Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 14:29
  • Data zakończenia: 8 grudnia 2025 14:41

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na którym rysunku przedstawiono przenośny uziemiacz służący do uziemiania żył przewodów instalacji kablowych w miejscu wykonywanych prac konserwacyjno-remontowych oraz w miejscu wyłączenia instalacji spod napięcia?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Poprawna odpowiedź to D, ponieważ przenośny uziemiacz jest kluczowym urządzeniem stosowanym w celu zapewnienia bezpieczeństwa podczas prac konserwacyjnych lub remontowych. Jego głównym zadaniem jest tymczasowe uziemienie żył przewodów, co minimalizuje ryzyko porażenia prądem elektrycznym w przypadku przypadkowego włączenia instalacji. Na rysunku D widać zestaw kabli z zaciskami, które są typowo używane do tego celu. Zgodnie z normami IEC 61140, stosowanie przenośnych uziemiaczy jest zalecane w miejscach, gdzie zachodzi ryzyko wystąpienia niebezpiecznego napięcia. Użycie przenośnego uziemiacza zwiększa bezpieczeństwo pracowników, ponieważ zapewnia, że żyły przewodów są skutecznie uziemione i nie mogą stanowić zagrożenia. Warto zaznaczyć, że urządzenie to powinno być stosowane zgodnie z odpowiednimi procedurami, a jego stan techniczny musi być regularnie kontrolowany.

Pytanie 2

Jakie urządzenia powinny być zastosowane do wykonania pomiaru rezystancji w sposób techniczny?

A. woltomierza i amperomierza
B. omomierza oraz woltomierza
C. omomierza i amperomierza
D. watomierza oraz woltomierza
Pomiar rezystancji metodą techniczną przy użyciu woltomierza i amperomierza opiera się na zasadzie, że rezystancję można obliczyć z prawa Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce, aby zmierzyć rezystancję, najpierw stosuje się woltomierz do zmierzenia napięcia na rezystorze, a następnie amperomierz do pomiaru prądu płynącego przez ten rezystor. Dzięki tym pomiarom, możliwe jest obliczenie rezystancji z dużą dokładnością. Ta metoda jest często wykorzystywana w laboratoriach do testowania komponentów elektronicznych, w elektrotechnice oraz w różnych aplikacjach przemysłowych, gdzie precyzyjne pomiary są kluczowe. Przykładem zastosowania tej metody może być diagnozowanie uszkodzeń w obwodach elektronicznych, gdzie pomiar rezystancji pomaga określić stan różnych podzespołów. Warto również wspomnieć, że stosowanie tej metody jest zgodne z normami PN-EN 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych.

Pytanie 3

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Brąz
B. Stal
C. Miedź
D. Aluminium
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.

Pytanie 4

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,95
B. 0,71
C. 0,79
D. 0,75
Znamionowa sprawność silnika jednofazowego obliczana jest na podstawie wzoru: η = P_N / (U_N * I_N * cos φ_N), gdzie P_N to moc mechaniczna, U_N to napięcie znamionowe, I_N to prąd znamionowy, a cos φ_N to współczynnik mocy. Podstawiając wartości: η = 3,7 kW / (230 V * 21,4 A * 0,95) ≈ 0,79. Zrozumienie sprawności silnika jest kluczowe dla efektywności energetycznej w zastosowaniach przemysłowych. Wysoka sprawność oznacza mniejsze straty energii, co przekłada się na niższe koszty eksploatacji oraz mniejszą emisję zanieczyszczeń. W praktyce, dobór silników o znamionowej sprawności powyżej 0,80 jest standardem w branży, co zgodne jest z normami IEC 60034-30, które promują silniki o wysokiej efektywności. Dlatego, przy wyborze silnika, warto zwrócić uwagę na jego sprawność, co przyczyni się do zrównoważonego rozwoju i oszczędności energetycznych w dłuższym okresie.

Pytanie 5

Jakie urządzenie powinno zostać zainstalowane w pośrednim układzie pomiarowym mocy czynnej w zakładzie przemysłowym?

A. Przetwornicę napięcia
B. Transformator separacyjny
C. Transformator bezpieczeństwa
D. Przekładnik prądowy
Przekładnik prądowy jest kluczowym elementem w pośrednich układach pomiarowych mocy czynnej, ponieważ jego główną funkcją jest przekształcenie dużych prądów roboczych na niższe, które mogą być bezpiecznie zmierzone przez urządzenia pomiarowe. Działa to na zasadzie indukcji elektromagnetycznej, gdzie prąd w obwodzie pierwotnym generuje pole magnetyczne, które z kolei indukuje prąd w obwodzie wtórnym. Dzięki zastosowaniu przekładników prądowych, możliwe jest monitorowanie i obliczanie zużycia energii, co jest niezwykle istotne w zarządzaniu efektywnością energetyczną w zakładach przemysłowych. Przykładem zastosowania mogą być instalacje, w których przekładniki prądowe są wykorzystywane do pomiarów w systemach monitorujących zużycie energii elektrycznej w czasie rzeczywistym. Dobrą praktyką w branży jest również regularna kalibracja przekładników, aby zapewnić ich dokładność oraz niezawodność w długoterminowym użytkowaniu. W kontekście norm, należy również odnosić się do standardów IEC 61869, które regulują kwestie dotyczące przekładników prądowych oraz ich zastosowań w układach pomiarowych.

Pytanie 6

Do realizacji układu przedstawionego na schemacie należy zastosować stycznik Q19 z następującą liczbą i rodzajem zestyków:

Ilustracja do pytania
A. 3NC + 2NO + 1NC
B. 3NC + 1NO + 2NC
C. 3NO + 1NO + 2NC
D. 3NO + 2NO + 1NC
Wybrana odpowiedź jest prawidłowa, ponieważ stycznik Q19 wymaga zastosowania trzech zestyków normalnie otwartych (3NO), jednego zestyków normalnie otwartego (1NO) oraz dwóch zestyków normalnie zamkniętych (2NC). W praktycznych zastosowaniach, takie zestawienie pozwala na skuteczne sterowanie obwodami, w których konieczne jest jednoczesne włączanie kilku urządzeń oraz realizacja funkcji zabezpieczających, takich jak odcięcie zasilania w przypadku awarii. W kontekście standardów branżowych, takie połączenie zestyków jest zgodne z normami IEC 60947, które definiują wymagania dla aparatów elektrycznych. Dobrą praktyką jest również regularne przeglądanie schematów układów oraz dobór odpowiednich elementów na podstawie ich charakterystyki oraz wymagań obciążeniowych. Dzięki starannej analizie schematu można uniknąć problemów związanych z niewłaściwym doborem zestyków, co jest kluczowe dla bezpieczeństwa i efektywności działania instalacji elektrycznych.

Pytanie 7

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 10 do 20
B. 2 do 3
C. 3 do 5
D. 5 do 10
Odpowiedź "2 do 3" jest poprawna, ponieważ wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z działają w granicach krotności prądu znamionowego na poziomie od 2 do 3. To oznacza, że wyzwalacz zareaguje w przypadku, gdy prąd zwarciowy osiągnie wartość 2-3 razy wyższą od prądu znamionowego urządzenia. Wyłączniki te są przeznaczone do ochrony obwodów z wysoką odpornością na prądy rozruchowe, co czyni je idealnymi do stosowania w instalacjach z urządzeniami takimi jak transformatory czy silniki elektryczne. Standardy takie jak PN-EN 60947-2 definiują wymagania dotyczące wyłączników, a ich zastosowanie w praktyce pomaga w minimalizacji ryzyka uszkodzenia instalacji oraz zapewnienia bezpieczeństwa użytkowników. Przykładem może być sytuacja, w której w obwodzie z silnikiem występuje krótki impuls prądowy, co może prowadzić do zadziałania wyłącznika, zanim dojdzie do poważniejszych uszkodzeń. Stosując wyłączniki typu Z, można skutecznie ograniczyć ryzyko zwarć w obwodach o niskiej tolerancji na prądy zwarciowe.

Pytanie 8

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. zamiana miejscami dwóch faz
B. brak podłączenia jednej fazy
C. zamiana jednej fazy z przewodem neutralnym
D. brak podłączenia dwóch faz
Zamiana dwóch faz między sobą jest prawidłową odpowiedzią, ponieważ w trójfazowych systemach zasilania kierunek obrotów silnika elektrycznego zależy od kolejności faz. Silniki asynchroniczne, do jakich należy hydrofor, są zaprojektowane tak, aby ich wirnik obracał się w określonym kierunku. W przypadku zamiany faz, na przykład przy podłączeniu L1 do przewodu L2 i L2 do L1, dochodzi do odwrócenia kierunku pola magnetycznego, co z kolei skutkuje zmianą kierunku obrotów silnika. W praktyce, aby upewnić się, że silnik działa prawidłowo, należy zwrócić uwagę na prawidłowe podłączenie faz zgodnie z dokumentacją techniczną producenta. W przypadku silników wielofazowych, zwłaszcza w aplikacjach przemysłowych, przestrzeganie tych zasad jest kluczowe dla efektywności i bezpieczeństwa pracy. Dlatego w instalacjach elektrycznych należy stosować odpowiednie oznaczenia kolorystyczne oraz zabezpieczenia, aby zminimalizować ryzyko błędów w podłączeniu.

Pytanie 9

Jakiego rodzaju przewód powinno się użyć do instalacji elektrycznej umieszczonej w drewnianych ścianach?

A. YDYt
B. OMYp
C. HDGs
D. SMYp
Wybór przewodów typu HDGs do instalacji elektrycznej w drewnianych ścianach jest zasadny z kilku powodów. Przewody te charakteryzują się wysoką odpornością na uszkodzenia mechaniczne oraz działanie wysokich temperatur, co jest szczególnie istotne w kontekście drewnianych konstrukcji, które mogą być bardziej narażone na ryzyko pożaru. Przewody HDGs są wykonane z miedzi, co zapewnia doskonałą przewodność elektryczną oraz odporność na korozję. Instalacje elektryczne w drewnie powinny być przeprowadzane zgodnie z normami, takimi jak PN-IEC 60083, które uwzględniają wymagania dotyczące bezpieczeństwa i ochrony przed porażeniem prądem. W praktyce, użycie przewodów HDGs w takich instalacjach zapewnia zarówno bezpieczeństwo, jak i trwałość. Przykłady zastosowania to wszelkiego rodzaju oświetlenie i gniazda elektryczne zamontowane w drewnianych ścianach domów jednorodzinnych oraz budynków użyteczności publicznej, gdzie odpowiednie zabezpieczenia są kluczowe dla zapewnienia długotrwałej eksploatacji.

Pytanie 10

W układzie przedstawionym na rysunku łącznik nie powoduje wyłączenia żarówki. W celu zdiagnozowania usterki wykonano pomiary, których wyniki zapisano w tabeli.

Lp.Pomiar rezystancji między punktamiWartość
Ω
12 – 30
23 – 50
35 – 6 (łącznik w pozycji otwarty)0
45 – 6 (łącznik w pozycji zamknięty)0
54 – 70
Ilustracja do pytania
A. uszkodzenie przewodu między punktami 2 – 3.
B. zwarcie międzyprzewodowe między punktami 5 – 6.
C. przerwa w przewodzie neutralnym.
D. niepewne zamocowanie puszki rozgałęźnej do podłoża.
Odpowiedź wskazująca na zwarcie międzyprzewodowe między punktami 5 – 6 jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji układu wykazała wartość 0 Ω. W normalnych warunkach, gdy łącznik jest otwarty, oczekiwalibyśmy, że rezystancja będzie nieskończona, co wskazuje na brak przepływu prądu. W przypadku stwierdzenia rezystancji równej 0 Ω, mamy do czynienia z niepożądanym połączeniem, czyli zwarciem, które prowadzi do ciągłego zasilania żarówki. Takie sytuacje mogą występować w wyniku uszkodzenia izolacji przewodów lub błędów w instalacji elektrycznej. W praktyce, aby zapobiegać takim usterkom, zaleca się regularne przeglądy i pomiary instalacji, zgodnie z normami PN-IEC 60364, które definiują wymagania dotyczące bezpieczeństwa elektrycznego. Prawidłowa diagnoza i naprawa zwarć są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji.

Pytanie 11

Na izolatorach wsporczych instaluje się przewody

A. rdzeniowe
B. uzbrojone
C. szynowe
D. kabelkowe
Odpowiedź szynowe jest prawidłowa, ponieważ przewody szynowe są wykorzystywane w systemach elektroenergetycznych do przesyłania energii elektrycznej pomiędzy różnymi elementami instalacji. Izolatory wsporcze są kluczowym elementem, który podtrzymuje przewody szynowe, zapewniając ich stabilność i bezpieczeństwo w różnych warunkach atmosferycznych. Przewody szynowe charakteryzują się dużą zdolnością do prowadzenia prądu oraz odpornością na obciążenia mechaniczne, co czyni je odpowiednimi do zastosowań w stacjach transformacyjnych i rozdzielniach. Przykładem ich zastosowania są instalacje w elektrowniach, gdzie przewody szynowe łączą transformatory z systemem dystrybucji energii. Zgodnie z normami branżowymi, stosowanie przewodów szynowych w połączeniu z odpowiednimi izolatorami jest uznawane za jedną z najlepszych praktyk w projektowaniu sieci elektroenergetycznych.

Pytanie 12

Które źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Lampę neonową.
B. Świetlówkę kompaktową.
C. Żarówkę halogenową.
D. Żarówkę wolframową.
Świetlówka kompaktowa, znana również jako energooszczędna, to źródło światła, które wyróżnia się charakterystycznym spiralnym lub zwiniętym kształtem. W przeciwieństwie do tradycyjnych żarówek, które emitują światło dzięki podgrzewaniu włókna, świetlówki kompaktowe wykorzystują zjawisko fluorescencji, co przekłada się na ich wysoką efektywność energetyczną. Ponadto, świetlówki kompaktowe charakteryzują się długą żywotnością, sięgającą nawet 10 000 godzin. Są one powszechnie stosowane w domach i biurach, gdzie pozwalają na znaczne oszczędności energii, co jest zgodne z aktualnymi standardami efektywności energetycznej. Warto również zauważyć, że emitują one mniej ciepła niż tradycyjne źródła światła, co czyni je bardziej ekologicznymi. Zastosowanie świetlówek kompaktowych jest zgodne z zasadami zrównoważonego rozwoju, które promują ograniczenie zużycia energii i redukcję emisji dwutlenku węgla.

Pytanie 13

Jak nazywa się element stosowany w instalacjach mieszkaniowych przedstawiony na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Przekaźnik bistabilny.
C. Regulator temperatury.
D. Regulator oświetlenia.
Przekaźnik bistabilny, przedstawiony na rysunku, to element stosowany w instalacjach automatyki i sterowania, który zmienia swój stan na przeciwny po przyłożeniu napięcia i utrzymuje ten stan nawet po zaniku zasilania. Oznaczenie "BIS-403" potwierdza, że jest to rzeczywiście przekaźnik bistabilny. Przekaźniki bistabilne są powszechnie wykorzystywane w systemach oświetleniowych, gdzie można je stosować do sterowania światłem w pomieszczeniach. Dzięki ich właściwościom, mogą być używane do zdalnego włączania i wyłączania urządzeń, co zwiększa efektywność energetyczną i komfort użytkowania. W standardach automatyki budynkowej, takich jak KNX czy LON, przekaźniki bistabilne odgrywają kluczową rolę w inteligentnych systemach zarządzania budynkiem, a ich zastosowanie pozwala na eliminację zbędnych przełączników oraz ułatwienie integracji z innymi elementami systemu.

Pytanie 14

W pomieszczeniu przyłączowym budynku sprawdzono ciągłość głównego połączenia wyrównawczego między główną szyną wyrównawczą a czterema punktami, jak na rysunku. Który pomiar powinien wykazać brak ciągłości połączenia?

Ilustracja do pytania
A. 1
B. 2
C. 3
D. 4
Prawidłowa odpowiedź to 4, ponieważ wskazuje na punkt, który może wykazywać brak ciągłości połączenia wyrównawczego. Punkt 4 jest połączony z rurą gazową, a jeśli instalacja gazowa została wykonana z materiału nieprzewodzącego prąd elektryczny, na przykład z plastiku, to brak ciągłości jest całkowicie uzasadniony. W praktyce, aby zapewnić bezpieczeństwo instalacji elektrycznej, istotne jest, aby wszystkie elementy metalowe były odpowiednio połączone, aby uniknąć ryzyka wystąpienia różnicy potencjałów. Zgodnie z normami, takimi jak PN-EN 62305, połączenia wyrównawcze powinny zapewniać skuteczne odprowadzanie prądów zakłócających oraz zabezpieczać przed niebezpiecznymi napięciami. Kiedy mówimy o punktach 1, 2 i 3, są one połączone z elementami metalowymi, które są przewodnikami elektryczności, co oznacza, że powinny wykazywać ciągłość połączenia. To pokazuje, jak ważne jest zrozumienie materiałów używanych w instalacji i ich właściwości przewodzących w kontekście bezpieczeństwa elektrycznego.

Pytanie 15

Który z poniższych jest podstawowym elementem ochrony przeciwporażeniowej w instalacjach elektrycznych?

A. Wyłącznik różnicowoprądowy
B. Bezpiecznik topikowy
C. Przekaźnik czasowy
D. Wyłącznik nadprądowy
Wyłącznik różnicowoprądowy jest kluczowym komponentem systemu ochrony przeciwporażeniowej w instalacjach elektrycznych. Jego główną funkcją jest wykrywanie prądów upływowych, które mogą świadczyć o uszkodzeniu izolacji lub innym zagrożeniu dla bezpieczeństwa użytkowników. Gdy wyłącznik różnicowoprądowy wykryje prąd upływowy przekraczający określoną wartość, zazwyczaj 30 mA, natychmiast odłącza zasilanie, co skutecznie zapobiega porażeniu prądem elektrycznym. Jest to szczególnie ważne w miejscach, gdzie użytkownicy mogą mieć kontakt z wodą, np. w łazienkach czy kuchniach. Wyłączniki różnicowoprądowe są zgodne z normami międzynarodowymi, takimi jak IEC 61008 i IEC 61009, oraz stanowią część standardowych wymagań instalacyjnych w wielu krajach. Ich zastosowanie w praktyce pozwala na zwiększenie bezpieczeństwa eksploatacji instalacji elektrycznych, dlatego są one nieodzownym elementem każdej nowoczesnej instalacji. Poprawna instalacja i regularne testowanie wyłączników różnicowoprądowych są kluczowe dla skutecznej ochrony użytkowników przed skutkami porażenia prądem elektrycznym.

Pytanie 16

Jaką rolę pełni uzwojenie pomocnicze w silniku prądu stałego?

A. Obniża rezystancję obwodu twornika
B. Eliminuje niekorzystne zjawiska oddziaływania wirnika
C. Wytwarza pole magnetyczne wzbudzenia
D. Generuje napięcie remanentu
Uzwojenie pomocnicze w silniku prądu stałego to naprawdę ważny element. Dzięki niemu można lepiej kontrolować, jak silnik działa, a to pomaga w unikaniu różnych dziwnych problemów, jak wibracje czy drgania. To wszystko może wpłynąć na trwałość silnika, więc to nie jest mała sprawa. W praktyce uzwojenie pomocnicze działa trochę jak pomocnik, który sprawia, że moment obrotowy jest optymalizowany w różnych warunkach. Jak dobrze się nad tym zastanowić, to silniki z takim uzwojeniem są bardziej efektywne i mogą lepiej działać w sytuacjach, gdzie precyzja jest na wagę złota, jak w robotyce czy automatyce. Wiem, że to może wydawać się skomplikowane, ale standardy jak IEC 60034 pokazują, jak te rzeczy najlepiej zaprojektować, więc warto się z nimi zapoznać.

Pytanie 17

Na podstawie rysunku montażowego określ, na jakiej wysokości od podłogi należy zamontować dolną krawędź rozdzielnicy.

Ilustracja do pytania
A. 0,90 m
B. 1,5 m
C. 1,4 m
D. 0,80 m
Zgodnie z rysunkiem montażowym, dolna krawędź rozdzielnicy powinna być zamontowana na wysokości 1500 mm (1,5 m) od podłogi. Taki wymiar jest zgodny z normami branżowymi, które określają ergonomiczne i bezpieczne wysokości montażu rozdzielnic elektrycznych. Wysokość ta zapewnia wygodny dostęp do urządzeń oraz pozwala na swobodne prowadzenie prac serwisowych. Dodatkowo, montaż na tej wysokości minimalizuje ryzyko przypadkowego kontaktu z wodą oraz zanieczyszczeniami, co jest istotne w kontekście bezpieczeństwa elektrycznego. W praktyce, takie umiejscowienie rozdzielnicy ułatwia również korzystanie z niej w warunkach przemysłowych lub w budynkach użyteczności publicznej, gdzie użytkownicy mogą być różnego wzrostu. Warto pamiętać, że zgodność z obowiązującymi standardami oraz zasadami BHP jest kluczowym aspektem każdego projektu instalacji elektrycznych.

Pytanie 18

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w ramce?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przy uszkodzeniu (dodatkowej).
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony podstawowej.
D. Ochrony uzupełniającej.
Odpowiedź wskazująca na ochronę uzupełniającą jest poprawna, ponieważ środki ochrony opisane w ramce, takie jak urządzenia różnicowoprądowe i dodatkowe połączenia wyrównawcze, pełnią kluczową rolę w zapewnieniu bezpieczeństwa użytkowników instalacji elektrycznych. Urządzenia różnicowoprądowe działają na zasadzie wykrywania różnicy w prądzie płynącym przez przewody fazowy i neutralny. W przypadku wykrycia nieprawidłowości, urządzenie natychmiast odłącza zasilanie, co zapobiega porażeniom prądem. Dodatkowe połączenia wyrównawcze są stosowane, aby zminimalizować potencjalne różnice napięcia między różnymi elementami instalacji. W sytuacji uszkodzenia izolacji dodatkowa ścieżka dla prądu zapewnia, że nie wystąpi niebezpieczne napięcie, co zwiększa ogólny poziom bezpieczeństwa. Zgodnie z normą PN-IEC 60364, te metody ochrony są klasyfikowane jako uzupełniające i są rekomendowane w instalacjach narażonych na wysokie ryzyko porażenia prądem. W praktyce, ich zastosowanie w budynkach mieszkalnych oraz obiektach użyteczności publicznej jest standardem, co potwierdza ich niezawodność i efektywność.

Pytanie 19

Na schematach instalacji elektrycznych symbol z rysunku oznacza

Ilustracja do pytania
A. wyzwalanie cieplne.
B. cewkę przekaźnika z opóźnionym działaniem.
C. cewkę przekaźnika z opóźnionym odpadaniem.
D. wyzwalanie elektroniczne.
Wyzwalanie cieplne, przedstawione na schemacie, jest kluczowym elementem w kontekście zabezpieczeń elektrycznych, które ma na celu ochronę przed przeciążeniem. Zgodnie z normą PN-EN 60617, symbol ten odnosi się do mechanizmu, który działa na zasadzie rozszerzalności cieplnej materiałów. Przykładem zastosowania wyzwalania cieplnego są wyłączniki nadprądowe, które automatycznie odłączają obwód, gdy prąd przekracza określony próg przez zbyt długi czas. Dzięki temu zapobiegają uszkodzeniu urządzeń oraz minimalizują ryzyko pożaru. Oprócz wyłączników nadprądowych, wyzwalanie cieplne stosowane jest również w przekaźnikach termicznych, które mogą być używane w silnikach elektrycznych do monitorowania temperatury i zapobiegania przegrzaniu. Zrozumienie działania tego mechanizmu jest fundamentem dla inżynierów pracujących nad projektowaniem systemów zabezpieczeń elektrycznych, co podkreśla znaczenie znajomości symboliki występującej w dokumentacji technicznej.

Pytanie 20

W strefie 0 przedstawionego na rysunku pomieszczenia z wanną można instalować

Ilustracja do pytania
A. oprawy oświetleniowe o II klasie ochronności.
B. przenośne odbiorniki o II klasie ochronności.
C. urządzenia zasilanie prądem zmiennym do 12 V.
D. elektryczne podgrzewacze wody.
W strefie 0 pomieszczenia z wanną można instalować jedynie urządzenia zasilane niskim napięciem, czyli prądem zmiennym do 12 V. Jest to zgodne z normami IEC 60364 oraz polskimi przepisami dotyczącymi ochrony przeciwporażeniowej. Niskie napięcie zapewnia znacznie wyższy poziom bezpieczeństwa w obszarach narażonych na kontakt z wodą, gdzie ryzyko porażenia prądem jest znacząco zwiększone. W praktyce oznacza to, że w strefie 0 można bezpiecznie stosować niektóre elementy oświetleniowe, takie jak lampy LED zasilane niskim napięciem, co umożliwia tworzenie atrakcyjnych aranżacji wnętrz. Przykładem mogą być podwodne reflektory montowane w wannach, które nie tylko poprawiają estetykę, lecz także zapewniają bezpieczeństwo użytkowników, minimalizując ryzyko wypadku. Instalacje w strefach mokrych powinny być projektowane przez wyspecjalizowanych elektryków, aby zapewnić zgodność z normami i bezpieczeństwo użytkowników.

Pytanie 21

Z którym zaciskiem będzie połączony zacisk 42 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem A2 stycznika K1
B. Z zaciskiem 22 stycznika K1
C. Z zaciskiem 3 listwy zaciskowej X1
D. Z zaciskiem 4 listwy zaciskowej X1
Zacisk 42 stycznika K2 jest połączony z zaciskiem 4 listwy zaciskowej X1, co można zweryfikować na podstawie schematu montażowego. Ważne jest, aby dokładnie analizować schematy w kontekście połączeń elektrycznych, ponieważ zapewniają one wizualizację, która jest kluczowa dla właściwego zrozumienia działania obwodu. W praktyce, połączenia takie umożliwiają prawidłowe funkcjonowanie urządzeń, na przykład sterowanie silnikami lub innymi komponentami systemu. W przypadku styczników, poprawne połączenia są istotne dla zapewnienia ich niezawodnej pracy. Dobrą praktyką jest również dokumentowanie wszelkich połączeń, co ułatwia późniejsze serwisowanie oraz modyfikacje w instalacji. Zrozumienie schematu oraz umiejętność interpretacji połączeń elektrycznych są fundamentami pracy w branży elektroinstalacyjnej. Warto również zaznaczyć, że zgodność z normami oraz standardami branżowymi, takimi jak IEC, jest niezbędna dla zapewnienia bezpieczeństwa i efektywności działania systemów elektrycznych.

Pytanie 22

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Pomiar impedancji w pętli zwarciowej
B. Sprawdzanie wyłącznika różnicowoprądowego
C. Weryfikacja stanu izolacji podłóg
D. Pomiar rezystancji izolacji przewodów
Pomiar rezystancji izolacji przewodów jest kluczowym elementem oceny skuteczności ochrony przed porażeniem prądem elektrycznym. Działanie to polega na sprawdzeniu, czy izolacja przewodów jest wystarczająco skuteczna, aby zapobiec niezamierzonym przepływom prądu do ziemi lub na obudowy urządzeń. Wysoka rezystancja izolacji oznacza, że przewody są dobrze izolowane i minimalizują ryzyko porażenia. W praktyce, w budynkach mieszkalnych oraz przemysłowych, pomiar ten powinien być przeprowadzany regularnie, zwłaszcza w przypadku instalacji, które są narażone na uszkodzenia mechaniczne lub działanie czynników zewnętrznych. Zgodnie z normami PN-IEC 60364, przynajmniej raz na pięć lat należy przeprowadzać taki pomiar. Uzyskane wyniki powinny być porównywane z wartościami odniesienia, które zależą od rodzaju instalacji. Odpowiednie procedury zapewniają, że nie tylko urządzenia, ale i całe instalacje elektryczne są bezpieczne dla użytkowników, co jest fundamentalne dla ochrony życia i zdrowia człowieka. Dbanie o odpowiednią rezystancję izolacji to kluczowy krok w zarządzaniu ryzykiem związanym z porażeniem prądem elektrycznym.

Pytanie 23

Aby podłączyć metalowe rury gazowe do uziemionej instalacji ochronnej w budynku jednorodzinnym, konieczne jest

A. nałożenie na rurę gazową przyłączeniową otuliny izolacyjnej na długości co najmniej 15 m od obiektu
B. bezpośrednie podłączenie rur gazowych do systemu połączeń wyrównawczych
C. zamontowanie odpowiedniej wstawki izolacyjnej pomiędzy miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do obiektu
D. zainstalowanie wstawki izolacyjnej na przyłączu gazowym w odległości co najmniej 10 m od obiektu
Zainstalowanie odpowiedniej wstawki izolacyjnej między miejscem przyłączenia przewodu wyrównawczego a miejscem wprowadzenia rurociągu do budynku jest kluczowym działaniem w celu zapewnienia bezpieczeństwa instalacji gazowej. Wstawka izolacyjna działa jako bariera, która zapobiega przewodzeniu prądu elektrycznego między metalowymi rurami gazowymi a uziemioną instalacją budynku. Prawidłowe zastosowanie takich wstawek jest zgodne z normami PN-IEC 60364, które podkreślają znaczenie izolacji w kontekście ochrony przed porażeniem prądem elektrycznym. Przykładem zastosowania tej praktyki może być sytuacja, w której instalacja gazowa znajduje się w bliskim sąsiedztwie instalacji elektrycznych, co zwiększa ryzyko przepięć. Zastosowanie wstawki izolacyjnej minimalizuje ryzyko uszkodzenia rurociągów gazowych, a tym samym podnosi bezpieczeństwo użytkowania budynku. Dbanie o odpowiednie standardy w instalacjach gazowych jest niezbędne, aby uniknąć niebezpieczeństw, takich jak wycieki czy eksplozje, a wstawki izolacyjne stanowią ważny element tej ochrony.

Pytanie 24

Która z poniższych wartości wskazuje na najwyższy poziom precyzji narzędzia pomiarowego?

A. 5
B. 1
C. 0,5
D. 0,1
Odpowiedź 0,1 jest poprawna, ponieważ w kontekście narzędzi pomiarowych oznacza najwyższą klasę dokładności. Klasa dokładności narzędzia pomiarowego wskazuje, jak blisko pomiar może być rzeczywistej wartości mierzonych wielkości. W przypadku narzędzi pomiarowych, im mniejsza wartość podana w jednostce, tym wyższa ich dokładność. W praktyce, narzędzia o dokładności 0,1 stosowane są w sytuacjach wymagających precyzyjnych pomiarów, takich jak laboratoria badawcze, przemysł precyzyjny czy metrologia. Na przykład, w pomiarach długości, takie narzędzia mogą być wykorzystywane do pomiarów w konstrukcji maszyn, gdzie minimalne odchylenie może prowadzić do dużych błędów w finalnym produkcie. Klasyfikacja narzędzi pomiarowych opiera się na standardach ISO, które definiują wymagania dotyczące dokładności i precyzji pomiarów. W praktyce, wybór narzędzia pomiarowego powinien być dostosowany do specyfikacji zadania, aby zapewnić optymalne wyniki pomiarów.

Pytanie 25

Jaką cechę materiału izolacyjnego wskazuje ostatnia litera w oznaczeniu kabla LYc?

A. Odporność na ciepło
B. Zwiększenie wytrzymałości mechanicznej
C. Niepalność
D. Odporność na olej
Oznaczenie przewodu LYc wskazuje, że materiał izolacyjny jest odporny na wysoką temperaturę. To jest mega ważne, szczególnie w zastosowaniach, gdzie przewody pracują w trudnych warunkach, jak w przemyśle czy podczas budowy. Przykładowo, przewody w piecach przemysłowych muszą wytrzymać naprawdę duże temperatury, bo inaczej izolacja może się uszkodzić. Dlatego dobrze jest wybierać przewody, które mają dużą odporność na ciepło, zgodne z normami, jak IEC czy EN. Z mojego doświadczenia, zwracanie uwagi na klasyfikację materiałów izolacyjnych jest kluczowe. Muszą one spełniać normy dotyczące temperatury pracy i bezpieczeństwa pożarowego, to ważne dla ochrony budynków i sprzętu.

Pytanie 26

Trasując położenie osprzętu instalacji w pomieszczeniu mieszkalnym na podstawie schematu, którego fragment przedstawiono na rysunku, należy

Ilustracja do pytania
A. wyłącznik i gniazda umieszczać na wysokości co najmniej 100 cm od podłoża.
B. uwzględnić zalecenia inwestora dotyczące wysokości umieszczania wyłącznika i gniazd w pomieszczeniu.
C. gniazda umieszczać w odległości co najmniej 50 cm od krawędzi drzwi i okien.
D. gniazda umieszczać tylko w strefie przypodłogowej.
Wybór odpowiedzi uwzględniającej zalecenia inwestora dotyczące wysokości umieszczania wyłącznika i gniazd w pomieszczeniu jest prawidłowy, ponieważ zgodnie z polskimi normami oraz najlepszymi praktykami w branży elektrycznej, projektowanie instalacji elektrycznych powinno uwzględniać preferencje użytkowników. Wysokość montażu osprzętu może wpływać na komfort użytkowania, dlatego istotne jest, aby dostosować ją do indywidualnych potrzeb mieszkańców. Na przykład, w pomieszczeniach, gdzie osoby o różnym wzroście korzystają z gniazd czy wyłączników, ich optymalne umiejscowienie może znacznie poprawić funkcjonalność przestrzeni. Należy również pamiętać, że wszelkie zalecenia inwestora muszą być zgodne z przepisami bezpieczeństwa, co oznacza, że powinny one być weryfikowane pod kątem zgodności z normami np. PN-IEC 60364. Uwzględnienie takich wskazówek nie tylko poprawia ergonomię, ale także zwiększa bezpieczeństwo użytkowania instalacji elektrycznej.

Pytanie 27

Wystąpienie prądu doziemienia o wartości 2,5 A w fazie L3 obwodu jednofazowych gniazd wtyczkowych przedstawionej instalacji spowoduje zadziałanie wyłącznika oznaczonego symbolem

Ilustracja do pytania
A. S304 C25
B. S301 B16
C. P301 25A
D. P301 40A
Wybór innej odpowiedzi może wynikać z niepełnego zrozumienia roli wyłączników w instalacjach elektrycznych. Wyłącznik P301 25A oraz P301 40A to urządzenia delikatnie różniące się w zakresie wartości prądowych, jednak nie są one odpowiednie do rozwiązywania problemu prądu doziemienia. Odpowiedź P301 25A byłaby niewłaściwa, ponieważ przy prądzie 2,5 A wyłącznik różnicowoprądowy zadziałałby, ale jedynie w kontekście ochrony przed porażeniem, co nie jest wystarczające w przypadku większych wartości prądu. Wartości prądów znamionowych, takie jak 16A (S301 B16) czy 25A (S304 C25), dotyczą wyłączników nadprądowych, które innego rodzaju sytuacjach mogą być przydatne, lecz nie oferują odpowiedniej ochrony przed prądem różnicowym. W przypadku prądów doziemnych, kluczowe jest korzystanie z wyłączników różnicowoprądowych, które działają na zasadzie monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Wybór wyłącznika różnicowoprądowego zgodnie z odpowiednią normą, taką jak PN-EN 61008, jest kluczowy dla zapewnienia bezpieczeństwa elektrycznego. Ważne jest, aby nie mylić tych dwóch rodzajów wyłączników i ich zastosowania w praktyce, ponieważ prowadzi to do potencjalnych zagrożeń dla użytkowników instalacji elektrycznej.

Pytanie 28

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 10 szt.
B. 13 szt.
C. 3 szt.
D. 6 szt.
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 29

Na której ilustracji przedstawiono symbol graficzny rozłącznika?

Ilustracja do pytania
A. Na ilustracji IV.
B. Na ilustracji I.
C. Na ilustracji II.
D. Na ilustracji III.
Wybór innej ilustracji jako symbolu graficznego rozłącznika może wynikać z nieporozumień dotyczących interpretacji symboli elektrycznych. Na ilustracji I, III i IV przedstawione są inne elementy schematów elektrycznych, które mają różne funkcje i zastosowania. Na przykład, ilustracja I może przedstawiać symbol przekaźnika, który ma za zadanie automatyczne włączanie i wyłączanie obwodów, co jest zupełnie inną funkcją niż rozłącznik. Z kolei ilustracja III może pokazować symbol bezpiecznika, który chroni obwód przed przeciążeniem, a ilustracja IV może przedstawiać symbol wyłącznika, który manualnie przerywa obwód. Tego rodzaju błędy w identyfikacji symboli wynikają często z braku znajomości standardów IEC 60617, które definiują różne symbole używane w schematach elektrycznych. Kluczowe jest zrozumienie, że każdy symbol ma swoje specyficzne oznaczenie oraz funkcję, dlatego mylenie ich może prowadzić do nieprawidłowych wniosków i potencjalnych zagrożeń w pracy z instalacjami elektrycznymi. Aby uniknąć tego typu pomyłek, zaleca się systematyczne zapoznawanie się z normami i dobrymi praktykami w zakresie projektowania oraz czytania schematów elektrycznych.

Pytanie 30

Które urządzenie oznacza się na schematach przedstawionym symbolem graficznym?

Ilustracja do pytania
A. Odłącznik.
B. Bezpiecznik.
C. Rozłącznik.
D. Wyłącznik.
Odpowiedź 'Wyłącznik' jest prawidłowa, ponieważ symbol przedstawiony na schemacie doskonale ilustruje funkcję wyłącznika w obwodach elektrycznych. Wyłącznik to kluczowe urządzenie, które pozwala na manualne lub automatyczne rozłączanie obwodu, co ma istotne znaczenie dla bezpieczeństwa instalacji oraz jej obsługi. Zastosowanie wyłączników pozwala na szybką reakcję w sytuacjach awaryjnych, takich jak zwarcia czy przeciążenia, co zabezpiecza przed uszkodzeniem urządzeń i instalacji. Wyłączniki są powszechnie stosowane w różnych aplikacjach, od domowych po przemysłowe, gdzie kontrola nad przepływem prądu jest kluczowa. Przykładem są wyłączniki nadprądowe, które automatycznie odcinają zasilanie w przypadku przekroczenia dopuszczalnego prądu, zgodnie z normami PN-EN 60898. Dobrą praktyką jest również regularne testowanie i konserwacja wyłączników, co wpływa na ich niezawodność oraz bezpieczeństwo użytkowników.

Pytanie 31

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00
A. 7,48 MΩ
B. 6,73 MΩ
C. 6,87 MΩ
D. 6,18 MΩ
Obliczenie rezystancji izolacji uzwojeń silnika w temperaturze 20°C wymaga zastosowania odpowiednich współczynników przeliczeniowych, które uwzględniają zmiany rezystancji w zależności od temperatury. W tym przypadku zastosowaliśmy wzór R20 = K20 * Rs, gdzie Rs to zmierzona rezystancja w temperaturze 23°C, a K20 to współczynnik przeliczeniowy dla temperatury 20°C. Z tabeli uzyskujemy wartości K20 = 1,0 dla 20°C i K23 = 1,1 dla 23°C. Zatem, dzieląc zmierzoną rezystancję 6,8 MΩ przez 1,1, uzyskujemy rezystancję w niższej temperaturze, co daje wynik 6,18 MΩ. Jednak w praktyce, biorąc pod uwagę zastosowania w przemyśle, znajomość tych wartości jest kluczowa do oceny stanu izolacji silnika. Izolacja musi spełniać normy, aby zapewniać bezpieczeństwo operacyjne i zapobiegać awariom. Takie obliczenia są standardem w diagnostyce stanu technicznego maszyn elektrycznych.

Pytanie 32

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Klasę ochronności przed porażeniem energią elektryczną
B. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
C. Najwyższą temperaturę otoczenia podczas eksploatacji
D. Minimalny przekrój przewodów podłączonych do zacisków
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 33

Na którym schemacie połączeń przedstawiono zgodne z zamieszczonym planem instalacji podłączenie przewodów w puszce numer 3?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Schemat D przedstawia poprawne podłączenie przewodów w puszce numer 3, zgodne z planem instalacji elektrycznej. W instalacjach elektrycznych kluczowe jest właściwe prowadzenie przewodów, aby zapewnić bezpieczeństwo oraz efektywność działania systemu. W tym schemacie przewód fazowy L jest poprowadzony przez łącznik, co umożliwia jego załączanie i wyłączanie. To zgodne z dobrymi praktykami, które nakazują, aby w obwodach oświetleniowych umieszczać łączniki w obwodzie fazowym, co minimalizuje ryzyko wystąpienia porażenia prądem. Dodatkowo, schemat D uwzględnia odpowiednie oznaczenia i kolorystykę przewodów, co jest zgodne z normami PN-IEC 60446. Przykładowo, przewód neutralny N powinien być niebieski, a przewód ochronny PE zielono-żółty. Użycie właściwych kolorów oraz odpowiednich połączeń zabezpiecza przed ewentualnymi awariami oraz błędami w instalacji, co jest kluczowe w każdej nowoczesnej instalacji elektrycznej.

Pytanie 34

Na którym rysunku przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Prawidłowe wykonanie połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Na rysunku B, drut jest odpowiednio zagięty i umieszczony pod główką śruby, co pozwala na skuteczne zaciskanie i zapobiega jego wypadnięciu. W praktyce, ważne jest, aby drut był zagięty w odpowiedni sposób, co zapewnia pełne przyleganie do powierzchni styku, co z kolei minimalizuje ryzyko powstawania iskrzenia oraz przegrzewania połączenia. Zgodnie z normami PN-IEC 60947-7-1, zaleca się, aby połączenia były wykonywane w sposób, który zapewnia ich trwałość oraz odporność na wibracje. Dobrze wykonane połączenie zwiększa efektywność przesyłania energii elektrycznej oraz zmniejsza ryzyko awarii, co jest kluczowe w kontekście użytkowania złożonych systemów elektrycznych.

Pytanie 35

Którym z urządzeń przedstawionych na rysunkach należy zastąpić uszkodzony w instalacji elektrycznej stycznik o oznaczeniu SM 425 230 4Z?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Wybór nieprawidłowego stycznika może prowadzić do różnych problemów w systemach elektrycznych. W przypadku odpowiedzi, które nie są zgodne z parametrami technicznymi uszkodzonego stycznika SM 425 230 4Z, można wskazać na kilka kluczowych aspektów. Przede wszystkim, najczęstszym błędem jest ignorowanie napięcia cewki, które musi być zgodne z wymaganym 230V. Styczniki o innych wartościach napięcia cewki mogą nie działać prawidłowo, co prowadzi do ich uszkodzenia lub niepoprawnej pracy całego układu. Dodatkowo, liczba styków pomocniczych jest również istotna – ich brak lub niewłaściwa liczba może uniemożliwić prawidłowe funkcjonowanie obwodów sterujących. Wiele osób może także popełniać błąd w ocenie parametrów styków pomocniczych, które są kluczowe dla działania urządzenia w kontekście bezpieczeństwa i niezawodności. Warto również pamiętać, że dobór odpowiednich komponentów jest regulowany przez normy takie jak IEC 60947, które wskazują, jak ważne jest stosowanie zamienników o porównywalnych parametrach. Dlatego, aby uniknąć typowych pomyłek, zawsze należy dokładnie analizować dokumentację techniczną oraz parametry urządzeń przed dokonaniem wyboru zamiennika.

Pytanie 36

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Wyrównawczy.
B. Uziemiający.
C. Neutralny.
D. Ochronny.
Odpowiedź "Ochronny" jest prawidłowa, ponieważ symbol przedstawiony na rysunku odnosi się do przewodu ochronnego PE (Protective Earth). Przewód ten jest kluczowym elementem instalacji elektrycznej, mającym na celu zabezpieczenie użytkowników przed porażeniem prądem elektrycznym. W sytuacji awaryjnej, przewód ochronny odprowadza niebezpieczne napięcie do ziemi, co znacząco zmniejsza ryzyko porażenia. W standardach, takich jak Polska Norma PN-IEC 60445:2017, przewód ten powinien być jednoznacznie oznaczony w schematach montażowych, co ułatwia identyfikację i prawidłowy montaż instalacji. Przykładowo, w przypadku uszkodzenia izolacji urządzenia elektrycznego, prawidłowe podłączenie przewodu ochronnego zapewnia, że prąd nie przepłynie przez ciało użytkownika, lecz zostanie skierowany do ziemi. Dzięki temu, stosowanie przewodów ochronnych zgodnie z normami jest fundamentem bezpieczeństwa w każdej instalacji elektrycznej.

Pytanie 37

Na zdjęciach przedstawiono kolejno od lewej typy trzonków źródeł światła

Ilustracja do pytania
A. E27,G4,MR11,G9
B. E27,G9,MR11,G4
C. E27,G4,G9,MR11
D. E27,MR11,G4,G9
Zrozumienie różnorodności trzonków źródeł światła jest kluczowe dla efektywnego i praktycznego ich wykorzystania. Wybór niewłaściwej kombinacji trzonków, jak w przypadku niepoprawnych odpowiedzi, może prowadzić do nieefektywnego oświetlenia, a także do problemów z kompatybilnością urządzeń. Na przykład, pomylenie trzonka E27 z G4 w praktycznym zastosowaniu jest poważnym błędem, ponieważ E27 to standardowy gwint dla większych żarówek, podczas gdy G4 jest przeznaczony dla niskonapięciowych źródeł światła, takich jak miniaturowe halogeny. W przypadku odpowiedzi, które sugerują inne porządki, kluczowe jest zrozumienie, że różne typy trzonków mają specyficzne wymiary i przeznaczenia, co sprawia, że ich zamiana lub niewłaściwa identyfikacja prowadzi do nieprawidłowego działania systemu oświetleniowego. Niepoprawne odpowiedzi mogą także wynikać z błędnego przekonania, że różne trzonki mogą być stosowane zamiennie, co nie jest prawdą w kontekście technicznych wymagań. Wiedza o tym, jakie trzonki są używane w określonych zastosowaniach, pozwala na lepsze planowanie i realizację projektów oświetleniowych, jak również na unikanie kosztownych pomyłek przy zakupie źródeł światła.

Pytanie 38

Jakie z podanych usterek mogą powodować nadmierne wibracje w silniku indukcyjnym?

A. Zwarcie w uzwojeniu wirnika, zmieniona kolejność faz
B. Skrzywienie wału, niewłaściwe wyważenie wirnika, zbyt duży luz na łożyskach
C. Przerwa w uzwojeniu stojana, zatarcie łożysk, nadmierna rezystancja uzwojeń wirnika
D. Zbyt niskie napięcie, przerwa w jednej z faz, przeciążenie silnika
Twoja odpowiedź jest jak najbardziej trafna! Skrzywienie wału, niewłaściwe wyważenie wirnika i luz na łożyskach to faktycznie te rzeczy, które mogą mocno wpływać na to, jak silnik pracuje. Jak wał jest krzywy, to masa się rozkłada nierówno, co przyczynia się do wzrostu wibracji – to trochę jak z siedzeniem na krzywej ławce, nie? Z kolei kiepskie wyważenie wirnika, które często bierze się z jego zużycia, też powoduje, że silnik się męczy, bo łożyska dostają w kość. No i ten luz – luźne łożyska też robią swoje, bo wirnik nie działa jak powinien. Ważne, żeby regularnie sprawdzać sprzęt i dbać o niego, tak jak produkuje się w instrukcji. Stosując metody monitorowania, jak analiza drgań, można wcześnie zauważyć problemy i coś z tym zrobić. To wszystko pomoże w wydłużeniu życia silnika i uniknięciu przestojów w pracy.

Pytanie 39

Na ilustracji przedstawiony jest

Ilustracja do pytania
A. przewód sterowniczy.
B. kabel elektroenergetyczny.
C. przewód spawalniczy.
D. kabel telekomunikacyjny.
Kabel elektroenergetyczny, który został przedstawiony na ilustracji, charakteryzuje się specyficzną budową oraz solidną izolacją, co jest kluczowe dla jego funkcji w systemach elektroenergetycznych. Te kable są zaprojektowane do przesyłania dużych ilości energii elektrycznej i zazwyczaj mają grubszą średnicę oraz wytrzymałe materiały izolacyjne, które chronią je przed uszkodzeniami mechanicznymi i wpływem warunków atmosferycznych. W kontekście standardów branżowych, kable elektroenergetyczne muszą spełniać rygorystyczne normy, takie jak normy IEC (Międzynarodowa Komisja Elektrotechniczna) czy EN (Europejskie Normy). W praktyce, ich zastosowanie obejmuje przesył energii do budynków, instalacji przemysłowych i infrastruktury miejskiej, co czyni je fundamentalnym elementem w systemach energetycznych. Wiedza na temat różnic między kablami energetycznymi, telekomunikacyjnymi a innymi przewodami jest istotna dla każdego inżyniera elektryka, aby zapewnić odpowiedni dobór materiałów i bezpieczeństwo instalacji.

Pytanie 40

Jaki element przedstawiono na rysunku?

Ilustracja do pytania
A. Złączkę.
B. Wkrętkę redukcyjną.
C. Wkrętkę dławikową.
D. Tulejkę.
Wybór wkrętki redukcyjnej, złączki lub tulejki nie jest właściwy w kontekście przedstawionego elementu. Wkrętka redukcyjna, jak sama nazwa wskazuje, jest używana do zmiany średnicy gwintu, co nie ma zastosowania w przypadku uszczelniania przewodów. Ta koncepcja często prowadzi do mylenia funkcji złączek w instalacjach elektrycznych, gdzie kluczowym aspektem jest nie tylko łączenie, ale przede wszystkim zabezpieczenie przewodów. Złączki, które są bardziej uniwersalne, nie oferują specyficznego uszczelnienia, co jest istotne w kontekście ochrony przed kurzem, wilgocią czy uszkodzeniami mechanicznymi. Natomiast tulejki służą zazwyczaj do wzmocnienia połączeń, a nie do ich uszczelnienia, co również nie odpowiada funkcji wkrętki dławikowej. Właściwe zrozumienie różnic między tymi elementami ma kluczowe znaczenie, ponieważ stosowanie niewłaściwych rozwiązań w instalacjach elektrycznych może prowadzić do poważnych problemów, takich jak zwarcia czy uszkodzenia sprzętu. W procesie projektowania instalacji elektrycznych, znajomość właściwych komponentów oraz ich zastosowań jest niezbędna dla zapewnienia bezpieczeństwa oraz niezawodności systemu.