Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 31 stycznia 2026 21:44
  • Data zakończenia: 31 stycznia 2026 22:10

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na której ilustracji przedstawiono przewód przeznaczony do wykonania trójfazowego przyłącza ziemnego do budynku jednorodzinnego w sieci TN-S?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 1.
C. Na ilustracji 2.
D. Na ilustracji 4.
Wybór niewłaściwych ilustracji wskazuje na pewne nieporozumienia dotyczące budowy i zastosowania przewodów stosowanych w przyłączach trójfazowych. Ilustracje, które przedstawiają przewody z mniejszą liczbą żył, mogą przypominać przewody jednofazowe lub nieodpowiednie konstrukcje dla systemu TN-S, które wymagają co najmniej czterech żył. Typowym błędem jest mylenie przewodów jednofazowych, które najczęściej mają jedną fazę i neutralny, z przewodami trójfazowymi. W systemie TN-S kluczowe jest zapewnienie nie tylko prawidłowego zasilania, ale również skutecznej ochrony przed porażeniem elektrycznym, co jest niemożliwe bez odpowiedniego przewodu ochronnego PE. Brak separacji przewodów fazowych i neutralnego może prowadzić do poważnych problemów, takich jak niewłaściwe działanie zabezpieczeń czy ryzyko przeciążenia. Takie podejście do projektowania instalacji elektrycznej jest nie tylko niezgodne z normami PN-IEC 60364, ale także może prowadzić do awarii systemu w momencie obciążenia większą ilością urządzeń elektrycznych. Dlatego niezwykle istotne jest, aby przy projektowaniu instalacji elektrycznych zawsze stosować przewody odpowiednie do przewidywanych obciążeń, co w przypadku trójfazowych przyłączy ziemnych oznacza użycie przewodów czterordzeniowych.

Pytanie 2

Jaki zakres pomiarowy oraz rodzaj napięcia trzeba ustawić na woltomierzu, aby zmierzyć napięcie zasilające obwód gniazd wtyczkowych w budynku mieszkalnym?

A. 500 V AC
B. 500 V DC
C. 200 V DC
D. 200 V AC
Wybór 200 V DC, 500 V DC oraz 200 V AC jest nieprawidłowy z różnych powodów. Zastosowanie zakresu 200 V DC jest niewłaściwe, ponieważ w budynkach mieszkalnych nie używa się napięcia stałego do gniazd wtyczkowych. Większość instalacji elektrycznych w tych budynkach operuje na prądzie przemiennym, co czyni pomiar DC nieprzydatnym w tym kontekście. Ustawienie na 500 V DC również jest błędne z tej samej przyczyny – nie ma potrzeby mierzenia napięcia stałego w standardowych gniazdach. W kontekście napięcia przemiennego, mikrozakres 200 V AC jest zbyt niski dla standardowego napięcia sieciowego, które wynosi 230 V AC. Pomiar w tym zakresie mógłby prowadzić do przeciążenia woltomierza, co z kolei mogłoby spowodować uszkodzenie urządzenia. W praktyce ważne jest, aby znać charakterystykę napięcia w danym obwodzie oraz odpowiednio dostosować zakres pomiarowy do warunków, aby zapewnić zarówno bezpieczeństwo, jak i dokładność pomiarów. Warto również zwrócić uwagę na normy bezpieczeństwa, takie jak IEC 61010, które stanowią wytyczne dla pomiarów elektrycznych, a ich ignorowanie może prowadzić do poważnych konsekwencji.

Pytanie 3

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 7,7 Ω
B. 8,0 Ω
C. 2,3 Ω
D. 4,6 Ω
Wartości impedancji pętli zwarcia 2,3 Ω, 7,7 Ω oraz 8,0 Ω nie są odpowiednie z różnych powodów. Impedancja pętli zwarcia o wartości 2,3 Ω może wydawać się atrakcyjna, ale jest zbyt niska, co może prowadzić do nieprawidłowego działania wyłącznika nadprądowego, czyniąc go bardziej podatnym na fałszywe wyzwolenia. Wyłączniki nadprądowe mają swoje charakterystyki czasowe, a przy zbyt niskiej impedancji prąd zwarciowy może być niewystarczający do ich skutecznego działania w momentach awaryjnych. Z kolei wartość 7,7 Ω, choć nieco bardziej akceptowalna, przekracza maksymalne wartości, które zapewniają odpowiednią ochronę w standardowych instalacjach, co może prowadzić do niebezpieczeństwa porażenia. Zbyt wysoka impedancja pętli zwarcia powoduje, że prąd zwarciowy, który z reguły musi być odpowiednio wysoki, aby wyzwolić zabezpieczenia, może nie osiągnąć wartości progowej przy zwarciu, co w konsekwencji skutkuje wydłużonym czasem wyłączenia zasilania i narażeniem użytkowników na niebezpieczeństwo. Wartość 8,0 Ω jest jeszcze bardziej niekorzystna, ponieważ znacznie przekracza parametry zalecane przez normy, co może prowadzić do poważnych zagrożeń w przypadku uszkodzenia izolacji. Zrozumienie tych zasad jest kluczowe dla inżynierów oraz techników, którzy projektują instalacje elektryczne, aby zapewnić ich bezpieczeństwo i zgodność z normami branżowymi.

Pytanie 4

Na przyrządzie ustawionym na zakres 300 V zmierzono napięcie w sieci, które wynosi 230 V. Do wykonania pomiaru zastosowano miernik analogowy o dokładności w klasie 1,5. Jaki jest błąd bezwzględny uzyskanego pomiaru?

A. ± 4,30 V
B. ± 4,50 V
C. ± 4,60 V
D. ± 4,40 V
Błędy w obliczeniach błędów bezwzględnych pomiaru mogą wynikać z niedokładnego zrozumienia klasy dokładności miernika oraz sposobu jej zastosowania. W przypadku analizowania błędów pomiarowych istotne jest, aby pamiętać, że klasa dokładności odnosi się do całego zakresu pomiarowego, a nie tylko do konkretnego odczytu. Na przykład, niektóre odpowiedzi mogłyby sugerować, że błąd bezwzględny pomiaru wynosi ± 4,30 V lub ± 4,40 V, co jest wynikiem mylenia wartości procentowych z rzeczywistymi pomiarami. Klasa 1,5% oznacza, że błąd ten powinien być obliczany z całkowitego zakresu, a nie bezpośrednio z odczytu. Ponadto, pomijanie kontekstu zastosowania miernika oraz jego ograniczeń prowadzi do nieprawidłowych wniosków, co może być krytyczne w praktycznych zastosowaniach, takich jak instalacje elektryczne. Przykładowo, nieprawidłowe oszacowanie błędu pomiarowego może prowadzić do niewłaściwego doboru komponentów systemu lub nieprawidłowej oceny stanu instalacji, co w konsekwencji może wpłynąć na bezpieczeństwo użytkowników oraz efektywność energetyczną całego systemu. Dlatego tak ważne jest, aby przy obliczaniu błędów pomiarowych zawsze stosować przyjęte normy i metodyki, zapewniając rzetelność wyników.

Pytanie 5

Na której ilustracji przedstawiono element osprzętu elektrycznego przeznaczony do montażu na tynku?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 1.
C. Na ilustracji 4.
D. Na ilustracji 2.
Prawidłowa jest ilustracja 3, ponieważ pokazuje typowe gniazdo wtykowe podwójne w wersji natynkowej, z obudową montowaną bezpośrednio na tynku. Taki osprzęt ma własną obudowę, która tworzy bryłę odstającą od ściany, a przewody są doprowadzane do niego w rurkach, peszlach lub kanałach instalacyjnych po wierzchu ściany. W odróżnieniu od osprzętu podtynkowego nie wymaga on puszki osadzonej w bruździe – wystarczy stabilne podłoże i odpowiednie kołki rozporowe. W praktyce takie gniazda stosuje się często w garażach, piwnicach, warsztatach, pomieszczeniach gospodarczych, ale też w modernizowanych instalacjach, gdzie nie chcemy kuć ścian. Obudowa z klapką zwiększa stopień ochrony IP, co jest zgodne z wymaganiami norm PN‑IEC 60364 dla pomieszczeń wilgotnych lub zapylonych. Moim zdaniem to bardzo wygodne rozwiązanie serwisowe – w razie potrzeby łatwo dołożyć kolejne gniazdo, zamienić na wersję z wyłącznikiem albo zmienić układ bez poważnych przeróbek tynku. Dobre praktyki mówią też, żeby przy osprzęcie natynkowym zwracać uwagę na szczelność dławików kablowych i poprawne wprowadzenie przewodów, tak żeby nie było naprężeń mechanicznych na zaciskach. Warto pamiętać, że osprzęt natynkowy dobiera się nie tylko pod kątem napięcia i prądu znamionowego, ale też stopnia ochrony IP, wytrzymałości mechanicznej obudowy i warunków środowiskowych, w jakich będzie pracował.

Pytanie 6

Który z opisów dotyczy funkcji B przekaźnika czasowego o przedstawionych diagramach jego pracy?

Ilustracja do pytania
A. Opóźnione cykliczne załączanie.
B. Opóźnione wyłączenie.
C. Opóźnione cykliczne wyłączanie.
D. Opóźnione załączenie.
Poprawnie powiązałeś funkcję B z opisem „opóźnione załączenie”. Na diagramie widać, że po pojawieniu się napięcia zasilania U przekaźnik nie załącza swoich styków od razu – pozioma kreska przy funkcji B zaczyna się dopiero po czasie t. To właśnie jest klasyczna funkcja „ON-delay”: najpierw odliczanie, potem dopiero przełączenie styków wykonawczych. W praktyce oznacza to, że po podaniu sygnału sterującego (np. pojawienie się napięcia na cewce) przekaźnik czeka ustawiony czas, a dopiero później zamyka lub otwiera styki robocze. Takie przekaźniki stosuje się bardzo często w automatyce budynkowej i przemysłowej. Typowy przykład: łagodne załączanie dużych odbiorników, żeby uniknąć udaru prądowego – najpierw startuje np. wentylacja, a dopiero po kilku sekundach nagrzewnica. Albo sekwencyjne załączanie kilku silników, każdy z opóźnieniem, żeby nie przeciążyć sieci. Z mojego doświadczenia, funkcja opóźnionego załączenia jest też standardem przy sterowaniu oświetleniem awaryjnym, systemami wentylacji, układami gwiazda–trójkąt (jako element logiki sterowania). Ważne jest, że po zaniku napięcia i ponownym podaniu, cykl odmierzania czasu zaczyna się od nowa, zgodnie z katalogowymi opisami producentów (Relpol, Finder, Eaton itp.). Dobrą praktyką jest zawsze dokładne czytanie diagramów czasowych w kartach katalogowych – oznaczenie funkcji samą literą (A, B, C, D) bywa różne u producentów, ale kształt przebiegu zawsze jednoznacznie pokazuje, czy chodzi o opóźnione załączenie, czy wyłączenie, czy pracę cykliczną. Tu funkcja B ewidentnie pokazuje: sygnał wejściowy jest obecny, liczony jest czas t, a dopiero potem następuje załączenie – czyli klasyczne opóźnione załączenie.

Pytanie 7

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 500V
B. 750V
C. 250V
D. 1000 V
Wybór napięcia probierczego w testach rezystancji izolacji obwodów elektrycznych jest kluczowym aspektem zapewniającym bezpieczeństwo i niezawodność systemów. Odpowiedzi takie jak 750 V, 250 V oraz 1000 V mogą wydawać się na pierwszy rzut oka logiczne, ale w rzeczywistości mogą prowadzić do nieprawidłowych wniosków i problemów w praktyce. Użycie 750 V jest zbyt wysokie dla wielu instalacji o napięciu roboczym 230/400 V, co może skutkować uszkodzeniem izolacji, a tym samym zagrażać bezpieczeństwu użytkowników. Z kolei napięcie 250 V jest niewystarczające do skutecznego przeprowadzenia testu, co może nie ujawnić rzeczywistych problemów z izolacją, takich jak niewidoczne uszkodzenia czy degradacja materiału. Napięcie 1000 V, choć stosowane w niektórych aplikacjach, również nie jest zalecane dla instalacji o niższych wartościach napięcia roboczego, ponieważ może prowadzić do fałszywych wyników, które nie odzwierciedlają stanu faktycznego. Kluczowe znaczenie ma stosowanie odpowiednich norm, jak PN-EN 61557-2, które określają, że dla instalacji 230/400 V optymalnym napięciem probierczym jest 500 V. Wybór niewłaściwego napięcia może prowadzić do nieprawidłowych ocen stanu izolacji, co w konsekwencji zwiększa ryzyko awarii oraz zagrożenia dla bezpieczeństwa.

Pytanie 8

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K1, K2, K3, K4, K5, K6, K7
B. K1, K5, K4, K6, K3, K7, K2
C. K7, K2, K3, K6, K4, K5, K1
D. K1, K5, K4, K6, K3, K2, K7
Podczas analizy niepoprawnych odpowiedzi można zauważyć kilka kluczowych błędów myślowych, które mogą prowadzić do nieporozumień w kontekście działania styczników i przekaźników. Odpowiedzi takie jak K7, K2, K3, K6, K4, K5, K1 czy inne sekwencje z pominięciem K1 jako pierwszego stycznika pokazują, że użytkownik nie uwzględnił podstawowej zasady działania obwodów elektrycznych – aktywacja elementów musi być logiczna i zgodna z kolejnością zaprogramowaną w obwodzie. Prawidłowe sterowanie stycznikami zapewnia, że każdy kolejne element jest aktywowany w odpowiednim momencie, co jest niezbędne dla właściwego rozruchu silnika. W przypadku przedstawionych odpowiedzi brakuje zrozumienia, jak styk pomocniczy K1 wpływa na działanie K5. Ignorowanie tego faktu może prowadzić do nieefektywnego rozruchu silnika, co może skutkować uszkodzeniem sprzętu lub nawet zagrożeniem dla bezpieczeństwa. Kluczowym jest zrozumienie, dlaczego takie sekwencje są istotne w praktycznych zastosowaniach, zwłaszcza w kontekście norm i standardów branżowych. Właściwe zrozumienie logiki działania styczników oraz ich połączeń jest fundamentem w automatyce i elektrotechnice, a nieprzestrzeganie tych zasad może prowadzić do błędnych wniosków w projektowaniu układów rozruchowych.

Pytanie 9

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Sprawdzenie kierunku obrotów wału silnika
B. Weryfikacja symetrii napięcia zasilającego
C. Mierzenie prędkości obrotowej
D. Mierzenie temperatury stojana
Sprawdzenie kierunku obrotów wału silnika elektrycznego jest kluczowym krokiem po jego montażu, ponieważ niewłaściwy kierunek obrotów może prowadzić do uszkodzenia silnika oraz urządzeń, z którymi jest połączony. W praktyce, wiele aplikacji wymaga, aby silnik obracał się w określonym kierunku, co jest szczególnie ważne w systemach napędowych, takich jak pompy, wentylatory czy maszyny robocze. Warto również pamiętać, że w przypadku silników trójfazowych zmiana kierunku obrotów jest możliwa poprzez zamianę miejscami dwóch dowolnych przewodów zasilających. Zgodnie z normami branżowymi, przed uruchomieniem silnika należy zawsze sprawdzić jego kierunek obrotów, aby zagwarantować prawidłowe działanie i uniknąć potencjalnych awarii. Dodatkowo, sprawdzenie kierunku obrotów może być dokumentowane w protokole uruchomieniowym, co jest zgodne z najlepszymi praktykami w zakresie zarządzania jakością oraz bezpieczeństwem w pracy. Warto także wspomnieć, że w przypadku silników używanych w automatyce przemysłowej, kierunek obrotów jest często monitowany przez systemy kontrolne, które mogą automatycznie reagować na nieprawidłowości.

Pytanie 10

Jaka jest wielkość prądu znamionowego, przy której działają wyzwalacze zwarciowe w wyłącznikach instalacyjnych nadprądowych typu Z?

A. 5 do 10
B. 3 do 5
C. 2 do 3
D. 10 do 20
Złudzenia związane z innymi wartościami krotności prądu znamionowego wynikają często z niepełnego zrozumienia działania wyłączników nadprądowych oraz ich zastosowania w ochronie instalacji elektrycznych. Odpowiedzi sugerujące krotności od 3 do 5, 5 do 10, czy 10 do 20 są błędne, ponieważ wyzwalacze w wyłącznikach typu Z są zaprojektowane do zadziałania w niższym zakresie krotności, co pozwala na skuteczną ochronę delikatniejszych układów przed zbyt dużym prądem. Wyzwalacze w kategoriach 5 do 10 i 10 do 20 zazwyczaj znajdziemy w wyłącznikach typu C lub D, które są przeznaczone do obwodów o wyższej tolerancji na prądy rozruchowe, takich jak obwody z silnikami dużej mocy. Nieprawidłowe podejście do wyboru odpowiednich wyłączników może prowadzić do poważnych problemów, takich jak uszkodzenia sprzętu, które mogłyby być uniknięte dzięki zastosowaniu wyłączników typu Z w odpowiednich aplikacjach. Kluczowym błędem myślowym jest zakładanie, że wyższa krotność zawsze oznacza lepszą ochronę, co jest mylące. Odpowiedni wybór wyłącznika powinien być oparty na charakterystyce obciążenia oraz wymaganiach instalacji, co jest zgodne z normami i dobrymi praktykami w projektowaniu systemów elektroenergetycznych.

Pytanie 11

Który z podanych wyłączników różnicowoprądowych powinien być zastosowany jako ochrona przed porażeniem, przeciążeniem oraz zwarciem w obwodzie gniazd wtykowych instalacji jednofazowej 230 V/50 Hz?

A. P 312 B-16-30-AC
B. P 344 C-16-30-AC
C. P 302 25-30-AC
D. P 304 25-30-AC
Wybierając te wyłączniki różnicowoprądowe P 302 25-30-AC, P 304 25-30-AC i P 344 C-16-30-AC, to tak trochę się pogubiliśmy w ich funkcjach i zastosowaniu. Przykład? Wyłącznik P 302 25-30-AC niby ma ochronę różnicowoprądową, ale w rzeczywistości jest stworzony do innych zastosowań, co może spowodować, że nie zadziała w przypadku przeciążenia lub zwarcia w gniazdach. Podobnie P 304 25-30-AC, który też nie daje pełnej ochrony w standardowych warunkach, co może narazić nasze urządzenia na uszkodzenia i zwiększyć ryzyko porażenia. A P 344 C-16-30-AC, mimo że w niektórych sytuacjach się sprawdzi, nie ma wszystkich potrzebnych funkcji zabezpieczeń, więc nie jest najlepszym wyborem do gniazdek. Wybierając nieodpowiedni wyłącznik, stawiamy użytkowników w niebezpieczeństwie i ryzykujemy całą instalacją elektryczną. Dlatego warto zrozumieć co każdy wyłącznik oferuje i czy pasuje do naszych potrzeb, żeby zapewnić bezpieczeństwo i użytkownikom, i całej instalacji.

Pytanie 12

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn ≥ UL
B. RA ∙ IΔn > UL
C. RA ∙ IΔn < UL
D. RA ∙ IΔn ≤ UL
Każda z pozostałych odpowiedzi opiera się na błędnych założeniach dotyczących działania urządzeń ochronnych oraz zasadności stosowania zależności związanych z bezpieczeństwem elektrycznym. Odpowiedzi sugerujące, że RA ∙ IΔn > UL, RA ∙ IΔn < UL czy RA ∙ IΔn ≥ UL są nieprawidłowe, ponieważ nie uwzględniają kluczowego aspektu, jakim jest ochrona przed porażeniem elektrycznym. W przypadku, gdyby stosunek RA ∙ IΔn był większy niż UL, oznaczałoby to, że nie możemy zagwarantować, iż prąd różnicowy wywołany przez uszkodzenie izolacji w sieci nie przekroczy wartości niebezpiecznej dla osoby dotykającej urządzenia elektrycznego. Taka sytuacja prowadzi do dużego ryzyka porażenia prądem, co jest sprzeczne z podstawowymi zasadami ochrony przeciwporażeniowej. Z kolei odpowiedź sugerująca, że RA ∙ IΔn powinno być większe lub równe UL, może prowadzić do sytuacji, w której ochrona nie zadziała w odpowiednim momencie, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych oraz poważnymi obrażeniami ludzi. W kontekście dobrych praktyk w instalacjach elektrycznych, zgodnych z normami, kluczowe jest zapewnienie, że wszystkie urządzenia ochronne są odpowiednio dobrane, a ich parametry muszą być zgodne z wymaganiami dotyczącymi uziemienia i bezpieczeństwa elektrycznego. Przykłady błędnych przekonań obejmują nadmierne zaufanie do technologii bez zrozumienia ich działania oraz ignorowanie istotnych norm, które regulują bezpieczeństwo instalacji elektrycznych.

Pytanie 13

Aby wymienić wadliwy łącznik w instalacji, należy wykonać następujące kroki:

A. wyłączyć napięcie, usunąć uszkodzony łącznik, zweryfikować ciągłość połączeń
B. wyłączyć napięcie, upewnić się o braku napięcia, wyjąć uszkodzony łącznik
C. usunąć uszkodzony łącznik, odłączyć napięcie, sprawdzić ciągłość połączeń
D. podłączyć napięcie, zweryfikować ciągłość połączeń, wyjąć uszkodzony łącznik
Odpowiedź odłączająca napięcie, sprawdzająca brak napięcia, a następnie wymontowująca uszkodzony łącznik jest zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Odłączenie napięcia przed przystąpieniem do jakiejkolwiek pracy na instalacji elektrycznej jest kluczowe, aby zminimalizować ryzyko porażenia prądem. Sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak tester napięcia, jest niezbędne, aby potwierdzić, że instalacja jest bezpieczna do pracy. Po wykonaniu tych dwóch kroków można bezpiecznie wymontować uszkodzony łącznik. Przykładem praktycznym może być sytuacja, w której technik serwisowy wymienia łącznik w oświetleniu sufitowym. Stosując powyższe kroki, zapewnia sobie bezpieczeństwo oraz minimalizuje ryzyko uszkodzeń innych elementów instalacji. Zgodnie z normami IEC i PN-EN, przestrzeganie tych zasad jest obligatoryjne, aby utrzymać wysokie standardy bezpieczeństwa w pracy z instalacjami elektrycznymi.

Pytanie 14

Na ilustracji przedstawiony jest

Ilustracja do pytania
A. kabel telekomunikacyjny.
B. kabel elektroenergetyczny.
C. przewód sterowniczy.
D. przewód spawalniczy.
Kabel elektroenergetyczny, który został przedstawiony na ilustracji, charakteryzuje się specyficzną budową oraz solidną izolacją, co jest kluczowe dla jego funkcji w systemach elektroenergetycznych. Te kable są zaprojektowane do przesyłania dużych ilości energii elektrycznej i zazwyczaj mają grubszą średnicę oraz wytrzymałe materiały izolacyjne, które chronią je przed uszkodzeniami mechanicznymi i wpływem warunków atmosferycznych. W kontekście standardów branżowych, kable elektroenergetyczne muszą spełniać rygorystyczne normy, takie jak normy IEC (Międzynarodowa Komisja Elektrotechniczna) czy EN (Europejskie Normy). W praktyce, ich zastosowanie obejmuje przesył energii do budynków, instalacji przemysłowych i infrastruktury miejskiej, co czyni je fundamentalnym elementem w systemach energetycznych. Wiedza na temat różnic między kablami energetycznymi, telekomunikacyjnymi a innymi przewodami jest istotna dla każdego inżyniera elektryka, aby zapewnić odpowiedni dobór materiałów i bezpieczeństwo instalacji.

Pytanie 15

Jakie pomiary są wykonywane przy sprawdzaniu wyłącznika różnicowoprądowego?

A. prądu obciążenia oraz czasu jego działania
B. napięcia sieciowego oraz prądu obciążenia
C. napięcia sieciowego oraz prądu różnicowego
D. prądu różnicowego oraz czasu jego działania
Sprawdzanie wyłącznika różnicowoprądowego to naprawdę ważna sprawa, bo chodzi tu o nasze bezpieczeństwo. Mierzymy prąd różnicowy i czas, w jakim wyłącznik zadziała, bo to zapewnia, że wszystko działa jak należy w instalacjach elektrycznych. Prąd różnicowy to różnica pomiędzy prądem, który idzie do urządzenia, a tym, który wraca. W normalnych warunkach ta różnica powinna być mała. RCD działa w ten sposób, że jeśli ta różnica przekroczy pewien próg, najczęściej 30 mA dla ochrony osób, to odcina zasilanie. Regularne testy wyłączników pozwalają upewnić się, że są w porządku i że nas chronią przed porażeniem prądem. Moim zdaniem, dobrze jest testować to przynajmniej raz w roku, aby mieć pewność, że ochrona działa jak należy. Do testów można użyć specjalnych urządzeń, które naśladują prąd różnicowy i pokazują, w jakim czasie wyłącznik się włączy. Jest to naprawdę istotne, żeby się tym zajmować.

Pytanie 16

Z oznaczenia kabla YDYp 3x1 mm2 300/500 V wynika, że maksymalne wartości skuteczne napięć pomiędzy żyłą przewodu a ziemią oraz pomiędzy poszczególnymi żyłami wynoszą odpowiednio

A. 300 V i 500 V
B. 200 V i 300 V
C. 500 V i 300 V
D. 200 V i 500 V
Wybór 300 V i 500 V jest jak najbardziej trafny. Przewód YDYp 3x1 mm2 300/500 V ma dwa ważne parametry. Pierwszy, 300 V, to maksymalne napięcie między żyłą a ziemią, a drugi, 500 V, dotyczy napięcia między żyłami. Te oznaczenia są zgodne z normami bezpieczeństwa, co jest istotne, gdy instalujemy elektrykę w domach czy biurach. W praktyce używa się takich przewodów do zasilania różnych rzeczy, jak oświetlenie czy gniazdka. Dzięki tym wartościom nie tylko efektywnie działamy, ale przede wszystkim dbamy o bezpieczeństwo, zmniejszając ryzyko porażenia prądem. Pamiętaj, że wybór odpowiednich przewodów jest kluczowy, by spełniały one polskie normy PN-IEC dotyczące instalacji elektrycznych.

Pytanie 17

Które z podanych źródeł światła elektrycznego charakteryzują się najniższą efektywnością świetlną?

A. Żarówki
B. Lampy fluorescencyjne
C. Lampy indukcyjne
D. Lampy ze rtęcią
Zarówno świetlówki, lampy rtęciowe, jak i lampy indukcyjne oferują wyższą skuteczność świetlną w porównaniu do tradycyjnych żarówek. Świetlówki, na przykład, mogą osiągać skuteczność od 35 do 100 lumenów na wat, co czyni je znacznie bardziej efektywnymi w wytwarzaniu światła. Wybór świetlówek zamiast żarówek tradycyjnych w biurach i innych przestrzeniach komercyjnych jest powszechną praktyką, mającą na celu zmniejszenie kosztów energii oraz ograniczenie emisji dwutlenku węgla. Lampy rtęciowe, stosowane zazwyczaj w oświetleniu ulicznym, również charakteryzują się przyzwoitym poziomem efektywności, osiągając od 50 do 70 lumenów na wat. Lampy indukcyjne, z drugiej strony, mogą nawet przekraczać 100 lumenów na wat, co czyni je idealnym wyborem do oświetlenia dużych powierzchni przemysłowych. Wybór odpowiedniego źródła światła powinien być zatem zgodny z zasadami efektywności energetycznej oraz potrzebami konkretnego zastosowania. Typowe błędy polegają na myleniu żarówek z innymi źródłami światła w kontekście ich efektywności i zastosowania, co często prowadzi do nieoptymalnych decyzji zakupowych i większych kosztów eksploatacji.

Pytanie 18

W jaki sposób należy ułożyć przewody w instalacji elektrycznej, jeśli na jej planie znajduje się symbol przedstawiony na rysunku?

Ilustracja do pytania
A. Pod tynkiem.
B. Na tynku.
C. W listwach elektroinstalacyjnych.
D. W kanałach przypodłogowych.
Wybór odpowiedzi związanej z układaniem przewodów w listwach elektroinstalacyjnych, na tynku lub w kanałach przypodłogowych jest błędny z kilku powodów. Zastosowanie listw elektroinstalacyjnych, choć zapewnia łatwy dostęp do przewodów, nie jest zgodne z zasadami estetyki oraz bezpieczeństwa w nowoczesnych projektach budowlanych. Listwy są często narażone na uszkodzenia mechaniczne, a ich obecność w pomieszczeniach może prowadzić do nieestetycznego wyglądu oraz problematycznego dostępu do przewodów w przypadku ich awarii. Umieszczanie przewodów na tynku to kolejna nieodpowiednia praktyka, ponieważ przewody są wtedy narażone na działanie czynników zewnętrznych, co może prowadzić do ich szybszego zużycia oraz wzrostu ryzyka zwarcia. Poza tym, układanie przewodów w kanałach przypodłogowych, choć stosowane w niektórych przypadkach, również nie jest zalecane, zwłaszcza w budynkach mieszkalnych, gdzie można zastosować bardziej estetyczne i bezpieczne rozwiązania, takie jak ułożenie przewodów pod tynkiem. Kluczowym błędem jest myślenie, że dostępność przewodów w przypadku ich awarii jest ważniejsza niż ich długoterminowa ochrona i estetyka. Wymogi dotyczące instalacji w budynkach mieszkalnych przewidują, że przewody powinny być ukryte, co nie tylko poprawia wygląd wnętrza, ale także zwiększa bezpieczeństwo użytkowników.

Pytanie 19

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,5% + 1 cyfra
B. ±2,0% + 2 cyfry
C. ±1,0% + 4 cyfry
D. ±1,5% + 3 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 20

Jakie źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Lampę metalohalogenkową.
B. Lampę indukcyjną.
C. Świetlówkę kompaktową.
D. Żarówkę halogenową.
Świetlówka kompaktowa, przedstawiona na zdjęciu, charakteryzuje się unikalnym kształtem, który opiera się na zwiniętej rurze zawierającej gaz fluorescencyjny, co pozwala na efektywne generowanie światła. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe oferują znacznie wyższą efektywność energetyczną, co przekłada się na dłuższy czas życia oraz niższe zużycie energii. Używane są powszechnie w domach oraz biurach jako odpowiednik standardowych żarówek, zwłaszcza w sytuacjach, gdy zależy nam na oszczędności energii. Dodatkowo, świetlówki kompaktowe są często stosowane w ogrodach i na zewnątrz budynków, ponieważ oferują wysoką jakość światła przy niskim poborze mocy. Warto również zauważyć, że ich ograniczona emisja ciepła sprawia, że są bezpieczniejsze w użytkowaniu, zwłaszcza w zamkniętych przestrzeniach. Zgodnie z normami energetycznymi, ich zastosowanie przyczynia się do zmniejszenia emisji dwutlenku węgla, co jest zgodne z globalnymi dążeniami do ochrony środowiska.

Pytanie 21

Który rodzaj źródła światła pokazano na rysunku?

Ilustracja do pytania
A. Elektroluminescencyjne.
B. Wyładowcze.
C. Żarowe.
D. Fluorescencyjne.
Wybór jednego z pozostałych rodzajów źródeł światła, takich jak żarowe, wyładowcze czy fluorescencyjne, może prowadzić do kilku nieporozumień, które warto wyjaśnić. Źródła światła żarowego działają na zasadzie podgrzewania włókna, co jest procesem nieefektywnym i generującym dużą ilość ciepła, a nie światła. Takie podejście do oświetlenia, chociaż powszechnie znane, nie tylko zużywa dużo energii, ale także wymaga częstej wymiany żarówek, co nie jest korzystne pod kątem praktycznym i ekonomicznym. Źródła wyładowcze, takie jak lampy rtęciowe czy sodowe, emitują światło w wyniku wyładowania elektrycznego w gazie. Choć są stosunkowo wydajne, mają swoje ograniczenia, takie jak długi czas zapłonu oraz konieczność ich utylizacji w sposób zgodny z przepisami, co nie zawsze jest praktyczne. Z kolei lampy fluorescencyjne, które działają na zasadzie emisji światła z gazu po naświetleniu go promieniowaniem ultrafioletowym, również nie dorównują diodom LED pod względem efektywności energetycznej oraz żywotności. Zrozumienie różnic między tymi technologiami jest kluczowe dla wyboru odpowiednich źródeł światła, które będą nie tylko bardziej efektywne energetycznie, lecz także przyjazne dla środowiska. W kontekście standardów branżowych, większość nowoczesnych projektów oświetleniowych zaleca stosowanie diod LED, które spełniają najwyższe normy dotyczące efektywności i użytkowania energii.

Pytanie 22

Na którym rysunku przedstawiono żarówkę z trzonkiem GU10?

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Żarówka z trzonkiem GU10 jest popularnym rozwiązaniem w oświetleniu, szczególnie w zastosowaniach domowych i komercyjnych. Trzonek GU10 ma charakterystyczne bolce, które umożliwiają łatwe i szybkie mocowanie żarówki w oprawie. W przypadku żarówki oznaczonej jako B na zdjęciu, widoczny jest podwójny bolec, co jednoznacznie wskazuje na typ GU10. Tego rodzaju żarówki są często stosowane w reflektorach sufitowych oraz oświetleniu akcentującym, co czyni je idealnym wyborem do różnych aranżacji wnętrz. Warto również zauważyć, że żarówki GU10 dostępne są w różnych wersjach, zarówno LED, jak i halogenowych, co daje większą elastyczność w doborze źródła światła odpowiedniego do danej przestrzeni. W kontekście dobrych praktyk, należy zawsze upewnić się, że dobieramy właściwe źródło światła do odpowiedniej oprawy, aby zapewnić optymalne warunki oświetleniowe oraz minimalizować ryzyko uszkodzenia sprzętu.

Pytanie 23

Podczas inspekcji świeżo zainstalowanej sieci elektrycznej nie ma konieczności weryfikacji

A. doboru zabezpieczeń i urządzeń
B. wartości natężenia oświetlenia w miejscach pracy
C. doboru oraz oznaczenia przewodów
D. układu tablic informacyjnych i ostrzegawczych
Odpowiedź dotycząca wartości natężenia oświetlenia na stanowiskach pracy jest prawidłowa, ponieważ podczas oględzin nowo wykonanej instalacji elektrycznej, kluczowe jest sprawdzenie elementów, które bezpośrednio wpływają na bezpieczeństwo oraz funkcjonalność instalacji. Wartości natężenia oświetlenia są kontrolowane w kontekście ergonomii i komfortu pracy, ale ich pomiar nie jest wymagany w ramach odbioru samej instalacji elektrycznej. Zgodnie z normą PN-EN 12464-1, która określa wymagania dotyczące oświetlenia miejsc pracy, wartości natężenia powinny być dostosowane do rodzaju wykonywanej pracy, jednak ich pomiar jest bardziej związany z późniejszym użytkowaniem przestrzeni niż z samą instalacją elektryczną. Ważne jest, aby w trakcie odbioru zwracać szczególną uwagę na dobór i oznaczenie przewodów, zabezpieczeń oraz aparatury, które mają kluczowe znaczenie dla prawidłowego funkcjonowania instalacji i zapewnienia bezpieczeństwa użytkowników, co potwierdzają standardy branżowe i przepisy prawa budowlanego.

Pytanie 24

W układzie przedstawionym na rysunku, po podłączeniu odbiornika, zadziałał wyłącznik różnicowoprądowy. Przyczyną tego jest

Ilustracja do pytania
A. nieprawidłowe połączenie przewodu neutralnego i ochronnego.
B. pojawienie się napięcia na części metalowej normalnie nieprzewodzącej.
C. zwarcie między przewodem fazowym i ochronnym
D. zwarcie między przewodem neutralnym i ochronnym.
Zrozumienie mechanizmu działania wyłączników różnicowoprądowych jest kluczowe dla prawidłowej interpretacji sytuacji przedstawionej w pytaniu. Odpowiedź sugerująca zwarcie między przewodem neutralnym a ochronnym jest błędna, gdyż w takim przypadku wyłącznik nie zareagowałby. Zwarcie to nie wiąże się z różnicą prądów, która jest podstawą działania tych zabezpieczeń. Z kolei wariant dotyczący zwarcia między przewodem fazowym a ochronnym również nie jest trafny, ponieważ takie zwarcie najczęściej prowadzi do zadziałania zabezpieczeń nadprądowych, a nie różnicowoprądowych. Warto zauważyć, że nieprawidłowe połączenie przewodu neutralnego i ochronnego może prowadzić do poważnych problemów z bezpieczeństwem, jednak nie będzie to głównym powodem działania wyłącznika różnicowoprądowego. Typowym błędem w rozumieniu tego zagadnienia jest mylenie funkcji różnych rodzajów zabezpieczeń. Wyłącznik różnicowoprądowy ma na celu ochronę przed skutkami upływu prądu, a nie przed zwarciami. W praktyce, gdy urządzenie elektryczne generuje napięcie na obudowie, wyłącznik różnicowoprądowy działa jako pierwsza linia obrony przed porażeniem, co wyraźnie wskazuje na znaczenie jego prawidłowego działania oraz instalacji zgodnie z obowiązującymi normami bezpieczeństwa.

Pytanie 25

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. żółty
B. czerwony
C. szary
D. niebieski
Wybór innych kolorów wkładek topikowych może prowadzić do poważnych błędów w zabezpieczeniach instalacji elektrycznych. Szary kolor odpowiada wkładkom o prądzie znamionowym 6 A, co oznacza, że zastosowanie go w miejscu o pełnym obciążeniu 20 A może skutkować ich zbyt wczesnym przepaleniem, co z kolei może doprowadzić do uszkodzeń sprzętu oraz potencjalnych zagrożeń pożarowych. Żółty oznacza wkładki o wartości 10 A, co również jest niewystarczające dla prądów sięgających 20 A. Czerwony kolor jest przypisany wkładkom o prądzie znamionowym 16 A, co również nie zabezpiecza adekwatnie instalacji, która wymaga wytrzymałości 20 A. Kluczowym błędem myślowym jest błędne założenie, że każdy kolor mógłby być stosowany wymiennie w zależności od dostępności, co jest absolutnie nieprawidłowe. Przy wyborze wkładek topikowych należy kierować się nie tylko ich dostępnością, ale przede wszystkim normami oraz prądami znamionowymi, by uniknąć ryzyka awarii. Wiedza na temat tych norm oraz ich praktyczne zastosowanie jest niezbędne dla każdego profesjonalisty w branży elektrycznej.

Pytanie 26

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Modernizacja rozdzielnicy instalacji elektrycznej
B. Zmiana rodzaju zastosowanych przewodów
C. Instalacja dodatkowego gniazda elektrycznego
D. Wymiana uszkodzonych źródeł światła
Nie każda rzecz związana z instalacją elektryczną to prace konserwacyjne. Na przykład zmiana przewodów, mimo że ważna, to zazwyczaj jest modernizacja albo rozbudowa, a nie tylko konserwacja. Powinno się dobierać przewody według norm, jak PN-IEC 60364, które mówią o bezpieczeństwie i wydajności. A modernizacja rozdzielnicy to już w ogóle wykracza poza standardowe konserwacje, bo może oznaczać dodawanie nowych obwodów czy zmienianie konfiguracji. Takie rzeczy potrzebują zezwoleń i lepiej, żeby zajmował się tym kto ma odpowiednie kwalifikacje. Instalacja dodatkowego gniazda również wymaga przemyślenia, czasem projektu i zgód, a to już nie jest tylko prosta konserwacja. To wszystko pokazuje, że konserwacja w instalacjach elektrycznych powinna się skupić głównie na przywracaniu funkcji i bezpieczeństwa, a nie na jakichś modyfikacjach czy rozbudowach.

Pytanie 27

Którego przyrządu należy użyć do pomiarów rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Wybór niewłaściwego przyrządu do pomiarów rezystancji izolacji w instalacji elektrycznej może prowadzić do poważnych konsekwencji, zarówno technicznych, jak i bezpieczeństwa. Inne urządzenia, takie jak multimetru czy omomierze, nie są przystosowane do pomiaru wysokich wartości rezystancji, jakie występują w systemach izolacji. Multimetry, które często mają zakres pomiarowy do 20 MΩ, mogą nie być w stanie dokładnie zmierzyć rezystancji izolacji, zwłaszcza w przypadku uszkodzeń lub degradacji materiałów izolacyjnych. Użycie takich przyrządów w miejsce megomierza może prowadzić do fałszywych wniosków, które w efekcie mogą zagrażać bezpieczeństwu użytkowników. W praktyce, pomiar rezystancji izolacji powinien opierać się na standardowych procedurach, które wymagają użycia specjalistycznego wyposażenia. Dodatkowo, niekiedy występuje mylne przekonanie, że pomiar o niskich wartościach rezystancji jest wystarczający do oceny stanu izolacji. W rzeczywistości, normy branżowe jasno określają, że izolacja powinna mieć bardzo wysoką rezystancję, sięgającą nawet gigaomów, aby była uznawana za bezpieczną. Prawidłowe podejście do pomiarów nie tylko wpływa na efektywność działania instalacji, ale także na bezpieczeństwo ludzi oraz mienia, co jest kluczowym aspektem pracy w każdej branży związanej z elektrycznością.

Pytanie 28

Którym z przedstawionych na rysunkach wyłączników różnicowoprądowych można zastąpić w trójfazowej instalacji elektrycznej 230/400 V, zabezpieczonej wyłącznikiem S314 B50, uszkodzony mechanicznie wyłącznik RCD o prądzie IΔn = 0,03 A?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór innego wyłącznika różnicowoprądowego niż A może prowadzić do poważnych konsekwencji w kontekście bezpieczeństwa instalacji elektrycznej. Przykładowo, wyłącznik B o prądzie znamionowym I_n równym 0,3 A nie jest odpowiedni, ponieważ znacznie przekracza wymaganą wartość 0,03 A. Taki wyższy prąd znamionowy może nie zadziałać w przypadku realnej awarii, co może prowadzić do porażenia prądem lub pożaru. Wyłącznik C, mimo że również ma prąd znamionowy 0,03 A, może mieć inne specyfikacje, które nie odpowiadają wymaganiom instalacji trójfazowej, co czyni go niewłaściwym do zastosowania. W przypadku wyłącznika D, który również ma prąd znamionowy 0,3 A, zgubimy kluczową ochronę, jaką zapewniają wyłączniki RCD, a ich niezastosowanie w odpowiednich parametrach może skutkować poważnymi uszkodzeniami sprzętu elektrycznego oraz zagrażać bezpieczeństwu użytkowników. Zrozumienie wymagań dotyczących wyłączników różnicowoprądowych jest kluczowe dla utrzymania prawidłowego poziomu bezpieczeństwa w instalacjach elektrycznych, dlatego ważne jest, aby zawsze dobierać urządzenia zgodnie z ich specyfikacjami i normami branżowymi.

Pytanie 29

Który element i z jakiego silnika przedstawiony jest na ilustracji a) i schemacie b)?

Ilustracja do pytania
A. Wirnik silnika pierścieniowego.
B. Wirnik silnika komutatorowego.
C. Stojan silnika komutatorowego.
D. Stojan silnika pierścieniowego.
Poprawna odpowiedź to wirnik silnika pierścieniowego, co wynika z analizy przedstawionych ilustracji oraz schematów. Wirnik ten charakteryzuje się pierścieniami ślizgowymi, które są kluczowym elementem jego konstrukcji, umożliwiającym efektywne przechodzenie prądu do uzwojeń wirnika. W silnikach pierścieniowych prąd jest dostarczany do wirnika przez szczotki stykające się z pierścieniami, co pozwala na regulację obrotów silnika, a także na jego rozruch. W praktyce, wirniki silników pierścieniowych są szeroko stosowane w aplikacjach wymagających dużej mocy i momentu obrotowego, takich jak wciągniki, przemysłowe maszyny oraz w pojazdach elektrycznych. Zrozumienie tego elementu jest istotne, ponieważ jego właściwe działanie ma kluczowy wpływ na ogólną wydajność silnika. W branży istnieją standardy dotyczące projektowania i testowania wirników, które zapewniają ich niezawodność i skuteczność w długotrwałej eksploatacji.

Pytanie 30

Na ilustracji przedstawiono schemat układu zasilania silnika elektrycznego zawierający

Ilustracja do pytania
A. cyklokonwertor.
B. czujnik kolejności i zaniku faz.
C. wyłącznik silnikowy.
D. przekaźnik termobimetalowy.
Czujnik kolejności i zaniku faz jest kluczowym elementem w układach zasilania silników trójfazowych. Jego podstawowym zadaniem jest monitorowanie obecności oraz kolejności faz, co ma istotne znaczenie dla prawidłowej pracy silników elektrycznych. W sytuacji, gdy jedna z faz zniknie lub dojdzie do zmian w kolejności, czujnik natychmiast odcina zasilanie, co zapobiega uszkodzeniu silnika. Przykładowo, w aplikacjach przemysłowych, gdzie silniki są narażone na różne warunki pracy, użycie czujnika pozwala na zwiększenie bezpieczeństwa i niezawodności systemu. W standardzie PN-EN 60204-1, który dotyczy bezpieczeństwa urządzeń elektrycznych w maszynach, podkreślono znaczenie ochrony silników przed negatywnymi skutkami zasilania. Dodatkowo, czujniki te mogą być wyposażone w dodatkowe funkcje, takie jak sygnalizacja optyczna stanu pracy, co ułatwia diagnostykę i konserwację systemów zasilania.

Pytanie 31

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TN-S
B. TT
C. TN-C
D. IT
Układ TT, w przeciwieństwie do TN-C, charakteryzuje się oddzielnym przewodem neutralnym (N) oraz przewodem ochronnym (PE), co oznacza, że nie występuje w nim przewód PEN. W tym przypadku, przewód PE jest uziemiony w punkcie rozdziału, co zwiększa bezpieczeństwo, ponieważ w przypadku zwarcia prąd ochronny może natychmiast popłynąć do ziemi. W układzie IT natomiast brak jest bezpośredniego uziemienia neutralnego, co zwiększa odporność na zwarcia, ale wymaga zastosowania bardziej skomplikowanych systemów monitorowania. Z kolei w układzie TN-S przewody N i PE są oddzielne, co również eliminuje przewód PEN i pozwala na większą elastyczność w projektowaniu instalacji. Powszechnym błędem jest mylenie tych systemów, co wynika z niepełnego zrozumienia ich struktury i zastosowania. W praktyce, znajomość różnic między tymi układami jest kluczowa dla zapewnienia właściwego poziomu bezpieczeństwa oraz efektywności energetycznej instalacji elektrycznych. Zastosowanie niewłaściwego układu może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem lub uszkodzenia sprzętu elektrycznego. Dlatego tak ważne jest, aby projektanci i instalatorzy elektryczni rozumieli te różnice i wybierali odpowiednie systemy w zależności od specyficznych wymagań danego środowiska.

Pytanie 32

Którą funkcję w wyłączniku nadprądowym pełni element wskazany na ilustracji czerwoną strzałką?

Ilustracja do pytania
A. Reaguje na przeciążenia.
B. Gasi łuk elektryczny.
C. Reaguje na zwarcia.
D. Łączy styki.
Zrozumienie roli poszczególnych komponentów wyłączników nadprądowych jest kluczowe dla prawidłowego funkcjonowania systemów ochrony elektrycznej. W przypadku, gdy ktoś identyfikuje bimetaliczny wyzwalacz jako element, który gasi łuk elektryczny, ma miejsce fundamentalne nieporozumienie. Gasić łuk elektryczny to zadanie przypisane innym elementom, takim jak układy łukotłumiące, które skutecznie minimalizują skutki pojawiającego się łuku w momencie rozłączania obwodu. Z kolei odpowiedź sugerująca, że wyzwalacz łączy styki, również jest myląca, ponieważ bimetaliczny wyzwalacz nie ma funkcji fizycznego łączenia styków, lecz jedynie uruchamia mechanizm ich rozłączenia w odpowiedzi na zjawiska prądowe. Jeśli ktoś błędnie interpretuje rolę tego elementu jako reagującą na przeciążenia, może to prowadzić do niebezpiecznych sytuacji. Wyzwalacze przeciążeniowe, choć mogą być zintegrowane w konstrukcji wyłącznika, działają na innej zasadzie i odpowiadają za inny typ anomalii w obwodzie. Istotne jest, aby zrozumieć, że każdy z tych elementów ma swoje specyficzne zadania i pomyłki w ich identyfikacji mogą prowadzić do błędnych wniosków oraz potencjalnych zagrożeń w użytkowaniu instalacji elektrycznych.

Pytanie 33

Jaka jest wymagana wartość rezystancji izolacji przewodów przy pomiarach odbiorczych instalacji elektrycznej o napięciu znamionowym badanego obwodu U ≤ 500 V? 

A. ≥ 1 MΩ
B. < 1 MΩ
C. ≥ 0,5 MΩ
D. < 0,5 MΩ
W przypadku rezystancji izolacji bardzo łatwo wpaść w pułapkę myślenia „byle nie było zwarcia, to jest dobrze”. To błędne podejście. Same wartości typu 0,5 MΩ czy mniej mogą komuś wydawać się jeszcze „duże”, bo przecież to setki tysięcy omów, ale z punktu widzenia bezpieczeństwa instalacji niskiego napięcia to po prostu za mało. Normy dotyczące instalacji elektrycznych w budynkach, takie jak PN‑HD 60364, jasno określają, że dla obwodów o napięciu znamionowym do 500 V minimalna dopuszczalna rezystancja izolacji przy pomiarze odbiorczym wynosi 1 MΩ. To nie jest wartość „umowna”, tylko wynik doświadczeń i analizy ryzyka porażeniowego oraz pożarowego. Zbyt niska rezystancja izolacji oznacza zwiększony prąd upływu. W praktyce może to powodować m.in. nieprawidłowe działanie wyłączników różnicowoprądowych (fałszywe zadziałania), nagrzewanie się izolacji w miejscach zawilgocenia, a w skrajnych przypadkach nawet iskrzenie i lokalne przegrzania. Odpowiedzi sugerujące wartości poniżej 1 MΩ zakładają, że „pół megaoma też wystarczy”, bo przecież to nadal wysoka rezystancja. Tyle że normy są tutaj jednoznaczne – 0,5 MΩ to wartość niewystarczająca przy odbiorze instalacji o napięciu do 500 V. Jest to typowy błąd myślowy: patrzymy na liczbę w oderwaniu od kontekstu norm i nie bierzemy pod uwagę, że instalacja ma działać bezpiecznie przez lata, w warunkach wilgoci, zanieczyszczeń i starzenia się izolacji. Jeśli już na starcie mamy rezystancję izolacji w okolicach 0,5 MΩ, to po kilku latach eksploatacji może ona spaść jeszcze niżej, co będzie poważnym problemem. Drugi błąd to odwrócenie znaku nierówności – wartości typu „< 1 MΩ” czy „< 0,5 MΩ” w ogóle nie opisują wymagań normowych, tylko raczej stan, który powinien skłonić do szukania uszkodzeń. W dobrych praktykach branżowych przyjmuje się, że nowa instalacja powinna mieć rezystancję izolacji zdecydowanie powyżej wartości minimalnej, a wynik w pobliżu granicy traktuje się jako sygnał ostrzegawczy. Dlatego przy projektowaniu, montażu i odbiorze nie wystarczy kierować się intuicją, trzeba znać konkretne wartości graniczne z norm i umieć je zastosować w praktyce pomiarowej.

Pytanie 34

Które stwierdzenie dotyczące normalizacji jest prawdziwe?

A. Stosowanie się do wymagań norm jest dobrowolne, a stosowanie się do wymagań zawartych w dyrektywach UE jest obowiązkowe.
B. Stosowanie się do wymagań norm i stosowanie się do wymagań zawartych w dyrektywach UE jest obowiązkowe.
C. Stosowanie się do wymagań norm jest obowiązkowe, a stosowanie się do wymagań zawartych w dyrektywach UE jest dobrowolne.
D. Stosowanie się do wymagań norm i stosowanie się do wymagań zawartych w dyrektywach UE jest dobrowolne.
W tym pytaniu łatwo się pomylić, bo w praktyce normy i przepisy często „idą w pakiecie” i wiele osób ma wrażenie, że wszystko jest po prostu obowiązkowe. Trzeba jednak rozdzielić dwie rzeczy: akty prawne (ustawy, rozporządzenia, wdrożone dyrektywy UE) oraz normy techniczne. Dyrektywy Unii Europejskiej po wdrożeniu do prawa krajowego stają się podstawą obowiązków prawnych. Przykładowo dyrektywa niskonapięciowa, dyrektywa EMC czy dyrektywa maszynowa wymagają, żeby urządzenia i instalacje były bezpieczne, nie stwarzały zagrożenia porażeniem, pożarem, zakłóceniami itp. Tego nie można sobie odpuścić – niespełnienie wymagań dyrektyw to naruszenie prawa, z wszystkimi konsekwencjami: od kar administracyjnych po odpowiedzialność karną, jeśli dojdzie do wypadku. Inaczej wygląda sytuacja z normami. Normy, takie jak PN-EN 60364 dla instalacji elektrycznych czy zestaw norm dotyczących ochrony przeciwporażeniowej, same w sobie nie są aktem prawnym. To są „uznane zasady techniczne”. Państwo bardzo często odwołuje się do nich w rozporządzeniach, ale zwykle w taki sposób, że ich stosowanie jest domyślną ścieżką wykazania zgodności z wymaganiami prawa. Błędne myślenie polega na założeniu, że albo normy są z natury obowiązkowe (co sugeruje, że każde odejście od zapisów normy jest nielegalne), albo że dyrektywy można traktować jak luźne wytyczne, a ważniejsze są normy. To odwraca role. W rzeczywistości rdzeniem są wymagania prawne z dyrektyw, a normy są narzędziem, żeby je spełnić w sposób uporządkowany i powtarzalny. Spotyka się też przekonanie, że skoro normy są dobrowolne, to można „robić po swojemu” bez głębszej refleksji. To też jest pułapka. Jeżeli ktoś świadomie odchodzi od normy, musi mieć mocne, technicznie uzasadnione argumenty, że wybrany sposób nadal zapewnia poziom bezpieczeństwa co najmniej taki, jak rozwiązanie normowe. W praktyce w branży elektrycznej przyjmuje się, że normy są standardem zawodowym i podstawą oceny przez nadzór techniczny, ubezpieczycieli czy biegłych sądowych. Dlatego warto dobrze rozumieć tę różnicę: obowiązkowe są wymagania prawa i dyrektyw UE, a normy są formalnie dobrowolne, ale w praktyce stanowią najlepszą drogę do spełnienia tych wymagań i ochrony własnej odpowiedzialności.

Pytanie 35

W jakich okolicznościach instalacja elektryczna nie wymaga konserwacji ani naprawy?

A. Gdy stan techniczny instalacji jest niedostateczny lub wartości jej parametrów są poza zakresem określonym w instrukcji eksploatacji
B. Gdy użytkowanie instalacji stwarza zagrożenie dla bezpieczeństwa personelu lub otoczenia
C. Kiedy zostanie zauważone uszkodzenie instalacji elektrycznej
D. Kiedy prowadzone są prace konserwacyjne w obiekcie, na przykład malowanie ścian
Wskazanie, że instalacja elektryczna nie musi być poddawana konserwacji w sytuacjach, gdy stwierdzone zostało uszkodzenie instalacji, jest błędne. W rzeczywistości, jakiekolwiek uszkodzenie instalacji elektrycznej, takie jak przetarte kable czy luźne połączenia, powinno niezwłocznie skutkować podjęciem działań naprawczych. Ignorowanie takich uszkodzeń może prowadzić do poważnych zagrożeń, w tym ryzyka pożaru czy porażenia prądem. Podobnie, jeśli eksploatacja instalacji stwarza zagrożenie dla bezpieczeństwa obsługi lub otoczenia, konieczne jest przeprowadzenie niezwłocznych działań konserwacyjnych lub naprawczych. W przypadku, gdy stan techniczny instalacji jest zły lub wartości parametrów odbiegają od tych określonych w dokumentacji, również powinno się przeprowadzić niezbędne kontrole i naprawy. Ignorowanie tych stanów prowadzi nie tylko do obniżenia efektywności działania instalacji, ale również naraża osoby korzystające z tych instalacji na potencjalne niebezpieczeństwo. Kluczowe jest, aby pamiętać o regularnych przeglądach i konserwacji instalacji, zgodnych z normami branżowymi, co przyczyni się do zwiększenia bezpieczeństwa i długowieczności systemów elektrycznych.

Pytanie 36

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.
B. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
C. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
D. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
Wybór nieprawidłowej odpowiedzi często wynika z niepełnego zrozumienia wymagań dotyczących dokumentacji technicznej po wykonaniu modernizacji sieci. Kluczowym błędem jest pomijanie istotnych informacji, co może prowadzić do problemów w przyszłości, takich jak trudności w ustaleniu odpowiedzialności czy brak możliwości weryfikacji wyników badań. Na przykład, odpowiedzi sugerujące dodanie nazwy zakładu energetycznego zamiast nazwiska zleceniodawcy nie uwzględniają faktu, że to właśnie osoby fizyczne (zleceniodawcy i wykonawcy) są odpowiedzialne za realizację projektu oraz jakość wykonania pomiarów. Istotne jest, aby protokół odnosił się do konkretnych osób, co ma kluczowe znaczenie w kontekście odpowiedzialności prawnej. W przypadku, gdyby wystąpiły jakiekolwiek nieprawidłowości w funkcjonowaniu sieci, łatwiejsze będzie ustalenie, kto był odpowiedzialny za konkretne etapy pracy. Ważne jest także, aby czas wykonywania pomiarów został udokumentowany, ponieważ pozwala to na analizę ewentualnych opóźnień i ich wpływu na projekt. Prawidłowo sporządzony protokół powinien być zgodny z obowiązującymi normami branżowymi, co pozwala na zachowanie wysokich standardów jakości. Dlatego pominięcie jakiejkolwiek z tych informacji prowadzi do niekompletności dokumentacji, a tym samym do potencjalnych problemów w przyszłości.

Pytanie 37

Który element elektroniczny oznacza przedstawiony symbol graficzny?

Ilustracja do pytania
A. Triak.
B. Diodę LED.
C. Tyrystor.
D. Diodę Zenera.
Na tym schemacie widać symbol diody z dodatkowym, charakterystycznym załamaniem linii przy katodzie. To jest właśnie graficzne oznaczenie diody Zenera, a nie typowych elementów, z którymi bywa mylona. W praktyce uczniowie często patrzą tylko na ogólny kształt symbolu i kojarzą go na przykład z triakiem albo tyrystorem, bo wiedzą, że to też są elementy półprzewodnikowe stosowane w układach mocy. Problem w tym, że triak i tyrystor mają zupełnie inne symbole: zawierają dodatkową elektrodę sterującą (bramkę), a ich struktura na rysunku jest symetryczna lub półsymetryczna względem kierunku przewodzenia. Triak przewodzi w obu kierunkach i symbolicznie pokazany jest jak dwa tyrystory połączone przeciwsobnie, z jedną wspólną bramką. Tyrystor z kolei ma wyraźnie zaznaczoną bramkę (G) oraz kierunek przewodzenia od anody do katody, ale bez żadnego „złamania” kreski jak w diodzie Zenera. Dioda LED ma inny, moim zdaniem bardzo charakterystyczny symbol: od diody wychodzą strzałki symbolizujące emisję światła. Jeśli na rysunku nie ma tych strzałek, to nie jest LED, nawet jeśli w praktyce dioda Zenera bywa montowana w obudowach podobnych gabarytowo do małych diod świecących. Z kolei zwykła dioda prostownicza ma prostą kreskę katody, bez dodatkowego zagięcia czy „ząbka”. To właśnie to zagięcie od strony katody odróżnia symbol diody Zenera od symbolu diody prostowniczej. Typowy błąd myślowy polega na tym, że ktoś widzi oznaczenia A i K, kojarzy to z diodą i zaznacza pierwszą znaną mu diodę, np. LED, bez analizy szczegółów symbolu. W technice, szczególnie przy czytaniu schematów instalacji sterowniczych i układów zasilania, takie pomyłki potrafią mocno namieszać przy diagnozie usterek. Dlatego warto wyrobić sobie nawyk zwracania uwagi na drobne elementy symbolu: obecność lub brak strzałek (LED), kształt katody (Zener), dodatkowe wyprowadzenie bramki (tyrystor, triak), symetrię układu. To są drobiazgi, ale w profesjonalnej praktyce elektryka i elektronika decydują o poprawnym zrozumieniu działania całego obwodu.

Pytanie 38

Łącznik przedstawiony na zdjęciu jest oznaczony na schematach symbolem graficznym

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór odpowiedzi A, B lub D może wynikać z nieporozumienia dotyczącego symboliki graficznej używanej w elektrotechnice. Symbole te mają na celu ułatwienie identyfikacji funkcji urządzeń oraz ich prawidłowego połączenia w instalacjach elektrycznych. Odpowiedź A może sugerować, że użytkownik pomylił dwuklawiszowy łącznik z innym typem łącznika, podczas gdy w rzeczywistości każdy typ łącznika ma swoje specyficzne oznaczenie. Z kolei odpowiedź B może być wynikiem nieprawidłowego zrozumienia schematów elektrycznych, gdzie umiejętność ich czytania jest kluczowa. Odpowiedź D, która nie odnosi się w ogóle do dwuklawiszowego łącznika, może świadczyć o braku wiedzy na temat różnorodności łączników dostępnych na rynku. W każdym z tych przypadków, kluczowym błędem jest brak zrozumienia, jak symbole graficzne przekładają się na rzeczywiste urządzenia elektryczne oraz ich funkcjonalności. Właściwe rozpoznawanie symboli jest fundamentalne, ponieważ pozwala na poprawne wykonanie instalacji elektrycznych zgodnie z obowiązującymi normami i standardami, co jest istotne dla zapewnienia bezpieczeństwa oraz efektywności energetycznej w obiektach budowlanych. Aby uniknąć takich pomyłek, warto zapoznać się z materiałami edukacyjnymi związanymi z podstawami elektrotechniki oraz z praktykami instalacyjnymi, które pomogą w interpretacji schematów oraz właściwym doborze elementów w instalacjach.

Pytanie 39

Jaka część strumienia świetlnego wysyłana jest w dół w oprawie oświetleniowej V klasy?

A. (90 ÷ 100) %
B. (60 ÷ 90) %
C. (0 ÷ 10) %
D. (40 ÷ 60) %
Odpowiedzi takie jak (90 ÷ 100) %, (40 ÷ 60) % oraz (60 ÷ 90) % nie uwzględniają specyfiki opraw oświetleniowych V klasy. Wrażenie, że znacząca część strumienia świetlnego może być skierowana w dół, jest mylne i wynika z niepełnego zrozumienia zasad projektowania oświetlenia. Oprawy te są konstruowane z zamiarem ograniczenia emisji światła w kierunku podłogi, co jest kluczowe dla efektywności energetycznej oraz komfortu użytkowników. Odpowiedzi te sugerują, że oprawy V klasy działają podobnie jak tradycyjne oprawy oświetleniowe, co jest nieprawidłowe. W praktyce, odpowiednie wykorzystanie tych opraw polega na kierowaniu strumienia świetlnego głównie w górę, co sprzyja stworzeniu efektów iluminacyjnych oraz estetycznych, a nie oświetleniu przestrzeni roboczej. Pojęcia te mogą również wprowadzać w błąd, jeśli chodzi o zastosowanie oświetlenia w różnych kontekstach, na przykład w architekturze czy oświetleniu ulicznym, gdzie inne klasy opraw mogą być stosowane dla zapewnienia odpowiedniego poziomu jasności. Kluczowym błędem myślowym jest założenie, że większa ilość światła skierowanego w dół jest zawsze korzystna, co nie zawsze jest zgodne z zasadami efektywności oświetleniowej i ergonomii.

Pytanie 40

Który schemat montażowy łącznika odpowiada symbolowi graficznemu przedstawionemu na rysunku?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybrana odpowiedź jest poprawna, ponieważ symbol graficzny przedstawiony na rysunku rzeczywiście odnosi się do łącznika jednobiegunowego, znanego również jako przełącznik jednobiegunowy. Tego rodzaju łączniki są powszechnie używane w instalacjach elektrycznych do sterowania oświetleniem w pojedynczych obwodach. Schemat oznaczony literą "A" dokładnie ilustruje sposób podłączenia takiego łącznika, w którym jeden przewód zasilający jest połączony z jednym przewodem wyjściowym do źródła światła. W praktyce, przy instalacji należy zwrócić uwagę na odpowiednie oznaczenia i zgodność z normami, takimi jak PN-IEC 60446, które określają zasady oznaczania przewodów i urządzeń elektrycznych. Właściwe zrozumienie symboli graficznych jest kluczowe przy projektowaniu oraz realizacji bezpiecznych i funkcjonalnych instalacji elektrycznych.