Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 1 listopada 2025 20:09
  • Data zakończenia: 1 listopada 2025 20:25

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zespół odpowiedzialny za obsługę systemu mechtronicznego zauważył nagły spadek efektywności sprężarki tłokowej oraz to, że w czasie jej pracy powietrze wydostaje się z cylindra przez filtr ssawny do atmosfery. Jakie jest prawdopodobne źródło nieprawidłowego działania tego urządzenia?

A. Niewłaściwie ustawiony wyłącznik ciśnieniowy
B. Wytarcie jednego z pierścieni uszczelniających tłok
C. Awaria zaworu zwrotnego ssącego
D. Nieprawidłowy kierunek obrotów silnika
Uszkodzenie zaworu zwrotnego ssącego jest kluczowym czynnikiem wpływającym na wydajność sprężarki tłokowej. Zawór ten odpowiada za prawidłowy kierunek przepływu powietrza do cylindra, a jego uszkodzenie może skutkować wydmuchiwanie powietrza z cylindra zamiast jego zasysania. W praktyce, w przypadku uszkodzenia zaworu, sprężarka nie jest w stanie osiągnąć zadanego ciśnienia, co prowadzi do spadku wydajności. Przykładowo, w przemyśle, gdzie sprężarki tłokowe są wykorzystywane do zasilania narzędzi pneumatycznych, brak odpowiedniego ciśnienia może spowodować opóźnienia w produkcji oraz zwiększenie kosztów operacyjnych. Zgodnie z dobrą praktyką, regularna konserwacja i kontrola stanu zaworów zwrotnych, a także ich wymiana co określony czas, są niezbędne dla zapewnienia długotrwałego i efektywnego działania systemów pneumatycznych. Tego typu podejścia są zgodne z normami bezpieczeństwa i efektywności energetycznej, jakie powinny być przestrzegane w zakładach przemysłowych.

Pytanie 2

Który z wymienionych programów jest przeznaczony do tworzenia kodów NC dla obrabiarek numerycznych?

A. Edgecam
B. IntelliCAD
C. Solid Edge
D. hwentor
Wybór takich programów jak hwentor, IntelliCAD czy Solid Edge do generowania kodów NC dla obrabiarek numerycznych jest w sumie nietrafiony, bo te programy do czego innego służą. hwentor, to narzędzie, które nie jest zbyt popularne w obróbce skrawaniem i nie nadaje się do generowania kodów NC. IntelliCAD to program do rysunków CAD i nie ma w sobie funkcji CAM, więc nie stworzy ścieżek narzędziowych potrzebnych do obróbki na CNC. Solid Edge to też CAD, głównie do modelowania 3D i symulacji, a jego CAM jest, powiedzmy, dość ograniczone i nie dorasta do pięt takim rozwiązaniom jak Edgecam. Ważne jest, żeby rozumieć różnice między tymi programami a specjalistycznym oprogramowaniem CAM. Ludzie często mylą funkcje CAD i CAM, co prowadzi do bałaganu przy wyborze narzędzi produkcyjnych. CAD służy do projektowania, a CAM do przetwarzania tych projektów w instrukcje dla maszyn. Więc trzeba dobrze dobierać oprogramowanie do swoich potrzeb, to według mnie klucz do sukcesu.

Pytanie 3

Falowniki używane w przetwornicach częstotliwości mają na celu regulację

A. kierunku obrotów silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
B. prędkości obrotowej silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
C. mocy silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
D. prędkości obrotowej silnika, poprzez modyfikację wartości prądu zasilającego silnik
Stosowanie falowników w przetwornicach częstotliwości wymaga zrozumienia różnicy między regulacją prędkości obrotowej a innymi parametrami silnika, takimi jak moc czy kierunek obrotów. Wiele osób myli regulację prędkości z regulacją mocy, co prowadzi do nieporozumień. W rzeczywistości, falownik nie reguluje mocy silnika poprzez zmianę częstotliwości napięcia, ale raczej dostosowuje prędkość obrotową do wymagań aplikacji. Zmienność prędkości obrotowej silnika jest kluczowa dla efektywnego działania różnych systemów, jednak sama regulacja mocy wymaga odmiennych podejść, takich jak zmiana wartości prądu, co mylnie zostało zasugerowane w niektórych odpowiedziach. Ponadto kierunek obrotów silnika może być regulowany przy pomocy odpowiedniego sterowania, ale nie jest to głównym celem falowników, które są projektowane przede wszystkim do precyzyjnego dostosowywania prędkości. Często występujące błędy myślowe w tej dziedzinie wynikają z braku zrozumienia podstawowych zasad działania falowników oraz ich funkcji w systemach automatyzacji. Dlatego istotne jest, aby przed podjęciem decyzji o zastosowaniu falownika, dokładnie zrozumieć jego działanie i cel, co w konsekwencji pozwoli uniknąć nieporozumień w zakresie jego zastosowania.

Pytanie 4

Który z wymienionych fragmentów kodu assemblera wskazuje na realizację operacji dodawania przez procesor?

A. MUL
B. ADD
C. SUB
D. DIV
Kod 'ADD' jest skrótem od angielskiego słowa 'addition', co w kontekście programowania assemblerowego oznacza operację dodawania. W zasadzie instrukcja ta instruuje procesor, aby dodał wartości znajdujące się w dwóch rejestrach lub pomiędzy rejestrami a pamięcią. Przykładowo, jeśli mamy rejestry R1 i R2, używając instrukcji 'ADD R1, R2', procesor doda wartość z R2 do wartości w R1 i zapisze wynik z powrotem w R1. To podejście jest kluczowe w obliczeniach arytmetycznych i w wielu algorytmach przetwarzania danych. Dodatkowo, stosowanie instrukcji 'ADD' w kodzie assemblera jest zgodne z najlepszymi praktykami w programowaniu niskopoziomowym, gdzie precyzyjne zarządzanie operacjami arytmetycznymi jest niezbędne dla wydajności aplikacji. Użycie tej instrukcji jest również powszechne w kontekście optymalizacji kodu, gdzie reducowanie liczby operacji arytmetycznych przekłada się na szybsze działanie programów.

Pytanie 5

W jaki sposób powinno się zdefiniować dane w programach sterowników PLC, które mają postać sekwencji znaków lub cyfr, przy czym cyfry traktowane są jedynie jako znaki (bez przypisanej wartości)?

A. STRING
B. BYTE
C. WORD
D. USINT
Odpowiedź STRING jest poprawna, ponieważ typ ten jest używany do reprezentowania ciągów znaków, które mogą składać się zarówno z liter, jak i cyfr. W kontekście programowania w środowisku PLC (Programmable Logic Controller), stosowanie typu STRING jest kluczowe, gdyż umożliwia przechowywanie danych jako tekst, co jest istotne w wielu aplikacjach, takich jak generowanie komunikatów, etykietowanie danych czy obsługa interfejsów użytkownika. W standardzie IEC 61131-3, który definiuje normy dotyczące programowania sterowników PLC, STRING jest jednym z podstawowych typów danych, co czyni go uniwersalnym rozwiązaniem w automatyzacji oraz programowaniu maszyn. Przykłady zastosowania obejmują przechowywanie nazw produktów, adresów, a także komunikatów błędów, które wymagają elastyczności w formacie danych. W dodatku, stringi mogą być łatwo manipulowane, co pozwala na ich formatowanie oraz analizę, co przyczynia się do większej wydajności procesów produkcyjnych.

Pytanie 6

W systemie mechatronicznym konieczne jest zastosowanie regulacji temperatury w dwóch stanach. Który z regulatorów odpowiada tym wymaganiom?

A. Proporcjonalny
B. PID
C. Dwustawny
D. PI
Regulator dwustawny, znany również jako regulator on/off, jest idealnym rozwiązaniem dla systemów wymagających dwupołożeniowej regulacji temperatury. Jego działanie polega na przełączaniu pomiędzy dwoma stanami - włączonym i wyłączonym - co zapewnia prostotę i efektywność. Taki regulator jest powszechnie stosowany w systemach grzewczych, klimatyzacyjnych oraz w urządzeniach przemysłowych, gdzie precyzyjne utrzymanie temperatury nie jest kluczowe. Przykładem może być termostat w piecu, który włącza się, gdy temperatura spada poniżej ustawionej wartości, i wyłącza, gdy ją przekracza. Dzięki swojej prostocie, regulator dwustawny jest łatwy do implementacji oraz konfiguracji, co czyni go preferowanym wyborem w wielu aplikacjach. Warto również zauważyć, że takie rozwiązanie spełnia standardy efektywności energetycznej, minimalizując zużycie energii poprzez unikanie niepotrzebnego działania grzałek czy chłodnic.

Pytanie 7

Jakie urządzenie powinno być użyte, aby zredukować natężenie prądu rozruchowego silnika indukcyjnego, który napędza systemy mechatroniczne?

A. Włącznik z opóźnieniem
B. Układ miękkiego startu
C. Sterownik PLC
D. Ochrona przed przeciążeniem
Wybór zabezpieczenia nadprądowego jako sposobu na ograniczenie prądu rozruchowego silnika indukcyjnego jest chybiony. Zabezpieczenia te mają na celu ochronę obwodów przed nadmiernym prądem, ale nie są w stanie kontrolować prądu rozruchowego, który jest zjawiskiem chwilowym. Zamiast tego, ich zadaniem jest odłączenie zasilania w momencie, gdy prąd przekroczy określoną wartość, co może prowadzić do niepotrzebnych przerw w pracy urządzeń. Ponadto, stosowanie sterownika PLC w kontekście redukcji prądu rozruchowego również nie jest skutecznym rozwiązaniem. PLC są zaprojektowane do zarządzania procesami automatyzacji, ale same w sobie nie mają mechanizmów ograniczających prąd rozruchowy. Włącznik z opóźnieniem, mimo że może opóźniać załączenie urządzeń, nie wpływa na natężenie prądu w chwili uruchomienia silnika. Te błędne koncepcje mogą wynikać z niepełnego zrozumienia działania silników oraz ich charakterystyki pracy. Kluczem do skutecznego zarządzania prądem rozruchowym jest zastosowanie odpowiednich technologii, takich jak układ miękkiego startu, który w sposób aktywny kontroluje proces uruchamiania i minimalizuje niekorzystne skutki dużych prądów w momencie startu. W praktyce, brak właściwego podejścia do tego problemu może prowadzić do uszkodzeń sprzętu, wzrostu kosztów eksploatacji oraz obniżenia efektywności całego systemu.

Pytanie 8

Jakie polecenie w środowisku programowania sterowników PLC pozwala na przesłanie programu z urządzenia do komputera?

A. Upload
B. Chart Status
C. Download
D. Single Read
Wybór odpowiedzi Download, Single Read lub Chart Status wskazuje na pewne nieporozumienia dotyczące funkcji w środowisku programowania PLC. Polecenie Download jest odwrotnością Upload i służy do przesyłania programu z komputera do sterownika, co może prowadzić do błędnych wniosków, że jest to proces, który pozwala na przekazanie danych z urządzenia. Analogicznie, Single Read to komenda, która pozwala na odczytanie pojedynczych danych z pamięci sterownika, ale nie ma związku z przesyłaniem programów. W efekcie, wybierając tę opcję, można pomylić się, sądząc, że polecenie to ma na celu przesyłanie danych, co jest niezgodne z jego rzeczywistą funkcjonalnością. Z kolei Chart Status to polecenie odnoszące się do monitorowania stanu wykresów lub procesów, ale nie ma związku z operacjami transferu danych między sterownikiem a komputerem. Wiele osób przy podejmowaniu decyzji w tej kwestii może kierować się intuicją lub wcześniejszym doświadczeniem z różnymi systemami, co może prowadzić do błędnych wyborów. Kluczowe jest zrozumienie, że każde z tych poleceń ma swoją specyfikę i zastosowanie, a nieprawidłowe ich rozumienie może prowadzić do poważnych błędów w praktyce inżynieryjnej.

Pytanie 9

Gdzie nie powinno się stosować urządzeń mechatronicznych z silnikiem komutatorowym?

A. W chłodni
B. W lakierni
C. W mleczarni
D. W suszarni
Urządzenia mechatroniczne wyposażone w silnik komutatorowy powinny unikać stosowania w lakierniach ze względu na ryzyko wytwarzania iskier podczas ich pracy. Izolacja wymagana w tych środowiskach jest kluczowa, ponieważ iskrzenie może prowadzić do zapłonu substancji łatwopalnych, co stwarza poważne zagrożenie pożarowe. Standardy bezpieczeństwa w przemyśle, takie jak ATEX lub IECEx, wyraźnie wskazują na konieczność unikania takich urządzeń w obszarach z potencjalnym ryzykiem wybuchowym. W praktyce, w lakierniach często korzysta się z urządzeń napędzanych silnikami bezkomutatorowymi lub pneumatycznymi, które eliminują ryzyko iskrzenia. Przykładowo, w systemach malarskich stosuje się automatyczne roboty lakiernicze z silnikami serwo, które zapewniają precyzyjne i bezpieczne nałożenie powłok bez ryzyka wywołania pożaru. Przestrzeganie tych zasad jest kluczowe dla bezpieczeństwa pracy oraz ochrony jakości produkcji.

Pytanie 10

Jakie urządzenie napędowe ma następujące parametry: średnica tłoka – 42 mm, średnica tłoczyska – 32 mm, skok tłoka – 150 mm, ciśnienie nominalne – 24 MPa, maksymalna prędkość tłoka – 10 m/s, częstotliwość pracy – 10 Hz?

A. Silnik hydrauliczny
B. Siłownik hydrauliczny
C. Siłownik pneumatyczny
D. Silnik pneumatyczny
Wybór silnika pneumatycznego lub siłownika pneumatycznego byłby niewłaściwy z kilku kluczowych względów. Po pierwsze, pneumatyka opiera się na sprężonym powietrzu jako medium roboczym, co ogranicza siłę generowaną przez urządzenie w porównaniu do hydrauliki, gdzie wykorzystuje się ciecz pod dużym ciśnieniem. W przykładzie podano ciśnienie nominalne 24 MPa, co jest typowe dla systemów hydraulicznych, a nie pneumatycznych, gdzie maksymalne ciśnienia są zazwyczaj znacznie niższe, wynoszące kilka barów. Dodatkowo, siłowniki pneumatyczne mają inną charakterystykę działania, w której skok i prędkość tłoka mogą być znacznie ograniczone z uwagi na naturalne właściwości sprężonego powietrza - jego kompresyjność i podatność na zmiany objętości. Z kolei silnik hydrauliczny, mimo że również korzysta z ciśnienia hydraulicznego, ma na celu przekształcenie energii hydraulicznej na ruch obrotowy, co nie odpowiada właściwościom opisanym w pytaniu, gdyż dotyczy ono ruchu linearnego. Dlatego powszechnym błędem jest mylenie zastosowań i charakterystyk tych urządzeń, co może prowadzić do niewłaściwego doboru sprzętu w praktyce przemysłowej, a tym samym do obniżenia wydajności oraz zwiększenia kosztów eksploatacji.

Pytanie 11

Jakiego typu wyjście powinien mieć sterownik PLC, aby w systemie sterowania wykorzystującym ten sterownik możliwa była modulacja szerokości impulsu – PWM?

A. Analogowe napięciowe
B. Analogowe prądowe
C. Binarne przekaźnikowe
D. Binarne tranzystorowe
Wybór niewłaściwego typu wyjścia w kontekście modulacji szerokości impulsu (PWM) wynika często z niepełnego zrozumienia zasad działania różnych typów wyjść w sterownikach PLC. Wyjścia binarne przekaźnikowe, mimo że są popularne w wielu zastosowaniach, mają ograniczenia w kontekście szybkości przełączania i precyzji kontroli czasu trwania impulsu. Przekaźniki mechaniczne mogą wolno reagować na sygnały, co powoduje problemy z generowaniem prawidłowego sygnału PWM, który wymaga bardzo szybkich zmian stanu. Z kolei wyjścia analogowe prądowe i napięciowe, mimo że mogą wykorzystywać sygnały analogowe do regulacji, nie są przeznaczone do generowania sygnałów PWM, które bazują na cyklicznych zmianach stanu „włączony-wyłączony”. Typowe błędy myślowe prowadzą do mylenia sygnałów analogowych z cyfrowymi. PWM jest techniką cyfrową, co oznacza, że wymaga wyjść, które mogą włączanie i wyłączanie w odpowiednich odstępach czasu, co jest możliwe tylko w przypadku wyjść binarnych tranzystorowych. W praktyce, zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania systemów automatyki, a ignorowanie tych zasad może prowadzić do nieefektywności w działaniu układu oraz trudności w jego dalszej diagnostyce i serwisowaniu.

Pytanie 12

Który z wymienionych zaworów działa zgodnie z zamieszczoną tabelą prawdy?

XYA
000
100
010
111
A. Podwójnego sygnału.
B. Szybkiego spustu.
C. Przełączenia obiegu.
D. Dławiąco-zwrotny.
Zawór podwójnego sygnału, zgodnie z przedstawioną tabelą prawdy, funkcjonuje na zasadzie logicznej AND, co oznacza, że jego aktywacja wymaga jednoczesnego wystąpienia dwóch sygnałów wejściowych. Taki mechanizm jest istotny w wielu zastosowaniach przemysłowych, gdzie bezpieczeństwo i precyzyjna kontrola są kluczowe. Przykładem może być system automatyki, w którym zawór podwójnego sygnału zapewnia, że tylko w momencie, gdy oba warunki bezpieczeństwa są spełnione, dochodzi do uruchomienia urządzenia. W praktyce, zawory te są często stosowane w układach hydraulicznych i pneumatycznych, gdzie wymagane są dwa sygnały do aktywacji, co minimalizuje ryzyko przypadkowego działania. Dodatkowo, w kontekście standardów branżowych, stosowanie zaworów podwójnego sygnału jest zalecane przez normy dotyczące bezpieczeństwa maszyn, co podkreśla ich znaczenie w zapewnieniu niezawodności i efektywności systemów automatyzacji.

Pytanie 13

Podczas czynności konserwacyjnych wykryto niewystarczający poziom sprężania powietrza w sprężarce tłokowej. Który z wymienionych komponentów sprężarki z pewnością nie uległ zniszczeniu?

A. Zawór ssący
B. Korbowód tłoka
C. Uszczelka głowicy
D. Gładź cylindra
Korbowód tłoka jest kluczowym elementem układu tłokowego sprężarki, ale jego stan nie wpływa bezpośrednio na poziom sprężania powietrza. Działa on jako przekaźnik ruchu, przekształcając ruch obrotowy wału korbowego na ruch posuwisty tłoka. W przypadku niskiego poziomu sprężania, przyczyny mogą leżeć w innych elementach, takich jak zawory lub gładź cylindra. Na przykład, zużycie gładzi cylindra może prowadzić do nieszczelności, co skutkuje obniżonym sprężaniem. Korbowód, będąc elementem mechanicznym, jest bardziej odporny na uszkodzenia, jeśli nie jest obciążony innymi problemami, takimi jak rozszczelnienie. Dobra praktyka w konserwacji sprężarek zaleca regularne kontrole stanu korbowodu oraz jego smarowanie, aby zminimalizować ryzyko uszkodzeń. Korbowód tłoka powinien być również sprawdzany pod kątem luzów, aby zapewnić efektywność całego układu sprężania.

Pytanie 14

Aby ustalić, czy system sprężonego powietrza jest dostatecznie szczelny, należy przeprowadzić kontrolę

A. stanu zewnętrznej powłoki rur pneumatycznych
B. szczelności zaworów odwadniających zbiorniki pneumatyczne
C. stanu izolacji termicznej rur pneumatycznych wychodzących poza budynki
D. spadku ciśnienia w układzie pneumatycznym
Ocena szczelności instalacji sprężonego powietrza jest kluczowym zagadnieniem, a niektóre podejścia do tej kwestii mogą być mylące. Sprawdzanie stanu zewnętrznej powłoki przewodów pneumatycznych, choć istotne dla ogólnej konserwacji, nie dostarcza jednoznacznych informacji o szczelności. Zewnętrzna powłoka może wyglądać na nienaruszoną, a mimo to wewnętrzne połączenia mogą być uszkodzone, co prowadzi do wycieków powietrza. Z kolei kontrola szczelności zaworów odwadniających nie jest wystarczająca, gdyż te zawory są tylko jednym z wielu elementów systemu. Ponadto, stan izolacji termicznej przewodów pneumatycznych wychodzących poza budynki, choć ma swoje znaczenie, nie jest metodą bezpośrednią oceny szczelności instalacji, a bardziej kwestią związana z utrzymywaniem temperatury sprężonego powietrza. Zrozumienie, że spadek ciśnienia w instalacji jest bezpośrednim wskaźnikiem nieszczelności, jest kluczowe dla właściwego monitorowania systemu. Użytkownicy często popełniają błąd, skupiając się na elementach, które są mniej krytyczne, zamiast na kluczowych wskaźnikach, jakimi są pomiary ciśnienia, co prowadzi do nieefektywności i wzrostu kosztów operacyjnych.

Pytanie 15

Na podstawie wymiarów łożysk podanych w tabeli dobierz łożysko kulkowe do silnika indukcyjnego o średnicy wału 10 mm i średnicy otworu w tarczy łożyskowej 30 mm.

Symbol łożyskaWymiary łożysk
śr. wewn. D
[mm]
śr. zewn. D
[mm]
wys. B, T, H
[mm]
600010268
620010309
6190112246
600112288
A. 6001
B. 6200
C. 61901
D. 6000
Odpowiedź 6200 jest na pewno dobra, bo to łożysko kulkowe ma wewnętrzną średnicę 10 mm i zewnętrzną średnicę 30 mm. To idealnie odpowiada wymaganiom, które były w pytaniu. W praktyce dobór odpowiedniego łożyska do silnika indukcyjnego to kluczowa sprawa. Dobrze dobrane łożysko pozwala na lepszą pracę silnika i wydłuża jego żywotność. Jak wiadomo, łożyska są mega ważne w maszynach, bo umożliwiają swobodne obracanie się części ruchomych, co zmniejsza tarcie. Łożysko 6200 ma naprawdę fajną konstrukcję, co zapewnia mu dużą nośność i odporność na zmęczenie, a to jest ważne, kiedy mamy do czynienia z dużymi prędkościami obrotowymi. Często znajdziesz je w różnych zakładach przemysłowych i urządzeniach elektrycznych, więc to pokazuje, jak wszechstronne to łożysko. Jak wybierasz łożysko, nie zapomnij zwrócić uwagi na oznaczenia i normy, które powinny pasować do standardów ISO. W przypadku 6200, to łożysko jest zgodne z tymi normami, co czyni je fajnym wyborem w różnych zastosowaniach.

Pytanie 16

Które z poniższych stwierdzeń na temat przeprowadzania inspekcji urządzeń elektrycznych jest fałszywe?

A. Celem inspekcji jest identyfikacja nieprawidłowości w działaniu urządzenia
B. Inspekcje są dokonywane z wykorzystaniem zmysłów wzroku, słuchu i węchu
C. W trakcie inspekcji dopuszczalne jest, aby urządzenia elektryczne pozostały pod napięciem
D. Podczas inspekcji dozwolone jest zbliżanie się do nieosłoniętych wirujących elementów urządzenia
Odpowiedź, że podczas oględzin dopuszczalne jest zbliżanie się do nieosłoniętych wirujących części urządzenia, jest nieprawidłowa, ponieważ zbliżanie się do takich elementów stwarza poważne zagrożenie dla zdrowia i życia osoby przeprowadzającej oględziny. Zgodnie z normami bezpieczeństwa, każda procedura związana z obsługą urządzeń elektrycznych powinna być przeprowadzana zgodnie z zasadami BHP oraz normami IEC 60364, które obejmują m.in. wymagania dotyczące zachowania bezpiecznej odległości od ruchomych części. Przykładowo, w przypadku maszyn wirujących, użytkownicy powinni być świadomi ryzyka związanego z przypadkowym dotknięciem wirujących elementów, co może prowadzić do poważnych urazów. Oględziny powinny być prowadzone w sposób zapewniający bezpieczeństwo, a w przypadku stwierdzenia jakichkolwiek nieprawidłowości, należy niezwłocznie podjąć działania w celu ich usunięcia. Użycie odpowiednich narzędzi ochronnych oraz przestrzeganie zasad BHP w praktyce przekłada się na redukcję ryzyka wypadków i poprawę ogólnego bezpieczeństwa pracy w obszarze technologii elektrycznych.

Pytanie 17

W dokumentacji dotyczączej prasy pneumatycznej jako kluczowy parametr eksploatacji określono ciśnienie zasilające na poziomie 0,6 MPa ± 5%. Który z podanych pomiarów nie mieści się w akceptowalnym zakresie?

A. 600 kPa
B. 0,58 MPa
C. 630 000 Pa
D. 650 kPa
Analizując pozostałe odpowiedzi, kluczowe jest zrozumienie, jak odczyty ciśnienia przekładają się na rzeczywiste normy operacyjne. Odpowiedzi takie jak 630 000 Pa i 600 kPa mieszczą się w dopuszczalnym zakresie, co oznacza, że nie stanowią zagrożenia dla urządzenia. Ważne jest, aby pamiętać, że 1 MPa odpowiada 1 000 kPa, więc 0,6 MPa to 600 kPa, a 0,58 MPa to zaledwie 580 kPa, które również są akceptowalne. Często pojawia się błąd myślowy związany z interpretacją jednostek miary, co prowadzi do nieprawidłowych wyborów. Na przykład, niektórzy użytkownicy mogą mylnie sądzić, że ciśnienia bliskie wartości nominalnej są zawsze właściwe, zaniedbując znaczenie określonego zakresu tolerancji. Wartości ciśnienia powinny być regularnie monitorowane i dostosowywane w zależności od warunków pracy, aby zapewnić bezpieczeństwo i efektywność operacyjną. Standardy branżowe podkreślają konieczność stosowania odpowiednich narzędzi pomiarowych oraz procedur kontrolnych, aby uniknąć sytuacji, które mogą prowadzić do uszkodzenia sprzętu lub zagrożenia dla personelu. Właściwe zrozumienie wartości ciśnienia zasilania jest kluczowe dla efektywnej eksploatacji systemów pneumatycznych.

Pytanie 18

Jakie parametry mierzy prądnica tachometryczna?

A. wydłużeń
B. odkształceń
C. prędkości obrotowych
D. naprężeń liniowych
Prądnica tachometryczna jest kluczowym urządzeniem w systemach automatyki przemysłowej, a jej główną funkcją jest pomiar prędkości obrotowych silników i innych elementów mechanicznych. Działa na zasadzie zjawiska elektromagnetycznego, gdzie obracająca się wirnik generuje pole magnetyczne, które przekształca się w sygnał elektryczny proporcjonalny do prędkości obrotowej. Taki sygnał można następnie używać do monitorowania parametrów pracy maszyn, co pozwala na optymalizację ich wydajności i zapobieganie awariom. Przykładowo, w systemach napędowych, monitorowanie prędkości obrotowej jest kluczowe dla synchronizacji ruchu i zapewnienia bezpieczeństwa. Normy takie jak ISO 9001 często wymagają dokładnych pomiarów parametrów pracy urządzeń, co czyni prądnice tachometryczne niezastąpionym narzędziem w wielu gałęziach przemysłu. Zrozumienie zasad działania prądnic tachometrycznych jest niezbędne dla inżynierów zajmujących się automatyką i kontrolą procesów.

Pytanie 19

Jakie niekorzystne zmiany w właściwościach cieczy hydraulicznych można zidentyfikować bezpośrednio w miejscu eksploatacji układu?

A. Obecność wody oraz lepkość cieczy
B. Zawartość cząsteczek metali i wartość kwasowa
C. Zawartość osadów i wartość zasadowa
D. Starzenie termiczne oraz obecność powietrza
Wybór odpowiedzi dotyczącej obecności wody i lepkości cieczy hydraulicznych na pierwszy rzut oka może wydawać się sensowny, jednak jest to podejście, które nie uwzględnia praktycznych aspektów oceny stanu cieczy w miejscu pracy. Obecność wody w cieczy hydraulicznej jest zaledwie jednym z wielu czynników wpływających na jej właściwości, a wykrycie wody wymaga specjalnych testów, które często nie są możliwe do przeprowadzenia w warunkach roboczych. W przypadku lepkości, choć może być ona mierzona przy pomocy przenośnych przyrządów, nie zawsze daje pełny obraz stanu cieczy, zwłaszcza gdy nie uwzględnia się wpływu temperatury i czasu eksploatacji. Zawartość osadów i liczba zasadowa są również parametrami, które zazwyczaj wymagają bardziej zaawansowanych analiz laboratoryjnych i nie mogą być oceniane w prosty sposób w miejscu pracy. Problem staje się jeszcze bardziej złożony, gdy rozważymy, że zmiany te nie zawsze są widoczne gołym okiem i mogą wymagać skomplikowanych procedur badawczych. Z kolei zrozumienie starzenia termicznego i obecności powietrza dostarcza użytkownikom cennych informacji o stanie cieczy, co pozwala na szybszą interwencję i uniknięcie potencjalnych awarii. Dlatego ważne jest, aby skoncentrować się na tych aspektach, które są bezpośrednio obserwowalne i mają kluczowe znaczenie dla bezpieczeństwa i efektywności systemów hydraulicznych.

Pytanie 20

Jaki typ systemu wizualizacji procesów przemysłowych powinien być użyty do ustawiania parametrów produkcji, gdy nie ma dostępnego miejsca na komputer?

A. System SCADA.
B. Specjalistyczne środowisko wizualizacyjne ISO/OSI.
C. Panel operatorski HMI.
D. Aplikacja oparta na architekturze NET Framework.
Wybór odpowiedzi, które nie odnoszą się do paneli HMI, wskazuje na zrozumienie ograniczeń różnych rozwiązań w kontekście wizualizacji procesów przemysłowych. Środowisko systemu SCADA jest zaawansowanym narzędziem do nadzoru i kontroli procesów, jednakże wymaga obecności komputera, co czyni je niewłaściwym rozwiązaniem w sytuacji, gdy przestrzeń jest ograniczona. Wiele osób myśli, że SCADA może być z powodzeniem zastąpione przez interfejsy użytkownika; jednakże, ich funkcjonalność i wymagania sprzętowe nie pozwalają na mobilność i elastyczność, których potrzebujemy. Dedykowane środowisko wizualizacyjne ISO/OSI również nie jest odpowiednim rozwiązaniem, ponieważ skupia się na modelu komunikacyjnym, a nie na interakcji użytkownika z procesem produkcyjnym. Ostatnia odpowiedź, dotycząca oprogramowania opartego na architekturze NET Framework, wskazuje na pewne nieporozumienie dotyczące zastosowania technologii programistycznych w kontekście wizualizacji przemysłowej. NET Framework to platforma do tworzenia aplikacji, ale sama w sobie nie spełnia wymagań do bezpośredniego interfejsu wizualizacyjnego w warunkach przemysłowych. Kluczowym błędem w rozumieniu tego pytania jest pominięcie aspektu mobilności i praktyczności, które panel operatorski HMI idealnie łączy ze specyfiką środowiska produkcyjnego.

Pytanie 21

Jaką czynność projektową można uznać za niemożliwą do zrealizowania w programie CAM?

A. Przygotowania instrukcji (G-CODE) dla urządzeń Rapid Prototyping
B. Stworzenia kodu dla maszyny CNC
C. Przygotowania dokumentacji technologicznej produktu
D. Realizowania symulacji obróbki elementu w środowisku wirtualnym
Wybierając odpowiedź, która wskazuje na możliwość opracowania dokumentacji technologicznej wyrobu w oprogramowaniu CAM, można wpaść w pułapkę myślenia, że wszystkie procesy projektowe są ze sobą ściśle powiązane i są realizowane w jednolitym środowisku. Oprogramowanie CAM jest narzędziem, które ma na celu wspieranie procesów produkcyjnych poprzez generowanie instrukcji dla maszyn CNC oraz symulowanie obróbki. Nie jest przystosowane do zadań związanych z tworzeniem dokumentacji technologicznej, co jest kluczowe dla zapewnienia efektywności i zgodności z wymaganiami jakościowymi. Typowym błędem jest założenie, że każda forma technologii wspiera wszystkie aspekty cyklu życia produktu; w rzeczywistości CAM i CAD pełnią różne funkcje. Dobrą praktyką jest zrozumienie, że dokumentacja technologiczna wymaga nie tylko schematów czy rysunków, ale także szczegółowych opisów procesów, które są tworzone w kontekście projektowania. Często można spotkać się z sytuacjami, gdzie dokumentacja technologiczna jest wytwarzana równolegle z projektowaniem, co nie jest możliwe bez użycia odpowiednich narzędzi i systemów, takich jak CAD. Świadomość odrębności tych dwóch obszarów jest kluczowa dla skutecznego zarządzania procesami produkcyjnymi oraz zapewnienia ich jakości.

Pytanie 22

W przypadku siłownika zasilanego powietrzem pod ciśnieniem równym 8 barów, który jest w stanie wykonać maksymalnie nmax = 50 cykli/min, a w trakcie jednego cyklu zużywa 1,4 litra powietrza, jakie powinny być parametry sprężarki do jego zasilania?

A. Wydajność 80 l/min, ciśnienie maksymalne 0,7 MPa
B. Wydajność 60 l/min, ciśnienie maksymalne 0,7 MPa
C. Wydajność 60 l/min, ciśnienie maksymalne 1,0 MPa
D. Wydajność 80 l/min, ciśnienie maksymalne 1,0 MPa
Wydajność sprężarki powinna wynosić 80 l/min, ponieważ siłownik zużywa 1,4 litra powietrza na jeden cykl pracy, a przy maksymalnej liczbie 50 cykli na minutę, całkowite zużycie powietrza wynosi 70 litrów na minutę (1,4 l/cykl * 50 cykli/min = 70 l/min). Dodatkowa wydajność jest zalecana, aby zapewnić stabilną pracę systemu i uwzględnić ewentualne straty ciśnienia w układzie. Ustalając ciśnienie maksymalne, należy wziąć pod uwagę, że 8 barów to równowartość 0,8 MPa. Dlatego sprężarka powinna być w stanie dostarczyć ciśnienie o 20% wyższe, aby zapewnić odpowiednią moc roboczą i uniknąć problemów z wydajnością. Ponadto, zgodnie z normami branżowymi, sprężarki z wyższym ciśnieniem roboczym są bardziej efektywne w zastosowaniach przemysłowych, co przekłada się na dłuższą żywotność komponentów oraz mniejsze ryzyko awarii. Przykładem zastosowania tego typu sprężarki jest zasilanie narzędzi pneumatycznych oraz systemów automatyzacji w zakładach produkcyjnych.

Pytanie 23

Zakres działań eksploatacyjnych dla urządzenia mechatronicznego powinien być określony na podstawie

A. dokumentacji techniczno-ruchowej urządzenia
B. dowodu zakupu urządzenia
C. karty gwarancyjnej
D. protokółu przekazania urządzenia do eksploatacji
Dokumentacja techniczno-ruchowa urządzenia mechatronicznego jest kluczowym źródłem informacji dotyczących jego eksploatacji, konserwacji oraz napraw. Zawiera szczegółowe specyfikacje techniczne, instrukcje obsługi oraz harmonogramy przeglądów, co pozwala użytkownikom na odpowiednie przygotowanie się do pracy z urządzeniem. Przykładowo, regularne przeglądy oraz konserwacja zgodnie z wytycznymi zawartymi w dokumentacji są niezbędne dla zapewnienia długotrwałej i bezawaryjnej pracy urządzenia. Dobre praktyki branżowe wskazują, że niewłaściwa eksploatacja sprzętu, wynikająca z braku znajomości zasad zawartych w dokumentacji, może prowadzić do poważnych usterek oraz zwiększonych kosztów napraw. Ponadto, dokumentacja techniczno-ruchowa zapewnia również aktualizacje dotyczące zmian w procedurach eksploatacyjnych, co jest istotne w kontekście dostosowania się do nowych standardów i norm bezpieczeństwa. Rzetelne przestrzeganie zawartych tam wytycznych jest zatem fundamentem dla efektywnej i bezpiecznej eksploatacji urządzeń mechatronicznych.

Pytanie 24

Wskaż operator używany w języku IL, który musi być uwzględniony w programie sterującym, aby zrealizować instrukcję skoku do etykiety FUN_1?

A. CAL FUN_1
B. JMP FUN_1
C. RET FUN_1
D. LD FUN_1
Operator JMP (jump) w języku IL (Instruction List) odgrywa kluczową rolę w programowaniu sterowników PLC, umożliwiając bezwarunkowe skoki do wskazanych etykiet. Użycie JMP jest szczególnie istotne w sytuacjach, gdy istnieje potrzeba wykonania fragmentu kodu w odpowiedzi na określony warunek lub zdarzenie. Na przykład, w przypadku pętli kontrolnych, operator ten pozwala na powrót do początku pętli, co jest niezbędne dla płynności działania programu. JMP jest zgodny z normą IEC 61131-3, która definiuje języki programowania PLC, co czyni go standardowym rozwiązaniem w branży. Dobrą praktyką jest korzystanie z etykiet, które są jasno zdefiniowane i opisują funkcjonalność, co ułatwia zrozumienie kodu. Przykładem zastosowania może być system automatyki w zakładzie produkcyjnym, gdzie operator JMP kieruje przepływem programu w oparciu o zmieniające się warunki, takie jak sygnały z czujników czy stany maszyn.

Pytanie 25

Podczas inspekcji zauważono zbyt głośną pracę silnika indukcyjnego pierścieniowego. Aby zredukować hałas, konieczna jest wymiana

A. łożysk tocznych
B. sprężyn dociskających
C. pierścieni ślizgowych
D. uszczelek pierścieniowych
Wybór łożysk tocznych jako elementu do wymiany w silniku indukcyjnym pierścieniowym jest kluczowy dla obniżenia hałasu i poprawy wydajności urządzenia. Łożyska toczne, odpowiedzialne za podtrzymywanie wirnika, zapewniają minimalny opór ruchu, co przekłada się na płynność pracy silnika. W przypadku uszkodzenia lub zużycia łożysk, tarcie wzrasta, co generuje dodatkowe hałasy i może prowadzić do poważnych uszkodzeń. Dlatego zaleca się regularne przeglądy stanu łożysk, a ich wymiana zgodnie z zaleceniami producentów może znacząco wydłużyć żywotność silnika. Warto również pamiętać o zastosowaniu odpowiednich smarów, które redukują tarcie i hałas. Dobrą praktyką jest również stosowanie łożysk odpowiadających normom DIN lub ISO, co zapewnia ich wysoką jakość i niezawodność. Właściwe dobieranie i konserwacja łożysk tocznych jest zatem kluczowe nie tylko dla redukcji hałasu, ale także dla efektywności energetycznej silnika.

Pytanie 26

Jaki program jest używany do projektowania obiektów w 3D?

A. PCschematic
B. AutoCad
C. Paint
D. FluidSim
AutoCad to zaawansowane oprogramowanie CAD (Computer-Aided Design), które jest szeroko stosowane w branżach inżynieryjnych oraz architektonicznych do tworzenia rysunków technicznych, projektów oraz modelowania 3D. Dzięki rozbudowanej funkcjonalności, AutoCad umożliwia nie tylko rysowanie obiektów w przestrzeni trójwymiarowej, ale także ich edytowanie i wizualizację. W praktyce, architekci wykorzystują AutoCad do projektowania budynków, co pozwala im na łatwe wprowadzanie zmian oraz generowanie szczegółowych rysunków wykonawczych. Inżynierowie mechanicy mogą używać tego programu do projektowania skomplikowanych mechanizmów czy urządzeń, co wymaga precyzyjnego modelowania i analizy. Warto również zaznaczyć, że AutoCad dorównuje międzynarodowym standardom branżowym, co czyni go niezastąpionym narzędziem w profesjonalnym projektowaniu oraz dokumentacji technicznej, a jego umiejętności są wysoko cenione na rynku pracy.

Pytanie 27

Na podstawie załączonego fragmentu instrukcji obsługi frezarki wskaż, która z wymienionych czynności konserwacyjnych powinna być najczęściej wykonywana dla maszyny niewyposażonej w opcjonalny układ chłodziwa wrzeciona (TSC).

CzęstośćPrace konserwacyjne wykonywane
Codziennie
  • Sprawdzić poziom chłodziwa podczas każdej ośmiogodzinnej zmiany (zwłaszcza podczas intensywnego użytkowania TSC)
  • Sprawdzić poziom oleju w zbiorniku olejowym prowadnicy
  • Usunąć wióry z osłon prowadnicy i osadnika
  • Usunąć wióry z urządzenia do wymiany narzędzi
  • Oczyścić stożek wrzeciona czystą szmatą i nasmarować lekkim olejem
Co tydzień
  • Sprawdzić filtry układu chłodziwa wrzeciona (TSC). W razie potrzeby oczyścić lub wymienić.
  • Sprawdzić prawidłowość pracy automatycznego spustu na filtrze regulatora.
  • W maszynach z opcją TSC oczyścić osadnik wiórów w zbiorniku płynu chłodzącego. Zdjąć pokrywę zbiornika i usunąć osad ze zbiornika. Odłączyć pompę chłodziwa od szafki i wyłączyć zasilanie maszyny przed rozpoczęciem pracy przy zbiorniku chłodziwa.
    Wykonywać tę czynność COMIESIĘCZNIE dla maszyn bez opcji TSC.
Co miesiąc
  • Sprawdzić poziom oleju w skrzynce przekładniowej. Dla wrzecion o stożku 40: Zdjąć osłonę otworu inspekcyjnego pod głowicą wrzeciona. Dolewać powoli olej od góry, aż zacznie kapać przez rurkę przelewową w nie miski osadnika. Dla wrzecion o stożku 50: Sprawdzić poziom oleju przez wziernik. W razie potrzeby dolać z boku skrzynki przekładniowej.
  • Sprawdzić, czy osłony prowadnicy działają prawidłowo i w razie potrzeby nasmarować je lekkim olejem.
  • Nałożyć gałkę smaru na zewnętrznej krawędzi szyn prowadnicy w urządzeniu do wymiany narzędzi i zmienić kolejno wszystkie narzędzia.
  • Sprawdzić poziom oleju SMTC we wzierniku (patrz „Kontrola poziomu oleju w mocowanym bocznie urządzeniu do wymiany narzędzi" w niniejszym rozdziale).
  • EC-400 Oczyścić podkładki ustalające na osi A i stanowisko ładowania. Wiąże się to z koniecznością zdjęcia palety.
A. Sprawdzenie poziomu oleju w skrzynce przekładniowej.
B. Oczyszczenie osadnika wiórów w zbiorniku płynu chłodzącego.
C. Sprawdzenie działania osłon prowadnicy.
D. Sprawdzenie prawidłowości pracy automatycznego spustu na filtrze regulatora.
Wybór odpowiedzi, która sugeruje inne czynności konserwacyjne, wskazuje na niezrozumienie harmonogramu konserwacji urządzeń mechanicznych. Sprawdzanie poziomu oleju w skrzynce przekładniowej jest istotnym zadaniem, ale zgodnie z instrukcją powinno być przeprowadzane co miesiąc, a nie co tydzień. Ignorowanie częstotliwości tych czynności może prowadzić do sytuacji, w której ważne elementy maszyny nie są odpowiednio monitorowane, co w dłuższej perspektywie może skutkować poważnymi awariami. Sprawdzanie działania osłon prowadnicy również jest ważne, ale jest to zadanie o niższej częstotliwości. Z kolei oczyszczanie osadnika wiórów w zbiorniku płynu chłodzącego dotyczy tylko maszyn wyposażonych w opcjonalny układ chłodziwa wrzeciona i nie ma zastosowania w kontekście maszyny, która go nie posiada. Takie nieprecyzyjne podejście do konserwacji może prowadzić do błędów w zarządzaniu zasobami i nieoptymalnego wykorzystania czasu pracy. Wiedza na temat częstotliwości poszczególnych czynności konserwacyjnych oraz ich znaczenia w kontekście wydajności maszyny jest kluczowa w codziennej pracy operatorów i techników. Dobre praktyki zakładają, że każda czynność powinna być dostosowana do specyfikacji producenta i rzeczywistych warunków pracy maszyny, co zdecydowanie poprawia efektywność operacyjną.

Pytanie 28

Jak zwiększenie częstotliwości napięcia zasilającego podawanego z falownika wpłynie na działanie silnika trójfazowego?

A. Obroty silnika się zmniejszą
B. Moment obciążenia silnika się zwiększy
C. Obroty silnika wzrosną
D. Maksymalny moment napędowy silnika ulegnie zmniejszeniu
Wzrost częstotliwości zasilania silnika trójfazowego nie prowadzi do zwiększenia momentu obciążenia ani do zmniejszenia maksymalnego momentu napędowego. Moment obciążenia silnika jest związany z jego zastosowaniem oraz z rodzajem napędzanego obciążenia, a nie z częstotliwością zasilania. Często można spotkać mylne przekonanie, że zmniejszenie obrotów silnika automatycznie prowadzi do wzrostu momentu, co jest błędnym rozumowaniem. W rzeczywistości, zmniejszenie obrotów silnika w wyniku obniżenia częstotliwości może powodować, że silnik nie będzie w stanie dostarczyć wymaganego momentu obrotowego, co może prowadzić do przeciążenia silnika i jego uszkodzenia. Należy również zauważyć, że przy zmniejszeniu częstotliwości pracy silnika, jego wydajność spada, a straty mocy wzrastają. W kontekście zastosowań przemysłowych, nieprzemyślane zmiany częstotliwości mogą prowadzić do nieoptymalnych warunków pracy, co w efekcie negatywnie wpłynie na cały proces technologiczny. Właściwa regulacja obrotów silnika trójfazowego powinna być przeprowadzana z uwzględnieniem jego charakterystyki oraz wymagań danego zastosowania, co jest zgodne z zasadami projektowania systemów napędowych oraz dobrymi praktykami inżynieryjnymi.

Pytanie 29

W jaki sposób należy ująć w spisie elementów zamieszczonym na schemacie montażowym mechanizmu informację o śrubie z gwintem metrycznym drobnozwojowym o średnicy 10 mm?

A. TR10
B. M10
C. S20
D. M10x1
Odpowiedź M10x1 jest prawidłowa, ponieważ spełnia standardy oznaczania śrub z gwintem metrycznym drobnozwojowym, które są powszechnie stosowane w przemyśle. Oznaczenie 'M10' wskazuje na średnicę zewnętrzną śruby wynoszącą 10 mm, co jest kluczowym parametrem dla zapewnienia odpowiedniego dopasowania w połączeniach mechanicznych. Dodatkowo, liczba '1' w oznaczeniu oznacza liczbę zwojów na milimetr, co jest istotną informacją dla oceny siły połączenia i możliwości użycia w konkretnych aplikacjach. Gwinty drobnozwojowe są szczególnie użyteczne w zastosowaniach wymagających większej precyzji, takich jak w precyzyjnych mechanizmach czy w przemyśle lotniczym i motoryzacyjnym. Warto również pamiętać, że standardy ISO 261 oraz ISO 965 definiują szczegółowe zasady dotyczące oznaczania gwintów metrycznych, co podkreśla znaczenie poprawnego zapisu w dokumentacji technicznej.

Pytanie 30

W systemie Komputerowo Zintegrowanego Wytwarzania (CIM) za co odpowiada moduł RDP?

A. organizowanie i zarządzanie produkcją
B. komputerowe wspomaganie produkcji
C. rejestrowanie danych procesowych
D. komputerowo wspomagane projektowanie
Moduł RDP (Rejestracja Danych Procesowych) w Komputerowo Zintegrowanym Wytwarzaniu (CIM) odgrywa kluczową rolę w zbieraniu i rejestracji danych dotyczących procesów produkcyjnych. Jego głównym zadaniem jest monitorowanie kluczowych parametrów, takich jak czas obróbki, zużycie narzędzi, a także inne istotne dane, które umożliwiają analizę efektywności produkcji. Zbierane informacje są niezbędne do optymalizacji procesów, co przekłada się na zwiększenie wydajności oraz redukcję kosztów. Na przykład, analiza zebranych danych może wskazać, czy dany proces wymaga modyfikacji, aby zmniejszyć czas przestoju lub zwiększyć jakość produkcji. Zgodnie z najlepszymi praktykami w branży, regularne monitorowanie tych danych pozwala na wprowadzenie usprawnień oraz szybką reakcję na ewentualne problemy, co jest kluczowe w środowisku produkcyjnym. Wykorzystując moduł RDP, przedsiębiorstwa mogą zastosować metody ciągłego doskonalenia, takie jak Six Sigma czy Lean Manufacturing, co prowadzi do długotrwałego wzrostu konkurencyjności na rynku.

Pytanie 31

Która z podanych sieci w systemach mechatronicznych funkcjonuje jako sieć bezprzewodowa?

A. ZigBee
B. Ethernet/IP
C. ModbusTCP
D. Profinet
Wybór Ethernet/IP, Profinet oraz ModbusTCP jako odpowiedzi na to pytanie może wynikać z niepełnego zrozumienia różnic między typami sieci komunikacyjnych. Ethernet/IP oraz Profinet to technologie oparte na standardzie Ethernet, które wykorzystują przewodowe połączenia sieciowe do przesyłania danych. Obydwie sieci są szeroko stosowane w automatyce przemysłowej, gdzie niezawodność, szybkość i stabilność komunikacji mają kluczowe znaczenie. Ethernet/IP stosuje protokół TCP/IP, co czyni go zintegrowanym z istniejącymi infrastrukturami sieciowymi, natomiast Profinet jest szczególnie dostosowany do systemów automatyki i wspiera różne topologie komunikacyjne, jednak obie te technologie są z definicji przewodowe. ModbusTCP również operuje na przewodowej infrastrukturze sieciowej, wykorzystując protokół TCP/IP, co sprawia, że nie może być klasyfikowany jako sieć bezprzewodowa. Typowym błędem w ocenie tych technologii jest utożsamianie ich z nowoczesnymi rozwiązaniami bez uwzględnienia ich charakterystyki. Zrozumienie tych różnic jest kluczowe dla prawidłowego doboru technologii komunikacyjnej w różnych zastosowaniach mechatronicznych.

Pytanie 32

W procesie automatyzacji produkcji, jaką rolę pełni czujnik indukcyjny?

A. Detekcja obecności metalowych obiektów
B. Kontrola poziomu płynów
C. Monitorowanie wilgotności
D. Pomiar temperatury
Czujnik indukcyjny to niezwykle ważny element w automatyzacji produkcji, szczególnie w branżach, gdzie kluczowe jest wykrywanie obecności metalowych obiektów. Działa na zasadzie zmiany pola elektromagnetycznego w momencie, gdy obiekt metalowy zbliża się do czujnika. Taki mechanizm działania pozwala na skuteczną detekcję metali bez konieczności fizycznego kontaktu z obiektem, co jest nieocenione w aplikacjach, gdzie kontakt może być niebezpieczny lub niewygodny. Przykłady zastosowań obejmują linie montażowe, gdzie czujniki indukcyjne kontrolują obecność metalowych części, czy systemy bezpieczeństwa, gdzie monitorują obecność metalowych elementów w krytycznych punktach systemu. Czujniki te charakteryzują się również dużą trwałością i odpornością na warunki środowiskowe, co czyni je niezastąpionymi w trudnych warunkach przemysłowych. Dzięki swojej precyzji i niezawodności, czujniki indukcyjne są powszechnie stosowane w różnych gałęziach przemysłu, od motoryzacyjnego po spożywczy, zapewniając efektywność i bezpieczeństwo procesów technologicznych.

Pytanie 33

Wskaż element funkcyjny, którego zastosowanie w programie sterującym umożliwi bezpośrednie zliczanie impulsów na wejściu PLC?

A. Licznik
B. Multiplekser
C. Timer TON
D. Regulator PID
Licznik jako blok funkcyjny jest kluczowym elementem w programowaniu systemów PLC, wykorzystywanym do zliczania impulsów. Jego fundamentalna funkcja polega na inkrementacji wartości licznika w odpowiedzi na otrzymane sygnały impulsowe, co pozwala na dokładne monitorowanie zdarzeń w czasie rzeczywistym. Przykładowo, w aplikacjach takich jak zliczanie produktów na linii produkcyjnej, licznik może być użyty do rejestrowania liczby sztuk, które przeszły przez określony punkt. Dobre praktyki w programowaniu PLC sugerują, aby zawsze wybierać odpowiednie bloki funkcyjne do konkretnego zadania, a licznik jest najbardziej efektywnym wyborem do zliczania impulsów. W kontekście standardów branżowych, ważne jest także, aby projektując systemy automatyki, uwzględniać aspekty takie jak szybkość reakcji i dokładność pomiarów, co licznik w pełni spełnia. Dodatkowo, korzystając z liczników, można implementować funkcje takie jak zliczanie do określonej wartości lub resetowanie, co zwiększa elastyczność w zastosowaniach automatyki.

Pytanie 34

Jaką z podanych zależności logicznych należy uwzględnić w programie kontrolnym, aby można było każdorazowo sygnalizować aktywność tylko jednego z trzech czujników podłączonych do kolejnych wejść sterownika?

A. Alternatywę wykluczającą
B. Alternatywę
C. Równowartość
D. Koniunkcję
Alternatywa wykluczająca jest kluczowym elementem w kontekście projektowania systemów sterowania z wykorzystaniem sensorów. W sytuacji, gdy mamy do czynienia z trzema sensorami, których zadziałanie ma być zgłaszane w sposób jednoznaczny, zastosowanie alternatywy wykluczającej zapewnia, że tylko jeden z sensorów może być aktywny w danym momencie. Oznacza to, że jeśli jeden sensor zostanie aktywowany, pozostałe muszą pozostać nieaktywne, co jest istotne w wielu aplikacjach, takich jak automatyka przemysłowa, systemy alarmowe czy urządzenia zabezpieczające. Przykładowo, w systemie alarmowym, aktywacja jednego czujnika ruchu powinna wykluczać sygnalizację z innych czujników, aby uniknąć fałszywych alarmów. W praktyce, stosowanie tej logiki pozwala na uniknięcie konfliktów w sygnałach, co jest zgodne z zasadami projektowania opartego na standardzie IEC 61131-3, który opisuje metody programowania systemów sterowania. Zrozumienie i umiejętność implementacji alternatywy wykluczającej jest kluczowe dla inżynierów automatyki, a także dla efektywnego rozwiązywania problemów związanych z detekcją i sygnalizacją zdarzeń.

Pytanie 35

Jaką czynność należy wykonać, aby przekształcić kod źródłowy w wersję programu, którą można przesłać do pamięci sterownika?

A. Skompilować
B. Uruchomić
C. Zdebugować
D. Wydrukować
Aby z kodu źródłowego uzyskać wersję programu nadającą się do przesłania do pamięci sterownika, konieczne jest wykonanie operacji kompilacji. Kompilacja to proces, w którym kod źródłowy, napisany w języku wysokiego poziomu, jest przekształcany w kod maszynowy, który może być bezpośrednio wykonywany przez procesor sterownika. Proces ten jest kluczowy, ponieważ tylko skompilowany kod może być zrozumiany i interpretowany przez sprzęt, co jest podstawą działania każdego programowanego urządzenia. W praktyce, po skompilowaniu kodu, uzyskujemy plik binarny, który można przesłać do pamięci urządzenia. To podejście jest zgodne z najlepszymi praktykami inżynierii oprogramowania, które podkreślają znaczenie kompilacji jako etapu niezbędnego do uzyskania poprawnych i efektywnych wersji programów. Warto również zauważyć, że kompilacja pozwala na wykrycie wielu błędów jeszcze przed uruchomieniem programu, co przyczynia się do stabilności i niezawodności systemów sterujących.

Pytanie 36

Jakie środki ochrony osobistej powinien założyć pracownik przy uruchamianiu prasy pneumatycznej przeznaczonej do nitowania?

A. Obuwie izolacyjne
B. Hełm ochronny
C. Okulary ochronne
D. Szelki bezpieczeństwa
Okulary ochronne są niezbędnym środkiem ochrony indywidualnej podczas pracy z prasą pneumatyczną do nitowania, ponieważ odpowiednio chronią oczy pracownika przed potencjalnymi zagrożeniami, takimi jak odpryski materiałów, pył czy metalowe drobiny. W przypadku pracy w środowiskach przemysłowych, gdzie odbywają się operacje związane z obróbką metali, użycie okularów ochronnych zgodnych z normami EN 166 jest kluczowe. Te normy określają wymagania dotyczące odporności na uderzenia, a także właściwości optyczne soczewek. Pracownicy powinni również zwracać uwagę na odpowiednią konserwację okularów, aby zapewnić ich skuteczność. Ponadto, w kontekście bezpieczeństwa, stosowanie okularów ochronnych w połączeniu z innymi środkami ochrony, takimi jak hełmy czy rękawice, staje się podstawą bezpiecznego środowiska pracy. Przykłady zastosowania obejmują prace w warsztatach, fabrykach czy na placach budowy, gdzie ryzyko uszkodzenia wzroku jest znaczne. Dlatego też, w każdej sytuacji potencjalnego zagrożenia dla oczu, użycie okularów ochronnych powinno być standardem.

Pytanie 37

Zakład produkcyjny zlecił unowocześnienie automatu wiertarskiego, który jest napędzany silnikiem indukcyjnym z czterostopniową przekładnią pasową, służącą do regulacji prędkości obrotowej wrzeciona wiertarki. Unowocześnienie ma na celu zamianę przekładni mechanicznej na urządzenie elektroniczne. Który z poniższych elementów powinien być użyty do realizacji tego przedsięwzięcia?

A. Prostownik jednopołówkowy niesterowany
B. Przemiennik częstotliwości
C. Przetwornicę napięcia
D. Przetwornik analogowo-cyfrowy
Wybór przetwornicy napięcia, prostownika jednopołówkowego niesterowanego czy przetwornika analogowo-cyfrowego jako zamiany przekładni mechanicznej na rozwiązania elektroniczne nie jest dobrym pomysłem. Przetwornica napięcia to urządzenie, które tylko zmienia napięcie z jednego poziomu na inny i nie ma opcji regulacji prędkości obrotowej silnika. W automatyce wykorzystuje się ją do zasilania, ale nie do kontroli obrotów. Prostownik jednopołówkowy niesterowany, który zamienia prąd zmienny na stały, też nie wpłynie na prędkość obrotową silnika, jego zadanie to dostarczanie stałego napięcia, co w tym przypadku nie wystarczy. Co do przetwornika analogowo-cyfrowego, to on przetwarza sygnały analogowe na cyfrowe, co jest przydatne do monitorowania, ale sam nie zmienia parametrów silnika. Widać tutaj błąd w myśleniu: do regulacji prędkości obrotowej potrzebna jest nie tylko konwersja napięcia, ale też zaawansowana kontrola, którą daje przemiennik częstotliwości. Wybierając niewłaściwy komponent, możesz napotkać poważne problemy z działaniem maszyny i z wyższymi kosztami eksploatacji.

Pytanie 38

Jakie informacje powinien zawierać raport z realizowanych prac konserwacyjnych frezarki numerycznej?

A. Miejsce i datę, a także czas realizacji prac konserwacyjnych
B. Miejsce i datę oraz kosztorys przeprowadzonej konserwacji
C. Datę i opis wykonanych prac oraz podpis osoby odpowiedzialnej za konserwację
D. Kosztorys oraz opis przeprowadzonych działań, a także podpis osoby odpowiedzialnej za konserwację
Protokół z prac konserwacyjnych frezarki numerycznej to coś, co musi mieć kilka ważnych rzeczy. Po pierwsze, musi być w nim data i opis tego, co dokładnie zrobiono. To jest mega ważne, żeby wiedzieć, co się działo z maszyną w czasie jej użytkowania. Dzięki temu łatwiej ogarnąć, kiedy powinny być następne przeglądy. A opis prac pozwala zobaczyć, co się zmieniło, co jest kluczowe, gdy planujemy przyszłe naprawy. I jeszcze podpis wykonawcy – to też istotne, bo jeśli coś się stanie, to wiemy, że to robił ktoś kompetentny. I wiesz, w kontekście norm ISO, taki protokół jest podstawą do audytów i kontroli jakości, co w produkcji ma ogromne znaczenie. Kiedy urządzenie się psuje, dobrze napisana dokumentacja ułatwia szybką diagnozę problemu, co jest bardzo pomocne.

Pytanie 39

Z jakiego układu zasilania powinna być zasilana maszyna mechatroniczna, skoro na schemacie sieć zasilającą oznaczono symbolem 400 V ~ 3/N/PE?

A. TN – C
B. TN – S
C. TI
D. TT
Odpowiedź TN-S jest prawidłowa, ponieważ oznaczenie 400 V ~ 3/N/PE wskazuje na sieć trójfazową z przewodem neutralnym oraz przewodem ochronnym. W układzie TN-S przewód neutralny (N) oraz przewód ochronny (PE) są odseparowane, co zwiększa bezpieczeństwo użytkowania urządzeń mechatronicznych. Stosowanie sieci TN-S jest zgodne z normami IEC 60364, które zalecają, by w przypadku zasilania systemów wymagających wysokiego poziomu bezpieczeństwa elektrycznego, stosować właśnie ten typ układu. Przykładem zastosowania układu TN-S mogą być środowiska przemysłowe, gdzie urządzenia mechatroniczne zasilane są z sieci o wysokiej mocy, minimalizując ryzyko porażenia prądem. Dodatkowo, TN-S pozwala na lepszą ochronę przed zakłóceniami elektromagnetycznymi, co jest kluczowe w przypadku wrażliwych urządzeń elektronicznych. Z tego względu układ TN-S jest preferowany w nowoczesnych instalacjach elektrycznych.

Pytanie 40

Najczęściej stosowaną kategorią cieczy roboczych w hydraulice są

A. oleje pochodzenia roślinnego
B. mieszanki wody oraz olejów mineralnych
C. oleje mineralne oraz ciecze niepalne
D. mieszanki wody i olejów roślinnych
Oleje mineralne i ciecze niepalne są kluczowymi komponentami w hydraulice, ze względu na swoje wyjątkowe właściwości. Ich doskonała lepkość oraz stabilność termiczna sprawiają, że są one w stanie skutecznie przekazywać siłę w systemach hydraulicznych. Oleje mineralne charakteryzują się także niskim poziomem parowania i dużą odpornością na utlenianie, co wydłuża żywotność cieczy roboczych. Przykładem zastosowania olejów mineralnych są systemy hydrauliczne w maszynach budowlanych, takich jak koparki, gdzie niezawodność i efektywność przekazywania energii są kluczowe. W praktyce, stosowanie cieczy niepalnych jest istotne w kontekście bezpieczeństwa oraz ochrony środowiska, szczególnie w aplikacjach wymagających minimalizacji ryzyka pożaru. Zgodnie z normami ISO 6743-4, oleje mineralne klasy HFA, HFB, HFC i HFD są zalecane w różnych zastosowaniach hydraulicznych, co potwierdza ich dominującą pozycję na rynku.