Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 20:43
  • Data zakończenia: 17 grudnia 2025 20:46

Egzamin niezdany

Wynik: 8/40 punktów (20,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Łącznik przedstawiony na zdjęciu oznaczamy symbolem graficznym

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór innych opcji jako odpowiedzi wskazuje na błędne zrozumienie zasad klasyfikacji łączników elektrycznych. Wiele osób myli różne typy łączników, co może prowadzić do nieodpowiednich wyborów w kontekście ich zastosowania. Opcja A sugeruje, że mamy do czynienia z łącznikiem wielobiegunowym, co jest nieprawidłowe, gdyż łącznik przedstawiony w pytaniu jest jednobiegunowy. Łączniki wielobiegunowe są stosowane w bardziej skomplikowanych instalacjach, gdzie wymagane jest włączanie i wyłączanie więcej niż jednego obwodu jednocześnie. W przypadku opcji C, błędna klasyfikacja jako łącznik krzyżowy, prowadzi do mylnego założenia, że można nim kontrolować kilka źródeł światła z różnych miejsc. Łączniki krzyżowe są używane w połączeniu z łącznikami schodowymi, co jest znacznie bardziej skomplikowanym rozwiązaniem. Z kolei opcja D, dotycząca łącznika podwójnego, również jest niewłaściwa, ponieważ taki łącznik byłby zdolny do włączania i wyłączania dwóch niezależnych obwodów, co nie ma miejsca w omawianym przypadku. Prawidłowe zrozumienie typów łączników oraz ich odpowiadających symboli graficznych jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych. Pomyłki w identyfikacji mogą prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy uszkodzenia sprzętu. Zrozumienie tych podstawowych zasad jest niezbędne dla każdego, kto pracuje w branży elektrycznej.

Pytanie 2

Które oznaczenie dotyczy przedstawionego trzonka elektrycznego źródła światła?

Ilustracja do pytania
A. E14
B. GU10
C. MR16
D. G9
Trzonek typu GU10, który został przedstawiony na zdjęciu, jest powszechnie stosowany w oświetleniu halogenowym oraz LED. Cechą charakterystyczną trzonka GU10 są dwa bolce o średnicy 10 mm, które umożliwiają łatwe i pewne zamocowanie w gniazdach. Ten rodzaj trzonka jest szczególnie popularny w reflektorach, co czyni go idealnym do zastosowań w oświetleniu akcentującym, gdzie istotne jest skierowanie światła na konkretne obszary. Standard GU10 jest zgodny z normami międzynarodowymi dotyczącymi wymiany i instalacji źródeł światła, co zapewnia uniwersalność i łatwość w stosowaniu. Użytkownicy powinni zwrócić uwagę na to, że trzonki GU10 są dostępne w różnych wariantach mocy oraz barwie światła, co pozwala na dostosowanie oświetlenia do indywidualnych potrzeb. Warto również zauważyć, że trzonek GU10 jest szczególnie efektywny pod względem energetycznym, zwłaszcza w wersjach LED, co wpisuje się w aktualne trendy w zakresie zrównoważonego rozwoju i oszczędności energii.

Pytanie 3

Który schemat przestawia poprawny i zgodny ze sztuką monterską sposób podłączenia instalacji oświetleniowej?

Ilustracja do pytania
A. Schemat 4.
B. Schemat 2.
C. Schemat 3.
D. Schemat 1.
Schemat 3 przedstawia prawidłowe podłączenie instalacji oświetleniowej, w której przewód fazowy (L1) łączy się z wyłącznikiem, a następnie z żarówką. Taki układ zapewnia prawidłowe sterowanie oświetleniem, a także minimalizuje ryzyko porażenia prądem. Przewód neutralny (N) jest podłączony bezpośrednio do żarówki, co jest zgodne z zasadami instalacji elektrycznych. Przewód ochronny (PE) powinien być zawsze podłączony do punktu ochronnego, aby zapewnić bezpieczeństwo użytkowników. Zastosowanie właściwych schematów podłączenia jest szczególnie ważne w kontekście standardów PN-IEC 60364, które definiują wymagania dotyczące bezpieczeństwa instalacji elektrycznych. W praktyce, stosując ten schemat, można być pewnym, że instalacja spełnia normy bezpieczeństwa i funkcjonalności, co jest kluczowe w codziennym użytkowaniu. Umożliwia to również łatwiejszy dostęp do konserwacji i napraw, co jest istotne w kontekście eksploatacyjnym.

Pytanie 4

Której klasy ogranicznik przepięciowy przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy B
B. Klasy D
C. Klasy C
D. Klasy A
Wybór odpowiedzi z klas A, B, C niestety nie odpowiada rzeczywistym potrzebom ochrony przed przepięciami, jeśli mówimy o ogranicznikach klasy D. Klasa A jest do ochrony sprzętu przed przepięciami z atmosfery, ale to działa przy średnio niskich energiach, więc przy silnych przepięciach to może być za mało. Klasa B, która jest stworzona do ochrony przed przepięciami z zewnątrz, też nie bardzo sobie poradzi w aplikacjach, które mogą dostać nagłe, wysokie przepięcia. Klasa C, mimo że daje jakąś formę ochrony, nie nadaje się do intensywnej ochrony przed przepięciami, jak w przypadku systemów komputerowych czy telekomunikacyjnych. Ważne jest, żeby znać różnice między tymi klasami i ich zastosowania, bo źle dobrane rozwiązanie może skutkować poważnymi uszkodzeniami sprzętu i kosztownymi naprawami. Często ludzie błędnie myślą, że te klasy są równoważne, co prowadzi do zaniżania ryzyka, a to jest naprawdę powszechna pułapka przy projektowaniu systemów ochrony przeciwprzepięciowej.

Pytanie 5

Który środek ochrony przeciwporażeniowej przy uszkodzeniu zastosowano w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Użycie odbiorników II klasy ochronności.
B. Separację odbiornika.
C. Połączenie wyrównawcze.
D. Samoczynne wyłączenie zasilania.
Samoczynne wyłączenie zasilania jest kluczowym środkiem ochrony przeciwporażeniowej, który zapewnia bezpieczeństwo użytkowników poprzez automatyczne przerwanie obwodu elektrycznego w przypadku wykrycia niebezpiecznych warunków. W przedstawionym układzie zastosowanie bezpieczników jako elementów ochrony pozwala na natychmiastową reakcję na awarie, takie jak uszkodzenie izolacji, co mogłoby prowadzić do porażenia prądem. Przykładem praktycznego zastosowania samoczynnego wyłączenia zasilania jest instalacja w budynkach mieszkalnych, gdzie bezpieczniki są używane, aby chronić użytkowników przed skutkami zwarcia lub przeciążenia. Zgodnie z normami IEC 60364, systemy samoczynnego wyłączania zasilania są rekomendowane jako podstawowy element ochrony, co podkreśla ich znaczenie w zapobieganiu wypadkom. Dodatkowo, takie rozwiązania przyczyniają się do poprawy niezawodności systemów elektrycznych, co czyni je zgodnymi z najlepszymi praktykami inżynieryjnymi w dziedzinie elektrotechniki.

Pytanie 6

Jakie z podanych powodów może wywołać nagłe rozłączenie pracującego silnika szeregowego prądu stałego?

A. Zwarcie międzyzwojowe w uzwojeniu twornika
B. Zerwanie połączenia wału silnika z maszyną napędzającą
C. Uszkodzenie łożysk silnika
D. Przerwa w obwodzie wzbudzenia
Zerwanie połączenia wału silnika z maszyną napędzaną jest jedną z najczęstszych przyczyn nagłego rozbiegania się silnika szeregowego prądu stałego. W przypadku, gdy wał silnika nie jest połączony z obciążeniem, silnik nie ma przeciwdziałającego momentu obrotowego. Silniki szeregowe są zaprojektowane do pracy pod obciążeniem, co wpływa na ich charakterystykę pracy. Gdy obciążenie jest nagle usunięte, prędkość obrotowa silnika wzrasta, co prowadzi do zjawiska nazywanego rozbiegiem. W praktyce, w przypadku rozbiegu, silnik może osiągnąć niebezpieczne prędkości, co może prowadzić do uszkodzenia wewnętrznych komponentów silnika, a także do niebezpiecznych sytuacji w systemie napędowym. Dlatego w projektowaniu systemów napędowych, zaleca się stosowanie odpowiednich zabezpieczeń, takich jak systemy przeciążeniowe oraz czujniki, które monitorują stan pracy silnika i mogą automatycznie odłączyć zasilanie w przypadku wykrycia anomalii. Zastosowanie takich rozwiązań przyczynia się do zwiększenia bezpieczeństwa i niezawodności systemów opartych na silnikach szeregowych prądu stałego.

Pytanie 7

Złącze wtykowe przedstawione na rysunku przeznaczone jest do zastosowań w obszarach zagrożonych

Ilustracja do pytania
A. wzrostem temperatury.
B. wyziewami żrącymi.
C. nadmierną wilgotnością.
D. wybuchem pyłu.
Złącze wtykowe z oznaczeniem "Ex" jest przeznaczone do pracy w obszarach, gdzie istnieje ryzyko wystąpienia atmosfer wybuchowych, w tym wybuchu pyłu. Zgodnie z normami IECEx oraz ATEX, sprzęt oznaczony jako Ex musi spełniać rygorystyczne wymagania dotyczące bezpieczeństwa, aby zminimalizować ryzyko zapłonu. W obszarach przemysłowych, takich jak przemysł farmaceutyczny, chemiczny czy energetyczny, złącza te są niezbędne do zapewnienia bezpiecznej pracy. Przykłady zastosowań to instalacje elektryczne w silosach, gdzie mogą zbierać się drobne cząstki materiałów sypkich, co stwarza zagrożenie wybuchem. Wybór odpowiednich komponentów z certyfikacją Ex jest kluczowy dla ochrony pracowników i mienia, dlatego znajomość oznaczeń oraz standardów jest niezbędna w branży przemysłowej.

Pytanie 8

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Nadtynkowych
B. Wtynkowych
C. Podtynkowych
D. Napowietrznych
Rozważając odpowiedzi, które nie są poprawne, można zauważyć, że układanie przewodów w rurkach karbowanych nie jest praktykowane w instalacjach natynkowych. W tego typu instalacjach przewody są często umieszczane na powierzchni ścian, co nie tylko obniża estetykę, ale również naraża je na uszkodzenia mechaniczne. Rurki karbowane pełnią funkcję ochronną, a ich stosowanie w instalacjach natynkowych jest zbędne, ponieważ przewody nie są ukryte w ścianach. Kolejny błąd myślowy dotyczy odpowiedzi odnośnie instalacji wtynkowych. Termin ten jest często mylony z podtynkowymi, jednak wtynkowe oznacza, że przewody są osadzone w elementach budowlanych, co nie wymaga dodatkowej ochrony, jaką zapewniają rurki karbowane. Wreszcie, instalacje napowietrzne również nie wymagają użycia rur karbowanych. Przewody w takich instalacjach są zwykle zawieszone na słupach i nie są narażone na te same warunki, co przewody w ścianach. Dlatego stosowanie rur karbowanych w tych przypadkach byłoby niepraktyczne i nieefektywne. W każdym przypadku, ignorowanie odpowiednich norm i praktyk dotyczących instalacji elektrycznych może prowadzić do problemów z bezpieczeństwem oraz niezawodnością, dlatego zrozumienie różnic pomiędzy typami instalacji jest kluczowe dla właściwego podejścia do tematu.

Pytanie 9

W którym z punktów spośród wskazanych strzałkami na charakterystyce diody prostowniczej przedstawionej na rysunku odczytywane jest napięcie przebicia?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Napięcie przebicia diody prostowniczej to kluczowy parametr, który odgrywa istotną rolę w projektowaniu układów elektronicznych. Odczytywane w punkcie A, napięcie przebicia wskazuje na moment, w którym dioda zaczyna przewodzić prąd w kierunku wstecznym, co może prowadzić do jej uszkodzenia, jeśli nie jest odpowiednio zabezpieczona. W praktyce, zrozumienie tego zjawiska jest niezbędne podczas projektowania układów z diodami prostowniczymi, takich jak zasilacze impulsowe czy układy zabezpieczeń. Warto pamiętać o standardach, takich jak IEC 60747, które definiują charakterystyki diod, w tym ich napięcie przebicia. Właściwe zastosowanie wartości napięcia przebicia w projektach pozwala na uniknięcie awarii i zwiększa niezawodność urządzeń. Zastosowanie tego w praktyce, na przykład w zasilaczach, pozwala na dobór odpowiednich komponentów, co jest kluczowe dla długoterminowej stabilności systemów elektronicznych.

Pytanie 10

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione
B. pisemne polecenie do wykonania prac
C. wyłączenie zasilania z instalacji
D. oznaczenie i zabezpieczenie obszaru roboczego
Pisemne polecenie wykonania prac jest wymagane w wielu kontekstach, ale nie jest to czynność, która musi być zrealizowana przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej. W praktyce, istotne jest, aby przed rozpoczęciem jakichkolwiek prac związanych z instalacjami elektrycznymi, zadbać o bezpieczeństwo, co oznacza, że kluczowe jest wyłączenie zasilania i zabezpieczenie miejsca pracy. Pisemne polecenie, choć może być częścią procedury zarządzania bezpieczeństwem w niektórych organizacjach, nie jest ogólnym wymogiem w każdej sytuacji. Zgodnie z normami bezpieczeństwa, najważniejsze jest zminimalizowanie ryzyka poprzez odpowiednie izolowanie obszaru roboczego. Przykładowo, w przypadku awarii oświetlenia w biurze, pracownik powinien najpierw wyłączyć zasilanie, a następnie oznakować i zabezpieczyć miejsce pracy, aby uniknąć niebezpieczeństw związanych z porażeniem prądem. Te działania są kluczowe w celu zapewnienia bezpieczeństwa własnego oraz innych osób przebywających w pobliżu.

Pytanie 11

Na zdjęciach przedstawiono kolejno od lewej typy trzonków źródeł światła

Ilustracja do pytania
A. E27,G9,MR11,G4
B. E27,MR11,G4,G9
C. E27,G4,MR11,G9
D. E27,G4,G9,MR11
Poprawna odpowiedź to E27, MR11, G4, G9, co odzwierciedla rzeczywisty układ trzonków źródeł światła przedstawionych na zdjęciu. Trzonek E27 jest jednym z najpopularniejszych typów stosowanych w oświetleniu domowym, szczególnie w żarówkach LED i tradycyjnych. Jego standardowy gwint umożliwia łatwą wymianę i dostępność na rynku. Trzonek MR11, z mniejszą średnicą, jest często używany w halogenach oraz w punktowym oświetleniu, co sprawia, że jest idealnym rozwiązaniem do akcentowania konkretnych elementów w przestrzeni. G4, z dwiema cienkimi nóżkami, znajduje swoje zastosowanie w lampkach biurkowych oraz w oświetleniu dekoracyjnym, gdzie wymagana jest kompaktowość i niewielkie rozmiary. Z kolei G9, z grubszymi nóżkami, jest często stosowany w nowoczesnym oświetleniu sufitowym i lampach stojących, oferując stabilność i wygodę montażu. Warto pamiętać, że znajomość typów trzonków jest kluczowa przy doborze odpowiednich źródeł światła do różnych zastosowań, co wpływa na efektywność energetyczną oraz estetykę wnętrz.

Pytanie 12

Wkładka topikowa bezpiecznika oznaczona symbolem gL służy do ochrony

A. urządzeń półprzewodnikowych przed zwarciami
B. przewodów przed przeciążeniami oraz zwarciami
C. silników przed przeciążeniami oraz zwarciami
D. urządzeń półprzewodnikowych przed przeciążeniami

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładka topikowa bezpiecznika oznaczona symbolem gL jest przeznaczona do zabezpieczania przewodów przed przeciążeniami i zwarciami. Oznaczenie gL wskazuje na to, że wkładki te są dostosowane do ochrony obwodów o charakterystyce A, co oznacza, że mogą one wyłączyć obwód w przypadku wystąpienia nadmiernego prądu, który może prowadzić do uszkodzenia instalacji elektrycznej. Przykładem zastosowania wkładek gL są instalacje oświetleniowe oraz obwody zasilające gniazdka, gdzie istnieje ryzyko przeciążenia spowodowanego podłączeniem wielu urządzeń. Takie bezpieczniki są zgodne z międzynarodowymi standardami IEC 60269, które określają wymagania dotyczące wkładek topikowych. Stosowanie wkładek gL w obwodach prądowych pozwala na skuteczną ochronę przed uszkodzeniami, co jest istotne zarówno z punktu widzenia bezpieczeństwa, jak i efektywności energetycznej instalacji.

Pytanie 13

Przedstawiona na ilustracji wstawka kalibrowa bezpiecznika przeznaczona jest do instalacji o napięciu znamionowym

Ilustracja do pytania
A. co najmniej 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
B. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
C. co najmniej 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
D. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź jest poprawna, ponieważ na ilustracji przedstawiona jest wstawka kalibrowa bezpiecznika z oznaczeniami "63 A" oraz "500 V". Te oznaczenia wskazują, że wstawka jest przeznaczona do instalacji, w których napięcie znamionowe nie może przekraczać 500 V oraz dla wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A. W praktyce, zastosowanie odpowiednich bezpieczników jest kluczowe dla zapewnienia bezpieczeństwa w systemach elektroenergetycznych oraz ochrony przed przeciążeniem i zwarciem. Standardy takie jak PN-EN 60269, które dotyczą bezpieczników, określają wymagania dotyczące ich instalacji oraz właściwości, co pozwala na ich prawidłowe zastosowanie w różnych warunkach. W przypadku stosowania wyższych napięć lub większych prądów, konieczne jest stosowanie innych typów wkładek, co zwiększa ryzyko uszkodzeń i zagrożeń. Dlatego tak ważne jest, aby podczas wyboru zabezpieczeń kierować się wskazaniami producentów oraz normami branżowymi.

Pytanie 14

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
B. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
C. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
D. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrany zestaw narzędzi jest idealny do montażu aparatury oraz wykonywania połączeń elektrycznych w rozdzielnicy mieszkaniowej. Szczypce do cięcia przewodów umożliwiają precyzyjne przycinanie przewodów do żądanej długości, co jest kluczowe dla zapewnienia dobrego połączenia. Przyrząd do ściągania powłoki pozwala na łatwe usunięcie zewnętrznej izolacji z przewodów, dzięki czemu można uzyskać dostęp do żył przewodów. Z kolei przyrząd do ściągania izolacji jest niezbędny do delikatnego usunięcia izolacji z końców przewodów, co jest ważne dla uniknięcia uszkodzeń drutów. Zestaw wkrętaków jest kluczowy przy montażu elementów rozdzielnicy, takich jak złącza, bezpieczniki czy przekaźniki. Wszystkie te narzędzia są zgodne z najlepszymi praktykami w branży elektrycznej, co zapewnia bezpieczeństwo oraz efektywność pracy. Dobrze dobrany zestaw narzędzi znacząco wpływa na jakość i trwałość wykonanej instalacji elektrycznej.

Pytanie 15

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,79
B. 0,71
C. 0,75
D. 0,95

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Znamionowa sprawność silnika jednofazowego obliczana jest na podstawie wzoru: η = P_N / (U_N * I_N * cos φ_N), gdzie P_N to moc mechaniczna, U_N to napięcie znamionowe, I_N to prąd znamionowy, a cos φ_N to współczynnik mocy. Podstawiając wartości: η = 3,7 kW / (230 V * 21,4 A * 0,95) ≈ 0,79. Zrozumienie sprawności silnika jest kluczowe dla efektywności energetycznej w zastosowaniach przemysłowych. Wysoka sprawność oznacza mniejsze straty energii, co przekłada się na niższe koszty eksploatacji oraz mniejszą emisję zanieczyszczeń. W praktyce, dobór silników o znamionowej sprawności powyżej 0,80 jest standardem w branży, co zgodne jest z normami IEC 60034-30, które promują silniki o wysokiej efektywności. Dlatego, przy wyborze silnika, warto zwrócić uwagę na jego sprawność, co przyczyni się do zrównoważonego rozwoju i oszczędności energetycznych w dłuższym okresie.

Pytanie 16

Jakie źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Świetlówkę kompaktową.
B. Lampę indukcyjną.
C. Żarówkę halogenową.
D. Lampę metalohalogenkową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Świetlówka kompaktowa, przedstawiona na zdjęciu, charakteryzuje się unikalnym kształtem, który opiera się na zwiniętej rurze zawierającej gaz fluorescencyjny, co pozwala na efektywne generowanie światła. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe oferują znacznie wyższą efektywność energetyczną, co przekłada się na dłuższy czas życia oraz niższe zużycie energii. Używane są powszechnie w domach oraz biurach jako odpowiednik standardowych żarówek, zwłaszcza w sytuacjach, gdy zależy nam na oszczędności energii. Dodatkowo, świetlówki kompaktowe są często stosowane w ogrodach i na zewnątrz budynków, ponieważ oferują wysoką jakość światła przy niskim poborze mocy. Warto również zauważyć, że ich ograniczona emisja ciepła sprawia, że są bezpieczniejsze w użytkowaniu, zwłaszcza w zamkniętych przestrzeniach. Zgodnie z normami energetycznymi, ich zastosowanie przyczynia się do zmniejszenia emisji dwutlenku węgla, co jest zgodne z globalnymi dążeniami do ochrony środowiska.

Pytanie 17

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
B. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
C. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 18

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP33
B. IP20
C. IP55
D. IP44

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podczas instalacji elektrycznej w pomieszczeniach wilgotnych niezwykle istotne jest zapewnienie odpowiedniego poziomu ochrony przed wilgocią i kurzem, co jest kluczowe dla bezpieczeństwa użytkowników. Stopień ochrony IP44 wskazuje, że urządzenie jest zabezpieczone przed ciałami obcymi większymi niż 1 mm oraz przed wodą bryzgającą z dowolnego kierunku. Dlatego właśnie IP44 jest minimalnym wymogiem w wilgotnych pomieszczeniach, takich jak łazienki czy kuchnie. W praktyce oznacza to, że gniazda i wtyczki muszą być odpowiednio uszczelnione, aby zapobiec wnikaniu wilgoci, co mogłoby prowadzić do zwarcia i awarii systemu elektrycznego. Zastosowanie IP44 to standard branżowy, który zapewnia bezpieczeństwo użytkowników oraz długotrwałe działanie instalacji elektrycznej. Moim zdaniem, znajomość tych norm to absolutna podstawa dla każdego elektryka, który chce wykonywać swoją pracę zgodnie z obowiązującymi przepisami i zapewnić komfort oraz bezpieczeństwo użytkownikom.

Pytanie 19

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy w schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. Symbolem 1.
B. Symbolem 2.
C. Symbolem 4.
D. Symbolem 3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź oznaczona symbolem 4 jest poprawna, ponieważ w schematach ideowych instalacji elektrycznych stosuje się ściśle określone symbole graficzne. Łącznik świecznikowy, będący kluczowym elementem w instalacjach oświetleniowych, posiada swój specyficzny symbol, który wyróżnia go spośród innych urządzeń. W kontekście norm, takich jak PN-EN 60617, symbol ten jest przedstawiany jako wyłącznik z dodatkowym oznaczeniem, co sugeruje możliwość regulacji oświetlenia. Przykładowo, w praktyce instalacyjnej, łącznik świecznikowy jest często stosowany w pomieszczeniach mieszkalnych, gdzie użytkownik ma potrzebę łatwego włączania i wyłączania oświetlenia, a także jego przyciemniania. Prawidłowe rozpoznanie symboli w schematach ideowych jest kluczowe dla właściwego montażu i późniejszej eksploatacji instalacji elektrycznej, co z kolei ma wpływ na bezpieczeństwo użytkowników oraz efektywność energetyczną budynku.

Pytanie 20

Jaką wartość bezwzględną ma błąd pomiaru natężenia prądu, jeżeli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla używanego zakresu pomiarowego jako ±(1 % +2) cyfry?

A. ±0,37 mA
B. ±0,35 mA
C. ±2,35 mA
D. ±0,02 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentową dokładność, jak i dodatkowe cyferki. W naszym przypadku multimetr wyświetlił rezultat 35,00 mA, a dokładność producenta została określona jako ±(1 % +2). Rozpoczynamy od obliczenia 1 % z 35,00 mA, co daje 0,35 mA. Następnie dodajemy stałą wartość 2 jednostek, co w przypadku mA odpowiada 2 mA. Sumując te wartości, uzyskujemy 0,35 mA + 2 mA = 2,35 mA, co wskazuje, że przy takiej dokładności błąd może być dość istotny. Jednak dla pomiarów w praktyce do obliczeń najczęściej stosuje się wartości w granicach typowych pomiarów. Wartość ±0,37 mA, która została uznana za poprawną, uwzględnia precyzyjne zaokrąglenie i daje bardziej realistyczny obraz błędu, gdyż błąd nie powinien przekraczać jednostek pomiarowych, co w praktyce oznacza, że nawet niewielkie różnice mogą wpływać na dalsze analizy. Tego rodzaju wiedza jest kluczowa w wielu dziedzinach, zwłaszcza w inżynierii i elektrotechnice, gdzie precyzyjne pomiary są niezbędne do prawidłowego funkcjonowania systemów elektrycznych i elektronicznych.

Pytanie 21

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. porażeniem
B. przepięciem
C. zwarciem
D. przeciążeniem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłączniki różnicowoprądowe (RCD) są kluczowymi urządzeniami w systemach elektrycznych, szczególnie w sieciach TN-S, gdzie pełnią funkcję zabezpieczenia przed porażeniem elektrycznym. Ich działanie opiera się na wykrywaniu różnic prądów między przewodami fazowymi a przewodem neutralnym. W przypadku, gdy wystąpi upływ prądu do ziemi (np. wskutek przypadkowego dotknięcia uszkodzonego sprzętu) RCD natychmiast odcina zasilanie, minimalizując ryzyko porażenia. Stosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które określają wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, RCD są często instalowane w obwodach zasilających gniazdka w domach oraz w obiektach użyteczności publicznej, gdzie dostęp do energii elektrycznej mają osoby nieprzeszkolone. Dodatkowo, RCD powinny być regularnie testowane, aby zapewnić ich prawidłowe funkcjonowanie, co jest standardową praktyką w utrzymaniu instalacji elektrycznych.

Pytanie 22

Fragment dokumentacji technicznej określonej jako schemat zasadniczy (ideowy) znajduje się na rysunku

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Schemat zasadniczy (ideowy) ma kluczowe znaczenie w dokumentacji technicznej, gdyż umożliwia zrozumienie podstawowych funkcji i połączeń w danym urządzeniu lub systemie. Wybór rysunku C jako poprawnej odpowiedzi jest uzasadniony tym, że przedstawia on istotne komponenty oraz ich interakcje w sposób, który sprzyja szybkiej analizie i diagnozowaniu ewentualnych problemów. Tego typu schematy są powszechnie stosowane w inżynierii elektrycznej, automatyce oraz w wielu gałęziach przemysłu, gdzie potrzeba uproszczenia złożonych układów do poziomu zrozumiałego dla inżynierów i techników. Na przykład, w projektach związanych z budową systemów zasilania, schemat zasadniczy pozwala na szybkie określenie, jakie elementy są niezbędne do działania i jakie są ich wzajemne relacje. Zgodnie z obowiązującymi standardami, takie schematy powinny być jasne i czytelne, aby ułatwić pracę zespołów serwisowych. Dodatkowo, stosowanie schematów zasadniczych zgodnych z normami IEC 61082 pozwala na zapewnienie wysokiej jakości dokumentacji technicznej, co przekłada się na efektywność w codziennych zadaniach inżynieryjnych.

Pytanie 23

Który rodzaj osprzętu został użyty w instalacji elektrycznej przedstawionej na ilustracji?

Ilustracja do pytania
A. Pyłoszczelny.
B. Podtynkowy.
C. Wodoszczelny.
D. Natynkowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Podtynkowy" jest prawidłowa, ponieważ przedstawiona instalacja elektryczna charakteryzuje się tym, że wszystkie przewody są ukryte w bruzdach w ścianach, a gniazdka elektryczne są umieszczone w puszkach montażowych, które są zainstalowane wewnątrz ściany. Taki sposób montażu nazywamy instalacją podtynkową, co oznacza, że elementy są schowane pod tynkiem, co nie tylko poprawia estetykę wnętrza, ale również zapewnia większe bezpieczeństwo, zmniejszając ryzyko uszkodzenia osprzętu. Zastosowanie instalacji podtynkowej jest powszechne w nowoczesnym budownictwie, gdzie dąży się do minimalistycznego wyglądu oraz zachowania porządku w przestrzeni. Zgodnie z normami i dobrymi praktykami, instalacja podtynkowa wymaga odpowiedniego zaprojektowania i wykonania, aby zapewnić zgodność z wymaganiami bezpieczeństwa oraz estetyki. Ważne jest także, aby stosować materiały i urządzenia certyfikowane, które spełniają normy europejskie, co dodatkowo zwiększa bezpieczeństwo użytkowania.

Pytanie 24

Zamiast starego bezpiecznika trójfazowego 25A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. B.
B. C.
C. A.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi A, czyli BPC 425/030 4P AC, jest zgodny z wymogami dotyczącymi zabezpieczeń elektrycznych w instalacjach trójfazowych. Wyłącznik różnicowoprądowy (RCD) jest kluczowym elementem ochrony przed porażeniem elektrycznym, który wykrywa różnice w prądzie między przewodami fazowymi a neutralnym. Wymagana charakterystyka AC oznacza, że wyłącznik jest przystosowany do ochrony przed prądami przemiennymi, co jest typowe w instalacjach domowych i przemysłowych. Prąd znamionowy 25A oraz wartość różnicowoprądowa 30mA (oznaczona jako 030) są standardowymi wartościami stosowanymi w takich instalacjach. Wartość 30mA jest powszechnie uznawana za bezpieczną dla ochrony ludzi przed porażeniem. W praktyce, zastosowanie takiego wyłącznika w instalacji trójfazowej nie tylko zwiększa bezpieczeństwo, ale również spełnia wymagania norm IEC 61008, które definiują wymagania dotyczące wyłączników różnicowoprądowych. Dzięki odpowiedniemu doborowi wyłącznika różnicowoprądowego zapewniasz bezpieczeństwo użytkowników oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć i zwarć doziemnych.

Pytanie 25

Które z przedstawionych narzędzi, oprócz lutownicy, jest niezbędne przy naprawie przeciętego przewodu LY przez połączenie lutowane?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi B jest słuszny, ponieważ narzędzie to, czyli szczypce do ściągania izolacji, jest kluczowe w procesie naprawy przewodów elektrycznych. Przy lutowaniu przeciętego przewodu LY, fundamentalnym krokiem jest przygotowanie jego końców poprzez usunięcie izolacji, co umożliwia bezpośredni dostęp do miedzianych rdzeni. Użycie odpowiednich narzędzi do ściągania izolacji zapewnia, że miedź nie zostanie uszkodzona, co jest istotne dla uzyskania solidnego połączenia lutowanego. W praktyce, szczypce do ściągania izolacji są zaprojektowane tak, aby zminimalizować ryzyko zgniecenia lub zerwania włókien miedzianych, co mogłoby prowadzić do problemów z przewodnictwem elektrycznym. Zgodnie z normami branżowymi, każdy elektryk powinien mieć w swoim zestawie narzędzi to urządzenie, aby zapewnić rzetelność i bezpieczeństwo wykonywanych połączeń. Dobrą praktyką jest także sprawdzenie, czy końce przewodów są czyste i nieuszkodzone przed przystąpieniem do lutowania, co zapewnia lepszą jakość połączenia.

Pytanie 26

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. zagrożenia porażeniem prądem elektrycznym
B. uszkodzenia podłączonego urządzenia elektrycznego
C. zwarcia w obwodzie elektrycznym
D. przeciążenia obwodu elektrycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 27

Parametry techniczne którego stycznika z tabeli odpowiadają stycznikowi przedstawionemu na ilustracji?

StycznikZnamionowy prąd pracyLiczba styków NOLiczba styków NC
1.31 A40
2.31 A31
3.40 A31
4.40 A40
Ilustracja do pytania
A. Stycznika 3.
B. Stycznika 1.
C. Stycznika 4.
D. Stycznika 2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź jest poprawna, ponieważ stycznik przedstawiony na ilustracji ma oznaczenie "X-SC...40/31", co wskazuje na jego znamionowy prąd pracy wynoszący 31 A. Zgodnie z parametrami technicznymi stycznika numer 3 w tabeli, ten stycznik również charakteryzuje się podobnym prądem nominalnym oraz układem styków, który obejmuje 3 styki główne (NO) i 1 styk pomocniczy (NC). Styczniki tego typu są powszechnie wykorzystywane w automatyce przemysłowej do sterowania silnikami elektrycznymi oraz innymi urządzeniami, które wymagają dużych prądów. Ich zastosowanie przyczynia się do zwiększenia bezpieczeństwa operacyjnego oraz efektywności energetycznej instalacji. Warto również zwrócić uwagę na normy IEC 60947, które regulują wymagania dotyczące styczników, zapewniając ich niezawodność i długowieczność w różnych warunkach pracy.

Pytanie 28

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
B. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
C. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
D. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź odnosi się do kabla sygnalizacyjnego, który charakteryzuje się wieloma żyłami skręconymi parami. Tego typu kable są powszechnie stosowane w systemach telekomunikacyjnych oraz w instalacjach automatyki przemysłowej, gdzie przesyłane sygnały muszą być odporne na zakłócenia elektromagnetyczne. Warto zwrócić uwagę, że napięcie 300/500 V jest typowe dla kabli wykorzystywanych w obwodach sygnalizacyjnych, które nie wymagają tak wysokiej izolacji jak kable elektroenergetyczne. Kable sygnalizacyjne o wiązkach parowych zostały opracowane w celu zminimalizowania interferencji między żyłami, co czyni je idealnym wyborem tam, gdzie wymagana jest stabilna transmisja danych. Zgodnie z normą PN-EN 50288, odpowiednie oznakowanie oraz dobór materiałów izolacyjnych mają kluczowe znaczenie dla niezawodności i bezpieczeństwa instalacji. W praktyce, stosowanie kabli sygnalizacyjnych w automatyce przemysłowej pozwala na efektywne zarządzanie procesami oraz monitorowanie stanu urządzeń, co przekłada się na zwiększenie wydajności operacyjnej.

Pytanie 29

Którego przyrządu należy użyć do pomiarów rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to D. Pomiar rezystancji izolacji w instalacjach elektrycznych jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności infrastruktury elektroenergetycznej. Do tego celu używa się megomierza, który umożliwia pomiar wysokich rezystancji, często w zakresie od miliona omów do miliarda omów. Wysoka rezystancja izolacji jest niezbędna, aby zapobiec niepożądanym upływom prądu, które mogą prowadzić do uszkodzeń sprzętu, pożarów lub porażeń elektrycznych. Zgodnie z normą PN-EN 61557, pomiar rezystancji izolacji powinien być wykonywany regularnie, zwłaszcza w instalacjach, które są narażone na działanie wilgoci lub chemikaliów. Przykładem praktycznego zastosowania megomierza jest kontrola instalacji w budynkach przemysłowych, gdzie niezawodność systemów elektrycznych jest kluczowa dla ciągłości produkcji. Użycie megomierza w takich przypadkach pozwala szybko identyfikować potencjalne problemy z izolacją, umożliwiając szybkie działanie w celu ich naprawy.

Pytanie 30

Który łącznik oznaczono symbolem literowym P na schemacie montażowym zamieszczonym na rysunku?

Ilustracja do pytania
A. Schodowy.
B. Krzyżowy.
C. Grupowy.
D. Świecznikowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łącznik oznaczony literą P na schemacie montażowym to łącznik krzyżowy, który odgrywa kluczową rolę w układzie sterowania oświetleniem z trzech miejsc. Umożliwia on przełączanie obwodu w sposób, który pozwala na włączanie i wyłączanie oświetlenia z różnych lokalizacji. Przykładowo, w długim korytarzu, gdzie znajdują się trzy punkty dostępu, użycie łączników krzyżowych w połączeniu z łącznikami schodowymi na końcach umożliwia wygodne zarządzanie oświetleniem. Standardy branżowe, takie jak PN-EN 60669-1, wskazują, że użycie łączników krzyżowych w instalacjach oświetleniowych znacząco zwiększa komfort użytkowania oraz efektywność energetyczną. W praktyce, jeśli zainstalujemy łącznik krzyżowy w odpowiednich miejscach, zyskamy pełną kontrolę nad oświetleniem, co jest szczególnie przydatne w większych przestrzeniach.

Pytanie 31

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Zbyt duża moc urządzenia
B. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
C. Luźne połączenie w listwie neutralnej
D. Zbyt duży przekrój uszkodzonego przewodu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 32

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. uszkodzenie przewodu
B. upływ prądu
C. przeciążenie
D. przepięcie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wciśnięcie przycisku TEST na wyłączniku różnicowoprądowym (RCD) ma na celu symulację upływu prądu, co jest kluczowym elementem działania tego urządzenia. Wyłączniki różnicowoprądowe są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi przez upływ prądu, dlatego ich regularne testowanie jest niezwykle istotne. Kiedy użytkownik naciska przycisk TEST, wewnętrzny mechanizm wyłącznika wytwarza sztuczny upływ prądu, co powinno spowodować natychmiastowe wyłączenie obwodu. To działanie pozwala użytkownikom na weryfikację, czy urządzenie działa prawidłowo i jest w stanie wykryć rzeczywisty upływ prądu. Zgodnie z normami branżowymi, takie testowanie powinno być przeprowadzane co najmniej raz w miesiącu, aby zapewnić bezpieczeństwo instalacji elektrycznej. Przykładowo, w przypadku zużycia izolacji przewodów lub uszkodzeń urządzeń elektrycznych, wyłącznik różnicowoprądowy powinien zareagować, wyłączając zasilanie, co zapobiega potencjalnym wypadkom i uszkodzeniom mienia. Regularne testowanie RCD przyczynia się do wyższej ochrony użytkowników oraz zgodności z przepisami bezpieczeństwa elektrycznego, jak normy PN-EN 61008-1.

Pytanie 33

Którego silnika dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Szeregowego.
B. Indukcyjnego.
C. Jednofazowego.
D. Obcowzbudnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Schemat przedstawia silnik prądu stałego obcowzbudny, co można zidentyfikować dzięki oddzielnym uzwojeniom wzbudzenia oraz obecności komutatora. Silniki obcowzbudne charakteryzują się tym, że mają niezależne źródło zasilania dla uzwojenia wzbudzenia i twornika, co pozwala na lepsze sterowanie momentem obrotowym i prędkością silnika. W praktyce, silniki te są szeroko stosowane w aplikacjach, gdzie wymagana jest duża elastyczność w kontroli prędkości, takich jak w systemach napędowych w pojazdach elektrycznych czy w automatyce przemysłowej. Dzięki zastosowaniu komutatora, silniki obcowzbudne mogą pracować z różnymi wartościami napięcia, co czyni je idealnym wyborem w aplikacjach wymagających dynamicznej regulacji. W standardach branżowych, takich jak IEC czy NEMA, silniki obcowzbudne znajdują uznanie jako efektywne urządzenia do zastosowań wymagających precyzyjnego sterowania oraz wysokiej wydajności energetycznej.

Pytanie 34

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyzwalacz elektromagnetyczny wyłącznika toru prądowego jest kluczowym elementem w obwodach elektrycznych, który zadziała w przypadku nadmiernego prądu. Odpowiedź "B" jest poprawna, ponieważ symbol ten jest standardowym przedstawieniem wyzwalacza elektromagnetycznego w schematach elektrycznych, co można znaleźć w normach takich jak IEC 60617. Wyzwalacze elektromagnetyczne działają na zasadzie przyciągania rdzenia magnetycznego, który w momencie przegrzania lub przeciążenia powoduje otwarcie obwodu. To zastosowanie jest niezwykle istotne w systemach ochronnych, gdzie funkcja wyłączenia obwodu zapobiega uszkodzeniom urządzeń oraz pożarom. W praktyce, zrozumienie funkcji i symboliki wyzwalaczy elektromagnetycznych jest niezbędne dla inżynierów i techników w branżach elektrycznych oraz automatyki, ponieważ pozwala to na właściwe projektowanie systemów zabezpieczeń oraz ich efektywne wdrażanie.

Pytanie 35

Na której ilustracji przedstawiono rastrową oprawę oświetleniową?

Ilustracja do pytania
A. Na ilustracji 2.
B. Na ilustracji 4.
C. Na ilustracji 1.
D. Na ilustracji 3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rastrowa oprawa oświetleniowa jest kluczowym elementem w projektowaniu oświetlenia wnętrz, szczególnie w przestrzeniach biurowych oraz przemysłowych. Oprawy te wyposażone są w rastrowe klosze, które mają za zadanie efektywne rozpraszanie światła, minimalizując olśnienie i poprawiając komfort pracy. Na ilustracji 2 widoczna jest właśnie taka oprawa, której klosz wykonany jest z materiałów takich jak metal lub plastik, z charakterystycznym wzorem przypominającym kratkę, co pozwala na lepsze rozproszenie światła. Dobre praktyki w projektowaniu oświetlenia sugerują stosowanie rastrowych opraw w miejscach, gdzie wymagane jest równomierne oświetlenie dużych powierzchni roboczych, co wpływa na wydajność pracy. Warto również zwrócić uwagę na standardy dotyczące natężenia oświetlenia, które wskazują, jakie wartości są optymalne dla różnych typów przestrzeni. Wybierając odpowiednią oprawę oświetleniową, należy również uwzględnić efektywność energetyczną, co jest kluczowe w kontekście zrównoważonego rozwoju. Takie podejście przyczynia się do zmniejszenia kosztów eksploatacji oraz oszczędności energii.

Pytanie 36

Na podstawie tabeli dobierz dopuszczalny prąd znamionowy zabezpieczenia nadprądowego w instalacji jednofazowej dla przewodu YDY 3x1,5 mm2 przy sposobie ułożenia A2?

Ilustracja do pytania
A. 20 A
B. 13 A
C. 25 A
D. 16 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 16 A, co wynika z analizy tabeli dopuszczalnych prądów znamionowych dla przewodów YDY 3x1,5 mm². Przy sposobie ułożenia A2, który dotyczy przewodów układanych w sposób otwarty na ścianach lub w powietrzu, maksymalny dopuszczalny prąd dla tego przekroju wynosi 16 A. Stosowanie odpowiednich zabezpieczeń nadprądowych jest kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych, ponieważ chroni przewody przed przegrzewaniem i potencjalnym uszkodzeniem. W praktyce, dobór odpowiedniego zabezpieczenia wpływa na bezpieczeństwo instalacji oraz minimalizację ryzyka pożaru. Na przykład, w przypadku podłączenia obwodów o dużych obciążeniach, zastosowanie zabezpieczeń o zbyt wysokim prądzie znamionowym może prowadzić do niewłaściwej pracy instalacji i zagrożeń. Warto zawsze odnosić się do obowiązujących norm, takich jak PN-IEC 60364, które określają zasady projektowania i wykonania instalacji elektrycznych.

Pytanie 37

Którego miernika należy użyć do pomiaru natężenia oświetlenia w pomieszczeniu biurowym?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Luksomierz to specjalistyczne urządzenie zaprojektowane do pomiaru natężenia oświetlenia, co czyni go idealnym narzędziem do oceny warunków oświetleniowych w pomieszczeniach biurowych. Pomiar natężenia oświetlenia jest kluczowy, aby zagwarantować odpowiednią ergonomię i komfort pracy. Standardy, takie jak PN-EN 12464-1, zalecają minimalne poziomy oświetlenia w różnych typach pomieszczeń, co podkreśla znaczenie tego pomiaru w kontekście zdrowia i wydajności pracowników. Używając luksomierza, można z łatwością określić, czy oświetlenie spełnia wymagania norm dotyczących natężenia oświetlenia, umożliwiając wprowadzenie odpowiednich korekt w celu poprawy warunków pracy. Praktyczne zastosowania luksomierza obejmują także monitorowanie zmian w oświetleniu w ciągu dnia czy ocenę efektywności różnych źródeł światła, co jest nieocenione w projektowaniu przestrzeni biurowych i utrzymaniu zgodności z regulacjami budowlanymi.

Pytanie 38

Jakie czynności powinny być przeprowadzone po serwisie silnika elektrycznego?

A. Sprawdzenie układów rozruchowych i regulacyjnych
B. Sprawdzenie układów sterowania i sygnalizacji
C. Impregnację uzwojeń i wyważenie wirnika
D. Pomiar rezystancji izolacji i próbne uruchomienie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji izolacji oraz wykonanie próbnego uruchomienia silnika elektrycznego to kluczowe czynności po jego konserwacji. Rezystancja izolacji jest istotnym wskaźnikiem stanu izolacji uzwojeń silnika; jej wysoka wartość sygnalizuje dobrą izolację, co jest niezbędne do zapewnienia bezpieczeństwa eksploatacji. Standardy takie jak IEC 60034-1 zalecają, aby rezystancja izolacji była co najmniej 1 MΩ na każdy kV napięcia roboczego, co chroni przed przebiciem i zwarciem. Próbne uruchomienie pozwala na ocenę rzeczywistej pracy silnika, w tym jego momentu obrotowego, prędkości i stabilności działania. W praktyce, te czynności pozwalają na wczesne wykrycie potencjalnych usterek, co może zapobiec poważnym awariom i zwiększyć trwałość urządzenia. Regularne pomiary izolacji i testy operacyjne są zgodne z najlepszymi praktykami w branży, co przekłada się na wydajność i bezpieczeństwo operacyjne.

Pytanie 39

W elektrycznych instalacjach w mieszkaniach oraz budynkach użyteczności publicznej prace konserwacyjne nie obejmują

A. wymiany gniazd zasilających
B. czyszczenia lamp oświetleniowych
C. czyszczenia urządzeń w rozdzielniach
D. montażu nowych punktów świetlnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fajnie, że zauważyłeś, że montaż nowych wypustów oświetleniowych to nie konserwacja. Konserwacja polega głównie na utrzymaniu istniejących systemów w dobrym stanie, jak czyszczenie lamp czy wymiana starych gniazdek. Nowe wypusty wymagają więcej planowania i czasem też papierkowej roboty, żeby wszystko było zgodne z przepisami. W praktyce chodzi o to, żeby przedłużać żywotność tego, co już mamy, natomiast nowe instalacje to zupełnie inna bajka, która wiąże się z projektowaniem i dodatkowymi formalnościami.

Pytanie 40

Przystępując do działań konserwacyjnych, takich jak wymiana uszkodzonych elementów instalacji elektrycznej, należy postępować w następującej kolejności:

A. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, odłączyć instalację od źródła zasilania
B. odłączyć instalację od źródła zasilania, zabezpieczyć przed przypadkowym włączeniem, upewnić się o braku napięcia, oznakować obszar prac
C. oznakować obszar prac, zabezpieczyć przed przypadkowym włączeniem, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia
D. zabezpieczyć przed przypadkowym włączeniem, oznakować obszar prac, odłączyć instalację od źródła zasilania, upewnić się o braku napięcia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź skupia się na fundamentalnych zasadach bezpieczeństwa, które powinny być przestrzegane podczas wykonywania prac konserwacyjnych w instalacjach elektrycznych. Kluczowym krokiem jest wyłączenie instalacji spod napięcia, co zapobiega przypadkowemu porażeniu prądem podczas pracy. Po wyłączeniu instalacji, zabezpieczenie miejsca pracy przed przypadkowym załączeniem jest kolejnym istotnym krokiem; może to obejmować zablokowanie dostępu do przycisków włączających lub umieszczenie odpowiednich osłon. Następnie, potwierdzenie braku napięcia za pomocą odpowiednich narzędzi pomiarowych, takich jak wskaźniki napięcia, jest niezbędne, aby upewnić się, że instalacja jest bezpieczna do pracy. Ostatecznie, oznakowanie miejsca prac jest kluczowe, aby ostrzec innych o prowadzonych działaniach. Ta kolejność działań jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie systematycznego podejścia do prac konserwacyjnych. W praktyce, stosowanie się do tych zasad może znacząco zmniejszyć ryzyko wypadków i poprawić bezpieczeństwo personelu.