularne sprawdzanie drgań i temperatury łożysk jest mega ważne, żeby maszyny działały sprawnie i bezawaryjnie. Ustalenie norm dla tolerancji drgań i temperatur dla różnych typów łożysk to standardy, które pomagają w zarządzaniu utrzymaniem ruchu, co zresztą potwierdzają normy ISO 10816.

Pytanie 31

Na rysunku przedstawiono frezowanie

Ilustracja do pytania
A. obwodowe współbieżne.
B. obwodowe przeciwbieżne.
C. czołowe niepełne.
D. czołowe pełne.
Frezowanie czołowe niepełne i czołowe pełne to techniki, które różnią się znacznie od obwodowego przeciwbieżnego, co może prowadzić do pomyłek w identyfikacji procesu obróbczo-wydajnego. W przypadku frezowania czołowego, narzędzie przemieszcza się równolegle do powierzchni obrabianego detalu, co może skutkować niższą jakością wykończenia, zwłaszcza w twardych materiałach. Frezowanie czołowe niepełne, z uwagi na to, że narzędzie nie wchodzi w pełni w materiał, może prowadzić do nieefektywnego wykorzystania skrawników i wzrostu obciążenia narzędzia, co z kolei wpływa na jego trwałość i jakość obróbki. Z kolei frezowanie obwodowe współbieżne, gdzie kierunek obrotu narzędzia jest zgodny z kierunkiem posuwu, również nie przynosi oczekiwanych korzyści w kontekście jakości i bezpieczeństwa, ponieważ narzędzie może się 'zaciągać' w materiał, co prowadzi do zwiększenia ryzyka uszkodzenia zarówno narzędzia, jak i obrabianego przedmiotu. Błędy myślowe, które prowadzą do wyboru tych odpowiedzi, często wynikają z braku zrozumienia zasad działania poszczególnych technik oraz ich wpływu na proces obróbczy. W praktyce, wybór odpowiedniego rodzaju frezowania powinien opierać się na analizie specyfikacji materiału oraz wymagań dotyczących jakości wykończenia, które są kluczowe dla osiągnięcia wysokich standardów produkcyjnych.

Pytanie 32

Aby maksymalnie zwiększyć zasięg przesyłania danych oraz ograniczyć wpływ zakłóceń elektromagnetycznych na transmisję w systemie mechatronicznym przy realizacji sterowania sieciowego, jaki kabel należy wykorzystać?

A. światłowodowy
B. symetryczny ekranowany (tzw. skrętka ekranowana)
C. symetryczny nieekranowany (tzw. skrętka nieekranowana)
D. koncentryczny
Wybór innych typów kabli, jak kable symetryczne ekranowane czy koncentryczne, to nie najlepsze rozwiązanie, jeśli chodzi o przesył danych na długie dystansy i ochronę przed zakłóceniami. Kable symetryczne ekranowane mogą bronić sygnał przed zakłóceniami, ale nie są tak dobre jak światłowody na dłuższych trasach. Wynika to z tego, że w kablach miedzianych przesył opiera się na sygnałach elektrycznych, które są łatwo zakłócane. Kable koncentryczne, chociaż używa się ich w różnych aplikacjach, mają ograniczenia długości przesyłu i są bardziej narażone na zakłócenia. Z kolei kable symetryczne nieekranowane mogą działać lepiej w sprzyjających warunkach, ale w zgiełku elektromagnetycznym ich efektywność spada. Wybór złego kabla może prowadzić do problemów z komunikacją, większych opóźnień, a czasem nawet do całkowitej utraty sygnału. Zrozumienie tych różnic to kluczowa sprawa dla inżynierów, którzy tworzą systemy mechatroniczne, żeby wszystko działało jak należy.

Pytanie 33

Zależność między ciśnieniem p, temperaturą T i objętością V powietrza opisuje zależność poniżej. Obniżenie temperatury powietrza przy jego stałej objętości

p · V
T
= const
A. zmniejsza ciśnienie powietrza.
B. zwiększa ciśnienie powietrza dla temperatur mniejszych od 0 stop.C
C. zwiększa ciśnienie powietrza.
D. nie ma wpływu na ciśnienie powietrza.
Obniżenie temperatury powietrza przy stałej objętości rzeczywiście prowadzi do zmniejszenia ciśnienia powietrza. Zgodnie z prawem Boyle'a-Mariotte'a, dla danej masy gazu, iloczyn ciśnienia (p) i objętości (V) jest wprost proporcjonalny do temperatury (T) wyrażonej w kelwinach. Przy stałej objętości zmiana temperatury wpływa bezpośrednio na ciśnienie. Na przykład, w zastosowaniach inżynieryjnych, w układach pneumatycznych, obniżenie temperatury powietrza może prowadzić do spadku efektywności systemu, co jest kluczowe w kontekście chłodzenia, gdzie kontrola temperatury jest niezbędna dla zapewnienia odpowiednich parametrów pracy. W praktyce, w systemach klimatyzacyjnych, obniżenie temperatury powietrza zewnętrznego skutkuje zmniejszeniem ciśnienia wewnętrznego, co może wpływać na wydajność całego układu. Zrozumienie tej zależności jest niezbędne dla projektantów systemów klimatyzacyjnych oraz inżynierów zajmujących się aerodynamiką.

Pytanie 34

Na rysunku przedstawiono budowę oraz zasadę działania zaworu

Ilustracja do pytania
A. przełączającego obieg.
B. podwójnego sygnału.
C. szybkiego spustu.
D. dławiąco-zwrotnego.
Zawór szybkiego spustu to mega ważny element w systemach pneumatycznych. Jego głównym zadaniem jest szybkie i skuteczne odprowadzanie sprężonego powietrza. Na rysunku widzimy, że w pozycji a) zawór jest zamknięty i nie pozwala na przepływ powietrza, a w pozycji b) się otwiera, co pozwala na błyskawiczne uwolnienie ciśnienia. Takie zawory są super ważne, zwłaszcza w sytuacjach, gdzie trzeba działać szybko - na przykład w hamulcach samochodów czy w procesach produkcyjnych. Dzięki nim można efektywniej operować i zapewnić większe bezpieczeństwo, bo można w kontrolowany sposób spuszczać powietrze, co zmniejsza ryzyko uszkodzeń. Warto też pamiętać, że te zawory powinny spełniać różne normy branżowe, jak np. ISO 4414, które mówią o zasadach bezpieczeństwa i wydajności w systemach pneumatycznych.

Pytanie 35

Silnik komutatorowy był narażony na długotrwałe przeciążenie, co doprowadziło do pojawienia się zwarć międzyzwojowych. Proces naprawy silnika polega na wymianie

A. szczotek.
B. komutatora.
C. uzwojenia.
D. łożysk.
Wymiana uzwojenia w silniku komutatorowym jest kluczowym zabiegiem naprawczym, zwłaszcza gdy występują zwarcia międzyzwojowe. Zwarcia te mogą mieć różne przyczyny, w tym długotrwałe przeciążenie, które prowadzi do degradacji izolacji między zwojami. Wymiana uzwojenia polega na demontażu starego uzwojenia oraz nawinięciu nowego, co wymaga precyzyjnych umiejętności oraz znajomości technik nawijania. Uzwojenia są odpowiedzialne za generowanie pola magnetycznego, które napędza wirnik, dlatego ich stan bezpośrednio wpływa na wydajność całego silnika. W praktyce, przed przystąpieniem do wymiany, należy dokładnie zdiagnozować przyczynę uszkodzenia oraz przeprowadzić testy elektryczne, aby upewnić się, że nowe uzwojenie będzie działało poprawnie. Standardy takie jak IEC 60034 dotyczące silników elektrycznych podkreślają znaczenie odpowiednich materiałów izolacyjnych oraz technik montażowych, co zwiększa żywotność i niezawodność silnika. Właściwe podejście do wymiany uzwojenia przyczynia się do minimalizacji ryzyka wystąpienia podobnych problemów w przyszłości.

Pytanie 36

W układzie do przygotowania sprężonego powietrza, reduktor ciśnienia

A. zmniejsza ilość zanieczyszczeń w sprężonym powietrzu
B. łączy sprężone powietrze z mgłą olejową
C. generuje mgłę olejową
D. zapewnia stałe ciśnienie robocze
Reduktor ciśnienia w zespole przygotowania sprężonego powietrza pełni kluczową rolę w utrzymaniu stałego ciśnienia roboczego, co jest niezbędne do prawidłowego funkcjonowania urządzeń pneumatycznych. Dzięki zastosowaniu reduktora, można dostosować ciśnienie powietrza do wymagań konkretnego procesu technologicznego, co przekłada się na poprawę efektywności energetycznej i wydajności systemu. Przykładem zastosowania reduktorów ciśnienia może być linia produkcyjna, gdzie różne maszyny wymagają różnych poziomów ciśnienia, a reduktor umożliwia ich optymalne zasilanie. W standardach branżowych, takich jak ISO 8573, podkreśla się znaczenie kontrolowania parametrów sprężonego powietrza, a właściwe ustawienie i konserwacja reduktorów ciśnienia są kluczowe dla zminimalizowania ryzyka awarii oraz zapewnienia jakości wykorzystywanego medium. Dodatkowo, stałe ciśnienie robocze pozwala na przewidywalność działania systemów, co jest istotne w kontekście bezpieczeństwa operacji przemysłowych.

Pytanie 37

W trakcie serwisowania urządzenia mechatronicznego, w którym istnieje ryzyko wystąpienia napięcia elektrycznego, technik mechatronik powinien stosować

A. nienaruszonych narzędzi izolowanych
B. szczypiec oraz zestawu wkrętaków
C. okularów ochronnych i fartucha ochronnego
D. rękawic ochronnych i fartucha ochronnego
Używanie nieuszkodzonych narzędzi izolowanych jest kluczowym elementem zapewnienia bezpieczeństwa podczas pracy z urządzeniami mechatronicznymi, w których może występować niebezpieczne napięcie elektryczne. Narzędzia izolowane, takie jak śrubokręty, szczypce czy klucze, są zaprojektowane z myślą o minimalizacji ryzyka porażenia prądem elektrycznym. Izolacja narzędzi powinna spełniać odpowiednie normy, takie jak IEC 60900, które określają wymagania dotyczące narzędzi używanych w obszarach narażonych na wysokie napięcia. Przykładem zastosowania izolowanych narzędzi może być naprawa elektrycznych systemów sterowania w robotach przemysłowych, gdzie dostęp do napięciowych elementów urządzenia wiąże się z ryzykiem. W praktyce, stosowanie tych narzędzi powinno być rutyną w codziennej pracy mechatronika, a przed każdym użyciem należy upewnić się, że nie ma widocznych uszkodzeń izolacji. Regularne kontrole i konserwacja narzędzi izolowanych są również niezbędne, aby zapewnić ich niezawodność i skuteczność.

Pytanie 38

Na podstawie tabeli kodów paskowych rezystorów wskaż rezystor o wartości rezystancji 1 kΩ i tolerancji 5%.

Kody paskowe rezystorów

KolorWartośćMnożnikTolerancja
± %
Współczynnik temp.
± ppm/K
1 pasek2 pasek3 pasek4 pasekOstatni pasek
czarny00x 1 Ω20200
brązowy11x 10 Ω1100
czerwony22x 100 Ω250
pomarańczowy33x 1 k315
żółty44x 10 k0 - +10025
zielony55x 100 k0.5
niebieski66x 1 M0.2510
fioletowy77x 10 M0,15
szary880,051
biały99
złoty0,1 Ω5
srebrny0,01 Ω10
brak20
Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.
Wybór nieprawidłowego rezystora może wynikać z błędnego odczytu kodów paskowych lub ich niewłaściwej interpretacji. Paski na rezystorze, które nie odpowiednio odzwierciedlają wartości 1 kΩ i tolerancji 5%, mogą prowadzić do nieodpowiednich decyzji przy projektowaniu obwodów elektronicznych. Na przykład, jeżeli wybrano rezystor z innym kolorem pasków, łatwo można błędnie zinterpretować jego wartość. Jeżeli zamiast brązowego, czarnego, czerwonego i złotego, na rezystorze znajdują się paski, które wskazują na inną wartość rezystancji, z pewnością będzie to miało negatywne konsekwencje na działanie układów elektronicznych, w których ten komponent jest zainstalowany. Typowym błędem jest również nieznajomość kolorów pasków oraz ich kolejności. Prawidłowe zrozumienie kodu paskowego jest kluczowe dla każdego inżyniera, ponieważ pozwala to na nawiązanie do praktycznych zastosowań i standardów branżowych. Ponadto, znaczenie tolerancji jest często niedoceniane; niektórzy mogą zakładać, że tolerancje nie mają wpływu na działanie obwodu, co jest błędnym założeniem. W rzeczywistości, tolerancja odgrywa kluczową rolę w stabilności i niezawodności obwodów elektronicznych, a dobór odpowiednich komponentów na podstawie dokładnych specyfikacji jest absolutnie niezbędny, aby uniknąć problemów w przyszłości.

Pytanie 39

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
B. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
C. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
D. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi
Prawidłowa odpowiedź wskazuje na to, że pracownik obsługujący urządzenie elektryczne prądu stałego o napięciu znamionowym 60 V w III klasie ochronności może odczuwać skutki przepływu prądu podczas kontaktu z nieizolowanymi elementami czynnych. W kontekście III klasy ochronności urządzeń elektrycznych, oznacza to, że sprzęt jest zabezpieczony w taki sposób, aby nie stwarzał zagrożenia dla użytkownika. Urządzenia te są projektowane z dodatkowymi środkami ochrony, na przykład przez zastosowanie izolacji oraz zastosowanie materiałów, które nie przewodzą prądu. Niemniej jednak, w sytuacji, gdy pracownik ma kontakt z nieizolowanymi elementami, takich jak przewody lub terminale, ryzyko odczuwalnych skutków przepływu prądu istnieje. Ważne jest, aby przestrzegać norm i dobrych praktyk, takich jak zapewnienie odpowiednich procedur szkoleniowych oraz stosowanie osłon ochronnych, aby minimalizować ryzyko porażenia prądem. W praktyce oznacza to, że zawsze należy zachować ostrożność i stosować odpowiednie środki ochrony osobistej, takie jak rękawice izolacyjne oraz narzędzia z izolowanymi uchwytami.

Pytanie 40

Które elementy przedstawiono na zdjęciu?

Ilustracja do pytania
A. Obciążniki do układów hydraulicznych.
B. Sondy pomiarowe.
C. Pojemniki na sprężone powietrze.
D. Akumulatory hydrauliczne.
Analiza pozostałych odpowiedzi ujawnia szereg nieporozumień dotyczących funkcji i konstrukcji elementów hydraulicznych. Sondy pomiarowe, chociaż istotne w systemach hydraulicznych, są używane do pomiaru ciśnienia lub poziomu płynów, co różni się zasadniczo od funkcji akumulatorów hydraulicznych, które służą do magazynowania energii. Sondy nie mają zdolności do gromadzenia płynu pod ciśnieniem ani do stabilizacji ciśnienia w układzie. Kolejnym elementem są pojemniki na sprężone powietrze, które również różnią się od akumulatorów hydraulicznych, gdyż ich funkcjonalność dotyczy przechowywania sprężonego powietrza, a nie płynów hydraulicznych. W kontekście wymagań technicznych, akumulatory hydrauliczne projektowane są w oparciu o różne materiały i technologie, co czyni je unikalnymi w porównaniu do pojemników na sprężone powietrze. Obciążniki do układów hydraulicznych również nie są akumulatorami, ponieważ ich rolą jest stabilizowanie maszyn i pojazdów w czasie pracy, a nie magazynowanie energii. W związku z tym, mylenie tych elementów prowadzi do fundamentalnych błędów w zrozumieniu ich zastosowania i wpływa na projektowanie oraz eksploatację systemów hydraulicznych. Zrozumienie różnic między tymi komponentami jest kluczowe dla efektywnego zarządzania systemami hydraulicznymi oraz ich bezpieczeństwa.