Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 8 grudnia 2025 15:41
  • Data zakończenia: 8 grudnia 2025 15:50

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką wartość dziesiętną ma liczba 11110101(U2)?

A. 11
B. 245
C. -11
D. -245
Odpowiedzi -245, 11 oraz 245 nie są poprawne ze względu na zrozumienie systemu reprezentacji liczb w kodzie Uzupełnień do 2. W przypadku odpowiedzi -245, błędne jest założenie, że liczba binarna 11110101 mogłaby odpowiadać tak dużej wartości ujemnej. Przesunięcie w dół wartości liczbowej w systemie binarnym, a tym bardziej przyjęcie znaczenia liczb, które nie odpowiadają faktycznemu przeliczeniu U2, prowadzi do znaczących nieporozumień. Z kolei odpowiedzi 11 oraz 245 ignorują kluczowy element dotyczący znaku liczby. W systemie U2, gdy najbardziej znaczący bit jest równy 1, liczba jest ujemna; więc interpretacja tej liczby jako dodatniej jest błędna. Niezrozumienie, jak funkcjonuje reprezentacja znaków w systemie binarnym, często prowadzi do mylnych wniosków, co jest typowym błędem wśród osób uczących się podstaw informatyki. Ważne jest, aby pamiętać, że reprezentacja U2 jest powszechnie stosowana w architekturze komputerów, co czyni znajomość jej zasad kluczowym elementem w programowaniu oraz w tworzeniu algorytmów. Aby poprawnie konwertować liczby, użytkownicy powinni być świadomi, jak odczytywać bity w kontekście ich pozycji oraz znaczenia, ponieważ każda pomyłka może prowadzić do poważnych błędów w obliczeniach.

Pytanie 2

Jaką klasę reprezentuje adres IPv4 w postaci binarnej 00101000 11000000 00000000 00000001?

A. Klasy A
B. Klasy B
C. Klasy D
D. Klasy C
Adres IPv4 przedstawiony w postaci binarnej 00101000 11000000 00000000 00000001 odpowiada adresowi dziesiętnemu 40.192.0.1. Klasyfikacja adresów IPv4 opiera się na pierwszych bitach adresów. Adresy klasy A zaczynają się od bitów 0, co oznacza, że możliwe wartości pierwszego bajtu wahają się od 0 do 127. Adres 40.192.0.1 należy do tego zakresu, więc jest klasy A. Adresy klasy A są używane do przydzielania dużych bloków adresów IP dla dużych organizacji, ponieważ oferują one największą liczbę adresów w danej sieci. Przykłady zastosowania adresów klasy A obejmują duże firmy i organizacje rządowe, które potrzebują szerokiego zakresu adresów do obsługi swoich urządzeń. W praktyce zastosowanie adresacji klasy A pozwala na efektywne zarządzanie dużymi sieciami, co jest zgodne z standardami przydzielania adresów IP określonymi przez IANA i RIPE.

Pytanie 3

W klasycznym adresowaniu, adres IP 74.100.7.8 przynależy do

A. klasy B
B. klasy A
C. klasy D
D. klasy C
Adres IP 74.100.7.8 należy do klasy A, ponieważ jego pierwszy oktet (74) mieści się w zakresie od 1 do 126. Klasa A przeznaczona jest dla dużych sieci, w których liczba hostów może wynosić do 16 milionów na jednej sieci. Adresy IP w klasie A charakteryzują się tym, że ich maska podsieci wynosi zazwyczaj 255.0.0.0, co oznacza, że pierwsze 8 bitów (1 oktet) jest wykorzystywane do identyfikacji sieci, a pozostałe 24 bity do identyfikacji hostów. Przykładowo, organizacje takie jak wielkie korporacje czy dostawcy usług internetowych mogą korzystać z adresów klasy A, aby obsługiwać ogromne bazy klientów. Wiedza na temat klasyfikacji adresów IP jest kluczowa w projektowaniu i zarządzaniu sieciami komputerowymi, co potwierdzają standardy RFC 791 oraz RFC 950. Zrozumienie tych podstawowych zasad adresowania IP pozwala na efektywne planowanie i wdrażanie infrastruktury sieciowej.

Pytanie 4

Możliwość odzyskania listy kontaktów na telefonie z systemem Android występuje, jeśli użytkownik wcześniej zsynchronizował dane urządzenia z Google Drive za pomocą

A. konta Google
B. konta Yahoo
C. jakiegokolwiek konta pocztowego z portalu Onet
D. konta Microsoft
Konta Google to świetna opcja, jeśli chodzi o synchronizację danych na telefonach z Androidem. Jak to działa? Kiedy synchronizujesz swoje konto, to automatycznie przesyłane są twoje kontakty, kalendarze i inne dane do chmury. Dzięki temu, jeśli zmienisz telefon lub coś stracisz, możesz w prosty sposób odzyskać wszystko. Na przykład, kupując nowy telefon, wystarczy, że zalogujesz się na konto Google, a wszystkie twoje kontakty wracają na miejsce. To naprawdę przydatne! Warto pamiętać, żeby zawsze mieć włączoną synchronizację kontaktów w ustawieniach, bo dzięki temu twoje dane są bezpieczne i na wyciągnięcie ręki.

Pytanie 5

W programie Acrylic Wi-Fi Home przeprowadzono test, którego rezultaty ukazano na zrzucie ekranu. Na ich podstawie można stwierdzić, że sieć bezprzewodowa dostępna w danym momencie

Ilustracja do pytania
A. charakteryzuje się bardzo dobrą jakością sygnału
B. działa na kanałach 10 ÷ 12
C. osiąga maksymalną prędkość transferu 72 Mbps
D. jest otwarta
Podczas analizy wyników wskazanych przez program Acrylic Wi-Fi Home warto zwrócić uwagę na kilka kluczowych aspektów które pomagają poprawnie zinterpretować dane dotyczące sieci bezprzewodowej. Po pierwsze kwestia jakości sygnału na którą sugeruje druga odpowiedź. Pomimo że program pokazuje kilka gwiazdek przy jakości sygnału to wartość RSSI wynosząca -72 dBm wskazuje na dość przeciętną nie bardzo dobrą jakość co może prowadzić do błędnej interpretacji. W praktyce wartość RSSI powyżej -67 dBm jest uważana za dobrą dla większości zastosowań. Odpowiedź sugerująca maksymalną szybkość transferu 72 Mbps także jest błędna ponieważ w wynikach pokazana jest maksymalna prędkość 150 Mbps co jest typowe dla sieci obsługujących standard 802.11n w paśmie 2.4 GHz. Ostatnia koncepcja korzystania z kanałów 10 ÷ 12 jest również niepoprawna ponieważ zrzut pokazuje że sieć działa na kanałach 6-10. Warto zauważyć że kanały powyżej 11 w paśmie 2.4 GHz mogą być mniej kompatybilne w niektórych krajach co może wpływać na wybór kanałów. Typowym błędem myślowym jest zakładanie że wszystkie z pozoru widoczne informacje są zawsze precyzyjne co podkreśla znaczenie dokładnej analizy dostępnych danych i znajomości podstawowych zasad działania sieci bezprzewodowych.

Pytanie 6

Standardowe napięcie zasilające dla modułów pamięci RAM DDR4 wynosi

A. 1,2 V
B. 1,35 V
C. 1,65 V
D. 1,5 V
Wybór napięcia zasilania 1,5 V, 1,65 V lub 1,35 V dla modułów pamięci RAM DDR4 jest błędny, ponieważ napięcia te odpowiadają starym standardom lub innym technologiom pamięci. Napięcie 1,5 V jest charakterystyczne dla pamięci RAM DDR3, która była powszechnie stosowana przed wprowadzeniem DDR4. Przy pracy na wyższym napięciu, DDR3 generuje więcej ciepła, co prowadzi do obniżenia efektywności energetycznej systemu. Z kolei napięcie 1,65 V często jest związane z pamięcią RAM działającą na wyższych częstotliwościach, ale nie jest zgodne z DDR4. Używanie modułów z takimi specyfikacjami zasilania w systemach zaprojektowanych pod kątem DDR4 może prowadzić do uszkodzenia pamięci lub niestabilności systemu. Napięcie 1,35 V, choć jest stosowane w niektórych wariantach DDR4 (np. Low Voltage DDR4), nie jest standardowym napięciem dla ogólnych zastosowań DDR4. W praktyce, wybór niewłaściwego napięcia może prowadzić do problemów z kompatybilnością, co jest powszechnym błędem wśród użytkowników, którzy nie są świadomi różnic między wersjami pamięci. Kluczowe jest, aby przy projektowaniu i budowie systemów komputerowych przestrzegać specyfikacji JEDEC oraz stosować komponenty zgodne z tymi standardami, co zapewnia nie tylko stabilność, ale i wydajność sprzętu.

Pytanie 7

Poprzez użycie polecenia ipconfig /flushdns można przeprowadzić konserwację urządzenia sieciowego, która polega na

A. aktualizacji ustawień nazw interfejsów sieciowych
B. wyczyszczeniu bufora systemu nazw domenowych
C. zwolnieniu dzierżawy adresu pozyskanego z DHCP
D. odnowieniu dzierżawy adresu IP
Wybór opcji dotyczącej odnowienia dzierżawy adresu IP lub zwolnienia tej dzierżawy z DHCP wskazuje na niepełne zrozumienie działania protokołu DHCP. Protokół ten jest odpowiedzialny za dynamiczne przydzielanie adresów IP urządzeniom w sieci. Odnowienie dzierżawy oznacza, że urządzenie wysyła żądanie do serwera DHCP w celu przedłużenia czasu, przez który może korzystać z danego adresu IP. Zwolnienie dzierżawy natomiast jest procesem, w którym adres IP zostaje uwolniony z zasobów DHCP, co pozwala innym urządzeniom na jego użycie. Oba te procesy są niezwiązane z pamięcią podręczną DNS. Aktualizacja ustawień nazw interfejsów sieciowych to kolejna niepoprawna odpowiedź, ponieważ nie ma bezpośredniego związku z poleceniem 'ipconfig /flushdns'. Ustawienia nazw interfejsów dotyczą konfiguracji samego interfejsu sieciowego, a nie pamięci podręcznej DNS. Typowym błędem myślowym jest mylenie funkcji związanych z DHCP i DNS, co prowadzi do nieprawidłowych wniosków na temat ich działania. Kluczowe jest zrozumienie, że każde z tych poleceń pełni inną rolę w zarządzaniu siecią, a mylenie ich może prowadzić do problemów z łącznością i funkcjonowaniem sieci.

Pytanie 8

Na początku procesu uruchamiania sprzętowego komputera, wykonywany jest test

A. MBR
B. BIOS
C. DOS
D. POST
Odpowiedź POST (Power-On Self-Test) jest prawidłowa, ponieważ jest to proces, który odbywa się zaraz po włączeniu komputera. Podczas POST system sprawdza podstawowe komponenty sprzętowe, takie jak pamięć RAM, procesor, karta graficzna oraz inne urządzenia peryferyjne, aby upewnić się, że wszystkie są poprawnie podłączone i działają. Jeśli testy te zakończą się pomyślnie, BIOS przechodzi do uruchomienia systemu operacyjnego z dysku twardego lub innego nośnika. Praktyczne zastosowanie tego mechanizmu ma kluczowe znaczenie dla stabilności i niezawodności systemu komputerowego, ponieważ pozwala zidentyfikować ewentualne problemy sprzętowe na wczesnym etapie. Dobrą praktyką jest również regularne sprawdzanie i diagnostyka sprzętu, co może zapobiec poważnym awariom. Wiedza na temat POST jest istotna dla specjalistów IT, którzy muszą być w stanie szybko diagnozować problemy z uruchamianiem komputerów.

Pytanie 9

Aby uzyskać największą prędkość przepływu danych w przypadku, gdy domowy ruter pracuje w paśmie częstotliwości 5 GHz, do notebooka powinno się zamontować bezprzewodową kartę sieciową pracującą w standardzie

A. 802.11a
B. 802.11b
C. 802.11n
D. 802.11g
Wiele osób wybierając kartę sieciową do laptopa, kieruje się znanymi skrótami typu 802.11a, b czy g, myśląc że to wystarczy do osiągnięcia wysokich prędkości, zwłaszcza gdy domowy router działa w paśmie 5 GHz. Jednak to właśnie te starsze standardy mają poważne ograniczenia. Najstarszy z nich, 802.11a, rzeczywiście działa na paśmie 5 GHz, ale maksymalna prędkość, jaką można na nim osiągnąć, to jedynie 54 Mb/s. W dzisiejszych czasach to już mocno niewystarczające, szczególnie jeśli w domu jest kilka urządzeń korzystających jednocześnie z internetu, a do tego ktoś streamuje filmy czy pobiera duże pliki. Standard 802.11b funkcjonuje wyłącznie w paśmie 2,4 GHz i jest jeszcze wolniejszy – ledwie 11 Mb/s, co już zupełnie nie przystaje do nowoczesnych wymagań. Jeśli chodzi o 802.11g, to chociaż teoretycznie pozwala na 54 Mb/s, również działa tylko w paśmie 2,4 GHz i jest narażony na większe zakłócenia od np. mikrofalówki czy sieci sąsiadów – sam miałem kiedyś taki problem z przerywającym połączeniem, kiedy w bloku wszyscy korzystali z Wi-Fi na tym samym kanale. Wybór starszych standardów często wynika z mylnego przekonania, że są one kompatybilne z nowoczesnym sprzętem i zapewnią wysokie prędkości, ale realnie ograniczają one potencjał nawet najlepszego routera działającego w 5 GHz. Najlepiej jest więc postawić na kartę w standardzie 802.11n (lub nowszym), która pozwoli w pełni wykorzystać możliwości pasma 5 GHz i zapewni szybkie, stabilne połączenie, zgodnie ze współczesnymi wymaganiami użytkowników domowych sieci bezprzewodowych. Z mojego doświadczenia wynika, że inwestycja w nowszy standard to nie tylko kwestia prędkości, ale też komfortu korzystania z internetu w wymagających warunkach.

Pytanie 10

Urządzenie pokazane na ilustracji służy do zgrzewania wtyków

Ilustracja do pytania
A. E 2000
B. RJ 45
C. SC
D. BNC
Narzędzie przedstawione na rysunku to zaciskarka do wtyków RJ 45 wykorzystywana w sieciach komputerowych opartych na kablach typu skrętka. Wtyki RJ 45 są standardowymi złączami stosowanymi w kablach ethernetowych kategorii 5 6 i wyższych umożliwiającymi połączenia w sieciach LAN. Zaciskarka umożliwia właściwe umiejscowienie przewodów w złączu oraz zapewnia odpowiednie połączenie elektryczne dzięki zaciskaniu metalowych styków na izolacji przewodów. Proces ten wymaga precyzyjnego narzędzia które pozwala na równomierne rozłożenie siły co minimalizuje ryzyko uszkodzenia złącza. Przy prawidłowym użyciu zaciskarki możliwe jest uzyskanie niezawodnych połączeń które charakteryzują się wysoką odpornością na zakłócenia elektromagnetyczne. Warto również zwrócić uwagę na zastosowanie odpowiedniej kategorii kabli zgodnie z obowiązującymi standardami branżowymi jak np. ANSI TIA EIA 568 co zapewnia optymalne parametry transmisji danych. W codziennej praktyce instalatora sieciowego znajomość i umiejętność używania takiego narzędzia jest kluczowa dla zapewnienia jakości i niezawodności połączeń sieciowych.

Pytanie 11

Czym jest licencja OEM?

A. licencja, która pozwala użytkownikowi na zainstalowanie zakupionego oprogramowania tylko na jednym komputerze, z zakazem udostępniania tego oprogramowania w sieci oraz na innych niezależnych komputerach
B. licencja oprogramowania ograniczona tylko do systemu komputerowego, na którym zostało pierwotnie zainstalowane, dotyczy oprogramowania sprzedawanego razem z nowymi komputerami lub odpowiednimi komponentami
C. dokument, który umożliwia używanie oprogramowania na różnych sprzętach komputerowych w określonej w niej liczbie stanowisk, bez potrzeby instalacyjnych dyskietek czy płyt CD
D. licencja, która czyni oprogramowanie własnością publiczną, na mocy której twórcy oprogramowania zrzekają się praw do jego rozpowszechniania na rzecz wszystkich użytkowników
Wiele osób może błędnie sądzić, że licencje OEM pozwalają na dowolne wykorzystywanie oprogramowania na różnych komputerach, co jest nieprawdziwe. Licencja OEM jest ściśle związana z danym urządzeniem, co stanowi kluczową różnicę w porównaniu do bardziej elastycznych licencji, które mogą być przenoszone między różnymi systemami. Niektórzy mogą mylić licencję OEM z licencją open source, zakładając, że obie umożliwiają swobodny dostęp i instalację oprogramowania na różnych urządzeniach. W rzeczywistości licencje open source pozwalają użytkownikom na modyfikację oraz dystrybucję oprogramowania, co jest całkowicie sprzeczne z zasadami licencji OEM, która ogranicza użycie do pierwotnego komputera. Istnieje również nieporozumienie dotyczące liczby stanowisk objętych licencją. Licencje OEM nie zezwalają na instalację oprogramowania na wielu komputerach bez dodatkowych zakupów, co jest istotne w kontekście organizacji, które mogą myśleć o wdrożeniu oprogramowania na wielu stanowiskach. Dodatkowo, niektóre osoby mogą uważać, że licencje OEM są bardziej kosztowne niż inne typy licencji, co jest fałszywe, gdyż często są one tańsze. Zrozumienie różnic między różnymi rodzajami licencji, takimi jak OEM, open source, czy licencje na wielu użytkowników, jest kluczowe dla prawidłowego korzystania z oprogramowania i unikania problemów prawnych związanych z niezgodnym użyciem.

Pytanie 12

Aby zmienić port drukarki zainstalowanej w systemie Windows, która funkcja powinna zostać użyta?

A. Preferencje drukowania
B. Właściwości drukarki
C. Ostatnia znana dobra konfiguracja
D. Menedżer zadań
Jak widzisz, odpowiedź "Właściwości drukarki" to strzał w dziesiątkę! W tym miejscu można zmieniać ustawienia drukarki, łącznie z portem, który służy do komunikacji. W systemie Windows zmiana portu jest dość prosta. Trzeba po prostu otworzyć Panel sterowania, iść do "Urządzenia i drukarki", kliknąć prawym przyciskiem myszy na drukarkę i wybrać "Właściwości drukarki". Potem w zakładce "Porty" zobaczysz wszystkie dostępne porty i możesz zmienić ten, na którym masz drukarkę. Na przykład, jeśli drukarka działa teraz na USB, a chcesz, żeby działała na sieci, to zrobisz to bez problemu. W biurach to dosyć istotne, bo jak jest dużo urządzeń w sieci, to dobrze skonfigurowane porty pomagają w utrzymaniu sprawnej komunikacji, no i ogólnej wydajności. Warto też zapisywać, jakie zmiany się robi, żeby potem łatwiej było rozwiązywać problemy, które mogą się pojawić.

Pytanie 13

Jakim interfejsem można osiągnąć przesył danych o maksymalnej przepustowości 6Gb/s?

A. USB 2.0
B. SATA 2
C. USB 3.0
D. SATA 3
USB 2.0, USB 3.0 oraz SATA 2 to interfejsy, które nie mogą zaspokoić wymogu przepustowości 6 Gb/s. USB 2.0, na przykład, ma maksymalną przepustowość wynoszącą 480 Mb/s, co znacząco ogranicza jego zastosowanie w kontekście nowoczesnych rozwiązań pamięci masowej. Podobnie, SATA 2 oferuje prędkości do 3 Gb/s, co również nie wystarcza w przypadku intensywnych operacji wymagających szybkiego transferu danych, na przykład przy pracy z dużymi plikami multimedialnymi. USB 3.0, mimo że zwiększa przepustowość do 5 Gb/s, nadal nie osiąga standardu SATA 3, co czyni go mniej preferowanym w kontekście bezpośrednich połączeń z dyskami twardymi, które mogą wymagać wyższej przepustowości. W praktyce, wybierając interfejs dla dysków SSD, powinno się kierować standardem SATA 3, aby uzyskać optymalną wydajność. Często błędne interpretacje wynikają z niewłaściwego porównania różnych standardów, a także z mylenia zastosowań interfejsów USB i SATA. Kluczowe jest zrozumienie, że SATA jest stworzony z myślą o pamięci masowej, podczas gdy USB służy głównie do połączeń urządzeń peryferyjnych, co sprawia, że ich porównywanie może prowadzić do nieporozumień.

Pytanie 14

Które z wymienionych mediów nie jest odpowiednie do przesyłania danych teleinformatycznych?

A. skrętka
B. sieć 230V
C. sieć15KV
D. światłowód
Wybór niewłaściwego medium do przesyłania danych teleinformatycznych często oparty jest na nieporozumieniu dotyczącym funkcji i zastosowania danego medium. Światłowód oraz skrętka to sprawdzone technologie telekomunikacyjne. Światłowody są wykorzystywane w sieciach o dużych wymaganiach dotyczących przepustowości, a ich zastosowanie jest zgodne z normami takim jak ITU-T G.652, które definiują parametry światłowodów jednomodowych i wielomodowych. Z drugiej strony, skrętka, jak w standardzie Ethernet, zapewnia dobrą wydajność w lokalnych sieciach komputerowych. Wybór sieci 230V jako medium do przesyłania danych może być mylący, ponieważ chociaż prąd przemienny 230V jest używany do zasilania urządzeń telekomunikacyjnych, nie jest przeznaczony do przesyłania danych. Przesyłanie danych przez sieć energetyczną wymaga specjalnych protokołów i technologii, takich jak Power Line Communication (PLC), które są zupełnie innymi rozwiązaniami. Użytkownicy często mylą te pojęcia, co prowadzi do błędnych przekonań o możliwościach przesyłania danych w sieciach energetycznych. Dlatego istotne jest znajomość standardów oraz dobrych praktyk, które definiują odpowiednie medium do transmisji informacji, aby unikać niebezpiecznych sytuacji oraz zapewnić niezawodną komunikację.

Pytanie 15

Jaką funkcję wykonuje zaprezentowany układ?

Ilustracja do pytania
A. Odpowiedź B
B. Odpowiedź C
C. Odpowiedź A
D. Odpowiedź D
Rozważając odpowiedzi które nie są poprawne warto przyjrzeć się logice stojącej za każdą z opcji. Opcja A sugeruje że funkcja realizuje operację (a + b)(a + ¬b) co oznaczałoby że układ musiałby mieć dodatkowe bramki AND i OR aby osiągnąć taką logikę. Jest to błędne zrozumienie ponieważ w przedstawionym układzie nie ma wystarczającej liczby bramek do realizacji takiej funkcji złożonej sumy i iloczynu. Opcja B przedstawia funkcję (a + b)(¬b) co również nie jest możliwe przy danym układzie ponieważ wymagałoby to dodatkowej negacji sygnału b i jego kombinacji z a w inny sposób niż to co jest przedstawione. Takie podejście często jest wynikiem błędnego rozumienia roli bramek logicznych w danym układzie. Opcja D zakłada że układ realizuje funkcję a(a + b) co implikowałoby że sygnał a jest używany zarówno do sumy jak i iloczynu co jest niezgodne z przedstawionym schematem ponieważ sygnał a jest negowany przed użyciem w dalszej części układu. Uczenie się jak prawidłowo identyfikować i analizować układy logiczne jest kluczowe dla poprawnego projektowania i analizowania systemów cyfrowych co pozwala unikać typowych błędów myślowych i zapewnia skuteczne projektowanie rozwiązań cyfrowych.

Pytanie 16

Aby zwiększyć bezpieczeństwo prywatnych danych podczas przeglądania stron WWW, zaleca się dezaktywację w ustawieniach przeglądarki

A. powiadamiania o nieaktualnych certyfikatach
B. funkcji zapamiętywania haseł
C. monitów o uruchamianiu skryptów
D. blokowania okienek typu popup
Funkcja zapamiętywania haseł w przeglądarkach internetowych jest wygodnym narzędziem, ale może stanowić poważne zagrożenie dla bezpieczeństwa prywatnych danych. Kiedy przeglądarka przechowuje hasła, istnieje ryzyko, że w przypadku złośliwego oprogramowania, ataku hakerskiego czy nawet fizycznego dostępu do urządzenia, nieautoryzowane osoby będą mogły uzyskać dostęp do tych danych. Osoby korzystające z publicznych komputerów lub dzielące urządzenia z innymi powinny być szczególnie ostrożne, ponieważ tego typu funkcje mogą prowadzić do niezamierzonego ujawnienia danych. Standardy bezpieczeństwa, takie jak OWASP (Open Web Application Security Project), zalecają przechowywanie haseł w sposób zaszyfrowany, a każda przeglądarka oferująca funkcję zapamiętywania haseł powinna być używana z rozwagą. W praktyce, zamiast polegać na przeglądarkach, warto korzystać z menedżerów haseł, które oferują lepsze zabezpieczenia, takie jak wielowarstwowe szyfrowanie oraz możliwość generowania silnych haseł.

Pytanie 17

Topologia fizyczna sieci, w której wykorzystywane są fale radiowe jako medium transmisyjne, nosi nazwę topologii

A. magistrali
B. ad-hoc
C. CSMA/CD
D. pierścienia
Topologia ad-hoc odnosi się do sieci bezprzewodowych, w których urządzenia mogą komunikować się ze sobą bez potrzeby centralnego punktu dostępu. W takim modelu, każdy węzeł w sieci pełni rolę zarówno nadawcy, jak i odbiorcy, co pozwala na dynamiczne tworzenie połączeń. Przykładem zastosowania topologii ad-hoc są sieci w sytuacjach kryzysowych, gdzie nie ma możliwości zbudowania infrastruktury, jak w przypadku naturalnych katastrof. Dodatkowo, sieci te są często wykorzystywane w połączeniach peer-to-peer, gdzie użytkownicy współdzielą pliki bez centralnego serwera. Topologia ad-hoc jest zgodna z różnymi standardami, takimi jak IEEE 802.11, co zapewnia interoperacyjność urządzeń w sieciach bezprzewodowych. Zastosowania obejmują również gry wieloosobowe, gdzie gracze mogą łączyć się bez potrzeby stabilnej sieci. W kontekście praktyki, ważne jest, aby zrozumieć, że w sieciach ad-hoc istnieje większe ryzyko zakłóceń oraz problemy z bezpieczeństwem, które należy skutecznie zarządzać.

Pytanie 18

Twórca zamieszczonego programu pozwala na jego darmowe korzystanie tylko w przypadku

Ancient Domains of Mystery
AutorThomas Biskup
Platforma sprzętowaDOS, OS/2, Macintosh, Microsoft Windows, Linux
Pierwsze wydanie23 października 1994
Aktualna wersja stabilna1.1.1 / 20 listopada 2002 r.
Aktualna wersja testowa1.2.0 Prerelease 18 / 1 listopada 2013
Licencjapostcardware
Rodzajroguelike
A. zaakceptowania ograniczeń czasowych podczas instalacji
B. uiszczenia dobrowolnej wpłaty na cele charytatywne
C. wysłania tradycyjnej kartki pocztowej do twórcy
D. przesłania przelewu w wysokości $1 na konto twórcy
Ograniczenia czasowe podczas instalacji są charakterystyczne dla oprogramowania typu trial, które pozwala na użytkowanie produktu przez określony czas zanim będzie wymagana pełna opłata. Model ten nie pasuje do konceptu postcardware, który opiera się na interakcji społecznościowej, nie finansowej. Przesłanie przelewu z kwotą pieniędzy sugeruje, że mamy do czynienia z modelem opartym na mikrotransakcjach, co również nie jest zgodne z ideą postcardware. Ten model licencjonowania nie wiąże się z żadnymi kosztami finansowymi i nie wymaga przelewów pieniężnych, gdyż jego celem jest bardziej nawiązywanie kontaktu niż uzyskiwanie zysków. Uiszczenie dobrowolnej opłaty na cele charytatywne może być bliskie idei donationware, które pozwala użytkownikom wspierać twórcę lub wskazane cele, jednak różni się od postcardware, które skupia się na wymianie symbolicznej, jaką jest przesłanie kartki. Wszystkie te modele licencjonowania wychodzą z różnych założeń, a kluczowe jest zrozumienie, że postcardware nie wiąże się z finansowymi zobowiązaniami, lecz z symbolicznym gestem uznania. To podejście promuje bardziej humanistyczną relację między twórcą a użytkownikiem, co jest kluczowe dla zrozumienia jego specyfiki w kontekście historycznym i społecznym.

Pytanie 19

W celu zapewnienia jakości usługi QoS, w przełącznikach warstwy dostępu stosuje się mechanizm

A. zastosowania kilku portów jako jednego logicznego połączenia jednocześnie
B. określania liczby urządzeń, które mogą łączyć się z danym przełącznikiem
C. nadawania wyższych priorytetów niektórym typom danych
D. zapobiegającego występowaniu pętli w sieci
Mechanizmy mające na celu zapewnienie jakości usług (QoS) różnią się znacząco w zależności od zastosowanych technologii oraz specyfiki sieci. Wybór odpowiedzi, które koncentrują się na takich kwestiach jak liczba urządzeń łączących się z przełącznikiem czy zapobieganie powstawaniu pętli, nie odnoszą się bezpośrednio do fundamentalnych zasad zarządzania ruchem danych w sieci. Odpowiedź dotycząca liczby urządzeń sugeruje, że ograniczenie liczby podłączonych klientów może mieć wpływ na QoS, jednak nie wpływa to bezpośrednio na priorytetyzację danych, która jest kluczowa dla utrzymania wysokiej jakości usług w warunkach dużego obciążenia sieci. Również koncepcja wykorzystywania kilku portów jako jednego łącza logicznego, chociaż może poprawić przepustowość, nie ma wpływu na to, które dane są przesyłane w sposób priorytetowy. Kluczowym błędem jest zrozumienie, że QoS dotyczy nie tylko zarządzania szerokością pasma, ale przede wszystkim sposobu traktowania różnych typów ruchu. Mechanizmy zapobiegające pętli, takie jak STP (Spanning Tree Protocol), są istotne dla stabilności sieci, ale nie dotyczą zarządzania priorytetami danych. W rezultacie wybór odpowiedzi, które nie odnosi się do nadawania priorytetów danym, prowadzi do niepełnego zrozumienia istoty QoS oraz jej zastosowania w praktyce, co jest kluczowym elementem w projektowaniu i utrzymywaniu nowoczesnych sieci komputerowych.

Pytanie 20

Aby uruchomić monitor wydajności oraz niezawodności w systemie Windows, należy skorzystać z przystawki

A. perfmon.msc
B. diskmgmt.msc
C. taskschd.msc
D. fsmgmt.msc
Odpowiedzi, które nie mówią o perfmon.msc, dotyczą innych narzędzi w systemie Windows, które mają swoje własne zadania. Na przykład, diskmgmt.msc zajmuje się zarządzaniem dyskami i partycjami, więc bardziej koncentruje się na tym, jak przechowywane są dane, a nie na tym, jak sprawnie działa system. Z kolei taskschd.msc to narzędzie, które pozwala ustawiać zadania do uruchamiania w określonym czasie, co też nie ma nic wspólnego z monitorowaniem wydajności. Fsmgmt.msc za to służy do zarządzania udostępnianiem folderów, czyli kontroluje dostęp do plików, a nie analizuje ich wydajności. Kluczowy błąd w myśleniu to pomylenie dwóch różnych ról: zarządzania i monitorowania. Żeby dobrze zarządzać wydajnością, trzeba korzystać z odpowiednich narzędzi, jak perfmon.msc, które dają bardziej zaawansowane opcje diagnozowania problemów. Nie rozumiejąc tych różnic, można łatwo wybrać niewłaściwe narzędzia do zarządzania systemem.

Pytanie 21

Shareware to typ licencji, która polega na

A. korzystaniu z programu bez żadnych opłat i ograniczeń
B. nieodpłatnym rozpowszechnianiu programu na czas próbny przed zakupem
C. nieodpłatnym dystrybucji aplikacji bez ujawniania kodu źródłowego
D. użytkowaniu programu przez ustalony czas, po którym program przestaje działać
Wiele osób myli pojęcie shareware z innymi modelami licencjonowania, co prowadzi do nieporozumień. Przykładowo, stwierdzenie, że shareware to korzystanie z programu przez określony czas, po którym program przestaje działać, jest mylące. Ten opis bardziej pasuje do modeli trial, gdzie użytkownik korzysta z pełnej funkcjonalności, ale z ograniczonym czasem. Z kolei twierdzenie, że shareware pozwala na używanie programu bezpłatnie i bez żadnych ograniczeń, jest nieprecyzyjne, ponieważ shareware oferuje jedynie ograniczoną wersję programu z zamiarem skłonienia użytkowników do zakupu. Opis jako bezpłatne rozprowadzanie aplikacji bez ujawniania kodu źródłowego również jest błędny, ponieważ shareware niekoniecznie dotyczy publikacji kodu źródłowego, a raczej możliwości przetestowania oprogramowania przed zakupem. Typowe błędy myślowe, które prowadzą do takich wniosków, to nieporozumienia dotyczące różnic między modelami licencyjnymi, a także mylenie koncepcji freeware z shareware. Freeware odnosi się do oprogramowania, które jest całkowicie darmowe, bez ograniczeń czasowych, podczas gdy shareware zawsze nastawia się na możliwość zakupu, co jest kluczowe w jego definicji. W związku z tym, zrozumienie tych różnic jest istotne dla właściwego korzystania z oprogramowania i przestrzegania zasad licencjonowania.

Pytanie 22

W nowoczesnych ekranach dotykowych działanie ekranu jest zapewniane przez mechanizm, który wykrywa zmianę

A. pola elektromagnetycznego
B. pola elektrostatycznego
C. oporu między przezroczystymi diodami wbudowanymi w ekran
D. położenia dłoni dotykającej ekranu z wykorzystaniem kamery
Ekrany dotykowe działające na zasadzie wykrywania pola elektrostatycznego są powszechnie stosowane w nowoczesnych urządzeniach mobilnych. Ta technologia polega na detekcji zmian w polu elektrycznym, które zachodzą, gdy palec użytkownika zbliża się do powierzchni ekranu. W momencie dotyku, zmieniają się wartości napięcia na powierzchni ekranu, co umożliwia precyzyjne określenie lokalizacji dotyku. Przykładem zastosowania tej technologii są smartfony i tablety, które korzystają z ekranów pojemnościowych. Dzięki nim, użytkownicy mogą korzystać z różnych gestów, takich jak przesuwanie, powiększanie czy zmniejszanie obrazu. Technologia ta jest zgodna z międzynarodowymi standardami dotyczącymi interfejsów użytkownika i ergonomii, co wpływa na jej popularność w branży elektroniki. Warto dodać, że pola elektrostatyczne są również wykorzystywane w innych urządzeniach, takich jak panele interaktywne w edukacji czy kioski informacyjne, podnosząc komfort i intuicyjność interakcji użytkownika z technologią.

Pytanie 23

Zastosowanie programu Wireshark polega na

A. nadzorowaniu stanu urządzeń w sieci.
B. weryfikowaniu wydajności łączy.
C. projektowaniu struktur sieciowych.
D. badaniu przesyłanych pakietów w sieci.
Wireshark to jedno z najpopularniejszych narzędzi do analizy sieci komputerowych, które pozwala na przechwytywanie i szczegółowe badanie pakietów danych przesyłanych przez sieć. Dzięki swojej funkcji analizy, Wireshark umożliwia administratorom sieci oraz specjalistom ds. bezpieczeństwa identyfikację problemów z komunikacją, monitorowanie wydajności oraz wykrywanie potencjalnych zagrożeń w czasie rzeczywistym. Narzędzie to obsługuje wiele protokołów, co czyni go wszechstronnym do diagnozowania różnorodnych kwestii, od opóźnień w transmisji po nieautoryzowane dostęp. Przykładowo, można użyć Wireshark do analizy pakietów HTTP, co pozwala na zrozumienie, jakie dane są przesyłane między klientem a serwerem. Narzędzie to jest również zgodne z najlepszymi praktykami branżowymi, takimi jak monitorowanie jakości usług (QoS) czy wdrażanie polityki bezpieczeństwa, co czyni je nieocenionym w utrzymaniu zdrowia sieci komputerowych.

Pytanie 24

Który z dynamicznych protokołów rutingu został stworzony jako protokół bramy zewnętrznej do łączenia różnych dostawców usług internetowych?

A. RIPng
B. IS - IS
C. BGP
D. EIGRP
BGP, czyli Border Gateway Protocol, jest protokołem routingu zaprojektowanym z myślą o wymianie informacji o trasach między różnymi systemami autonomicznymi (AS). To kluczowy element funkcjonowania internetu, ponieważ umożliwia współpracę między różnymi dostawcami usług internetowych (ISP). BGP jest protokołem bramy zewnętrznej, co oznacza, że operuje na granicach sieci różnych organizacji, a nie wewnątrz pojedynczej sieci. Dzięki BGP, ISP mogą wymieniać informacje o dostępnych trasach, co pozwala na optymalizację ścieżek przesyłania danych oraz zapewnia redundancję. W praktyce, BGP jest wykorzystywane w dużych, rozproszonych sieciach, gdzie konieczne jest zarządzanie wieloma połączeniami i zabezpieczanie stabilności routingowej. Zgodnie z najlepszymi praktykami, operatorzy sieci często implementują BGP w połączeniu z innymi protokołami routingu wewnętrznego, aby zwiększyć elastyczność i efektywność transmisji danych. BGP również wspiera różne mechanizmy polityki routingu, co pozwala administratorom sieci na dostosowywanie tras w zależności od wymagań biznesowych.

Pytanie 25

Osoba korzystająca z komputera publikuje w sieci Internet pliki, które posiada. Prawa autorskie zostaną złamane, gdy udostępni

A. otrzymany dokument oficjalny
B. swoje autorskie filmy z protestów ulicznych
C. zrobione przez siebie fotografie obiektów wojskowych
D. obraz płyty systemu operacyjnego Windows 7 Home
Udostępnienie otrzymanego dokumentu urzędowego, własnych autorskich filmów czy zdjęć obiektów wojskowych nie zawsze narusza prawa autorskie, ponieważ różnią się one w kontekście własności intelektualnej. Dokumenty urzędowe często są uznawane za materiały publiczne, co oznacza, że mogą być udostępniane bez naruszania praw autorskich, o ile użytkownik nie narusza przepisów związanych z prywatnością czy innymi regulacjami prawnymi. Posiadanie praw do własnych filmów czy zdjęć, które zostały stworzone przez użytkownika, daje mu prawo do ich udostępniania. Kluczowym błędem myślowym jest założenie, że wszystkie materiały, które nie są oryginalnie stworzone przez użytkownika, są automatycznie chronione prawem. To prowadzi do nieporozumienia związanych z zasadami stosowania praw autorskich i licencjonowania. Użytkownicy powinni być świadomi specyfiki ochrony prawnej, która różni się w zależności od rodzaju materiału. Warto zainwestować czas w naukę o prawach autorskich, aby unikać potencjalnych problemów prawnych związanych z niewłaściwym udostępnianiem treści. Edukacja w tym zakresie jest kluczowa dla każdego użytkownika internetu.

Pytanie 26

Na ilustracji procesor jest oznaczony liczbą

Ilustracja do pytania
A. 8
B. 3
C. 2
D. 5
Procesor, oznaczony na rysunku numerem 3, jest centralnym układem scalonym komputera odpowiadającym za wykonywanie instrukcji programowych. Procesory są kluczowym składnikiem jednostki centralnej (CPU), które przetwarzają dane i komunikują się z innymi elementami systemu komputerowego. Ich kluczową cechą jest zdolność do realizacji złożonych operacji logicznych oraz arytmetycznych w krótkim czasie. W praktyce procesory znajdują zastosowanie nie tylko w komputerach osobistych, ale także w urządzeniach mobilnych, serwerach oraz systemach wbudowanych. Standardy przemysłowe, takie jak architektura x86 czy ARM, definiują zestaw instrukcji procesorów, co pozwala na kompatybilność oprogramowania z różnymi modelami sprzętu. Dobre praktyki obejmują chłodzenie procesora poprzez systemy wentylacyjne lub chłodzenia cieczą, co zwiększa wydajność i trwałość urządzeń. Warto również pamiętać o regularnej aktualizacji sterowników, co zapewnia optymalne działanie i bezpieczeństwo systemu.

Pytanie 27

Urządzenie typu Plug and Play, które jest ponownie podłączane do komputera, jest identyfikowane na podstawie

A. położenia urządzenia
B. unikalnego identyfikatora urządzenia
C. lokalizacji sterownika tego urządzenia
D. specjalnego oprogramowania sterującego
Analizując dostępne odpowiedzi, warto zauważyć, że niektóre z nich opierają się na mylnych założeniach dotyczących funkcjonowania urządzeń Plug and Play. Specjalny sterownik programowy, na przykład, nie jest kluczowym czynnikiem przy ponownym podłączeniu urządzenia. Standardowe systemy operacyjne mają zestaw wbudowanych sterowników, a rozpoznawanie urządzenia na podstawie sterownika nie oznacza, że system zawsze będzie wymagał nowego sterownika przy każdym podłączeniu. Kolejna odpowiedź, dotycząca lokalizacji sterownika urządzenia, również nie odnosi się bezpośrednio do mechanizmu identyfikacji. Sterownik jest narzędziem, które pozwala na komunikację pomiędzy systemem a urządzeniem, ale lokalizacja samego sterownika nie jest tym, co umożliwia urządzeniu prawidłowe rozpoznanie podczas podłączenia. Z kolei lokalizacja urządzenia jako kryterium identyfikacji również mijają się z prawdą, ponieważ systemy operacyjne nie polegają na fizycznej lokalizacji podłączonych urządzeń, a raczej na ich identyfikatorach logicznych. W rzeczywistości, identyfikacja opiera się na unikalnych identyfikatorach, które są przypisywane urządzeniom przez producenta. Błędem myślowym jest zatem myślenie, że lokalizacja czy sterowniki mają kluczowe znaczenie dla ponownego podłączenia urządzenia, gdyż zasadniczo cały proces opiera się na unikalnych identyfikatorach, które zapewniają jednoznaczność i właściwe przypisanie odpowiednich funkcji do każdego sprzętu.

Pytanie 28

Który z poniższych programów nie służy do diagnozowania sieci komputerowej w celu wykrywania problemów?

A. ping
B. getfacl
C. nslookup
D. traceroute
Odpowiedź 'getfacl' jest poprawna, ponieważ jest to narzędzie służące do zarządzania listami kontroli dostępu (ACL) w systemach Unix i Linux. Jego główną funkcją jest umożliwienie administratorom sprawdzania i modyfikowania praw dostępu do plików i katalogów, a nie testowanie sieci komputerowej. Przykładem użycia 'getfacl' może być sytuacja, gdy administrator chce zweryfikować, jakie uprawnienia mają określone pliki w systemie, aby zapewnić odpowiednią ochronę danych. W kontekście testowania sieci, narzędzia takie jak ping, traceroute czy nslookup są właściwe, ponieważ są one zaprojektowane do diagnozowania problemów z połączeniami sieciowymi, identyfikując, gdzie mogą występować problemy w komunikacji między urządzeniami. Standardy branżowe w obszarze bezpieczeństwa i zarządzania systemami często zalecają użycie tych narzędzi w procesie diagnostyki sieci, co czyni 'getfacl' nieodpowiednim wyborem w tym kontekście.

Pytanie 29

Symbol okablowania przedstawiony na diagramie odnosi się do kabla

Ilustracja do pytania
A. szeregowego
B. światłowodowego
C. ethernetowego prostego
D. ethernetowego krosowanego
Kabel szeregowy, często wykorzystywany w komunikacji między urządzeniami na małe odległości, jak porty szeregowe COM, nie jest stosowany w standardowych połączeniach sieciowych między urządzeniami takimi jak przełączniki. Jego działanie opiera się na przesyłaniu danych bit po bicie, co jest nieefektywne w przypadku dużych ilości danych, w przeciwieństwie do sieci Ethernet, które mogą transmitować dane równolegle. Z kolei kabel światłowodowy, choć zapewnia wysoką szybkość transmisji i odporność na zakłócenia elektromagnetyczne, charakteryzuje się inną budową fizyczną i działaniem. Wykorzystuje on światło do przesyłu danych i jest używany głównie na duże odległości w sieciach szkieletowych, a nie w typowych połączeniach przełączników w lokalnej sieci komputerowej. Ethernetowy kabel prosty, najbardziej popularny w sieciach lokalnych, służy do łączenia urządzeń o różnych funkcjach, takich jak komputer z przełącznikiem lub routerem. Kabel prosty nie zmienia konfiguracji przewodów, co oznacza, że dane transmitowane w ten sposób muszą trafiać do urządzenia, które automatycznie rozpoznaje, jak odebrać i wysłać sygnał. W sytuacji przedstawionej na schemacie, kabel prosty nie będzie odpowiedni do bezpośredniego połączenia dwóch przełączników bez wsparcia funkcji automatycznego przełączania MDI/MDI-X. Zrozumienie różnic między tymi typami kabli jest kluczowe dla projektowania wydajnych i funkcjonalnych sieci komputerowych, a błędna identyfikacja może prowadzić do problemów z komunikacją sieciową i wydajnością.

Pytanie 30

Jakie zastosowanie ma przedstawione narzędzie?

Ilustracja do pytania
A. sprawdzenia długości badanego kabla sieciowego
B. pomiar wartości napięcia w zasilaczu
C. utrzymania drukarki w czystości
D. podgrzania i zamontowania elementu elektronicznego
Multimetr cęgowy to super narzędzie do pomiaru napięcia i prądu, a także wielu innych parametru elektrycznych w obwodach. Najlepsze jest to, że można nim mierzyć prąd bez dotykania przewodów, dzięki cęgoma, które obejmują kabel. Kiedy chcesz zmierzyć napięcie w zasilaczu, wystarczy przyłożyć końcówki do odpowiednich punktów w obwodzie i masz dokładny wynik. Multimetry cęgowe są mega popularne w elektryce i elektronice, bo są dokładne i łatwe w obsłudze. Mają też zgodność z międzynarodowymi standardami jak IEC 61010, więc można być pewnym, że są bezpieczne. Co więcej, nowoczesne multimetry mogą badać różne rzeczy, jak rezystancja czy pojemność. Dzięki temu są bardzo wszechstronnym narzędziem diagnostycznym. Możliwość zmiany zakresów pomiarowych to także duży plus, bo pozwala dostosować urządzenie do konkretnych potrzeb. Regularne kalibracje to podstawa, żeby wszystko działało jak należy, co jest istotne w środowisku pracy.

Pytanie 31

Najefektywniejszym sposobem dodania skrótu do aplikacji na pulpitach wszystkich użytkowników w domenie będzie

A. ponowna instalacja programu
B. pobranie aktualizacji Windows
C. użycie zasad grupy
D. mapowanie dysku
Mapowanie dysku, choć przydatne w wielu sytuacjach, nie jest najskuteczniejszym sposobem na wstawienie skrótów do programów na pulpitach użytkowników. Mapowanie dysku polega na tworzeniu wirtualnych dysków, które umożliwiają dostęp do zasobów sieciowych, co jest użyteczne, na przykład, w przypadku współdzielenia plików. Jednak nie oferuje to możliwości centralnego zarządzania pulpitami użytkowników ani automatycznego dodawania skrótów do programów. Często prowadzi to do zamieszania, ponieważ użytkownicy mogą mieć różne ustawienia na swoich pulpitach. Co więcej, ponowna instalacja programu nie rozwiązuje problemu z dostępnością skrótów, a wręcz może prowadzić do dodatkowych komplikacji, takich jak utrata danych czy zmiana ustawień konfiguracyjnych, co nie jest pożądane w środowisku produkcyjnym. Pobranie aktualizacji Windows, z drugiej strony, dotyczy utrzymania bezpieczeństwa i stabilności systemu, ale nie ma związku z dystrybucją skrótów do aplikacji. W przypadku niektórych organizacji, nieufność wobec zasad grupy może prowadzić do błędnego zrozumienia ich funkcjonalności. Zasady grupy są potężnym narzędziem, które w rękach odpowiedzialnego administratora może znacznie uprościć zarządzanie środowiskiem IT, co jest znacznie bardziej efektywne niż podejścia oparte na ręcznych interwencjach czy lokalnych ustawieniach użytkowników.

Pytanie 32

Nośniki informacji, takie jak dyski twarde, zapisują dane w jednostkach zwanych sektorami, które mają wielkość

A. 128 B
B. 512 KB
C. 1024 KB
D. 512 B
Dyski twarde przechowują dane w strukturze zwanej sektorami, z których każdy ma standardowy rozmiar 512 B. Ten rozmiar jest zgodny z wieloma standardami w branży, co zapewnia kompatybilność pomiędzy różnymi systemami i urządzeniami. Użycie sektorów o rozmiarze 512 B pozwala na efektywne zarządzanie danymi oraz optymalizację wydajności podczas operacji odczytu i zapisu. Przykładowo, gdy system operacyjny chce zapisać plik, fragmentuje go na mniejsze części, które mogą pasować do rozmiaru sektora, co pozwala na lepsze wykorzystanie dostępnej przestrzeni. Dodatkowo, wiele systemów plików, jak NTFS czy FAT32, operuje na sektorach 512 B, co czyni ten rozmiar standardem w technologii przechowywania danych. Znajomość rozmiaru sektorów jest istotna przy wyborze najlepszego dysku twardego do konkretnego zastosowania, na przykład w konfiguracjach serwerowych, gdzie wydajność i pojemność mają kluczowe znaczenie.

Pytanie 33

Do dynamicznej obsługi sprzętu w Linuxie jest stosowany system

A. uname
B. ulink
C. uptime
D. udev
To pytanie często bywa mylące, bo pozostałe odpowiedzi pojawiają się dość regularnie podczas pracy z Linuksem i mogą się komuś wydawać związane ze sprzętem. Jednak tylko jedna z nich faktycznie odpowiada za dynamiczne zarządzanie urządzeniami. Weźmy na przykład „ulink” – brzmi trochę znajomo i kojarzy się z czymś od „linkowania”, ale w rzeczywistości w Linuksie nie istnieje taki system czy narzędzie do obsługi sprzętu, to po prostu nieformalna zbitka słowna. Z kolei „uname” to bardzo przydatne narzędzie, ale ono służy wyłącznie do wyświetlania informacji o systemie, takich jak wersja jądra czy architektura sprzętu. Nie ma żadnego wpływu na dynamiczne obsługiwanie urządzeń, to raczej coś do diagnostyki niż zarządzania. Natomiast „uptime” to prosty programik, który pokazuje, jak długo system działa bez przerwy – ani słowem nie dotyka tematu sprzętu, a już na pewno nie zarządza urządzeniami. W mojej opinii często spotykam się z myleniem tych nazw, zwłaszcza przez osoby, które dopiero zaczynają przygodę z Linuksem i kojarzą „u*” z czymś ważnym. Jednak w praktyce tylko „udev” zapewnia dynamiczne wykrywanie, tworzenie plików urządzeń i obsługę automatycznych akcji po podłączeniu lub odłączeniu sprzętu. To właśnie on jest zgodny ze standardami nowoczesnych dystrybucji Linuksa i jest centralnym elementem koncepcji plug-and-play na tym systemie operacyjnym. Warto więc dobrze rozróżniać te narzędzia oraz wiedzieć, za co które z nich odpowiada – to znacznie upraszcza codzienną administrację i rozwiązywanie problemów sprzętowych.

Pytanie 34

Ile maksymalnie hostów można przydzielić w sieci o masce 255.255.255.192?

A. 62
B. 14
C. 127
D. 30
Maksymalna liczba hostów, które można zaadresować w sieci z maską 255.255.255.192, wynosi 62. Maska ta w formacie CIDR jest zapisywana jako /26, co oznacza, że 26 bitów jest używanych do adresowania sieci, a pozostałe 6 bitów jest dostępnych dla hostów. Aby obliczyć liczbę dostępnych adresów dla hostów, stosujemy wzór 2^n - 2, gdzie n to liczba bitów przeznaczonych na hosty. W tym przypadku 2^6 - 2 = 64 - 2 = 62. Odejmuje się dwa adresy: jeden dla adresu sieci i jeden dla rozgłaszania (broadcast). Tego typu koncepcje są fundamentalne w planowaniu adresacji IP, co jest kluczowe w projektowaniu sieci komputerowych. Przykładowo, w sieci o maskach /26 często stosuje się je w małych biurach lub oddziałach, gdzie liczba urządzeń jest ograniczona. Dzięki takiej adresacji, administratorzy mogą efektywnie przydzielać IP i organizować małe segmenty sieciowe, co poprawia bezpieczeństwo i wydajność.

Pytanie 35

Ile podsieci tworzą komputery z adresami: 192.168.5.12/25, 192.168.5.50/25, 192.168.5.200/25, 192.158.5.250/25?

A. 2
B. 4
C. 3
D. 1
Komputery o adresach 192.168.5.12/25, 192.168.5.50/25 i 192.168.5.200/25 znajdują się w tej samej podsieci, ponieważ mają identyczną maskę podsieci /25, co oznacza, że pierwsze 25 bitów adresu IP definiuje adres sieciowy. Adresy te należą do zakresu 192.168.5.0 - 192.168.5.127, co oznacza, że są częścią jednej podsieci. Z kolei adres 192.158.5.250/25, z maską 255.255.255.128, znajduje się w zupełnie innej sieci, ponieważ nie zgadza się z pierwszymi 25 bitami, które powinny być takie same dla wszystkich adresów w danej podsieci. To oznacza, że mamy jedną podsieć z trzema komputerami oraz jedną odrębną podsieć dla komputera z adresem 192.158.5.250. W praktyce, zrozumienie podziału na podsieci i przydzielania adresów IP jest kluczowe dla efektywnego zarządzania siecią. Standardy takie jak CIDR (Classless Inter-Domain Routing) są używane do efektywnego przydzielania adresów IP i optymalizacji wykorzystania dostępnych zasobów.

Pytanie 36

Jaki adres IPv4 wykorzystuje się do testowania protokołów TCP/IP na jednym hoście?

A. 128.0.0.1
B. 127.0.0.1
C. 1.1.1.1
D. 224.0.0.9
Adres IPv4 127.0.0.1, znany również jako 'localhost' lub 'adres loopback', jest specjalnym adresem używanym do komunikacji wewnętrznej w obrębie jednego hosta. Dzięki temu adresowi aplikacje mogą wysyłać i odbierać dane bez konieczności interakcji z siecią zewnętrzną. Jest to kluczowe w testowaniu i diagnostyce aplikacji sieciowych, ponieważ umożliwia sprawdzenie, czy stos protokołów TCP/IP działa poprawnie na danym urządzeniu. Na przykład, programiści mogą korzystać z tego adresu do testowania serwerów aplikacyjnych, ponieważ pozwala to na symulację działania aplikacji bez potrzeby zakupu zewnętrznego dostępu do sieci. Adres 127.0.0.1 jest zarezerwowany przez standardy IETF w RFC 1122 i nie może być przypisany do fizycznego interfejsu sieciowego, co czyni go idealnym do lokalnych testów. W praktyce, aby przetestować działanie serwera HTTP, można użyć przeglądarki internetowej, wpisując 'http://127.0.0.1', co spowoduje połączenie z lokalnym serwerem, jeśli taki jest uruchomiony.

Pytanie 37

Narzędzie służące do przechwytywania oraz ewentualnej analizy ruchu w sieci to

A. sniffer
B. spyware
C. viewer
D. keylogger
Odpowiedź "sniffer" jest poprawna, ponieważ sniffer to program służący do przechwytywania i analizy ruchu w sieci komputerowej. Sniffery są wykorzystywane przez administratorów sieci do monitorowania i diagnozowania problemów z wydajnością oraz bezpieczeństwem sieci. Przykładowym zastosowaniem sniffera może być analiza pakietów przesyłanych w sieci lokalnej, co pozwala na identyfikację nieprawidłowości, takich jak nieautoryzowane próby dostępu do zasobów czy też ataki typu Denial of Service (DoS). W kontekście bezpieczeństwa, sniffery są również wykorzystywane w testach penetracyjnych, aby sprawdzić podatności systemów na ataki. W branży bezpieczeństwa informacji istnieją standardy, takie jak NIST SP 800-115, które zalecają stosowanie narzędzi do analizy ruchu sieciowego w celu zapewnienia integralności i poufności danych. Warto zauważyć, że używanie snifferów wymaga świadomości prawnej, ponieważ nieautoryzowane przechwytywanie danych może być niezgodne z przepisami prawa.

Pytanie 38

Jakie polecenie w systemie operacyjnym Linux umożliwia sprawdzenie bieżącej konfiguracji interfejsu sieciowego na komputerze?

A. ifconfig
B. ping
C. tracert
D. ipconfig
Wybór odpowiedzi dotyczących polecenia 'ping' jest zrozumiały, jednak to narzędzie ma na celu testowanie łączności z określonym adresem IP lub nazwą hosta, a nie dostarczanie szczegółowych informacji o konfiguracji interfejsu sieciowego. 'Ping' wysyła pakiety ICMP Echo Request i oczekuje na odpowiedź, co pozwala na sprawdzenie, czy dany host jest dostępny w sieci, ale nie oferuje informacji na temat jego konfiguracji. Z kolei 'tracert', znany w systemach Unix jako 'traceroute', służy do śledzenia trasy pakietów w sieci. Pomaga w identyfikacji opóźnień i punktów przesiadkowych między źródłem a celem, ale ponownie, nie dostarcza danych o lokalnych interfejsach. W odpowiedzi 'ipconfig', która jest znana użytkownikom systemów Windows, również nie ma zastosowania w kontekście Linuxa. To polecenie umożliwia wyświetlanie informacji o konfiguracji sieci w systemie Windows, w tym adresów IP i informacji o interfejsach, jednak w systemach Linux używa się 'ifconfig' lub 'ip'. Przy wyborze odpowiedzi, ważne jest zrozumienie kontekstu systemu operacyjnego, w którym pracujemy, oraz celów poszczególnych poleceń. Wiele osób myli te komendy ze względu na podobieństwo ich funkcji, ale każde z nich ma swoje unikalne zastosowanie i zastosowanie w różnych scenariuszach sieciowych. Zrozumienie różnic pomiędzy nimi jest kluczowe dla efektywnego zarządzania siecią.

Pytanie 39

Jakiego działania nie wykonują serwery plików?

A. Udostępniania plików w Internecie
B. Odczytu oraz zapisu informacji na dyskach twardych
C. Zarządzania bazami danych
D. Wymiany informacji pomiędzy użytkownikami sieci
Zarządzanie bazami danych nie jest typowym zadaniem, które realizują serwery plików. Serwery plików mają na celu przechowywanie, udostępnianie oraz zarządzanie plikami w sieci, co obejmuje operacje odczytu i zapisu danych na dyskach twardych oraz wymianę danych pomiędzy użytkownikami. Przykładowo, serwer plików może być wykorzystywany w biurze do centralnego hostingu dokumentów, które użytkownicy mogą wspólnie edytować. W praktyce, serwery plików są pomocne w scentralizowanym zarządzaniu danymi, co zwiększa bezpieczeństwo i ułatwia kontrolę dostępu do plików. W przeciwieństwie do tego, zarządzanie bazami danych polega na organizacji, przechowywaniu oraz przetwarzaniu danych w bardziej złożony sposób, zazwyczaj z wykorzystaniem systemów zarządzania bazami danych (DBMS), takich jak MySQL czy PostgreSQL, które są zaprojektowane do obsługi relacyjnych i nierelacyjnych baz danych. Dlatego zarządzanie bazami danych to osobna kategoria, która nie jest w zakresie działania serwerów plików.

Pytanie 40

Co oznacza skrót WAN?

A. rozległa sieć komputerowa
B. sieć komputerowa w mieście
C. sieć komputerowa lokalna
D. sieć komputerowa prywatna
WAN, czyli Wide Area Network, odnosi się do rozległych sieci komputerowych, które rozciągają się na dużych odległościach, często obejmując wiele miast, krajów czy nawet kontynentów. WAN-y są kluczowe dla organizacji, które potrzebują połączyć swoje biura rozlokowane w różnych lokalizacjach. Przykładem zastosowania WAN może być sieć korporacyjna łącząca oddziały firmy w różnych krajach, umożliwiająca wymianę danych i komunikację. W praktyce WAN-y wykorzystują różne technologie, takie jak MPLS (Multiprotocol Label Switching), VPN (Virtual Private Network) czy połączenia dedykowane. Standardy takie jak ITU-T G.8031 dotyczące ochrony sieci w WAN-ach, są istotne dla zapewnienia niezawodności i bezpieczeństwa przesyłania danych. Dzięki zastosowaniu WAN, przedsiębiorstwa mogą centralizować swoje zasoby, zdalnie zarządzać danymi i aplikacjami oraz zapewniać pracownikom zdalny dostęp do informacji, co jest niezbędne w dzisiejszym zglobalizowanym świecie.