Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 9 grudnia 2025 10:14
  • Data zakończenia: 9 grudnia 2025 10:16

Egzamin niezdany

Wynik: 5/40 punktów (12,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. wirnik silnika zostanie dogoniony.
B. silnik zostanie zasilony prądem przeciwnym.
C. silnik znajdzie się w stanie jałowym.
D. wirnik silnika będzie w bezruchu.
Zrozumienie zasad działania silników indukcyjnych jest kluczowe dla efektywnej ich eksploatacji, dlatego warto przyjrzeć się błędnym koncepcjom, które mogą prowadzić do mylnych wniosków. W przypadku, gdy wirnik silnika zostaje dopędzony, oznacza to, że jego prędkość zbliża się do prędkości synchronizacyjnej, co prowadzi do zmniejszenia poślizgu, a nie do uzyskania wartości równej 1. Takie zjawisko występuje w silnikach, które są zasilane zmiennym prądem i wymagają odpowiedniego momentu obrotowego, aby zrównoważyć obciążenie. Z kolei pozostawienie silnika na biegu jałowym skutkuje poślizgiem mniejszym niż 1, ponieważ wirnik wciąż kręci się, choć bez obciążenia. Zasilanie silnika przeciwprądem to sytuacja, w której występuje odwrócenie kierunku prądu w uzwojeniach, co skutkuje przeciwnym działaniem momentu obrotowego, ale nie powoduje poślizgu równego 1 w klasycznym sensie. Typowym błędem myślowym jest zrozumienie poślizgu jako czegoś, co można kontrolować niezależnie od fizycznych parametrów pracy silnika. W rzeczywistości poślizg jest wskaźnikiem funkcjonowania silnika i jest ściśle powiązany z jego obciążeniem oraz dynamiką pracy. Wiedza na temat poślizgu jest zatem fundamentalna dla inżynierów i techników zajmujących się automatyką i energetyką.

Pytanie 2

Jakim przyrządem dokonuje się pomiaru rezystancji izolacyjnej przewodu?

A. Induktorowy miernik uziemień
B. Megaomomierz
C. Miernik pętli zwarcia
D. Omomierz
Megaomomierz jest specjalistycznym urządzeniem zaprojektowanym do pomiaru wysokiej rezystancji izolacji, co czyni go idealnym narzędziem do oceny stanu izolacji przewodów elektrycznych. W przeciwieństwie do zwykłych omomierzy, które mierzą rezystancję w zakresie niskich wartości, megaomomierz generuje napięcia próbne rzędu kilkuset woltów, co pozwala na dokładne określenie jakości izolacji. Przykładowo, podczas testowania instalacji elektrycznych w budynkach, użycie megaomomierza pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogłyby prowadzić do zwarć lub porażenia prądem. Zastosowanie tego urządzenia jest zgodne z normami IEC 61010 oraz IEC 61557, które definiują wymagania dotyczące bezpieczeństwa i wydajności tego typu pomiarów. Regularne sprawdzanie rezystancji izolacji za pomocą megaomomierza jest kluczowym elementem utrzymania bezpieczeństwa oraz niezawodności instalacji elektrycznych.

Pytanie 3

Jakie parametry ma wyłącznik różnicowoprądowy, zastosowany w instalacji zasilającej mieszkanie, której schemat ideowy przedstawiono na rysunku?

Ilustracja do pytania
A. Prąd znamionowy 16 A oraz charakterystykę B
B. Prąd znamionowy 30 mA i prąd znamionowy różnicowy 25 A
C. Prąd znamionowy 25 A i prąd znamionowy różnicowy 30 mA
D. Prąd znamionowy 10 A oraz charakterystykę B
Jeśli wybierzemy złe parametry dla wyłącznika różnicowoprądowego, to często wynika to z niejasności co do ich funkcji. Odpowiedzi z prądem znamionowym 16 A i charakterystyką B to wpadka, bo nie spełniają zwykłych wymagań dla domowych instalacji. Charakterystyka B jest dla obwodów z silnikami, a to nie jest to, co zazwyczaj mamy w domach. Prąd 16 A jest za mały dla typowych obciążeń i może się przepalić. Mylące jest też podanie 30 mA jako prądu znamionowego, bo prąd różnicowy powinien być niższy. Jak podasz 10 A i charakterystykę B, to też będzie zgrzyt, bo to nie pasuje do norm dla domu. Kluczowe jest zrozumienie, jak działają te prądy, bo od tego zależy, jakie urządzenia wybierzesz. Wiedza o tym jest naprawdę istotna dla bezpieczeństwa w instalacjach elektrycznych.

Pytanie 4

Jaką wartość maksymalnej dopuszczalnej impedancji pętli zwarcia należy zastosować w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, przy założeniu, że wyłączenie zasilania będzie realizowane przez instalacyjny wyłącznik nadprądowy C20?

A. 2,00 Ω
B. 2,30 Ω
C. 3,83 Ω
D. 1,15 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V, dla zapewnienia skutecznej ochrony przeciwporażeniowej przy uszkodzeniu izolacji, wynosi 1,15 Ω. Wartość ta jest kluczowa, ponieważ umożliwia szybkie zadziałanie instalacyjnego wyłącznika nadprądowego, takiego jak C20, który ma zdolność wyłączenia w ciągu 0,4 sekundy przy prądzie zwarciowym wynoszącym 5 kA. W praktyce, impedancja pętli zwarcia powinna być obliczana zgodnie z obowiązującymi normami, takimi jak PN-EN 60364, które określają zasady projektowania i wykonawstwa instalacji elektrycznych. Dla wyłącznika C20, wartość impedancji pętli zwarcia nie powinna przekraczać 1,15 Ω, aby zapewnić odpowiednią ochronę przed porażeniem prądem elektrycznym. Przykładowo, w instalacjach zasilających do budynków mieszkalnych, regularne pomiary impedancji pętli zwarcia są niezbędne do utrzymania bezpieczeństwa użytkowników.

Pytanie 5

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. instalacji elektrycznej.
B. linii napowietrznej niskiego napięcia.
C. instalacji odgromowej budynku.
D. linii kablowej zasilającej budynek.
Analizując inne dostępne odpowiedzi, można zauważyć, że linii kablowej zasilającej budynek, instalacji odgromowej oraz linii napowietrznej niskiego napięcia dotyczące parametry techniczne nie są w pełni adekwatne do opisanych w tabeli. W przypadku linii kablowej, chociaż mogą występować pewne parametry techniczne, jak długość czy przekrój żyły, to jednak kluczowe informacje dotyczące mocy przyłączeniowej oraz liczby obwodów są typowe dla instalacji elektrycznych wewnętrznych. Podobnie, instalacja odgromowa nie wymaga określenia mocy przyłączeniowej ani liczby obwodów, ponieważ jej celem jest ochrona budynku przed wyładowaniami atmosferycznymi, a nie efektywne zarządzanie energią. Odnośnie linii napowietrznej niskiego napięcia, to również nie podaje się parametrów takich jak rodzaj uziomu, które są kluczowe do określenia w kontekście instalacji elektrycznej wewnętrznej. Często mylenie tych kategorii wynika z niewłaściwego zrozumienia funkcji poszczególnych systemów elektrycznych w obiektach budowlanych. Warto pamiętać, że poprawne zrozumienie różnicy między tymi instalacjami oraz ich zastosowaniem jest niezbędne dla projektantów oraz techników zajmujących się instalacjami elektrycznymi i ich bezpieczeństwem.

Pytanie 6

Na którym rysunku przedstawiono przenośny uziemiacz służący do uziemiania żył przewodów instalacji kablowych w miejscu wykonywanych prac konserwacyjno-remontowych oraz w miejscu wyłączenia instalacji spod napięcia?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Poprawna odpowiedź to D, ponieważ przenośny uziemiacz jest kluczowym urządzeniem stosowanym w celu zapewnienia bezpieczeństwa podczas prac konserwacyjnych lub remontowych. Jego głównym zadaniem jest tymczasowe uziemienie żył przewodów, co minimalizuje ryzyko porażenia prądem elektrycznym w przypadku przypadkowego włączenia instalacji. Na rysunku D widać zestaw kabli z zaciskami, które są typowo używane do tego celu. Zgodnie z normami IEC 61140, stosowanie przenośnych uziemiaczy jest zalecane w miejscach, gdzie zachodzi ryzyko wystąpienia niebezpiecznego napięcia. Użycie przenośnego uziemiacza zwiększa bezpieczeństwo pracowników, ponieważ zapewnia, że żyły przewodów są skutecznie uziemione i nie mogą stanowić zagrożenia. Warto zaznaczyć, że urządzenie to powinno być stosowane zgodnie z odpowiednimi procedurami, a jego stan techniczny musi być regularnie kontrolowany.

Pytanie 7

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
B. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
C. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
D. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
Wybrany zestaw narzędzi jest idealny do montażu aparatury oraz wykonywania połączeń elektrycznych w rozdzielnicy mieszkaniowej. Szczypce do cięcia przewodów umożliwiają precyzyjne przycinanie przewodów do żądanej długości, co jest kluczowe dla zapewnienia dobrego połączenia. Przyrząd do ściągania powłoki pozwala na łatwe usunięcie zewnętrznej izolacji z przewodów, dzięki czemu można uzyskać dostęp do żył przewodów. Z kolei przyrząd do ściągania izolacji jest niezbędny do delikatnego usunięcia izolacji z końców przewodów, co jest ważne dla uniknięcia uszkodzeń drutów. Zestaw wkrętaków jest kluczowy przy montażu elementów rozdzielnicy, takich jak złącza, bezpieczniki czy przekaźniki. Wszystkie te narzędzia są zgodne z najlepszymi praktykami w branży elektrycznej, co zapewnia bezpieczeństwo oraz efektywność pracy. Dobrze dobrany zestaw narzędzi znacząco wpływa na jakość i trwałość wykonanej instalacji elektrycznej.

Pytanie 8

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
B. Nóż monterski, szczypce boczne, szczypce monterskie
C. Szczypce długie, nóż monterski, szczypce czołowe
D. Nóż monterski, szczypce boczne, zestaw wkrętaków
Wybór innych zestawów narzędzi może prowadzić do trudności w prawidłowym wykonaniu instalacji elektrycznych. Na przykład, zestaw zawierający kleszcze długie, nóż monterski i kleszcze czołowe nie zapewnia wystarczającej funkcjonalności. Kleszcze długie są przydatne do chwytania i wyginania przewodów, ale nie są optymalne do precyzyjnego cięcia lub usuwania izolacji. Dodatkowo, kleszcze czołowe są bardziej przeznaczone do chwytania i manipulacji w trudnodostępnych miejscach, co nie jest kluczowe przy wykonywaniu połączeń w puszkach rozgałęźnych. Zestaw z kompletem wkrętaków, kleszczami czołowymi i prasą ręczną również nie odpowiada wymaganiom, ponieważ prasa ręczna jest narzędziem do zaciskania złączek, które nie są typowe dla połączeń typu DY w instalacjach elektrycznych. W przypadku zestawu z nożem monterskim, szczypcami bocznymi i kleszczami monterskimi, chociaż niektóre narzędzia są przydatne, to jednak brak wkrętaków sprawia, że nie można prawidłowo wykonać połączenia przy użyciu złączek śrubowych, co jest kluczowe dla bezpieczeństwa. Prawidłowe połączenia elektryczne wymagają nie tylko odpowiednich narzędzi, ale także stosowania standardów i procedur, które zapewniają bezpieczeństwo oraz trwałość instalacji. Dlatego każda decyzja dotycząca doboru narzędzi musi być dokładnie przemyślana, aby uniknąć niebezpiecznych sytuacji w przyszłości.

Pytanie 9

Brodzik zostanie osłonięty kabiną prysznicową. W której strefie można zainstalować gniazda z kołkiem ochronnym w łazience, aby było to zgodne z przepisami bezpieczeństwa i higieny pracy oraz przepisami przeciwporażeniowymi?

Ilustracja do pytania
A. W l i 3.
B. Tylko w 3.
C. W 1 i 2.
D. Tylko w 2.
Odpowiedź "Tylko w 3" jest poprawna, ponieważ zgodnie z polskimi normami dotyczącymi bezpieczeństwa instalacji elektrycznych w pomieszczeniach narażonych na wilgoć, gniazda z kołkiem ochronnym mogą być instalowane tylko w strefie 3. Strefa ta jest usytuowana najdalej od wszelkich źródeł wody, co minimalizuje ryzyko porażenia prądem. Strefa 3 zaczyna się od 2,4 metra od krawędzi brodzika czy wanny, co oznacza, że w tym obszarze ryzyko kontaktu z wodą jest zdecydowanie mniejsze. W praktyce oznacza to, że gniazda elektryczne powinny być umiejscowione w taki sposób, aby użytkownik mógł z nich korzystać bez obaw o bezpieczeństwo, np. do podłączenia suszarki do włosów. Stosując się do tych zasad, można zapewnić bezpieczeństwo użytkowników łazienek, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym i zgodności z przepisami przeciwporażeniowymi. Warto również zapoznać się z odpowiednimi normami, takimi jak PN-IEC 60364, które szczegółowo opisują wymagania dotyczące instalacji elektrycznych w strefach zagrożonych wilgocią.

Pytanie 10

Którego silnika dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Indukcyjnego.
B. Szeregowego.
C. Obcowzbudnego.
D. Jednofazowego.
Analiza schematu powinna jasno wskazywać, że nieprawidłowe odpowiedzi są wynikiem mylnego rozumienia konstrukcji silników elektrycznych. Silniki indukcyjne, w przeciwieństwie do obcowzbudnych, nie mają oddzielnych uzwojeń wzbudzenia; ich działanie opiera się na zjawisku indukcji elektromagnetycznej, gdzie pole magnetyczne jest generowane przez prąd płynący w uzwojeniu twornika. W silnikach szeregowych uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem twornika, co wpływa na charakterystykę pracy, ale nie jest to zgodne z konstrukcją przedstawioną w schemacie. Co więcej, silniki jednofazowe, typowo używane w aplikacjach domowych, nie mają komutatora i działają w oparciu o inne zasady fizyczne, co odróżnia je od silników prądu stałego. Typowe błędy myślowe polegają na pomijaniu kluczowych elementów takich jak komutator oraz struktura uzwojeń, co prowadzi do nieprawidłowych wniosków. Zrozumienie różnic w budowie i zasadzie działania tych silników jest kluczowe dla ich prawidłowego zastosowania, co powinno być priorytetem w nauce o elektrotechnice.

Pytanie 11

Aparat pokazany na zdjęciu jest wykorzystywany do

Ilustracja do pytania
A. wykrywania prądów upływu.
B. ograniczania przepięć.
C. wyłączania prądów roboczych.
D. ograniczania napięć.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aparat przedstawiony na zdjęciu to ogranicznik przepięć, który odgrywa kluczową rolę w zabezpieczaniu instalacji elektrycznych przed skutkami przepięć. Przepięcia mogą występować na skutek naturalnych zjawisk, takich jak wyładowania atmosferyczne, ale również z powodu operacji w sieci energetycznej, co może prowadzić do niebezpiecznych wzrostów napięcia. Ograniczniki przepięć są zaprojektowane tak, aby natychmiast reagować na te niekorzystne zjawiska, kierując nadmiar energii do ziemi i tym samym chroniąc urządzenia podłączone do instalacji. W praktyce, stosowanie ograniczników przepięć jest standardem w projektowaniu obiektów budowlanych, zgodnie z normami PN-EN 62305, które definiują wymagania dotyczące ochrony przed skutkami wyładowań atmosferycznych. Dzięki zastosowaniu tych urządzeń, można znacznie zredukować ryzyko uszkodzenia sprzętu oraz strat materialnych wynikających z niekontrolowanych przepięć.

Pytanie 12

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Schemat D przedstawia poprawne podłączenie przewodów w puszce numer 3, zgodne z planem instalacji elektrycznej. W instalacjach elektrycznych kluczowe jest właściwe prowadzenie przewodów, aby zapewnić bezpieczeństwo oraz efektywność działania systemu. W tym schemacie przewód fazowy L jest poprowadzony przez łącznik, co umożliwia jego załączanie i wyłączanie. To zgodne z dobrymi praktykami, które nakazują, aby w obwodach oświetleniowych umieszczać łączniki w obwodzie fazowym, co minimalizuje ryzyko wystąpienia porażenia prądem. Dodatkowo, schemat D uwzględnia odpowiednie oznaczenia i kolorystykę przewodów, co jest zgodne z normami PN-IEC 60446. Przykładowo, przewód neutralny N powinien być niebieski, a przewód ochronny PE zielono-żółty. Użycie właściwych kolorów oraz odpowiednich połączeń zabezpiecza przed ewentualnymi awariami oraz błędami w instalacji, co jest kluczowe w każdej nowoczesnej instalacji elektrycznej.

Pytanie 13

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania. Który z wyłączników nie spełnia warunku sprawności pod względem rzeczywistego prądu zadziałania (0,5 ÷ 1,0) IΔN?

Wyłącznik 1.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P302 25-10-AC8 mA
Wyłącznik 2.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P202 25-30-AC12 mA
Wyłącznik 3.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-30-AC25 mA
Wyłącznik 4.
OznaczenieWynik pomiaru różnicowego prądu zadziałania
P304 40-100-AC70 mA
A. Wyłącznik 1.
B. Wyłącznik 2.
C. Wyłącznik 3.
D. Wyłącznik 4.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik 2 jest właściwą odpowiedzią, ponieważ jego rzeczywisty prąd zadziałania wynosi 12 mA, co nie mieści się w wymaganym zakresie 15 mA - 30 mA dla sprawnych wyłączników różnicowoprądowych. W praktyce, wyłączniki te powinny działać w określonym zakresie różnicowych prądów zadziałania, aby skutecznie chronić przed porażeniem prądem elektrycznym. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny działać w określonym zakresie prądów, aby zapewnić nie tylko ochronę, ale także niezawodność działania. Utrzymanie tych parametrów jest kluczowe, ponieważ ich niewłaściwe działanie może prowadzić do zagrożeń, takich jak pożary czy niebezpieczeństwo porażenia prądem. W sytuacjach, gdy wyłącznik działa poza określonym zakresem, zaleca się jego wymianę lub dokładne sprawdzenie przez wykwalifikowanego technika. Właściwy dobór i regularna kontrola wyłączników różnicowoprądowych są kluczowe dla bezpieczeństwa instalacji elektrycznych oraz osób z nich korzystających.

Pytanie 14

Na którym rysunku zamieszczono gniazdo wtyczkowe bryzgoszczelne?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gniazdo wtyczkowe bryzgoszczelne, które widzisz na zdjęciu C, zostało zaprojektowane tak, żeby dobrze chronić przed wilgocią i wodą. To znaczy, że nadaje się do miejsc, gdzie warunki atmosferyczne mogą być naprawdę trudne. Jest zgodne z normami PN-EN 60670-1, które mówią, jakie powinny być wymagania dla takich gniazd. Często mają dodatkowe uszczelki i osłony, które blokują wodę przed dostaniem się do wnętrza połączenia elektrycznego. W praktyce, gniazda bryzgoszczelne stosuje się w ogrodach, na tarasach albo w pobliżu basenów, gdzie zwykłe gniazda mogłyby się łatwo zepsuć. Fajnie jest też zwracać uwagę na oznaczenia IP, które mówią, jak to gniazdo jest chronione przed wodą i pyłem. Używanie takich gniazd to lepsze bezpieczeństwo dla użytkowników i dłuższa żywotność naszej instalacji elektrycznej.

Pytanie 15

Wskaż symbol graficzny przycisku zwiernego.

Ilustracja do pytania
A. Symbol 3.
B. Symbol 1.
C. Symbol 4.
D. Symbol 2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Symbol 1 jest prawidłowym przedstawieniem graficznego symbolu przycisku zwiernego. Graficzne oznaczenie to jest zgodne z międzynarodowymi standardami, takimi jak IEC 60417, które definiują symbole dla urządzeń elektrycznych. Przyciski zwierne są powszechnie stosowane w różnych aplikacjach, takich jak systemy alarmowe, automatyka budynkowa i interfejsy użytkownika w urządzeniach elektronicznych. Ich funkcjonowanie polega na zamykaniu obwodu elektrycznego po naciśnięciu przycisku, co powoduje rozpoczęcie określonego działania, na przykład włączenie światła lub aktywację alarmu. W praktycznej aplikacji, przyciski zwierne mogą być używane w różnych konfiguracjach, takich jak przyciski chwilowe, które wracają do stanu początkowego po zwolnieniu, lub przyciski z latarką, które mogą być używane do aktywacji procedur awaryjnych. Zrozumienie tego symbolu jest więc kluczowe dla projektantów systemów elektrycznych i automatyki, ponieważ umożliwia im prawidłowe dobieranie elementów w projekcie oraz zapewnienie zgodności z wiodącymi normami branżowymi.

Pytanie 16

Jakie czynności nie są częścią przeglądów instalacji elektrycznej?

A. przeprowadzania konserwacji i napraw
B. pomiarów napięcia oraz rezystancji izolacji
C. przyjęcia do eksploatacji
D. oględzin

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przyjęcie do eksploatacji instalacji elektrycznej to proces, który następuje po zakończeniu wszystkich działań związanych z jej budową oraz po przeprowadzeniu wymaganych testów i pomiarów. Proces ten nie jest częścią regularnych przeglądów instalacji elektrycznej, które koncentrują się głównie na ocenie stanu technicznego, wykonaniu pomiarów, takich jak napięcia oraz rezystancje izolacji, a także na przeprowadzaniu oględzin wizualnych oraz ocenie bezpieczeństwa użytkowania instalacji. Przyjęcie do eksploatacji obejmuje natomiast sprawdzenie, czy instalacja została wykonana zgodnie z projektem oraz obowiązującymi normami, takimi jak PN-IEC 60364. W praktyce oznacza to, że przed oddaniem instalacji do użytku, wszystkie jej elementy muszą być starannie skontrolowane, a wyniki pomiarów muszą spełniać określone normy, co przekłada się na bezpieczeństwo użytkowników oraz standardy jakości. Warto zauważyć, że odpowiednie dokumenty potwierdzające przyjęcie do eksploatacji są niezbędne dla przyszłych przeglądów oraz konserwacji.

Pytanie 17

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. DYt
B. XzTKMXpw
C. YADY
D. LgY

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 18

Który z podanych łączników elektrycznych jest przeznaczony do osobnego sterowania dwiema sekcjami oświetlenia w żyrandolu?

A. Schodowy
B. Krzyżowy
C. Świecznikowy
D. Dwubiegunowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Świecznikowy łącznik instalacyjny jest zaprojektowany w taki sposób, aby umożliwiać niezależne sterowanie różnymi sekcjami źródeł światła w lampach, w tym żyrandolach. Jego konstrukcja pozwala na włączenie i wyłączenie poszczególnych źródeł światła, co jest szczególnie przydatne w przypadku żyrandoli z wieloma żarówkami. Dzięki temu użytkownik może dostosować natężenie oświetlenia w pomieszczeniu w zależności od potrzeb, co zwiększa funkcjonalność i komfort użytkowania. Przykładowo, w jadalni, gdzie często zasiadamy z rodziną lub gośćmi, można włączyć tylko kilka żarówek, aby stworzyć przytulną atmosferę. Zastosowanie łącznika świecznikowego jest zgodne z ogólnymi normami instalacji elektrycznych, które zalecają elastyczność w sterowaniu oświetleniem. Dobrą praktyką w projektowaniu systemów oświetleniowych jest również uwzględnienie możliwości dalszej rozbudowy instalacji oraz zastosowanie łączników, które umożliwiają późniejszą modyfikację układów oświetleniowych.

Pytanie 19

Posługując się tabelą dobierz wyłącznik nadmiarowo-prądowy o największym prądzie znamionowym, który może zabezpieczać obwód jednofazowy, wykonany przewodami o przekroju 1,5 mm2, ułożonymi w sposób B2.

Tabela: Obciążalność długotrwała I, [A] przewodów miedzianych o izolacji polwinitowej przy obliczeniowej temperaturze 25oC
UłożenieA1A2B1B2CE
Liczba jednocześnie obciążonych żył232323232323
Przekrój mm2Dopuszczalna obciążalność długotrwała, A
1,515,514,515,51418,516,517,5162118,52319,5
2,5211918,519,52522242129253227
4282527243430322928344236
A. B16
B. C6
C. B6
D. B20

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "B16" jest poprawna, ponieważ wyłącznik nadmiarowo-prądowy oznaczony jako B16 ma prąd znamionowy 16 A, co jest najbliższą wartością nieprzekraczającą dopuszczalnej obciążalności długotrwałej przewodów o przekroju 1,5 mm² ułożonych w sposób B2 wynoszącej 16,5 A. Wybór odpowiedniego wyłącznika nadmiarowo-prądowego jest kluczowy w kontekście zapewnienia bezpieczeństwa instalacji elektrycznej. W przypadku przewodów o takim przekroju, należy pamiętać, że ich maksymalna obciążalność długotrwała powinna być zawsze przekraczana przez wartość prądową wyłącznika, jednak nie może ona jej przekraczać o więcej niż 10%. Używając wyłącznika B16, możemy być pewni, że ochrona przewodów będzie odpowiednia, a ryzyko przegrzania lub ich uszkodzenia zostanie zminimalizowane. Rekomendacje dotyczące użycia wyłączników nadmiarowo-prądowych w instalacjach jednofazowych, takie jak te zawarte w normie PN-IEC 60898-1, jasno określają, że dobór odpowiedniego zabezpieczenia powinien być uzależniony od zastosowania oraz przewidywanego obciążenia. Przykładowo, w przypadku obwodów zasilających gniazdka w domach jednorodzinnych, wyłącznik B16 jest standardowym wyborem, zapewniającym nie tylko ochronę przed przeciążeniem, ale również przed zwarciem.

Pytanie 20

Jakiego rodzaju przewód powinno się użyć do instalacji elektrycznej umieszczonej w drewnianych ścianach?

A. HDGs
B. YDYt
C. SMYp
D. OMYp

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodów typu HDGs do instalacji elektrycznej w drewnianych ścianach jest zasadny z kilku powodów. Przewody te charakteryzują się wysoką odpornością na uszkodzenia mechaniczne oraz działanie wysokich temperatur, co jest szczególnie istotne w kontekście drewnianych konstrukcji, które mogą być bardziej narażone na ryzyko pożaru. Przewody HDGs są wykonane z miedzi, co zapewnia doskonałą przewodność elektryczną oraz odporność na korozję. Instalacje elektryczne w drewnie powinny być przeprowadzane zgodnie z normami, takimi jak PN-IEC 60083, które uwzględniają wymagania dotyczące bezpieczeństwa i ochrony przed porażeniem prądem. W praktyce, użycie przewodów HDGs w takich instalacjach zapewnia zarówno bezpieczeństwo, jak i trwałość. Przykłady zastosowania to wszelkiego rodzaju oświetlenie i gniazda elektryczne zamontowane w drewnianych ścianach domów jednorodzinnych oraz budynków użyteczności publicznej, gdzie odpowiednie zabezpieczenia są kluczowe dla zapewnienia długotrwałej eksploatacji.

Pytanie 21

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 22 stycznika K1
B. Z zaciskiem 3 listwy zaciskowej X1
C. Z zaciskiem 4 listwy zaciskowej X1
D. Z zaciskiem A2 stycznika K1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór zacisku 3 listwy zaciskowej X1 jako poprawnej odpowiedzi jest uzasadniony analizą schematu montażowego, który jasno pokazuje połączenie pomiędzy tym zaciskiem a zaciskiem 41 stycznika K2. W praktyce, prawidłowe połączenie zacisków jest kluczowe dla zapewnienia właściwego działania systemów elektrycznych. W przypadku styczników, ich poprawne podłączenie wpływa na stabilność i bezpieczeństwo całego obwodu. W standardach branżowych, takich jak normy IEC 60947, zwraca się uwagę na znaczenie właściwego oznaczenia i połączeń w systemach automatyki, co pozwala na uniknięcie błędów w instalacji oraz ułatwia diagnostykę i konserwację. Zastosowanie logicznego podejścia do analizy schematu oraz znajomość standardów elektrycznych pomagają w skutecznym projektowaniu i wdrażaniu systemów, co jest niezbędne w każdej pracy zawodowej związanej z elektryką.

Pytanie 22

Na rysunkach przedstawiono kolejno typy końcówek źródeł światła

Ilustracja do pytania
A. E 14, AR 111, GU 10, MR 16
B. E 14, GU 10, AR 111, MR 16
C. E 14, MR 16, GU 10, AR 111
D. E 14, AR 111, MR 16, GU 10

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "E 14, GU 10, AR 111, MR 16". Typy końcówek źródeł światła, które zostały przedstawione na zdjęciu, są kluczowe w zrozumieniu różnych zastosowań oświetleniowych. Końcówka E 14, znana jako mały gwint, jest powszechnie stosowana w lampach domowych, szczególnie w żarówkach LED i energooszczędnych, co czyni ją wszechstronnym rozwiązaniem do użytku przydomowego. Końcówka GU 10, z dwoma pinami i blokadą, jest używana w reflektorach sufitowych i halogenowych, co pozwala na łatwą wymianę żarówek, a jednocześnie zapewnia stabilne mocowanie. Końcówka AR 111, z reflektorem, jest często stosowana w oświetleniu profesjonalnym, na przykład w galeriach sztuki czy sklepach, gdzie istotna jest jakość i kierunek światła. Końcówka MR 16 to popularny wybór w systemach oświetleniowych niskonapięciowych, szczególnie w przypadku oświetlenia punktowego. Znajomość tych typów końcówek jest niezbędna dla każdego, kto zajmuje się projektowaniem i montażem systemów oświetleniowych, a także dla osób wybierających odpowiednie źródła światła do różnych aplikacji.

Pytanie 23

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. upływ prądu
B. uszkodzenie przewodu
C. przepięcie
D. przeciążenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wciśnięcie przycisku TEST na wyłączniku różnicowoprądowym (RCD) ma na celu symulację upływu prądu, co jest kluczowym elementem działania tego urządzenia. Wyłączniki różnicowoprądowe są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi przez upływ prądu, dlatego ich regularne testowanie jest niezwykle istotne. Kiedy użytkownik naciska przycisk TEST, wewnętrzny mechanizm wyłącznika wytwarza sztuczny upływ prądu, co powinno spowodować natychmiastowe wyłączenie obwodu. To działanie pozwala użytkownikom na weryfikację, czy urządzenie działa prawidłowo i jest w stanie wykryć rzeczywisty upływ prądu. Zgodnie z normami branżowymi, takie testowanie powinno być przeprowadzane co najmniej raz w miesiącu, aby zapewnić bezpieczeństwo instalacji elektrycznej. Przykładowo, w przypadku zużycia izolacji przewodów lub uszkodzeń urządzeń elektrycznych, wyłącznik różnicowoprądowy powinien zareagować, wyłączając zasilanie, co zapobiega potencjalnym wypadkom i uszkodzeniom mienia. Regularne testowanie RCD przyczynia się do wyższej ochrony użytkowników oraz zgodności z przepisami bezpieczeństwa elektrycznego, jak normy PN-EN 61008-1.

Pytanie 24

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Dwa klawisze i trzy niezależne zaciski
B. Jeden klawisz i cztery niezależne zaciski
C. Jeden klawisz i trzy niezależne zaciski
D. Dwa klawisze i cztery niezależne zaciski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klasyczny pojedynczy łącznik świecznikowy, znany również jako łącznik z podwójnym klawiszem, składa się z dwóch klawiszy oraz trzech niezależnych zacisków. Każdy klawisz pozwala na sterowanie oddzielnym obwodem elektrycznym, co umożliwia niezależne włączanie i wyłączanie dwóch źródeł światła lub innych urządzeń elektrycznych. Trzy zaciski są standardem w takim rozwiązaniu – dwa z nich służą do podłączenia fazy (zasilania), natomiast trzeci zacisk jest zaciskiem neutralnym lub wspólnym. Tego typu łączniki są powszechnie stosowane w instalacjach oświetleniowych, szczególnie w pomieszczeniach, gdzie chcemy kontrolować więcej niż jedno źródło światła za pomocą jednego urządzenia. Dzięki użyciu łącznika świecznikowego z dwoma klawiszami, możliwe jest oszczędzenie miejsca oraz ułatwienie dostępu do sterowania oświetleniem, co jest zgodne z nowoczesnymi standardami projektowania wnętrz oraz efektywności energetycznej.

Pytanie 25

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Stycznik
B. Wyłącznik
C. Odłącznik
D. Rozłącznik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik to urządzenie elektroenergetyczne, które nie tylko przerywa obwód, ale także posiada komory gaszeniowe, co umożliwia mu skuteczne wyłączanie prądów zwarciowych. Komory te są kluczowe, ponieważ odpowiadają za stłumienie łuku elektrycznego, który powstaje podczas rozłączania obwodu w sytuacji zwarcia. Dzięki temu wyłączniki są w stanie szybko i bezpiecznie eliminować niebezpieczne prądy, co chroni urządzenia elektryczne oraz instalacje przed uszkodzeniami. Przykładami zastosowań wyłączników są systemy zabezpieczeń w elektrowniach, stacjach transformacyjnych oraz w instalacjach przemysłowych, gdzie niezawodność i bezpieczeństwo są kluczowe. W kontekście norm, wyłączniki powinny spełniać wymogi określone w normach IEC 60947 i PN-EN 60898, które regulują ich budowę oraz parametry pracy, co zapewnia ich wysoką jakość i efektywność działania.

Pytanie 26

Wyznacz całkowity względny błąd pomiarowy rezystancji izolacyjnej przewodów, jeśli wskazania miernika wyniosły 200,0 MΩ, a jego niepewność to ± (3% w.w. + 8 cyfr)?

A. 8,3%
B. 3,4%
C. 3,0%
D. 6,8%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć całkowity względny błąd pomiaru rezystancji izolacji, musimy uwzględnić zarówno błąd procentowy, jak i błąd wyrażony w cyfrach. W naszym przypadku, merkur wskazał wartość 200,0 MΩ, a jego niedokładność wynosi ± (3% w.w. + 8 cyfr). Najpierw obliczamy 3% z 200,0 MΩ, co daje 6,0 MΩ. Następnie dodajemy wartość 8 cyfr, co w tym przypadku oznacza 0,00000008 Ω. W rzeczywistości 8 cyfr nie wpływa znacząco na wynik w skali MΩ, ale dla pełności obliczeń uwzględniamy tę wartość. Tak więc całkowity błąd pomiarowy wynosi 6,0 MΩ. Aby obliczyć względny błąd, dzielimy błąd przez zmierzoną wartość i mnożymy przez 100%. Liczba ta daje nam 3,0%. Jednak aby uzyskać całkowity błąd, należy dodać błędy z różnych źródeł, co prowadzi do ostatecznego wyniku 3,4%. Taki sposób obliczania błędów pomiarowych jest zgodny z zaleceniami standardów ISO oraz dobrymi praktykami w dziedzinie metrologii, którymi powinni kierować się wszyscy inżynierowie pracujący z pomiarami elektrycznymi.

Pytanie 27

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. przyłącze
B. instalacje odbiorcze
C. rozdzielnicę główną
D. złącze

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Złącze jest kluczowym elementem w instalacjach elektrycznych, gdyż umożliwia efektywne połączenie różnych linii zasilających w jednym punkcie. W przypadku, gdy jedna linia zasilająca rozdziela się na co najmniej dwie, złącze pozwala na zorganizowane i bezpieczne zarządzanie tymi połączeniami. Przykładowo, w budynkach mieszkalnych złącze jest często wykorzystywane do podłączenia linii zasilających do różnych sekcji obwodów, takich jak oświetlenie i gniazdka. Stosowanie złącz zgodnych z normami PN-IEC 60947-1, zapewnia, że instalacja będzie bezpieczna i zgodna z dobrymi praktykami branżowymi. Złącza powinny być również odpowiednio oznakowane i dostosowane do przewodów, co zwiększa bezpieczeństwo oraz ułatwia ewentualną konserwację lub modernizację instalacji. Warto podkreślić, że dobór odpowiednich złącz zgodnych z wymaganiami technicznymi znacznie redukuje ryzyko awarii oraz poprawia efektywność energetyczną całego systemu.

Pytanie 28

Narzędziem niezbędnym do wymiany łącznika pokazanego na zdjęciu jest wkrętak

Ilustracja do pytania
A. PH2
B. z bitem M8
C. płaski.
D. TROX

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to wkrętak płaski, który jest narzędziem odpowiednim do wymiany łącznika pokazanego na zdjęciu. Wyłączniki instalacyjne wyposażone w zacisk śrubowy wymagają użycia wkrętaka płaskiego, ponieważ jego konstrukcja pozwala na łatwe i precyzyjne wkręcanie lub wykręcanie śrub. W praktyce, wkrętak płaski jest najczęściej wykorzystywany w instalacjach elektrycznych, gdzie śruby mocujące są powszechnie stosowane. W sytuacjach, gdy zachodzi potrzeba wymiany wyłączników, zastosowanie odpowiedniego narzędzia jest kluczowe dla zapewnienia bezpieczeństwa oraz poprawności wykonania instalacji. Warto również dodać, że wkrętaki płaskie są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do konkretnego typu śrub. W przypadku niewłaściwego narzędzia może dojść do uszkodzenia śruby lub samego wyłącznika, co prowadzi do dodatkowych kosztów i ryzyka w zakresie bezpieczeństwa elektrycznego.

Pytanie 29

Który element stosowany w instalacjach sterowania oświetleniem przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik bistabilny.
B. Czujnik ruchu.
C. Automat zmierzchowy.
D. Ściemniacz oświetlenia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Automat zmierzchowy to urządzenie, które automatycznie zarządza oświetleniem, dostosowując je do zmieniających się warunków świetlnych w otoczeniu. Na ilustracji przedstawiono model AZH-S, który jest typowym przykładem automatu zmierzchowego. Działa on na zasadzie pomiaru natężenia światła, co pozwala na włączenie oświetlenia po zachodzie słońca, a wyłączenie go w ciągu dnia. To rozwiązanie jest szczególnie przydatne w miejscach, gdzie oświetlenie jest potrzebne tylko w nocy, takich jak ogrody, podjazdy czy parkingi. Dzięki zastosowaniu automatu zmierzchowego można znacząco zmniejszyć zużycie energii, co jest zgodne z zasadami zrównoważonego rozwoju i oszczędności energii. W praktyce, urządzenia te są łatwe do zainstalowania i oferują wiele możliwości konfiguracji, co pozwala na ich dostosowanie do indywidualnych potrzeb użytkowników. Warto również zaznaczyć, że automaty zmierzchowe są zgodne z normami EN 60598-2-1, które dotyczą bezpieczeństwa i wydajności oświetlenia.

Pytanie 30

Który z wymienionych zestyków pomocniczych układu przedstawionego na schemacie uległ uszkodzeniu, skoro nie da się załączyć stycznika Q2?

Ilustracja do pytania
A. NC stycznika Q1
B. NO stycznika Q1
C. NO stycznika Q2
D. NC stycznika Q2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "NC stycznika Q1" jest poprawna ponieważ w analizowanym układzie stycznik Q2 jest sterowany zarówno poprzez przycisk S4, jak i przez styk NO stycznika Q1. Aby styk NO stycznika Q1 mógł się zamknąć, musi być on w pozycji normalnie otwartej, co oznacza, że wcześniej musiał być aktywowany przez inny element obwodu. Jeśli stycznik Q1 jest uszkodzony, a jego styk NC (normalnie zamknięty) nie przełącza się na NO, to obwód zasilający stycznik Q2 nie zostanie zamknięty. W praktyce w takich układach automatyki przemysłowej, często zdarza się, że awarie styków w układach sterowania prowadzą do niemożności uruchomienia dalszych procesów, dlatego istotne jest systematyczne monitorowanie stanu tych elementów. Zgodnie z dobrymi praktykami, należy przeprowadzać regularne przeglądy i testy funkcjonalne takich obwodów, aby zapobiegać nieprzewidzianym zatrzymaniom. Zrozumienie działania styków oraz ich wpływu na całość układu jest kluczowe dla efektywnej diagnostyki i utrzymania ruchu w systemach automatyki.

Pytanie 31

Które z poniższych elementów nie są częścią dokumentacji technicznej urządzeń elektrycznych?

A. Szczegółowe rysunki techniczne poszczególnych elementów urządzenia
B. Opis metod użytych do eliminacji zagrożeń stwarzanych przez urządzenie
C. Rysunek ogólny urządzenia wraz ze schematami obwodów zasilających
D. Instrukcja obsługi urządzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szczegółowe rysunki techniczne poszczególnych elementów urządzenia nie są częścią dokumentacji technicznej zgodnej z normami branżowymi, które definiują zakres wymaganej dokumentacji. Właściwa dokumentacja techniczna urządzeń elektrycznych powinna obejmować rysunki ogólne oraz schematy obwodów zasilania, które ilustrują ogólną architekturę i funkcjonalność urządzenia. Dodatkowo, instrukcja obsługi jest kluczowym elementem, który zapewnia użytkownikom informacje na temat prawidłowego użytkowania i konserwacji urządzenia. Opis metod eliminacji zagrożeń jest również istotny, ponieważ odnosi się do bezpieczeństwa użytkowania urządzenia oraz spełnienia norm bezpieczeństwa, takich jak dyrektywy CE czy normy IEC. W praktyce, posiadanie kompleksowej dokumentacji technicznej jest niezbędne dla zapewnienia efektywnego zarządzania cyklem życia urządzenia, od projektowania po serwisowanie, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 32

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
B. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
C. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
D. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca zasilania gniazd wtyczkowych każdego pomieszczenia z osobnego obwodu jest prawidłowa, ponieważ takie podejście nie jest zgodne z zaleceniami w zakresie projektowania instalacji elektrycznych w budynkach mieszkalnych. W praktyce, stosowanie osobnych obwodów dla każdego pomieszczenia może prowadzić do nadmiernych kosztów i skomplikowania instalacji. Zgodnie z Polską Normą PN-IEC 60364-1, obwody powinny być projektowane w taki sposób, aby zapewnić bezpieczeństwo i funkcjonalność, a nie każdy obwód powinien być dedykowany dla jednego pomieszczenia. W standardowych rozwiązaniach gniazda wtyczkowe w poszczególnych pomieszczeniach, jak kuchnia czy salon, mogą być podłączane do wspólnych obwodów, co jest bardziej efektywne, a także ułatwia ewentualne naprawy czy modernizacje. Przykładowo, w kuchni, gdzie występuje wiele odbiorników, stosuje się osobny obwód, ale gniazda w innych pomieszczeniach mogą być zasilane z jednego wspólnego obwodu, co zmniejsza ilość potrzebnych przewodów oraz urządzeń zabezpieczających.

Pytanie 33

W jakim typie układu sieciowego można zrealizować instalację trójfazową za pomocą przewodu trzyżyłowego?

A. IT
B. TN-C-S
C. TN-C
D. TN-S

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ sieciowy IT (Isolated Ground) jest układem, w którym przewody zasilające są odizolowane od ziemi, co pozwala na zastosowanie przewodu trójżyłowego. W tym układzie mamy do czynienia z niskim ryzykiem zwarć doziemnych, ponieważ instalacja nie jest uziemiona bezpośrednio, co minimalizuje ryzyko pojawienia się prądów zwarciowych. Przewód trójżyłowy, składający się z jednej żyły fazowej, neutralnej i uziemiającej, może być bezpiecznie stosowany w tym systemie. Przykładem praktycznego zastosowania instalacji w układzie IT mogą być instalacje w szpitalach lub obiektach przemysłowych, gdzie niezawodność i bezpieczeństwo zasilania są kluczowe. W takich miejscach, w razie uszkodzenia izolacji, prąd upływowy nie wpłynie na działanie urządzeń, co jest zgodne z dobrymi praktykami branżowymi, które promują minimalizację ryzyka porażenia prądem elektrycznym oraz zapewnienie ciągłości zasilania. Warto również zauważyć, że zgodnie z normą IEC 60364, instalacje w układzie IT powinny być regularnie monitorowane, aby wychwycić ewentualne nieprawidłowości.

Pytanie 34

Który aparat obwodu głównego będzie włączony zgodnie z przedstawionym schematem między wyłącznik różnicowoprądowy a stycznik?

Ilustracja do pytania
A. Przekaźnik przeciążeniowy.
B. Wyłącznik silnikowy.
C. Ochronnik przeciwprzepięciowy.
D. Rozłącznik bezpiecznikowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik silnikowy to naprawdę ważne urządzenie, które chroni silniki elektryczne przed różnymi problemami, jak przeciążenie czy zwarcie. Jak patrzysz na ten schemat, to zauważ, że symbol Q1 pokazuje, gdzie on jest, pomiędzy wyłącznikiem różnicowoprądowym a stycznikiem. Ten wyłącznik nie tylko włącza i wyłącza silnik, ale też pilnuje, ile prądu przez niego płynie. Jeśli prąd przekroczy ustaloną wartość, to automatycznie go odcina, co naprawdę chroni silnik oraz inne elementy. W elektryce mamy różne normy, jak na przykład IEC 60947-4-1, które mówią, jakie muszą być te wyłączniki. Wiadomo, że są one super przydatne w wielu branżach, od automatyki po systemy grzewcze, co pokazuje, jak ważne są dla bezpieczeństwa operacyjnego.

Pytanie 35

Urządzenie przedstawione na zdjęciu służy do

Ilustracja do pytania
A. pomiaru rezystancji uziemienia urządzenia.
B. sprawdzania ciągłości przewodów.
C. określania kolejności faz zasilających.
D. kontroli prądu upływu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenie przedstawione na zdjęciu to tester kolejności faz, co można zidentyfikować dzięki jego oznaczeniom, takim jak L1, L2, L3, które wskazują na różne fazy zasilające. W kontekście instalacji elektrycznych, poprawna kolejność faz jest kluczowa dla zapewnienia prawidłowego działania urządzeń oraz bezpieczeństwa instalacji. Niepoprawna kolejność może prowadzić do poważnych problemów, takich jak uszkodzenie sprzętu czy ryzyko porażenia prądem. Tester ten jest często używany przez elektryków do weryfikacji instalacji przed rozpoczęciem pracy, co pozwala na uniknięcie potencjalnych zagrożeń. Zgodnie z normami branżowymi, takimi jak PN-IEC 60364, zapewnienie poprawnej kolejności faz jest obowiązkowe w instalacjach trójfazowych. Przykłady zastosowania tego urządzenia obejmują kontrolę w przemyśle, w budynkach komercyjnych oraz w instalacjach domowych, gdzie prawidłowe zasilanie jest kluczowe dla funkcjonowania wielu urządzeń elektrycznych.

Pytanie 36

Jaki element przewodu oznaczony jest cyfrą 1?

Ilustracja do pytania
A. Izolacja żyły.
B. Uzbrojenie.
C. Powłoka.
D. Oplot włóknisty.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Element oznaczony cyfrą 1 na załączonym obrazku jest powłoką przewodu, co jest kluczowe dla zapewnienia jego właściwego funkcjonowania i długowieczności. Powłoka zewnętrzna pełni istotną funkcję ochronną, osłaniając przewód przed niekorzystnymi warunkami środowiskowymi, takimi jak wilgoć czy zmiany temperatury, które mogą prowadzić do degradacji materiałów. Dobre praktyki branżowe zalecają stosowanie powłok wykonanych z materiałów odpornych na działanie chemikaliów oraz uszkodzenia mechaniczne. Na przykład, w instalacjach przemysłowych często stosuje się przewody z powłoką PVC lub PUR, które zapewniają wysoką odporność na ścieranie i działanie substancji chemicznych. Przykładem zastosowania powłok jest ich użycie w kablach zasilających, które muszą być odpowiednio zabezpieczone przed uszkodzeniami, aby zapewnić bezpieczeństwo użytkowników oraz ciągłość dostaw energii. Właściwie dobrana powłoka to kluczowy element w projektowaniu przewodów, co potwierdzają standardy takie jak IEC 60227 dla kabli instalacyjnych.

Pytanie 37

Podłączenie odbiornika II klasy ochronności do gniazda z bolcem ochronnym skutkuje zadziałaniem wyłącznika różnicowoprądowego, natomiast podłączenie do innego gniazda w tym samym obwodzie nie wywołuje reakcji zabezpieczenia, a odbiornik działa normalnie. Jakiego rodzaju usterkę można stwierdzić w pierwszym gnieździe?

A. Zamieniony przewód ochronny z neutralnym
B. Uszkodzona izolacja przewodu fazowego
C. Zamieniony przewód fazowy z neutralnym
D. Odłączony przewód ochronny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Zamieniony przewód ochronny z neutralnym" jest prawidłowa, ponieważ w opisanej sytuacji, gdy odbiornik II klasy ochronności podłączony do gniazda ze stykiem ochronnym powoduje zadziałanie wyłącznika różnicowoprądowego, a w innym gniazdku na tym samym obwodzie odbiornik działa prawidłowo, wskazuje na problem z przewodami w pierwszym gnieździe. Zamiana przewodów ochronnego i neutralnego prowadzi do sytuacji, w której przewód neutralny, zamiast pełnić swoją rolę, staje się przewodem ochronnym. W rezultacie, w momencie, gdy odbiornik próbuje pobrać prąd, każdy potencjalny błąd może prowadzić do niebezpiecznego napięcia na obudowie urządzenia, co jest szczególnie niebezpieczne. Przepisy normy PN-IEC 60364 podkreślają znaczenie prawidłowego podłączenia przewodów ochronnych w celu zapewnienia bezpieczeństwa użytkowników. W praktyce, regularne przeglądy instalacji elektrycznych oraz stosowanie kolorów przewodów zgodnych z normami mogą zapobiec takim błędom. Zrozumienie funkcji każdego z przewodów oraz ich poprawne podłączenie jest kluczowe dla bezpieczeństwa i sprawności instalacji elektrycznej.

Pytanie 38

Rysunek przedstawia pętlę zwarciową w układzie

Ilustracja do pytania
A. TT
B. IT
C. TN-S
D. TN-C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TT jest poprawna, ponieważ układ TT charakteryzuje się bezpośrednim uziemieniem punktu neutralnego źródła zasilania, co jest kluczowe w kontekście ochrony przeciwporażeniowej. W tym systemie, przewód neutralny (N) oraz przewody fazowe (L1, L2, L3) są oddzielnie prowadzone, co pozwala na niezależne uziemienie ochronne (RA) od uziemienia roboczego źródła (RB). Taka konstrukcja minimalizuje ryzyko prądów upływowych i zwiększa bezpieczeństwo użytkowników, szczególnie w instalacjach o dużym narażeniu na wilgoć. W przypadku zwarcia, pętla zwarciowa, która obejmuje przewód fazowy, odbiornik, uziemienie ochronne oraz uziemienie źródła, działa szybko, wyłączając zasilanie, co jest zgodne z wymaganiami normy PN-IEC 60364, która podkreśla potrzebę stosowania skutecznych środków ochrony. Przykładowo, w budynkach użyteczności publicznej, zastosowanie układu TT jest zalecane w strefach zwiększonego ryzyka, co zwiększa komfort i bezpieczeństwo użytkowników.

Pytanie 39

Do jakiej kategorii zaliczają się kable współosiowe?

A. Telekomunikacyjnych
B. Oponowych
C. Grzewczych
D. Kabelkowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewody współosiowe, znane również jako kable koncentryczne, są kluczowym elementem w systemach telekomunikacyjnych. Ich budowa składa się z centralnego przewodu, który jest otoczony dielektrykiem, a następnie metalową osłoną. Taka konstrukcja pozwala na przesyłanie sygnałów radiowych i telewizyjnych z minimalnymi zakłóceniami, co jest szczególnie ważne w telekomunikacji. Przewody współosiowe są powszechnie wykorzystywane w instalacjach telewizyjnych, sieciach komputerowych oraz w systemach audio, gdzie istotna jest jakość przesyłanych danych. Zgodnie z normami branżowymi, takie jak ANSI/TIA-568, przewody te muszą spełniać określone standardy dotyczące tłumienia sygnału i zakłóceń elektromagnetycznych, co gwarantuje ich niezawodność. Stosowanie przewodów współosiowych w telekomunikacji jest także uzasadnione ich łatwością w instalacji oraz dużą odpornością na uszkodzenia mechaniczne, co czyni je preferowanym rozwiązaniem w wielu aplikacjach.

Pytanie 40

Jak długo maksymalnie może trwać samoczynne wyłączenie zasilania w obwodzie odbiorczym z napięciem przemiennym 230 V i prądem obciążenia do 32 A, w sieci TN, spełniający wymagania dotyczące ochrony przed dotykiem pośrednim?

A. 0,4 sekundy
B. 0,2 sekundy
C. 5 sekund
D. 1 sekundę

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalny czas samoczynnego wyłączenia zasilania w obwodzie odbiorczym o napięciu 230 V i prądzie obciążenia do 32 A w sieci TN wynoszący 0,4 sekundy jest zgodny z normami obowiązującymi w dziedzinie bezpieczeństwa elektrycznego, takimi jak norma PN-EN 61140. Czas ten określa, jak szybko system ochronny powinien zareagować w przypadku wystąpienia zwarcia lub awarii, aby zminimalizować ryzyko porażenia prądem. W praktyce oznacza to, że urządzenia zabezpieczające, takie jak wyłączniki różnicowoprądowe, muszą być zdolne do zadziałania w tym krótkim czasie. Takie szybkie reakcje są kluczowe w warunkach użytkowania, zwłaszcza w środowisku domowym i komercyjnym, gdzie obecność ludzi jest stała. Przykładem zastosowania tej zasady mogą być obwody zasilające w łazienkach oraz innych pomieszczeniach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacznie wyższe. Odpowiednie zabezpieczenia w postaci wyłączników, które działają w ciągu 0,4 sekundy, mogą uratować życie, eliminując zasilanie w przypadku niebezpiecznych sytuacji.