Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechanik
  • Kwalifikacja: MEC.08 - Wykonywanie i naprawa elementów maszyn, urządzeń i narzędzi
  • Data rozpoczęcia: 9 grudnia 2025 08:52
  • Data zakończenia: 9 grudnia 2025 08:57

Egzamin zdany!

Wynik: 40/40 punktów (100,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przedstawiony na ilustracji przyrząd służy do

Ilustracja do pytania
A. montażu paska klinowego.
B. montażu łożyska tocznego.
C. ściągania klinów.
D. naciągu łańcucha.
Przedstawiony na ilustracji przyrząd to naciągacz łańcucha, który jest niezbędnym narzędziem w wielu zastosowaniach mechanicznych. Jego główną funkcją jest regulacja napięcia łańcucha, co jest kluczowe w prawidłowym funkcjonowaniu urządzeń, takich jak motocykle, rowery czy maszyny przemysłowe. Niewłaściwe napięcie łańcucha może prowadzić do jego szybszego zużycia, a także do uszkodzenia innych komponentów maszyny. W praktyce, naciągacz pozwala na precyzyjne ustawienie napięcia, co zwiększa efektywność pracy oraz trwałość osprzętu. W wielu branżach, takich jak budownictwo czy motoryzacja, przestrzeganie standardów napięcia łańcucha jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności działania maszyn. Używając narzędzi takich jak naciągacz łańcucha, operatorzy mogą dostosować parametry pracy maszyn do specyficznych warunków, co wpisuje się w najlepsze praktyki w zakresie konserwacji i eksploatacji sprzętu.

Pytanie 2

Strzałką na przedstawionej ilustracji wskazano elementy czopa wału, które zostały wykonane w operacji

Ilustracja do pytania
A. toczenia.
B. radełkowania.
C. piłowania.
D. frezowania.
Odpowiedź 'frezowania' jest poprawna, ponieważ strzałka na ilustracji wskazuje na charakterystyczne rowki, które powstają właśnie w wyniku tego procesu obróbczyczego. Frezowanie to operacja, w której narzędzie obrotowe, zwane frezem, przemieszcza się w płaszczyźnie, tworząc na obrabianym elemencie precyzyjne kształty i rowki. Jest to jedna z najczęściej stosowanych metod obróbczych w przemyśle, szczególnie gdy wymagane są wysokie standardy dokładności i jakości powierzchni. Przykładem zastosowania frezowania może być produkcja elementów maszyn, przekładni czy też skomplikowanych kształtów, gdzie precyzyjne rowki są kluczowe dla ich funkcjonowania. W kontekście standardów branżowych, frezowanie jest zgodne z normami ISO dotyczącymi obróbki skrawaniem, co potwierdza jego uniwersalność i zastosowanie w różnych gałęziach przemysłu. Warto również zrozumieć, że frezowanie jest często preferowane ze względu na możliwość obróbki materiałów o różnej twardości oraz uzyskiwania gładkich powierzchni.

Pytanie 3

Jakie narzędzie służy do wykonywania zgrubnych pomiarów gorących detali podczas ręcznego kucia?

A. taśmy pomiarowej
B. suwmiarki
C. przymiaru kreskowego
D. macek
Macek jest narzędziem, które doskonale sprawdza się w pomiarze gorących elementów podczas kucia ręcznego. Główną zaletą macek jest ich zdolność do pomiaru temperatury materiałów metalowych, które mogą być zbyt gorące dla innych narzędzi pomiarowych, takich jak suwmiarki czy taśmy miernicze, które mogą ulec uszkodzeniu. Macek, zwykle wykonany z materiałów odpornych na wysokie temperatury, pozwala na szybkie i niezawodne określenie wymiarów w warunkach, gdzie inne metody byłyby niepraktyczne. Przykładem zastosowania jest pomiar długości elementów metalowych w trakcie procesu kucia, co jest kluczowe dla zapewnienia precyzyjnych wymiarów gotowego wyrobu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów w procesach produkcyjnych, co czyni macek niezastąpionym narzędziem w warsztatach rzemieślniczych oraz w dużych zakładach przemysłowych. Dzięki swoim właściwościom, macki są preferowanym wyborem dla specjalistów zajmujących się obróbką cieplną metali, co potwierdza ich istotność w procesie kucia.

Pytanie 4

Na kształt powierzchni obrabianych nie wpływa

A. zużycie krawędzi skrawającej.
B. odkształcenie plastyczne narzędzia.
C. zastosowanie cieczy chłodzących.
D. powstawanie narostu.
Zastosowanie cieczy chłodzących ma kluczowe znaczenie w procesach obróbczych, jednak nie wpływa bezpośrednio na odchyłkę kształtu powierzchni obrabianych. Ciecze chłodzące mają za zadanie zmniejszenie temperatury w strefie skrawania oraz poprawę usuwania wiórów, co przyczynia się do lepszej stabilności procesu obróbki. W praktyce, odpowiedni dobór cieczy chłodzącej może poprawić wydajność skrawania poprzez zmniejszenie tarcia oraz zużycia narzędzia, jednak sama w sobie nie ma wpływu na geometrię obrabianego detalu. Wiele standardów branżowych, takich jak ISO 10791-6, podkreśla znaczenie chłodzenia w procesach obróbczych, ale zwraca jednocześnie uwagę na inne parametry, jak geometria narzędzia czy technika skrawania, które mają decydujący wpływ na kształt i jakość obrabianej powierzchni. Przykładem zastosowania są operacje frezarskie, gdzie odpowiednio dobrana ciecz chłodząca nie tylko przedłuża żywotność narzędzi, ale również minimalizuje ryzyko deformacji detalu spowodowanej wysoką temperaturą. Z tego powodu, zrozumienie roli cieczy chłodzących w obróbce jest kluczowe dla uzyskania wysokiej jakości produktów.

Pytanie 5

Realizacja rowka wpustowego w wale odbywa się w trakcie

A. walcowania
B. wtryskiwania
C. ciągnienia
D. frezowania
Frezowanie to proces obróbczy, w którym narzędzie skrawające wykonuje ruch obrotowy, a materiał obrabiany porusza się w kierunku narzędzia. Wykonanie rowka wpustowego w wałku jest zatem naturalnym zastosowaniem frezowania, ponieważ pozwala na precyzyjne usunięcie materiału wzdłuż wałka, tworząc otwór o wymaganym kształcie i głębokości. Frezowanie rowków wpustowych jest niezwykle istotne w inżynierii mechanicznej, ponieważ te rowki często służą do umiejscowienia elementów mocujących, takich jak śruby czy kołki. Dobre praktyki w obróbce polegają na zastosowaniu odpowiednich narzędzi skrawających oraz dostosowaniu parametrów obróbczych, takich jak prędkość obrotowa czy posuw, co znacząco wpływa na jakość wykończenia powierzchni oraz dokładność wymiarową. Frezowanie umożliwia także obrabianie różnych rodzajów materiałów, od metali po tworzywa sztuczne, co czyni je uniwersalnym procesem w produkcji elementów mechanicznych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Na ilustracji przedstawiono obcinak stosowany w cięciu

Ilustracja do pytania
A. płyt wiórowych.
B. rur miedzianych.
C. prętów niklowych.
D. blach stalowych.
Obcinak do rur, przedstawiony na ilustracji, jest narzędziem dedykowanym do cięcia rur miedzianych. Jego konstrukcja pozwala na osiągnięcie precyzyjnych i czystych cięć, co jest kluczowe w branży hydraulicznej oraz grzewczej. Miedź jest materiałem powszechnie stosowanym w instalacjach, ponieważ charakteryzuje się doskonałymi właściwościami przewodzenia ciepła oraz odpornością na korozję. Użycie odpowiednich narzędzi, takich jak obcinak do rur, pozwala na szybkie i efektywne wykonanie prac montażowych. Warto również zaznaczyć, że cięcie rur miedzianych wymaga dbałości o szczegóły, aby nie uszkodzić krawędzi, co mogłoby prowadzić do nieszczelności w instalacji. Dobre praktyki obejmują również odpowiednie przygotowanie miejsca pracy oraz stosowanie ochrony osobistej, np. okularów ochronnych, co zwiększa bezpieczeństwo podczas wykonywania prac.

Pytanie 9

Aby zamocować wiertło przedstawione na ilustracji we wrzecionie wiertarki, należy zastosować

Ilustracja do pytania
A. oprawkę wiertarską.
B. tuleję redukcyjną.
C. uchwyt 3-szczękowy.
D. trzpień drążony.
Tuleja redukcyjna to element, który umożliwia dostosowanie średnicy trzpienia wiertła do uchwytu wiertarki, co jest szczególnie istotne w przypadku wierteł o nietypowych średnicach. Użycie tulei redukcyjnej pozwala na stabilne zamocowanie wiertła, co z kolei przekłada się na bezpieczeństwo i precyzję pracy. W profesjonalnym rzemiośle, gdzie wykorzystywane są różne średnice wierteł, tuleje redukcyjne są niezbędnym akcesorium, które umożliwia optymalne wykorzystanie narzędzi wiertarskich. Dobrze dobrana tuleja nie tylko zapewnia właściwe dopasowanie, ale także minimalizuje drgania, które mogą wpływać na jakość wiercenia oraz żywotność zarówno wiertła, jak i wrzeciona. W sytuacjach, gdy wiertło nie pasuje do standardowego uchwytu, zastosowanie tulei redukcyjnej jest standardem, który zapewnia efektywność oraz bezpieczeństwo prowadzonych prac. Warto również zaznaczyć, że przy doborze tulei redukcyjnej należy kierować się jej parametrami technicznymi, które powinny być zgodne z wymaganiami używanej wiertarki oraz rodzaju obrabianego materiału.

Pytanie 10

Jakie rodzaje połączeń są rozłączne?

A. Lutowane
B. Zgrzewane
C. Klejone
D. Gwintowe
Połączenia gwintowe są klasyfikowane jako rozłączne, co oznacza, że można je łatwo demontować bez uszkodzenia elementów łączonych. Gwinty pozwalają na regulację i napinanie połączeń, co czyni je niezwykle praktycznymi w różnych zastosowaniach. Na przykład, w konstrukcjach mechanicznych, takich jak maszyny przemysłowe, gwintowe połączenia śrubowe umożliwiają szybkie i efektywne serwisowanie, co jest kluczowe dla utrzymania ciągłości produkcji. Dodatkowo, gwintowe połączenia są standardem w przemyśle budowlanym, gdzie wykorzystywane są do łączenia elementów stalowych, co zapewnia stabilność konstrukcji. W kontekście norm, takie połączenia spełniają wymagania wielu standardów, w tym ISO 898-1, co podkreśla ich niezawodność i wszechstronność. Ponadto, w zastosowaniach takich jak hydraulika czy pneumatyka, wykorzystanie gwintów do połączeń złączy umożliwia bezpieczne przenoszenie ciśnienia, co jest niezbędne w pracy z płynami pod ciśnieniem.

Pytanie 11

W oparciu o dane w tabeli dobierz rodzaj kleju do wykonania połączeń stalowych elementów korpusu, narażonego na wibracje i pracującego w środowisku wilgotnym.

KlejOpisZastosowanieUwagi
CyjanoakrylowyPrzeznaczone specjalnie do naprawPrzedmioty z porcelany, ceramiki, metali, plastików, skóry, kauczuku, drewna, kartonu, papieruDo łączenia niewielkich powierzchni, przy których wymagana jest duża odporność na odrywanie.
DyspersyjnyPrzeznaczone do łączenia elementówKlejenie parkietów, paneli, drewna. Można stosować do luster, do niektórych plastików narażonych na stąpanie, do styropianuDo łączenia dużych powierzchni.
NeoprenowyPrzeznaczone są do naprawiania, łączenia przedmiotówPraktycznie wszystkie materiałyDo powierzchni z naprężeniami. Sklejenia mogą być poddawane skręcaniu, wibracjom, uderzeniom.
EpoksydowyPrzeznaczone do łączenia elementówDo większości materiałówDo wypełnienia niewielkich pęknięć, ubytków. Połączenia mogą być poddawane skręceniom, wibracji, uderzeniom, są też odporne na wilgoć.
A. Epoksydowy.
B. Dyspersyjny.
C. Cyjanokrylowy.
D. Neoprenowy.
Klej epoksydowy jest odpowiedni do łączenia elementów stalowych, szczególnie w warunkach, gdzie występują wibracje oraz wilgoć. Jego unikalna formuła chemiczna pozwala na tworzenie mocnych połączeń, które są odporne na różne obciążenia mechaniczne, takie jak skręcanie i uderzenia. W praktyce, kleje epoksydowe są szeroko stosowane w branży budowlanej i motoryzacyjnej, gdzie trwałość oraz odporność na czynniki zewnętrzne są kluczowe. Dodatkowo, kleje te mogą być stosowane w różnych aplikacjach, takich jak naprawy elementów metalowych w maszynach, spoiny w konstrukcjach stalowych, a także w produkcji sprzętu elektronicznego. W kontekście standardów branżowych, kleje epoksydowe spełniają wymogi norm ISO, co czyni je bezpiecznym wyborem w aplikacjach, gdzie wymagane jest wysokie bezpieczeństwo i trwałość. Warto również zaznaczyć, że przed zastosowaniem kleju epoksydowego, zaleca się odpowiednie przygotowanie powierzchni, co zwiększa jego skuteczność.

Pytanie 12

Tępa krawędź narzędzi skrawających prowadzi do

A. podniesienia wydajności obrabiarek tradycyjnych
B. redukcji ilości dostarczanego płynu chłodzącego do narzędzia
C. wzrostu zużycia energii elektrycznej przez obrabiarkę
D. obniżenia kosztów jednostkowych produkcji
Stępienie ostrzy narzędzi skrawających wpływa na zwiększone zużycie energii elektrycznej przez obrabiarkę, ponieważ narzędzia o tępych ostrzach wymagają większej siły do skrawania materiału. W praktyce oznacza to, że przy takim narzędziu wzrasta opór podczas obróbki, co prowadzi do większego obciążenia silnika obrabiarki. W wyniku tego silnik musi pracować bardziej intensywnie, co przekłada się na wyższe zużycie energii. Dobrym przykładem są operacje frezowania, gdzie ze stępionym narzędziem może występować nie tylko większe zużycie energii, ale także gorsza jakość obrabianego detalu. Standardy branżowe wskazują, że regularne ostrzenie narzędzi skrawających jest kluczowe dla zachowania efektywności energetycznej oraz jakości produkcji. Ponadto, użycie narzędzi w dobrym stanie pozwala na optymalizację dużych kosztów operacyjnych, co jest szczególnie istotne w długoterminowych procesach produkcyjnych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Do czego służy średnicówka mikrometryczna?

A. Pomiar długości całkowitej przedmiotów
B. Pomiar głębokości otworów
C. Pomiar średnic zewnętrznych
D. Pomiar kątów między powierzchniami
Średnicówka mikrometryczna to narzędzie pomiarowe, które jest powszechnie stosowane w przemyśle do dokładnego mierzenia średnic zewnętrznych elementów. Jej konstrukcja opiera się na mechanizmie mikrometrycznym, co pozwala na uzyskanie bardzo precyzyjnych wyników pomiarów, często z dokładnością do setnych części milimetra. W praktyce przemysłowej, szczególnie w obróbce skrawaniem, dokładność pomiaru jest kluczowa, ponieważ nawet niewielkie odchylenia mogą wpływać na jakość montowanych części. Średnicówki mikrometryczne są używane do kontrolowania jakości wykonanych elementów, takich jak wałki, tuleje czy inne cylindryczne części, zapewniając zgodność z wymaganiami technicznymi. Dzięki możliwości szybkiego i precyzyjnego pomiaru, narzędzie to znajduje zastosowanie w wielu branżach, od motoryzacji po produkcję maszyn, gdzie precyzja i jakość są priorytetem. Dobre praktyki branżowe zalecają regularną kalibrację średnicówek, aby utrzymać ich dokładność na najwyższym poziomie.

Pytanie 17

Do elementów diagnozowania maszyn i urządzeń nie należy badanie

A. hałasu oraz drgań.
B. stanu powierzchni.
C. liczby wyłączeń maszyny.
D. szczelności.
Liczba wyłączeń maszyny nie jest bezpośrednim elementem diagnostyki, ale raczej wskaźnikiem jej wydajności lub awaryjności. Diagnostyka maszyn i urządzeń jak najbardziej koncentruje się na ocenie ich stanu technicznego, co obejmuje m.in. badanie stanu powierzchni, monitorowanie hałasu i drgań oraz kontrolę szczelności. Te aspekty są kluczowe dla zapewnienia ich prawidłowego funkcjonowania. Na przykład, badania drgań mogą ujawnić problemy z łożyskami lub niewyważeniem, a analiza hałasu może wskazać na zużycie elementów mechanicznych. W praktyce, regularne przeprowadzanie takich badań pomaga w optymalizacji procesów produkcyjnych oraz w planowaniu działań konserwacyjnych, co z kolei przyczynia się do zmniejszenia kosztów eksploatacyjnych i zwiększenia niezawodności maszyn. Warto przy tym pamiętać o standardach takich jak ISO 10816, które dostarczają wytycznych dotyczących oceny drgań maszyn.

Pytanie 18

Jakie połączenia rozłączne wykorzystuje się przy montażu rur?

A. Lutowane
B. Skręcane
C. Klejone
D. Zgrzewane
Połączenia skręcane to jeden z najczęściej wybieranych sposobów łączenia rur w montażu. Są naprawdę fajne, bo można je szybko zamontować i rozmontować bez większych problemów. Z tego, co widziałem, to te połączenia działają dzięki gwintom, co sprawia, że wszystko trzyma się mocno i da się łatwo rozłączyć, kiedy trzeba coś naprawić. Przede wszystkim, są super w hydraulice i pneumatyce, gdzie często coś trzeba wymieniać. W budownictwie i przemyśle korzysta się z nich do łączenia rur stalowych, mosiężnych i innych materiałów, co jest zgodne z normami, takimi jak PN-EN 10220 i PN-EN 15001. Naprawdę, te połączenia są niezawodne, zwłaszcza tam, gdzie jest wysokie ciśnienie. To czyni je świetnym wyborem w aplikacjach, które są bardziej krytyczne, jak systemy chłodnicze czy przemysł naftowy.

Pytanie 19

W którym procesie obróbki stosowane jest narzędzie przedstawione na ilustracji?

Ilustracja do pytania
A. Ciągnienia drutów.
B. Szlifowania wałków.
C. Wykrawania otworów.
D. Radełkowania powierzchni.
Odpowiedź 'Ciągnienia drutów' jest poprawna, ponieważ narzędzie przedstawione na ilustracji to ciągadło, które jest kluczowym elementem w procesu ciągnienia. Ciągnienie drutów to metoda obróbcza, w której materiał, zazwyczaj metalowy, jest przeciągany przez otwór o określonej średnicy. Dzięki temu procesowi zmniejsza się średnica drutu, a jednocześnie zwiększa jego długość, co jest niezbędne w produkcji elementów takich jak druty, pręty czy rury, stosowanych w różnych branżach, w tym budownictwie i motoryzacji. Stosowanie ciągadła pozwala na uzyskanie drutów o bardzo precyzyjnych wymiarach oraz wysokiej jakości powierzchni, co jest zgodne z najlepszymi praktykami w zakresie obróbki metali. Proces ten jest również powszechnie wykorzystywany w przemyśle elektrotechnicznym, gdzie wymagane są druty o dużej wytrzymałości na rozciąganie. Dobrze zrealizowane ciągnienie drutów przyczynia się do efektywności produkcji oraz redukcji odpadów materiałowych, co jest istotne z perspektywy zrównoważonego rozwoju.

Pytanie 20

Obróbkę wykańczającą otworu kształtowego części oznaczonego na ilustracji strzałką, należy wykonać pilnikiem

Ilustracja do pytania
A. owalnym.
B. okrągłym.
C. półokrągłym.
D. mieczowym.
Pilnik półokrągły jest idealnym narzędziem do obróbki wykańczającej otworów o kształcie półokrągłym. Jego konstrukcja pozwala na precyzyjne dopasowanie do krawędzi otworu, co jest kluczowe w procesie wygładzania i nadawania pożądanych wymiarów. Używając pilnika półokrągłego, możemy skutecznie usunąć wszelkie nierówności oraz poprawić estetykę wykończenia. Przykładem zastosowania tego narzędzia może być obróbka detali w branży motoryzacyjnej, gdzie precyzja i jakość wykończenia mają kluczowe znaczenie dla funkcjonalności elementów. W praktyce, korzystanie z pilnika półokrągłego w połączeniu z odpowiednią techniką obróbcza, taką jak kontrola siły nacisku oraz kąt nachylenia narzędzia, zapewnia optymalne efekty. Dobrze dobrany pilnik do kształtu otworu nie tylko zwiększa efektywność pracy, ale także minimalizuje ryzyko uszkodzenia detali, co jest zgodne z najlepszymi praktykami w obróbce skrawaniem.

Pytanie 21

Pokazane na ilustracji łączenie odbywa się techniką

Ilustracja do pytania
A. spawania elektrycznego.
B. spawania gazowego.
C. zgrzewania punktowego.
D. zgrzewania liniowego.
Spawanie gazowe, które jest odpowiedzią na to pytanie, to technika łączenia metali wykorzystująca palnik gazowy do wytworzenia płomienia. Palnik ten stopniowo podgrzewa metal w miejscu łączenia, co pozwala na jego spawanie. Jest to technika szeroko stosowana w przemyśle, szczególnie w pracach konserwacyjnych i naprawczych, gdzie dostęp do złącza może być ograniczony. Spawanie gazowe często wykorzystywane jest w sytuacjach, gdzie mobilność i elastyczność są kluczowe, na przykład w pracach w terenie. Technika ta jest zgodna z normami PN-EN ISO 3834, które określają wymagania dotyczące jakości w procesach spawania metali. W praktyce, spawanie gazowe może być stosowane do różnych materiałów, takich jak stal, miedź czy aluminium, co czyni je wszechstronnym narzędziem w arsenale spawalniczym. Warto również zauważyć, że spawanie gazowe może być używane w połączeniu z innymi metodami, co zwiększa jego funkcjonalność.

Pytanie 22

Proces spawania przy użyciu elektrod otulonych jest określany skrótem

A. PVD
B. MMA
C. MAG
D. CVD
Spawanie elektrodami otulonymi, znane jako MMA, to jedna z najczęściej używanych metod w branży metalurgicznej. W tej metodzie mamy elektrody pokryte otuliny, która tworzy ochronną warstwę gazu, dzięki czemu spoiny są mniej narażone na zanieczyszczenia i utlenienie. Moim zdaniem, MMA jest super popularne przy budowach i naprawach, bo jest dość proste i nie trzeba mieć jakiegoś skomplikowanego sprzętu. Używa się go do spawania konstrukcji stalowych, napraw maszyn, a nawet w trudnych warunkach, jak prace w terenie. Warto dodać, że są też standardy, jak EN 288-3, które regulują, jak to powinno być robione, co pomaga zapewnić jakość i bezpieczeństwo w spawalnictwie.

Pytanie 23

Środkownik pozwala na określenie

A. długości powierzchni cylindrycznych wałków
B. środka płaskich powierzchni czołowych przedmiotów walcowych
C. płaskości powierzchni
D. średnicy rowków wewnętrznych
Środkownik to narzędzie wykorzystywane w obróbce skrawaniem, które umożliwia precyzyjne wyznaczanie środka płaskich powierzchni czołowych przedmiotów walcowych. Dzięki zastosowaniu środkownika, operatorzy maszyn mogą skutecznie określić centralny punkt na takich powierzchniach, co jest kluczowe w procesach takich jak wiercenie, frezowanie czy toczenie. Przykładowo, w tokarstwie, idealne umiejscowienie narzędzia skrawającego w osi obrotu przedmiotu obrabianego jest istotne dla zapewnienia symetrii oraz estetyki finalnego produktu. W standardach przemysłowych, takich jak ISO 2768, podkreśla się znaczenie precyzyjnego wyznaczania środków w kontekście tolerancji wymiarowych. W praktyce, wykorzystanie środkownika pozwala na uzyskanie wyższej jakości obróbki oraz minimalizację odchyleń, co bezpośrednio wpływa na wydajność produkcji oraz redukcję kosztów materiałowych.

Pytanie 24

Który proces umożliwia ochronę elementów stalowych przed korozją?

A. Frezowanie
B. Hartowanie
C. Spawanie
D. Cynkowanie
Cynkowanie to proces polegający na pokrywaniu stalowych elementów cienką warstwą cynku, co znacząco zwiększa ich odporność na korozję. Cynk tworzy barierę ochronną na powierzchni stali, która zapobiega bezpośredniemu kontaktowi metalu z czynnikami korozyjnymi, takimi jak wilgoć i tlen atmosferyczny. Co więcej, cynk działa również jako anoda ofiarna. Oznacza to, że w przypadku uszkodzenia powłoki cynkowej, cynk będzie się utleniał zamiast stali, chroniąc ją przed korozją. Jest to szczególnie istotne w przemyśle budowlanym, motoryzacyjnym i morskim, gdzie elementy stalowe są narażone na trudne warunki atmosferyczne. Cynkowanie jest powszechnie stosowane w produkcji części samochodowych, konstrukcji stalowych czy też narzędzi, ze względu na jego efektywność i relatywnie niski koszt. Proces cynkowania może być realizowany różnymi metodami, takimi jak zanurzeniowe cynkowanie ogniowe czy cynkowanie galwaniczne, które różnią się techniką aplikacji i grubością powłoki ochronnej. Wybór odpowiedniej metody zależy od specyficznych wymagań aplikacyjnych i środowiskowych danego projektu.

Pytanie 25

Które narzędzie pomiarowe jest najbardziej odpowiednie do pomiaru kątów?

A. Suwmiarka
B. Cyrkiel
C. Mikrometr
D. Kątomierz
Kątomierz jest narzędziem pomiarowym idealnym do pomiaru kątów. Jego konstrukcja umożliwia precyzyjne określenie kąta między dwoma powierzchniami lub elementami maszyny. W mechanice, gdzie kluczowa jest precyzja, kątomierz pozwala na dokładne ustawianie i kontrolowanie kąta, co jest niezbędne w procesach montażu, obróbki czy inspekcji jakości. Jest szeroko stosowany w warsztatach, fabrykach i laboratoriach. Na rynku dostępne są różne rodzaje kątomierzy, takie jak cyfrowe, które oferują jeszcze większą precyzję i łatwość odczytu. W branży mechanicznej, prawidłowy pomiar kątów jest kluczowy, gdyż nawet niewielkie odchylenia mogą prowadzić do błędów w montażu czy funkcjonowaniu maszyn. Dlatego znajomość i umiejętność korzystania z kątomierza jest fundamentalna dla każdej osoby zajmującej się obróbką mechaniczną.

Pytanie 26

Z jakiego materiału nie produkuje się sprężyn?

A. Tworzywa sztucznego
B. Stali narzędziowej
C. Żeliwa szarego
D. Stali stopowej
Żeliwo szare nie jest materiałem odpowiednim do produkcji sprężyn ze względu na swoje właściwości mechaniczne. Charakteryzuje się ono kruchością oraz niską wytrzymałością na rozciąganie, co czyni je nieodpowiednim do zastosowań wymagających elastyczności i wysokiej odporności na cykliczne obciążenia. Sprężyny wymagają materiałów, które mogą efektywnie magazynować energię oraz deformować się pod wpływem obciążenia, a następnie wracać do pierwotnego kształtu bez uszkodzeń. W przemyśle metalowym powszechnie wykorzystuje się do produkcji sprężyn stal stopową oraz stal narzędziową, które oferują odpowiednie parametry wytrzymałościowe oraz sprężystość. Przykładowo, stal stopowa, zawierająca dodatki takie jak chrom czy nikiel, zwiększa odporność na korozję, co jest istotne w przypadku komponentów narażonych na działanie niekorzystnych warunków atmosferycznych. Dodatkowo, sprężyny wykonane z tworzyw sztucznych, chociaż mniej powszechne, mogą być stosowane w zastosowaniach, gdzie wymagana jest lekkość oraz odporność na chemikalia, co potwierdzają standardy ISO dotyczące materiałów kompozytowych.

Pytanie 27

Na podstawie rysunku wskaż wynik pomiaru wykonanego za pomocą mikrometru.

Ilustracja do pytania
A. 80,32 mm
B. 84,82 mm
C. 81,30 mm
D. 84,32 mm
Dobra robota! 84,82 mm to poprawny wynik. To efekt dokładnego odczytu z mikrometru, gdzie musisz spojrzeć na obie skale: główną i pomocniczą. W skali głównej widzisz 84 mm, co pokazuje, że krawędź bębna jest pomiędzy 80 a 85 mm. Potem, żeby dostać dokładniejszy wynik, sprawdź skalę pomocniczą, która daje nam 0,82 mm. Odczytanie tej wartości jest ważne, bo pokazuje, jak dokładnie używamy mikrometru. Te narzędzia są szeroko stosowane w warsztatach czy laboratoriach, bo precyzyjny pomiar jest kluczowy dla jakości produktów. Przypominają mi, że jeśli coś jest źle odczytane, to później może być problem w produkcji. Także dobrze znać zasady prawidłowego odczytu, bo to naprawdę ma znaczenie, żeby wszystko działało jak należy. Nie zapominaj, że te odczyty są też ważne, bo związane z normami ISO, które określają, jak dokładne muszą być pomiary. Po prostu pamiętaj, że to nie jest takie trudne, ale wymaga skupienia i uwagi.

Pytanie 28

W oparciu o dane w tabeli, dobierz rodzaj kleju do wykonania połączeń stalowych elementów korpusu, narażonego na wibracje i pracującego w środowisku wilgotnym.

KlejeOpisZastosowanieUwagi
CyjanoakrylowePrzeznaczone specjalnie do naprawPrzedmioty z porcelany, ceramiki, metali, plastików, skóry, kauczuku, drewna, kartonu, papieruDo łączenia niewielkich powierzchni, przy których wymagana jest duża odporność na odrywanie.
DyspersyjnePrzeznaczone do łączenia elementówKlejenie parkietów, paneli, drewna. Można stosować do lister, do niektórych plastików narażonych na ślapanie, do styropianuDo łączenia dużych powierzchni.
NeoprenowePrzeznaczone do naprawiania, łączenia przedmiotówPraktycznie wszystkie materiałyDo powierzchni z naprężeniami. Sklejenia mogą być poddawane skręcaniu, wibracjom, uderzeniom.
EpoksydowePrzeznaczone do łączenia elementówDo większości materiałówDo wypełnienia niewielkich pęknięć, ubytków. Połączenia mogą być poddawane skręceniom, wibracji, uderzeniom, są też odporne na wilgoć.
A. Epoksydowy.
B. Neoprenowy.
C. Dyspersyjny.
D. Cyjanokrylowy.
Klej epoksydowy jest idealnym rozwiązaniem do łączenia stalowych elementów korpusu, które są narażone na wibracje i wilgoć. Charakteryzuje się on wysoką odpornością na różne czynniki chemiczne oraz termiczne, co czyni go odpowiednim do zastosowań w trudnych warunkach. Sprawdzając dane w tabeli, zauważamy, że kleje epoksydowe wykazują znakomite właściwości adhezyjne, co pozwala na skuteczne łączenie stali z innymi materiałami. W praktyce, kleje epoksydowe są szeroko stosowane w przemyśle motoryzacyjnym i budowlanym, gdzie połączenia narażone są na dynamiczne obciążenia oraz zmienne warunki atmosferyczne. Ponadto, ich odporność na wilgoć sprawia, że są idealne do zastosowań w środowiskach o wysokiej wilgotności, co jest kluczowe dla długowieczności oraz niezawodności konstruowanych elementów. Zgodnie z normami i dobrymi praktykami, użycie klejów epoksydowych w takich aplikacjach zapewnia trwałość oraz bezpieczeństwo, co jest niezbędne w kontekście aplikacji narażonych na wibracje.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Wskaż wynik pomiaru wykonanego za pomocą mikromierza, jak na przedstawionej ilustracji.

Ilustracja do pytania
A. 84,32 mm
B. 80,32 mm
C. 84,82 mm
D. 81,30 mm
Pomiar wykonany za pomocą mikromierza wskazuje wartość 84,82 mm, co jest prawidłowym wynikiem odczytu. Aby dokładnie zrozumieć, jak dokonuje się tego pomiaru, należy zwrócić uwagę na dwie skale: główną oraz bębenkową. W przypadku omawianego mikromierza, odczyt z głównej skali wynosi 80 mm. Następnie, na bębenku, odczyt wskazuje 4,82 mm, co oznacza, że musimy dodać te dwie wartości, aby uzyskać całkowity wynik. Zgodnie z dobrą praktyką pomiarową, każdy użytkownik mikromierza powinien znać zasady prawidłowego odczytu oraz kalibracji narzędzi, aby zapewnić dokładność i precyzję pomiarów. Odbywa się to poprzez regularne sprawdzanie narzędzi pomiarowych oraz stosowanie się do norm takich jak ISO 9001, które kładą nacisk na jakość i spójność procesów pomiarowych. W przemyśle inżynieryjnym, precyzyjne pomiary są kluczowe dla zapewnienia wysokiej jakości produktów oraz ich zgodności z wymaganiami projektowymi, dlatego umiejętność korzystania z mikromierza jest niezbędna w codziennej pracy inżyniera.

Pytanie 31

Do wykonania wycięcia w metalowym kolanku wykonanym z blachy 0,5 mm, jak na rysunku należy użyć wiertła oraz

Ilustracja do pytania
A. nożyc ręcznych.
B. prasy ręcznej.
C. skrobaka.
D. przecinaka.
Nożyce ręczne są narzędziem idealnym do cięcia cienkich blach, takich jak ta o grubości 0,5 mm, z której wykonane jest metalowe kolanko. Użycie nożyc ręcznych umożliwia precyzyjne cięcie, co jest kluczowe w pracach blacharskich, gdzie dokładność jest niezbędna. Dzięki ich konstrukcji, użytkownik może łatwo kontrolować siłę cięcia oraz kierunek, co pozwala na zachowanie integralności materiału. W praktyce, nożyce ręczne minimalizują ryzyko powstawania ostrych krawędzi, które mogą prowadzić do uszkodzeń zarówno materiału, jak i narzędzi. Przykładem zastosowania nożyc ręcznych może być przygotowanie elementów do spawania, gdzie wymagana jest dokładność i czystość cięcia. Stosowanie tych narzędzi jest zgodne z branżowymi standardami, które zalecają użycie odpowiednich narzędzi do cięcia w zależności od grubości materiału, aby zapewnić wysoką jakość pracy i bezpieczeństwo użytkownika.

Pytanie 32

Cyna funkcjonuje jako spoiwo wykorzystywane w procesie

A. kalandrowania
B. wytłaczania
C. lutowania
D. nawęglania
Cyna jest powszechnie stosowanym spoiwem w procesie lutowania, który jest kluczowym elementem w tworzeniu połączeń elektrycznych oraz łączeniu elementów metalowych. Lutowanie, jako technika, wykorzystuje ciepło do stopienia spoiwa, które następnie wypełnia szczeliny między elementami, tworząc mocne i trwałe połączenie. Cyna jest preferowanym materiałem ze względu na swoje właściwości, takie jak niska temperatura topnienia oraz dobra przewodność elektryczna. Przykładem zastosowania lutowania z cyną jest produkcja obwodów drukowanych, gdzie lutuje się elementy elektroniczne do płytek. Ponadto, cyna jest często używana w lutowaniu rur miedzianych w instalacjach wodociągowych. W standardach branżowych, takich jak IPC-A-610, określono wymagania dotyczące jakości połączeń lutowanych, co podkreśla znaczenie dobrego lutowania dla niezawodności i trwałości produktów elektronicznych oraz innych zastosowań przemysłowych.

Pytanie 33

Jakim narzędziem dokonuje się pomiaru wysokości zęba koła zębatego?

A. przyrządu mikrometryczno-czujnikowego.
B. suwmiarki modułowej.
C. suwmiarki o regulowanej długości.
D. wzornika ogólnego.
Pomiar głowy zęba koła zębatego za pomocą suwmiarki modułowej jest najwłaściwszym wyborem, ponieważ ten typ przyrządu pomiarowego został zaprojektowany specjalnie do precyzyjnych pomiarów, takich jak wymiary zębów w mechanizmach zębatych. Suwmiarka modułowa umożliwia pomiar zarówno zewnętrznych, jak i wewnętrznych wymiarów zębów, co jest kluczowe dla zapewnienia prawidłowego ustawienia i współpracy kół zębatych w danej aplikacji. Standardy branżowe, takie jak normy ISO 9001, podkreślają znaczenie dokładnych pomiarów w procesie produkcyjnym, co wpływa na jakość i trwałość produktów. Przykładowo, w przemyśle motoryzacyjnym, precyzyjne pomiary zębów kół zębatych są fundamentalne dla zapewnienia ich efektywności i bezpieczeństwa w działaniu. Użycie suwmiarki modułowej pozwala na osiągnięcie wymaganej dokładności, co jest istotne dla uzyskania optymalnych wyników operacyjnych oraz długotrwałej wydajności mechanizmów.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Aby umożliwić użytkowanie przyrządu pomiarowego, konieczne jest jego

A. regulowanie
B. konserwacja
C. normalizacja
D. kalibracja
Kalibracja to naprawdę ważny proces, jeśli chodzi o dokładność pomiarów przyrządów. Chodzi o to, że musimy porównać, co pokazuje nasz przyrząd, z wartościami, które są uznawane za wzorcowe. Jeśli coś nie chce wskazywać prawidłowo, to się to dostosowuje, żeby wszystko się zgadzało z rzeczywistością. Na przykład, w chemii to jest mega istotne, żeby wagi czy pipety były kalibrowane, bo to wpływa na wyniki. Są normy, jak na przykład ISO 17025, które mówią, co i jak powinno być robione. Regularna kalibracja nie tylko sprawia, że pomiary są dokładniejsze, ale także pozwala spełniać różne normy i przepisy, co jest ważne podczas audytów. Można powiedzieć, że bez kalibracji nie ma mowy o dobrych wynikach w laboratorium.

Pytanie 36

Elementy robocze wierteł do obróbki metali produkowane są ze stali

A. węglowej
B. nierdzewnej
C. szybkotnącej
D. stopowej
Stal szybkotnąca, znana również jako stal HSS (High-Speed Steel), jest materiałem o wyjątkowych właściwościach, który znalazł szerokie zastosowanie w produkcji narzędzi skrawających, w tym wierteł do metali. Charakteryzuje się ona wysoką twardością i odpornością na wysokie temperatury, co pozwala na efektywne wiercenie w różnych materiałach, w tym w stalach o wysokiej wytrzymałości. W porównaniu do innych rodzajów stali, stal szybkotnąca zachowuje swoje właściwości skrawne nawet w ekstremalnych warunkach pracy, co jest kluczowe w przemyśle obróbczych. Narzędzia wykonane z tego materiału są w stanie utrzymać ostrze na dłużej, co przekłada się na mniejsze koszty eksploatacji i dłuższy czas użytkowania. Przykładem zastosowania są wiertła do metalu używane w przemyśle motoryzacyjnym i lotniczym, gdzie precyzja i wytrzymałość narzędzi są niezwykle istotne. Ponadto, stal szybkotnąca jest zgodna z normami ISO i innych standardów branżowych, co czyni ją materiałem o wysokiej jakości i niezawodności.

Pytanie 37

Jakiego materiału nie używa się do produkcji łożysk ślizgowych?

A. Babbitu
B. PA6
C. PFTE
D. Boksytu
Boksyt, będący naturalnym minerałem aluminium, nie jest stosowany w produkcji łożysk ślizgowych ze względu na swoje właściwości fizyczne i chemiczne. Łożyska ślizgowe wymagają materiałów o wysokiej odporności na ścieranie, niskim współczynniku tarcia oraz dobrej trwałości w warunkach obciążenia. Materiały takie jak PA6 (poliamid) oraz PFTE (politetrafluoroetylen) są powszechnie używane, ponieważ charakteryzują się niskim współczynnikiem tarcia oraz dobrą odpornością na działanie różnych chemikaliów. Babbit, z kolei, to stop metali używany w łożyskach, który oferuje doskonałe właściwości smarne. W porównaniu do tych materiałów, boksyt nie ma zastosowania w tej dziedzinie, ponieważ nie spełnia wymagań dotyczących wytrzymałości oraz właściwości tribologicznych. Przykładowo, w przemyśle motoryzacyjnym i maszynowym stosuje się łożyska ślizgowe wykonane z PA6 lub PFTE dla zapewnienia długiej żywotności i niezawodności komponentów.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.